Continuous Integration Training

Christophe Demarey
Rev 0.1
March 2013

I Requirements
Programming experience and knowledge of developer common tools (version control,
build, etc.)

Il. Objectives

The goal of this training is to give to participants key points to be able to build a working
software in an automated way, set up a build pipeline and quickly detect problems. All
these abilities will free developers from boring and repetitive tasks and they will have
more time to focus on added value tasks. It will also points out and describes the
development process.

Continuous Integration: Principles and practices
* Identify key concepts of continuous integration
* Reduce risks using continuous integration

Setting up a Continuous Integration system
* Build software at every change
* Test continuously
* Inspect the code continuously
* Deploy continuously
* (Geta continuous feedback

lll. Introduction

« It’s hard enough for software developers to write code that works on their machine. But
even when that’s done, there’s a long journey from there to software that’s producing value
- since software only produces value when it’s in production. »

Martin Fowler

We will see how continuous integration helps to:
e produce deployable software at every step in your development lifecycle,
* reduce the time between a defect introduction and its discovery, thereby
lowering the cost to fix and
* increase the code quality of your software by building software often rather than
waiting to the latter stages of development.

Exercise

In your opinion, what is Continuous Integration?

IV. Continuous Integration: Principles and practices

A. Background
Increasing user requirements
Software development nowadays is more like handicraft (manual work).

B. Identify key concepts of continuous integration

a) Big picture
Continuous integration is, first and foremost, a process backed by a set of tools.

It is best to think of continuous integration as a mindset that allows you to reduce risk
by frequently integrating incremental software development changes. Basically, it
represents the realization and refinement of a common software development best
practice: the daily build and smoke test (preliminary testing to reveal simple failures,
severe enough to reject a prospective software release).

Feedback mechanism
Build
Developer \ : i >
@ changes (commit / push)

Developer

N

Developer

Central repository Continuous Integration
server

1. A developer commits changes to the version control system (central repository).

The repository, via a post-commit hook, tells the CI server a change has occurred.

3. The CI server retrieves the latest sources from the central repository and then
builds the software (build script is shipped with sources). This step is called
integration.

4. The CI server aggregate build results and generates a feedback. This feedback is
often materialized by emails but it can also be instant messaging, tweets, a visual
feedback on a screen or a red light in the dev room, etc.

N

Continuous integration is not
e atool,
* nightly build.

b) Incremental software development ...
The concept of incremental software development is closely coupled to the concept of
iterative software development.

Analyse user
requirements

Operate and
maintain the system

Requirements SRSUUNUNNNRRRRRRIRIIN Acceptance
Elicitation Testing

Analysis EEETEEETEPEPEPEPEPEPEPEPES

Document and Design the
test the system program

Architectural Integration

Design Testing

Code the
program

Iterative and incremental software development is the basis of agile software
development practices (XP, Scrum, Kanban).

c) What is integration? Why is it difficult?
Definition from Wikipedia:
“Integration: the engineering practices and procedures for assembling large and
complicated systems from less-complicated units, especially subsystems”

We can add that integration is not only assembling pieces but getting a new working
system. So, you need to check the behaviour of the resulting system!

Why is it difficult?

* Blind mode: Given a specification, you develop a component in blind mode. You
only know if the specification is right and enough detailed once you try to
integrate. If you defer the integration phase (acceptance testing) at the end of the
project, it may leads to serious problems.

* Need to agree an a common APL

* The world change in the same time you are developing.

“If it’s painful, don’t put it off, do it more often!”

d) What is a build?

Build is not]ust a complle A build is the process that takes source files as 1nput
performs a set of actions (compilation, testing, inspection, deployment, ...) to get a
cohesive unit (the software) that works.

=> define and explicit the process
=>no human error

f) Small increments
[terative and incremental software development implies to explode your requirements
in a lot of small and coherent parts that will be part of iterations / increments.
More details: http://essentials.xebia.com/small-increments

Software decomposition

Valuable elements first
Development of software pieces must be driven by the value.
Example:
1. abox with wheels
2. with a motor
3. with seats
and not
1. air conditioning
2. mp3 player
3. GPS

Incremental development: classic and value driven

Developing in small increments is necessary but useless if changes are not pushed to the
central source code repository! You need to commit code very frequently: “Frequently is
more often than you think”.

If we try to resume: we need to commit very often, small changes and a
change/commit should only contain a feature at a time (only one reason to include
or revert this change).

More details: http://essentials.xebia.com/one-change-at-a-time

g) Cl practices
* Commit often to the central source code repository
* Commit one change at a time (small increments)
* Avoid getting broken code
* Run private builds
* Don’t commit broken code
* Fix broken builds immediately
* Write automated developer tests
¢ All tests and inspections must pass

‘ Exercise

Questions to ask to yourself
* Are you using a Version Control System (VCS, i.e. svn, git, etc.)?
¢ Isyour VCS shared by all developers?
* Isyour project’s build process fully automated? Is it repeatable?
* Are you writing tests?
* Are you running automated tests?
* Istests execution part of your build process?
* How do you check coding / design rules?
* Do you have an automated feedback?
* Are you using a dedicated integration machine to build software?

C. Reduce risks using continuous integration
Replace « big and long » integration phases (especially at the end of the project) with
« small and frequent » ones (think of continuous compilation in eclipse).

Pros : time saving, eliminate human errors
Cons : initial set up time required, well-developped test suite, hardware costs

By effectively practicing continuous integration, you find out what goes wrong at every
step rather than late in the development cycle. CI helps you identify and manage risks
when they occur, making it easier to evaluate the health of your project and then take
adapted decisions. Problems are often caused by non-managed risks.

We will focus on the key risks you can reduce by using CI.

Exercise

In your opinion, what are the risks of a development project?

1. Lack of deployable software
The deadline is coming and you still don’t have a software you can build or deploy.
Sample use cases:
* “It works on my machine”: you forgot to commit some files or the test
environment is not exactly the same as the one on the developer machine.
* “I cannot test on the database”: database scripts are not available for tests
¢ “Manual deployment”: even id the process is simple, it takes time and you can
miss some steps.
Solution
* Avoid tight coupling between your IDE and your build process.
* Use a separate machine for integrating / testing your software.
* Ensure that everything you need to build the software is in the source code
repository (including database artifacts such as database creation scripts).
* Use a Ciserver (ex: Jenkins) with an automated build
* Run the build when a change occurs in the source code repository.
* Automate the deployment process by adding it to your build (eliminate mistakes
and avoid to waiting the deployment guy)

2. Late discovery of defects
Having tests is good but not enough. Manual testing offers no warranty that tests are run
at each change.
Sample use case “regression testing”: a developer often run tests related to the source
code he is working on. But, it’s quite rare he will run the whole test suite of the software
because he find that useless and it takes too much time to run. The result is the
introduction of side effect bugs, difficult to catch.
Solution
Automate tests run at each change of your software and check the test coverage!

3. Lack of project visibility
Here the topic is about getting the right information at the right time =>
communication basics. The information needs to be shared among all developers,
available at any time in a known place and up to date.
The best way to achieve this task is to use a Continuous Integration server (the known
place):

* to publish latest build artifacts,

* to publish and notify about latest tests build reports,

* to generate an up to date documentation (ex: you can use doxygen to generate
the whole API documentation, generate design diagrams, etc.). All the
documentation should not be generated but only the part closed to the source
code, to ensure up to date.

4. Low quality software
You can have potential defects when your software is not well designed, is not following
project standards, or is complex to maintain. This is also known as code or design
smells.
“Code smell is any symptom in the source code of a program that possibly indicates a
deeper problem.”, http://en.wikipedia.org/wiki/Code_smell.
Overly complex code, code that does not follow the architecture and duplicated code all
usually leads to defects in the software.
To ensure coding standards adherence, use a short document (one or 2 pages) and use
an automated inspection tool as a part of the build. You can also use an automated
inspection tool to check design rules. You can also analyse software dependencies.
The wonderful copy/paste mechanism leads to a lot of duplicated code in the software,
making it more difficult to understand and, moreover, to maintenance problems. You
will always forgot to update one duplicate and you will have defects. To manage
duplicate code, use automated source code analysis tools and refactor to reduce
duplicate code.
To resume, use software static analysis tool as part of your build combined with the
integration server to share reports.
Tools example: checkstyle, jdepend, PMD

Exercise

Rapid feedback

V. Setting up a Continuous Integration system
This session is mainly about practicing Continuous Integration.
Requirements: a computer with internet access.

You will find practice instructions on the dedicated document.

EnABLE AUTO ReFRes
Phar{®CI Server
S i et bron et Goviopents .t remitn
1.4]20] 30 Hobes | v [a
s w T Name & Last Success Last Falure Last Duration
Q a Coq-Git-Tracker 5 days 15 hr (£14535) 18 days (#14528) 8 min 10 sec
0 a Pharo-1.4 26 days (£13) /A 39 sec
= Sharo-s4-Tests 26 doys (e2) A 4 minS4 sec
Q a Pharo-20 3 days 16 hr (£298) 14 days (4286) 47 sec ¢
o a o200 00 Rp— i P
Q a 12 days (£11924) 12 days (411021) 9.5
Q = 9hr 32 min (£221) 16 days (£120) 2 min 58 sec
Q A = 2days 9 (£223) 9 32 min (£126) 15 min
a 3 days 16 hr (£227) 10 days (£222) 30 min
Q a 15 hr (s60) 160 (250) 25
Q "] Pharo:3.0-Undate Step2-Vldation 15h010) 2mo3days (22) aminsosec
[*] - a Pharo-3.0-Updste-Step-3-Relesse 15 hr (26) 15 he(22) 0723
Q e Phro-2.0-Undste Sicp--pubteh W W WA
Q = Pharovm 5 days 15 hr (4106) 12 days (498) 28 min Ic
a 21 hr (435) 11 days (430) 13 min
Q = 9 hr 32 min (£1549) 11 days (41531) 13sec
Q B a staci 2mo29 days (43) 2ams0n (412) 6 min 25 sec
[*] Y a2 StackyM-Test NA 2mo 29 days (21) 3 min 49 sec
Q A =a tast A 30y 18 e (21) 7 min 59 sec €
Q = Zerocont 4 days 19 nr (£22) 11 days (£16) 1 min 35 sec
Inria Continuous Integration platform architecture:
”
Informatics g7 mathemarles
&z’ua,—
Continuous Integration Platform
o N < —
,/ Continuous Integraton\ "rﬁ"'“/B““d slaves >—— — N

Servers (Jenkins...)

) Build control / (virtual machines) \
4 Source Repository /
(possibly INRIA's forge)
\
|

management

N < 4

Cloudstack admin N~
https:/ici-cloud.inria. fr/

Web Portal
https://ci.inria.fr/

| SSH Gateway
ci-ssh.inria.fr

Users \
(possibly outside INRIA's network) f"

A. Build software at every change
Automate builds: create build scripts that are decoupled from IDEs. They will be
executed by a CI server at every repository change.

Perform single command builds: you should be able to type one command to execute a
build from your build script.

Separate build scripts from your IDE: you should be able to run your automated build
without needing an IDE.

Centralize software assets: to decrease the number of broken dependencies, centralize
all software assets

Define a project layout: create a consistent, logical directory structure, which makes it
easy to build the software. For example, you can use the maven layout for a Java project.

Fail build fast: the faster the feedback occurs, the faster the problem can be fixed.
Execute build activities in the order of what is most likely to fail first.

Build for any environment: run the same automated build for any environment. Don’t
duplicate build scripts. Use configuration files.

Use a dedicated integration build machine: ensure that this machine is free of old
build artifacts.

Use a CI server to automatically poll for version control changes and run an integration
build on a separate machine.

Run fast builds: Try to get your integration builds down to 10 minutes by increasing
computer resources, offloading slower tests, offloading or reducing inspections, and
running staged builds.

Staged builds: Run lightweight “commit” builds that perform compile, unit test
exection, and deployment followed by heavyweight “secondary” builds that include
other (slower) tests and inspections. You can also use distributed builds.

B. Test continuously
“Our acceptance tests validate that we built the right thing, while our unit and functional
tests verify that we built the thing right.”

1. Unit test
Unit tests verify the behaviour of small elements in the software system, which are more

often a single class.

public class TestAdder {

public void testSum() {
Adder adder = new AdderImpl();
// can it add positive numbers?
assert(adder.add(1l, 1) == 2);
assert(adder.add(l, 2) == 3);
assert(adder.add(2, 2) == 4);
// is zero neutral?
assert(adder.add(0, 0) == 0);
// can it add negative numbers?
assert(adder.add(-1, -2) == -3);
// can it add a positive and a negative?
assert(adder.add(-1, 1) == 0);
// how about larger numbers?
assert(adder.add (1234, 988) == 2222);

2. Component test
Component tests verify that components interact to produce the expected aggregate
behaviour. They use more dependencies than unit tests. They may require a fully
installed system. They are longer to run than unit tests.

3. System test
System tests exercise a complete software system (the System Under Test) and require a
fully installed system. These tests verify that external services like web services. They
are longer to run than components tests.
They are different than functional tests, which test a system much like a client would use
the system.
Examples: regression test, smoke testing

4. Functional test
Functional tests are also known as acceptance tests. They test the functionalities of an
application from the viewpoint of a client. This is a Quality assurance (QA) process and a
type of black box testing.
Selenium: live demo with ci.inria.fr and firefox.

5. Test doubles
When you're doing testing, you're focusing on one element of the software at a time -
hence the common term unit testing. The problem is that to make a single unit work, you
often need other units.

In Automated unit testing, it may be necessary to use objects or procedures that look
and behave like their release-intended counterparts, but are actually simplified versions
that reduce the complexity and facilitate testing. A test double is a generic (meta) term
used for these objects or procedures. There are different kinds of test doubles:

Dummy objects are passed around but never actually used. Usually they are just
used to fill parameter lists. They have no influence on tests.

Fake objects simply implement the same interface as the object that they
represent and return pre-arranged responses. They usually take some shortcut,
which makes them not suitable for production (an in memory database is a good
example).

Stubs provide canned answers to calls made during the test, usually not
responding at all to anything outside what's programmed in for the test. Stubs
may also record information about calls. You often use stubs inside unit tests
when you'’re testing that a class or method derives the expected output for a
known input. It allows testing the state of an object.

Mocks are objects pre-programmed with expectations, which form a
specification of the calls they are expected to receive. They are useful to test side
effects, protocols and interactions between objects. They are used a lot in TDD.

More details on http://martinfowler.com/articles/mocksArentStubs.html

Examples:

a) Fake

A Data Access Object exemple :
class MemberDAO {

private Connection connection;

public Member find(String id) {)
return connection.createQuery("..").findOne(Q);

}
}
and its fake:

class FakeMemberDAO {
private Map<Long, Member> members;

public Member find(String id) {
return thls.members.getgld);

b) Stub
The interface of the component to test:

public interface MailService {
public void send (Message msg);

A stub exemple implementing the service interface :
public class MailServiceStub implements MailService {
private List<Message> messages = new ArraylList<Message>();

public void send(Message msg) {
messages .add(msg) ;

public int numberSent() {
return messages.size();

}
}
A test using the stub :

public void testMemberMal1SentWhenSubscrlbed() {
// Création d'un membre
Member member = new Member("login", "password");

// On insére le stub a la place du mailer par défaut
MyApp.setMailer(new MailServiceStub());

// On enregistre le membre
MyApp . register(member);

// Un mail doit étre envoyé
assertEquals(l, mailer. numberSent()),

c) Mock

public class OrderInteractionTester extends MockObjectTestCase
private static String TALISKER = "Talisker";

public void testFillingRemovesInventoryIfInStock() {
//setup - data
Order order = new Order(TALISKER, 50);
Mock warehouseMock = new Mock(Warehouse.class);

//setup - expectations

warehouseMock.expects (once()).method("hasInventory")
.with(eq(TALISKER),eq(50))
.will(returnvalue(true));

warehouseMock.expects(once()).method("remove")
.with(eq(TALISKER), eq(50))
.after("hasInventory");

//exercise
order.fill((Warehouse) warehouseMock.proxy());

//verify
warehouseMock.verify();
assertTrue(order.isFilled());

public void testFillingDoesNotRemoveIfNotEnoughInStock() {
Order order = new Order(TALISKER, 51);
Mock warehouse = mock(Warehouse.class);

warehouse.expects(once()).method("hasInventory")
.withAnyArguments ()
.will(returnvalue(false));

order.fill((Warehouse) warehouse.proxy());

assertFalse(order.isFilled());

6. Cl and tests
Automate tests
Categorize tests to be able to run slower tests at different intervals than faster
tests.
Write tests for defects : regression tests to ensure that the defect will not surface
again. Use a bug tracker.
Run faster tests first
Make component tests repeatable : ensure that the data is in a “known state” (ex;:
use a database test framework)
Limit the number of asserts in a test case to spend less time tracking down the
cause of a test failure.

C. Inspect the code continuously

1. Reduce code complexity
Cyclomatic complexityis a software metric to measure the number of linearly
independent paths through a program's source code.
Reduce cyclomatic complexity in your code base by leveraging automated inspector
tools such as Sonar or JavaNCSS to identify areas of your code with higher complexity.
Run these inspectors from your automated build.

Complexité

52 055
C3 OpenEJB :: Container 31251 m 53 org.apache.openeib.config 4859 & [@ AnnotationDeployer 983
L3 OpenEJB :: Container :: Core 19 502 [E3 org.apache.openeib.jee 3776 @ [@ AutoConfig 413
. Ca OpenEJB : iTests 11 644 [org.apache.openejb.util 2327 & B MathUtils 333
. C3 OpenEJB :: Container :: Java EE 10 636 3 org.apache.openejb.client 221 @ [DeploymentLoader 323
. Ca OpenEJB :: Server 6773 [E3 org.apache.openeib. classic 1374 2 [3 EJBCronTrigger 320
. Ca OpenEJB :: iTests Client 6284 : [E3 org.apache.openejb.test.stateless 1136 : & [& SuperProperties 308 :

Some ways to reduce cyclomatic complexity :
* Split the code in small methods describing a consistent logic,
* Take advantage of an OO language: replace conditionnals with polymorphism,
* Perform input validations first and either return an error output or throw an
exception if the validation fails.
double getSpeed() {
switch (_type) {
case EUROPEAN:
return getBaseSpeed();
case AFRICAN:
return getBaseSpeed() - getlLoadFactor() * _numberOfCoconuts;
case NORWEGIAN_BLUE:
return (_isNailed) ? 0 : getBaseSpeed(_voltage);
}

throw new RuntimeException ("Should be unreachable");

[}

A4

Bird

getSpeed

AN

European African Norwegian Blue

getSpeed getSpeed getSpeed

2. Perform design reviews
Incorporate Tools that can help determine packages/assemblies that are highly
dependent on other packages and may lead to brittle architecture.
Some Tools : maven-dependency-*, ndepend

|JavaNCSS Metric Results |

[package] [object] [function] [explanation]

The following document contains the results of a JavaNCSS metric analysis.
JavaNCSS web site.

Packages

[package] [object] [function] [explanation]
Packages sorted by NCSS.

ackanelceeees [eunctons WSS linadocs [3evadocinee | Segle ose commert ok lnee comment

org.springunit.framework 311

org.springunit.framework.junit4

mmmmm
187

Objects

[package] [object] [function] [explanation]
TOP 30 classes containing the most NCSS.

_—mz-ﬂm-

org.spr JnitContext 8 1]

org.spri B k. SprlngUnIﬂ' ITest 20 8 0 9
org.spr fra k.junit4. 18 5 (1] 1
org.springunit.framework.SpringUnitContext 16 4 o 5
org.springunit.framework.SpringUnitTest 12 4 o 5
org.springunit.framework.junit4.NameListener 9 2 0 1
org.spr fra k.junit4.Spring| 6 2 (0] 1]
org.springunit.framework.junit4.SpringUnit4TransactionalTest 6 2 (] o]

TOP 30 classes containing the most functions.

_—mmm

org.spri fi k.Hierar JnitContext 8 (] 9
org.spr fra k.SpringUnitT Test 20 8 (1] 9
org.spri k.junit4. 18 5 o 1
org.springunit.framework.SpringUnitContext 16 4 1] 5
org.springunit.framework.SpringUnitTest 12 4 (1] 5
org.springunit.framework.junit4.NameListener 9 2 0 1
org.springunit.framework.junit4.SpringUnit4Test 6 2 (] (o]
org.spr fr: k.junit4.Spring ITest 6 2] [
Averages.

19.13 187.00 3.75

~ -est- le

- =
—_—_-—-—-—_"'-—__-E..— — —
— velocit jetti - Fastlnfoset l ~ geronimo-annotation_1.0_spec ™= — geronir
.7:",’ .:w.ﬂ. anar A .‘T‘..?Ti‘f a1 - - ..?T"T

~ spring-context

3. Maintain organizational standards with code audit
Run tools such as PMD, PhpDepend, FxCop or clang analyzer that report on coding
standards violations from your automated build.

Instability

Duplications.

75 244 lignes
1516 blocs
514 fichiers

Succds d'exécution des tests.
98,6%

3 en échec

76 en errour

5821 tests

| 30:25 min B

Couverture de code

27,3%
25,5% de couverture de ligne
33,7% de couverture de branche

Taille: Lignes de code Couleur: Couverture (TU) 0.0% me=m 100.0%
(OpenEJB - Tests

Generated by PHP_Depend

¥ BN

0.7, .

0.6 \\\\\\\\\!'

ot .

0.3 AN
or AN

0.0

00 01 02 03 04 05 06 07 08 09 1.0

Abstraction Generated by PHP_Depend
o Lignes co code: 214 627 01 sout 011
o Cowerure (TU) 27.3% A400SNAPSHOT
o Lignes dupicuées: 75244
____,A:ZEEQ/ |
A Al A | 'S | A | | A
nnnnn oz oot = wazot0 oo 2 o
Violations A Bloguant o
12930~ 2 Crigue 0
Taux de conformité. : _imL: r 1 s:: » —
o % Mneu
83,7% v o 1222 m

18,2 sfichier oL

Total: 52 0

Indice dinterdépendance entre packages

13,0%

A Alertes : Unit test success (%) < 100, Unit tests duration > 800000, Duplicated lines (%) > 5.
201

Complexits
2,2 /méthode
15,8 /classe

e 46 8 012
@Méthodes O Classes

Dépendances & couper
56 entre packages
143 entre fichiers

> 164 cycles

To improve your code, use common refactoring patterns. See http://sourcemaking.com.

4. Reduce duplicate code

Reduce the amount of duplicate code in
a code base is a very important issue for
software maintenance.

Use tools (PMD-CPD) from your
automated build to reduce duplicated
code.

void printOwing(double amount) {
printBanner();

//print details
System.out.println ("name:" + _name);
System.out.println ("amount" + amount);

[

v

void printOwing(double amount) {
printBanner();
printDetails(amount);

void printDetails (double amount) ({
System.out.println ("name:" + _name);
System.out.println ("amount" + amount);

5. Assess Code coverage
Determine areas that should use more tests by using code coverage analysis as part of
your build.
Some code coverage tools: Ncover, cobertura, emma.

Darjeeling > vs-plugin v4 (NCover) > ¥ #5.0.119.0 (18 Feb 10 12:27)

Overview Changes (1) Tests BuildLog Build Parameters Dependencies Artifacts = Code Coverage
NCoverExplorer Coverage Report - Darjeeling :: vs-plugin v4 (NCover) Project Statistics: Files: 607 NCLOC: 16797
Report generated on: Thu 18-Feb-2010 at 13:08:54 Classes: 869
NCoverExplorer version: 1.3.6.36 Functions: 3901 Unvisited: 2470
Filtering / Sorting: None f CoveragePercentageDescending Seq Pts: 15490 Unvisited: 10201
Project Acceptable Unvisited F Function C: g ‘
Darjeeling :: vs-plugin v4 (NCover) 80.0 % 2470 367 % [N
Modules Acceptable Unvisited Functions Function Coverage
JetBrains.Team(City.EventTrackers.dll 80.0 % 10 sa6 o [
JetBrains.TeamCity.WeblLinkListener.dll 80.0 % 11 7e.6 o [S
JetBrains.TeamCity.Network.Login.dll 80.0 % 35 siio [
JetBrains.Team City.Common.dll 80.0 9% 2 so.0 % [
JetBrains.TeamCity.Connect.dll 80.0 % 214 sue o [
JetBrains.TeamCity.SVN.dIl 80.0 % 215 so.6 o [
JetBrains.TeamCity.Perforce.dll 80.0 % 151 s40 o [
JetBrains.TeamCity.Network. Utils.dll 80.0 % 12 s20 o [
JetBrains.Team(City.Utils.dll 80.0 % 533 sz2% [N
JetBrains.TeamCity.TestsView.dll 80.0 % 142 165 % [N
JetBrains.Team(City.Login.dll 80.0 % 35 167 % [N
JetBrains.TeamCity.RemoteRun.dll 80.0 9% 797 1s.3 % [N
JetBrains.TeamCity.Package.dll 80.0 % 313 3.4% _
Module Acceptable Unvisited Functions Function Coverage
JetBrains.TeamCity.EventTrackers.dll 80.0 9% 10 sa6 o [
Namespace / Classes
JetBrains.TeamCity.EventTrackers.Impl 9 85.5 % —]
PersonalChangesTrackerBase o 100.0 % _
ListenerInfo 0 100.0 > [
e e e Tl n o d - e]

D. Get a continuous feedback
“As a general rule, the most successful man in life is the man who has the best information.”
Benjamin Disraeli (1804-1881)
Without feedback, none of the other aspects of ClI is useful.
You need rapid feedback to take immediate action and fix the problem before it
propagates.
Beware of information overload : sending feedback to everyone on a project usually only
causes everyone to ignore this information.
Old news is not really news at all.
The heart of continuous feedback is reducing the time between when a defect is
introduced, discovered, and fixed.
They are various mechanisms to enable continuous feedback :
* Email, sound, visual devices, dashboards on wide screens, SMS, browser plugins,
etc.

E. Deploy continuously
Without a successful deployment, a software does not really exists.
Deploy continuously enables to release working software any time, any place, with as
little effort as possible.
As an example, Flickr, the photo sharing web site, releases software every 30mn in a
good day.
1. Tag releases put into production to facilitate creation of release-bug-fixes
branches
2. Produce a clean environment, free of assumptions. It is a matter of removing and
reapplying software, scripts and configuration values to ensure that the
environment is operating as expected. They are different levels but if you want to
reduce risks, you should drop all including the Operating System.
3. Generate and label a build directly from the repository and install it on the target
machine. It allows to bind the build to the source code.
4. Successfully run tests at all levels in a clone of the production environment
5. Create build feedback reports: tell which defects have been addressed, what are
the new features, etc. You may add a file difference report.
6. Be able to rollback quickly if needed.

F. Further work
Distributed build
Staged build using
* https://wiki.jenkins-ci.org/display /JENKINS /Clone+Workspace+SCM+Plugin
¢ https://wiki.jenkins-
ci.org/display/JENKINS /Splitting+a+big+job+into+smaller+jobs

VI. References
Wikipedia : http://en.wikipedia.org

Martin Fowler’s article on Continuous Integration:
http://www.martinfowler.com/articles/continuousintegration.html

CONTINUOUS
INTEGRATION

PaurL DuvarLL

http://sourcemaking.com/

VII. Appendix: Continuous Integration guideline

Top 10 rules

1. Check-in regularly to mainline
Continuous Integration is about integrating early and often. To take advantages of the CI
methodology, you need to share your code with all developers in the mainline (core
repository, trunk) quickly. It implies small tasks / increments.

2. Have an automated test suite / use TDD
Each piece of code should come with its automated tests. A good practice is to write tests
before the code: Test-Driven Development.

3. Always run tests locally before committing
Yes, there is a server that runs test for you ... but it does not prevent us to run a
minimum set of tests in your development environment. The CI server is here to detect
problems not seen in your development environment.

4. Don’t commit broken code to the mainline!
A source code repository is not a disk backup. A (known) broken code should never be
committed to the mainline.

5. Don’t check-in on a broken build
If you commit on a broken build, you loose feedback on this integration. If there are
several commits on a broken build, you may end with a lot of bugs introduced in the
mainline and loose your time to track problems.

6. Fix broken build immediately
Fix broken builds should be the highest priority of the team. It prevents other
developers to check-in and will end with a big integration task. The solution is to time-
box the fix.

7. Time-box fixing before reverting
Define a reasonable time (for example 20 minutes) allowed to fix a broken build. Once
this time elapsed, revert to the latest working version and take the time you need to fix
it. Then commit again.

8. Never go home on a broken build
We don’t want you to stay at work all the night! If you don’t have time, revert, go home,
and fix it the next day.

9. Don’t comment out failing tests
We don’t want broken builds but we need to be confident in our code robustness. We
need all tests, more tests!

10.Keep your build fast
The key is to get a rapid feedback. So, you need to get your build fast (ideally <10 min). If
you cannot speed the build up, use a staged build.

