
Continuous Integration

Christophe Demarey
SED Lille Nord-Europe

 March 2013, 20th - 2

Outline

Introduction

1. Continuous Integration: Principles and practices

identify key concepts of continuous integration

reduce risks using continuous integration

- 3

Outline

 2. Setting up a Continuous Integration system

Build software at every change

Test continuously

Inspect the code continuously

Deploy continuously

Get a continuous feedback

Conclusion

- 4

INTRODUCTION

« It’s hard enough for software developers
to write code that works on their machine.
But even when that’s done, there’s a long
journey from there to software that’s
producing value - since software only
produces value when it’s in production. »

Martin Fowler

Pour personnaliser la

l’émetteur et le nom de

Affichage / En-tête et pied

Personnaliser la zone
date et la zone pied de

Cliquer sur appliquer

Deployable software

- 5

Reduce time …

- 6

Increase the code quality

- 7 - 8

Continuous Integration
Principles and Practices

1

Increasing user requirements

- 9

Software development nowadays

- 10

Where we want to go

- 11 - 12

Continuous Integration
Key concepts

A

CI is a process

- 13

Continuous Integration

Software development strategy
CI is the process of integrating work

 and appling quality control frequently.

- 14

CI big picture

- 15

Incremental software development

- 16

What is integration?

- 17

Why is it difficult?

- 18

What is a build?

- 19

Automation is the key

- 20

Automation is the key

- 21

Small increments

- 22

Software decomposition

- 23

Software decomposition

- 24

Valuable elements first #1

- 25

Incremental development: classic and value driven

Valuable elements first #2

- 26

Incremental development: classic and value driven

Valuable elements first #3

- 27

Incremental development: classic and value driven

Valuable elements first #4

- 28

Incremental development: classic and value driven

- 29

«!Continuously is more often than you think!»

Commit

- 30

CI practices

1. Commit often to the central source code repository

2. Commit one change at a time (small increments)

3. Avoid getting broken code

4. Run private builds

5. Don’t commit broken code

6. Fix broken builds immediately

7. Write automated developer tests

8. All tests and inspections must pass

- 31

More time to focus on added value tasks

- 32

Exercise

Are you using a Version Control System (VCS, i.e. svn, git, etc.)?

Is your VCS shared by all developers?

Is your project’s build process fully automated? Is it repeatable?

Are you writing tests?

Are you running automated tests?

Is tests execution part of your build process?

How do you check coding / design rules?

Do you have an automated feedback?

Are you using a dedicated integration machine to build software?

- 33 - 34

Continuous Integration
Reduce risks using continuous integration

B

Unusable software in the development stage

- 35

Blind mode

Exercise: Reducing risks

- 36

Lack of deployable software

- 37

Late discovery of defects

- 38

Lack of project visibility

- 39

Low quality software

- 40

Design / code smells

- 41

Exercise: Rapid feedback

- 42

- 43

Implementing Continuous Integration
2

- 44

Implementing Continuous Integration
Build software at every change

A

Automate builds

- 45

Single command builds

- 46

Centralize software assets

- 47

source code

scripts
(build, deployment)

DataBase scripts

tests

Documentation

SCM

Project layout

- 48

Fail build fast

- 49

Build for any environment

- 50

Manage your environment

Store configuration with source code
 test data, database scripts,
 build script, deployment script

Third-party libraries
 use a dependency manager (ex: maven)
 or store them into the version control system

- 51

Dedicated integration build machine

- 52

Use a CI server

- 53

Using a CI server

•  Long-running process which can execute a simple workflow at
regular intervals
•  View of the results of the processes, notifications, access to
outputs
•  Manage build distribution across a grid
•  Integration with a lot of tools

Unique opportunity to get all steps (installation, configuration)
needed to have a running application.

- 54

Keep your build fast!

- 55

Staged builds

- 56

Distributed builds

- 57

Jenkins dashboard

- 58

Inria CI platform https://ci.inria.fr

- 59 - 60

Implementing Continuous Integration
Test continuously

B

Test continuously

“Our acceptance tests validate that we
built the right thing, while our unit and
functional tests verify that we built the
thing right.”

- 61

Confidence

- 62

Unit testing

- 63

Component testing

- 64

System testing

- 65

Functional testing

Demo!

- 66

Test doubles

Dummy objects

Fake objects

Stubs

Mocks

- 67

Test doubles
> Fake objects

- 68

Test doubles
> Stubs

- 69

Test doubles
> Stubs

- 70

Test doubles
> Mocks

- 71

Test doubles
> Mocks

- 72

CI and tests

Automate tests
Categorize tests to be able to run slower tests at different intervals than faster tests.
Write tests for defects : regression tests to ensure that the defect will not surface
again. Use a bug tracker.
Run faster tests first
Make component tests repeatable : ensure that the data is in a “known state” (ex;:
use a database test framework)
Limit the number of asserts in a test case to spend less time tracking down the
cause of a test failure.

- 73 - 74

Implementing Continuous Integration
Inspect the code continuously

C

Reduce code complexity

- 75

Reduce code complexity
> cyclomatic complexity

- 76

Perform design reviews

- 77

Perform design reviews

- 78

Maintain organizational standards
with code audit

- 79

Maintain organizational standards
with code audit

- 80

Reduce duplicate code
> Extract method pattern

- 81

Assess Code coverage

- 82

- 83

Implementing Continuous Integration
Continuous feedback

D
Communication !

“As a general rule, the most successful man in life is the
man who has the best information.”

Benjamin Disraeli (1804-1881)

- 84

Mechanisms to enable continuous feedback

- 85 - 86

Implementing Continuous Integration
Deploy continuously

E

Continuous deployment

- 87

Continuous deployment

- 88

Continuous deployment

1. Tag releases put inti production
2. Produce a clean environment,

free of assumptions
3. Generate and label builds
4. Successfully run tests at all levels in a clone

of the production environment
5. Create build feedback reports
6. Be able to rollback quickly if needed

- 89 - 90

Implementing Continuous Integration
Common practices

F

Always run tests locally before committing

- 91

Don’t check in on a broken build

- 92

Time-box fixing before reverting

- 93

Never go home on a broken build

- 94

Don’t comment out failing tests

- 95

Test Driven Development

- 96

Some suggested practices

eXtreme Programming development practices (refactoring)

Failing a build
•  for slow tests,
•  for warnings,
•  for code style breaches

- 97

Some suggested practices

- 98

- 99

Conclusion

3
What you should keep in mind

- 100

Automation is the key

- 101

You need tests !

- 102

Team adherence, discipline

- 103

Agreement of the team
> Highest priority : Fix changes that breaks the application

- 104

References

Continuous Integration article
by Martin Fowler
http://martinfowler.com/articles/
continuousIntegration.html

Continuous Integration softwares (non exhaustive list) :
•  Jenkins - http://jenkins-ci.org/
•  Bamboo - http://www.atlassian.com/software/bamboo/overview
•  Travis - http://about.travis-ci.org/
•  Hydra - http://nixos.org/hydra/

Wikipedia
http://sourcemaking.com

- 105

Thank you!

