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Abstract

This paper deals with the asymptotic behaviour of the solutions of linear
initial boundary value problems with constant coefficients on the half-line and
on finite intervals. We assume that the boundary data are periodic in time
and we investigate whether the solution becomes time-periodic after sufficiently
long time. Using the Fokas’ transformation method, we show that for the linear
Schrödinger equation, the linear heat equation and the linearised KdV equation
on the half-line, the solutions indeed become periodic for large time. However,
for the same linear Schrödinger equation on a finite interval, we show that the
solution, in general, is not asymptotically periodic; actually, the asymptotic be-
haviour of the solution depends on the commensurability of the time period T
of the boundary data with the square of the length of the interval over π.

1 Introduction

This paper deals with the asymptotic behaviour of the solutions of linear initial
boundary value problems (IBVP) with constant coefficients on the half-line and
on finite intervals when the boundary data are periodic. Following the recent
investigation of Bona and Fokas [4], our main concern is the existence of a peri-
odic asymptotic profile for the solutions of such problems. As we shall see, the
situation is rather different on the half-line and on finite intervals, because in the
case of a finite interval, the “waves” can be “reflected” from one boundary to the
other.

We first look at linear problems on the half-line written in the form











∂tq + ω(−i∂x)q = 0 t > 0, x > 0

q(0, x) = q0(x) x > 0

∂j
xq(t, 0) = fj(t) t > 0, 0 ≤ j ≤ N − 1,

(1.1)
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where ω is a polynomial of degree n ∈ N⋆, q0 is a smooth initial datum, N ∈
{1, . . . , n} is the number of boundary data such that the problem is well-posed
(see [10]), and (fj)0≤j≤N−1 are N given smooth functions that are compatible
with q0. We assume that f0, . . . , fN−1 are periodic functions of time with the
same period and we look for a smooth asymptotic profile qp such that

• for all x ≥ 0, t 7→ qp(t, x) is a periodic function of time,

• for all x ≥ 0, |q(t, x) − qp(t, x)| −→
t→+∞

0.

In [4], the existence of a periodic profile for the solution of the linear KdV equa-
tion on the half-line (corresponding to ω(−i∂x) = −ik3) is stated, provided that
the initial datum q0 is homogeneous (q0 ≡ 0) and that the boundary datum f0 is
periodic (N = 1 in that case). The proof is based on the new general transform
method developped by A.S. Fokas [6]. In this paper, we use the Fokas’ method
to derive the asymptotic behaviour of the solutions of such equations with peri-
odic boundary data. More precisely, for the solutions of the linear Schrödinger
equation, of the linear heat equation and of the linear KdV equation on the half-
line, we prove the existence of an asymptotic periodic profile when the periodic
boundary data are periodic and we provide explicit formulae for these profiles
involving the Fourier coefficients of the boundary data.

We also investigate the asymptotic behaviour of the solutions of linear PDEs
with constant coefficients on bounded intervals with periodic boundary data of
the form:



















∂tq + ω(−i∂x)q = 0 t > 0, x ∈ (0, L)

q(0, x) = q0(x) x ∈ (0, L)

∂j
xq(t, 0) = fj(t) t > 0, 0 ≤ j ≤ N1 − 1

∂j
xq(t, L) = gj(t) t > 0, 0 ≤ j ≤ N2 − 1,

(1.2)

where L > 0 is given, ω is a polynomial of degree n ∈ N⋆, q0 is a smooth
initial datum, N1, N2 ∈ {1, . . . , n} are the numbers of data at x = 0 and x = L
respectively such that the problem is well-posed (see [9], Appendix A, and [12]),
and (fj)0≤j≤N1−1 and (gj)0≤j≤N2−1 are N1 +N2 given smooth functions that are
compatible with q0. We assume that f0, . . . , fN1−1 and g0, . . . , gN2−1 are periodic
functions of time with the same period and we look for a smooth asymptotic
profile qp such that

• for all x ∈ [0, L], t 7→ qp(t, x) is a periodic function of time,

• for all x ∈ [0, L], |q(t, x) − qp(t, x)| −→
t→+∞

0.

In the case of the linear Schrödinger equation, we use the formula derived in [9]
to obtain results on the long-time behaviour of the solution. In particular, this
formula allows us to give sufficient conditions depending on the link between the
length L of the interval and the period T of the boundary data to obtain periodic
solutions, as well as solutions that do not have any asymptotic profile.
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The outline of the paper is the following. In Section 2, we consider the
linear Schrödinger equation on the half-line (i.e. a problem of the form (1.1)
with ω(k) = ik2) with homogeneous initial datum (q0 ≡ 0) and smooth periodic
boundary datum f0. We recall the Fokas’ method (see [8]), we prove the exis-
tence of a periodic profile qp and we provide an explicit formula for that profile
involving the Fourier coefficients of f0 (see Theorem 2.4, Theorem 2.7 and The-
orem 2.14). Section 3 is devoted to another illustration of the efficiency of the
integral representation method for the analysis of linear IBVP on the half-line
with periodic boundary data through two examples : the linear heat equation
(ω(k) = k2) and the linearised KdV equation (ω(k) = −ik3). In both cases,
we follow the method we used in Section 2: we use the integral representation
method, we prove the existence of an asymptotic profile for the exact solution
of the problem and we provide explicit formula for these profiles (see Theorem
3.1, Theorem 3.5 and Theorem 3.6). In Section 4, we consider problems of the
form (1.2) on a finite interval (0, L) with ω(k) = ik2. If f0 and g0 are T -periodic
smooth functions, we show that, if L2/π and T are linearly dependent on Q, the
solution of these linear Schrödinger equations can have, for example, unbounded
L2-norm (‖q(t)‖

L2(0,L)
−→

t→+∞
+∞) and hence they cannot be asymptotically pe-

riodic in general. If T and L2/π are linearly independent on Q, we show that
the solution is not asymptotically periodic in general as well. Finally, we provide
numerical experiments in Section 5 for illustration.

2 The linear Schrödinger equation on the

half-line

In this section, we consider the linear Schrödinger equation on the half-line with
a periodic boundary datum and we apply the Fokas’ method (see [8]). We first
look at the asymptotic behaviour of the solution when the boundary datum is a
sine function, we prove the existence of a periodic profile in that case and give
an explicit formula for that profile using contour deformations of the involved
integrals and Cauchy’s residue theorem. Then, we apply the same method to the
case of a general periodic boundary datum. We prove the existence of a periodic
profile in that case and provide an explicit formula for that profile involving the
Fourier coefficients of the boundary datum. Recall that we provide numerical
experiments in Section 5 for illustration.

2.1 The problem

Following [4], we consider the linear Schrödinger equation on the half-line written
in the form of the inital-boundary-value problem:











i∂tq + ∂xxq = 0 t > 0, x > 0

q(0, x) = 0 x > 0
q(t, 0) = f0(t) t > 0.

(2.1)
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This problem is of the form (1.1) with ω(k) = ik2. Note that N = 1 in that case.
Since the problem is linear, we restrict ourselves to the case q0 ≡ 0. Moreover,
we assume that f0 is a smooth periodic function of time.

2.2 The Fokas’ method

We apply the method described in [4] to Problem (2.1). Our goal is to prove the
integral representation formula (2.8) of the solution q in terms of the boundary
datum f0.

2.2.1 Step 1: Write (2.1) into a divergence form

The first step of the method consists in rewriting the evolution partial differential
equation in (2.1) as a family of linear partial differential equations in divergence
form. In order to do that, we define for t > 0, x > 0 and k ∈ C

X(t, x, k) := −kq(t, x) + i∂xq(t, x),

where q denotes the exact solution of Problem (2.1). Then we derive that for all
t > 0, x > 0 and k ∈ C,

∂t

[

e−ikx+ω(k)tq
]

− ∂x

[

e−ikx+ω(k)tX(t, x, k)
]

= 0. (2.2)

2.2.2 Step 2: Obtain a global relation from (2.2)

The next step of the method consists in deriving a global relation involving
transforms of the boundary datum f0(t) = q(t, 0) and the Neumann derivative
of the solution at the boundary ∂xq(t, 0). In order to do that, we consider the
Fourier transform of the solution of Problem (2.1): for all t > 0 and all k ∈ C

such that Im (k) ≤ 0, we define

q̂(t, k) =

∫ +∞

0
q(t, x)e−ikxdx,

and for all t > 0 and all κ ∈ C,

f̃0(t, κ) =

∫ t

0
eκsq(s, 0)ds and f̃1(t, κ) =

∫ t

0
eκs∂xq(s, 0)ds. (2.3)

Using the divergence form (2.2) of Problem (2.1), we obtain the following global
relation: for all t > 0 and all k ∈ C such that Im (k) ≤ 0,

eω(k)tq̂(t, k) = kf̃0(t, ω(k)) − if̃1(t, ω(k)). (2.4)

2.2.3 Step 3: Inverse the global relation (2.4)

Assuming sufficient smoothness and decay on the exact solution q of the Problem
(2.1), we derive from (2.4) using the inverse Fourier transform that

∀t, x > 0, q(t, x) =
1

2π

∫ +∞

−∞
eikx−ω(k)t

(

kf̃0(t, ω(k)) − if̃1(t, ω(k))
)

dk. (2.5)
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2.2.4 Step 4: Eliminate unknown boundary conditions

Following [4], we denote

D = {k ∈ C | Re (ω(k)) < 0},

and we note that for all z ∈ C, we have

z ∈ D ⇐⇒ −z ∈ D.

Therefore, we use the transformation z 7→ −z in (2.4) to get that

∀k ∈ R,∀t > 0, eω(k)tq̂(t,−k) = −kf̃0(t, ω(k)) − if̃1(t, ω(k)). (2.6)

This yields

∀k ∈ R,∀t > 0, f̃1(t, ω(k)) = ieω(k)t q̂(t, k) + q̂(t,−k)

2
. (2.7)

Hence, using Jordan’s lemma, we have

∀t, x > 0,
1

2iπ

∫ +∞

−∞
eikx−ω(k)tf̃1(t, ω(k))dk =

1

2
q(t, x).

Eventually, plugging this result into the integral representation of the solution
formula (2.5) yields

∀t, x > 0, q(t, x) =
1

2π

∫ +∞

−∞
2keikx−ik2tf̃0(t, ω(k))dk. (2.8)

2.2.5 The integral representation of the solution of (2.1)

In order to sum up our previous calculations, we state the following:

Theorem 2.1 Assume f0 is a given smooth periodic function of time. Then the
solution q of the corresponding problem (2.1) is given by formula (2.8).

The remaining parts of this section are devoted to the use of the integral
representation formula (2.8) for the description of the asymptotic behaviour of
q. In Section 2.3, we look at the asymptotics when the boundary datum is a sine
function. Then we look at the long time behaviour when the function f0 is any
smooth periodic function in Section 2.4.

2.3 Sine functions as boundary data for Problem (2.1)

Inspired by [5], we look at the exact solution q of Problem (2.1) with the simple
periodic boundary datum:

f0(t) = sin(bt), (2.9)
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for some b > 0. We are interested in the long time behaviour of the function
q. Our goal is to prove Theorem 2.4 that provides an explicit formula for the
asymptotic profile of q.

Using the definition of the time-transform of the boundary datum f0 (see
(2.3)), we derive that

f̃0(t, k) =
b + kekt sin(bt) − bekt cos(bt)

k2 + b2
.

We split the corresponding integrand in the integral representation formula (2.8)
in the following way. We define for all t, x > 0 and all k ∈ C such that b2−k4 6= 0,

F1(t, x, k) = 2keikx be−ik2t

b2 − k4
,

and

F2(t, x, k) = 2keikx ik2 sin(bt) − b cos(bt)

b2 − k4
.

This way, we have

2keikxe−ω(k)tf̃0(t, ω(k)) = F1(t, x, k) + F2(t, x, k).

Note that that k 7→ F1(t, x, k) + F2(t, x, k) is a holomorphic function on C

(singularities in ±i
√

|b| and ±
√

|b| are removable), but k 7→ F1(t, x, k) and
k 7→ F1(t, x, k) have singularities in ±i

√

|b| and ±
√

|b|.
Now, we perform two contour deformations on the integral (2.8) in order to

derive the asymptotic behaviour of q. Firstly, we define the following complex
paths:

∀r < 0, Γ1(r) = re−i π

4 ,

∀θ ∈ (−π, 0), Γ2(θ) =
√

b(1 + eiθ),

∀r > 0, Γ3(r) = 2
√

b + r.

This way, the exact solution of Problem (2.1) reads, after contour deformation
in formula (2.8)

q(t, x) =

1

2π

∫ 0

−∞
(F1(t, x,Γ1(r)) + F2(t, x,Γ1(r)))e

−i π

4 dr

+
1

2π

∫ 0

−π
(F1(t, x,Γ2(θ)) + F2(t, x,Γ2(θ)))i

√
beiθdθ

+
1

2π

∫ +∞

0
(F1(t, x,Γ3(r)) + F2(t, x,Γ3(r)))dr. (2.10)

Secondly, we use the two following complex paths

∀r > 0, Γ+
3 (r) = 2

√
b + rei π

4 ,

∀r > 0, Γ−
3 (r) = 2

√
b + re−i π

4 ,
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to derive that

1

2π

∫ +∞

0
F1(t, x,Γ3(r))dr =

1

2π

∫ +∞

0
F1(t, x,Γ−

3 (r))e−i π

4 dr,

1

2π

∫ +∞

0
F2(t, x,Γ3(r))dr =

1

2π

∫ +∞

0
F2(t, x,Γ+

3 (r))ei π

4 dr,

and we can plug these formulae in the last line of (2.10) to get another expression
for the exact solution q of Problem (2.1).

This way of writing the exact solution, though it is maybe not the simplest
one, has two important features. First of all, it decouples the quantities that have
different behaviours (some of them tend to 0 when t tends to +∞ (See Lemma
2.2) whereas the others carry the information about the profile of the solution
when t tends to +∞ (See Lemma 2.3)). Second of all, the integrals involved
in this expression of the exact solution are suitable for numerical computations
since they are either integrals of smooth functions over a finite interval, either
integrals of smooth exponentially decaying functions over a half-line.

A precise statement on the asymptotic behaviour of the solution q(t, x) of
Problem (2.1) with boundary datum (2.9) when x > 0 is given and t tends to
+∞ will be derived from the two following lemmas.

Lemma 2.2 For all x > 0, the following limits hold:

∫ 0

−∞
F1(t, x,Γ1(r))e

−i π

4 dr −→
t→+∞

0,

∫ 0

−π
F1(t, x,Γ2(θ))i

√
beiθdθ −→

t→+∞
0,

∫ +∞

0
F1(t, x,Γ−

3 (r))e−i π

4 dr −→
t→+∞

0.

Lemma 2.3 The residue theorem ensures that

1

2iπ

∫

Γ1+Γ2+Γ+

3

F2(t, x, k)dk =
eix

√
be−ibt − e−x

√
beibt

2
.

Proof. For all t, x > 0, we have

(k −
√

b)F2(t, x, k) = 2keikx b cos(bt) − ik2 sin(bt)

(k2 + b)(k +
√

b)
−→

k→
√

b

eix
√

be−ibt

2
,

and similarly,

(k − i
√

b)F2(t, x, k) = 2keikx b cos(bt) − ik2 sin(bt)

(k2 − b)(k + i
√

b)
−→

k→i
√

b
−e−x

√
beibt

2
.

Finally, we derive the following result on the asymtpotic behaviour of the
solution q of problem (2.1) with boundary datum (2.9):
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Theorem 2.4 For all b > 0, let q be the solution of Problem (2.1) with boundary
datum (2.9). The following estimate holds for all x > 0:

q(t, x) ∼
t→+∞

ieix
√

be−ibt − ie−x
√

beibt

2
. (2.11)

Proof. Use the results of Lemma 2.2 and Lemma 2.3 in expression (2.10).

2.4 General periodic boundary data

In this section, we look at the asymptotic behaviour of the solution q of Problem
(2.1) when the boundary datum f0 is a smooth periodic function of time. Our
goal is to prove Theorem 2.7 and Theorem 2.14 that prove the existence of a
periodic profile for q and provide explicit formulae for that profile involving the
Fourier coefficients of f0.

2.4.1 Zero-mean periodic boundary data

Since Equation (2.1) is linear and posed on the half-line, we can assume without
loss of generality that the periodic boundary datum f0 has period 2π. Since f0

is smooth, we write

∀t ∈ R, f0(t) =
∑

n∈Z

f̂neint, (2.12)

where the Fourier coefficients (f̂n)n∈Z tend to 0 rapidly as |n| tends to +∞.
We assume that f0 is compatible with the homogeneous initial datum at t = 0.
In other words, we assume that

f0(0) =
∑

n∈Z

f̂n = 0. (2.13)

Moreover, we assume that f0 has zero mean-value:
∫ 2π

0
f0(t)dt = 2πf̂0 = 0. (2.14)

With these hypotheses on the boundary datum g0 and following the method
introduced in Section 2.3, we rewrite the exact solution q of Problem (2.1) (see
Lemma 2.5). We first define the three complex paths γ1,γ2 and γ3 as follows:

∀r ∈ (−∞,
√

2), γ1(r) = re−i π

4 (2.15)

∀r ∈ (1,+∞), γ2(r) = −i + r

∀r ∈ (
√

2,+∞), γ3(r) = re−i π

4 . (2.16)

Lemma 2.5 Let q be the exact solution of Problem (2.1) with 2π-periodic smooth
boundary datum f0 written in the form (2.12) and satisfying (2.13) and (2.14).
The following identity holds for all t, x > 0:

q(t, x) =
1

2iπ

∑

n∈Z

f̂n

∫

γ1+γ2

2keikx eint − e−ik2t

(n + k2)
dk. (2.17)
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Remark 2.6 Note that for all t, x > 0, every integrand is a smooth function of
k since the singularities (in k = ±

√
−n if n ≤ −1 or in k = ±i

√
n if n ≥ 1) are

removable.

Theorem 2.7 We have the following asymptotic periodic profile for the exact
solution of Problem (2.1) with smooth 2π-periodic boundary data f0 written in
the form (2.12) and satisfying (2.13) and (2.14): for all x > 0,

q(t, x) ∼
t→+∞

∞
∑

n=1

(

f̂ne−x
√

neint + f̂−neix
√

ne−int
)

. (2.18)

Proof. Using identity (2.17) of Lemma (2.5), we write that for all n ∈ Z \ {0},
∫

γ1+γ2

2keikx eint − e−ik2t

(n + k2)
dk

=

∫

γ1+γ2

2keikx eint

(n + k2)
dk −

∫

γ1+γ2

2keikx e−ik2t

(n + k2)
dk.

Note that, by contour deformation,
∫

γ1+γ2

2keikx e−ik2t

(n + k2)
dk =

∫

γ1+γ3

2keikx e−ik2t

(n + k2)
dk,

and for all x > 0, this quantity tends to 0 when t tends to +∞, uniformly in n.
Moreover, using Jordan’s lemma, we get

1

2iπ

∫

γ1+γ2

2keikx eint

(n + k2)
dk =

{

eix
√
−neint if n ≤ −1

e−x
√

neint if n ≥ 1.

Remark 2.8 Note that, setting b = 1 in (2.9), Theorem 2.7 implies

∀x > 0, q(t, x) ∼
t→+∞

( 1

2i
e−xeit − 1

2i
eixe−it

)

.

This result is exactly the corresponding relation (2.11) of Theorem 2.4.

Remark 2.9 Formula (2.18) of Theorem 2.7 ensures that the Sobolev regularity
(in time) of the asymptotic profile of the exact solution of Problem (2.1) is the
same as that of the periodic datum f0 (recall that f0 is assumed sufficiently smooth
anyway).

Remark 2.10 Further analysis of the convergence of
∫

γ1+γ3
2keikx e−ik

2
t

(n+k2)
dk to 0

shows that the convergence in (2.18) is uniform in x on bounded sets.
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2.4.2 General periodic boundary data

In order to get rid of the somehow artificial condition (2.14), we compute the
limit as t tends to +∞ of the formal exact solution of Problem (2.1) obtained
using formula (2.8) with boundary datum f0(t) ≡ 1 in Lemma 2.12. Before that,
we define the following complex paths (note that they are a shifted version of
the family (γ1, γ2, γ3) defined in section 2.4.1):

∀r ∈ (−∞, 0), Γ1(r) = −i + re−i π

4

∀r ∈ (0,+∞), Γ2(r) = −i + r

∀r ∈ (0,+∞), Γ3(r) = −i + re−i π

4 ,

and provide us with another lemma:

Lemma 2.11 The following equality holds:

1

2iπ

∫

Γ1+Γ3

e−iz2

z
dz =

1

2
.

Proof. Using contour deformation, the left hand side of the identity reads

1

2iπ

∫ −1

−∞

e−ik2

k
dk +

1

2iπ

∫ 0

−π
ie−ie2iθ

dθ +
1

2iπ

∫ +∞

1

e−ik2

k
dk.

The left and the right term cancel out and the double of the last term is

1

2iπ

∫ 0

−π
ie−ie2iθ

dθ +
1

2iπ

∫ π

0
ie−ie2iθ

dθ =
1

2iπ

∫

C

e−ik2

k
dk,

where C stands for the positive unit circle. Hence the result is proved using
Cauchy’s residue theorem:

2

(

1

2iπ

∫

Γ1+Γ3

e−iz2

z
dz

)

=
1

2iπ

∫

C

e−ik2

k
dk = 1.

We are now able to prove the result about the asymptotic behaviour of the
formal exact solution of Problem (2.1) obtained using formula (2.8) with bound-
ary datum f0(t) ≡ 1:

Lemma 2.12 For all x > 0,

1

2π

∫ +∞

−∞
2keikxe−ik2t

∫ t

0
eik2sdsdk −→

t→+∞
1.

Proof. Note that for all t, x > 0, one has

1

2π

∫ +∞

−∞
2keikxe−ik2t

∫ t

0
eik2sdsdk =

1

2iπ

∫ +∞

−∞
2eikx 1 − e−ik2t

k
dk.
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Moreover, since the function k 7→ eikx 1−e−ik
2

t

k is analytic, we have
∫ +∞

−∞
2eikx 1 − e−ik2t

k
dk =

∫

Γ1+Γ2

2eikx 1 − e−ik2t

k
dk.

Using the linearity of the integral, we derive that
∫ +∞

−∞
2eikx 1 − e−ik2t

k
dk =

∫

Γ1+Γ2

2eikx

k
dk −

∫

Γ1+Γ2

2eikx−ik2t

k
dk.

The quantity we want to compute is now the sum of two contributions. Using
Jordan’s lemma, we compute directly the first contribution:

1

2iπ

∫

Γ1+Γ2

2eikx

k
dk = 2.

Then, we compute the second contribution using another contour deformation:
∫

Γ1+Γ2

2eikx−ik2t

k
dk =

∫

Γ1+Γ3

2eikx−ik2t

k
dk.

We have, setting z = k
√

t,
∫

Γ1+Γ3

e−ik2t

k
eikxdk =

∫

Γ1+Γ3

e−iz2

z
e
iz x√

t dz.

Note that
e
iz x√

t −→
t→+∞

1,

and for all t ≥ 1 and r ∈ R,
∣

∣

∣

∣

∣

e−i(rei
π
4 −i)2

re−i π

4 − i
e
i(rei

π
4 −i) x√

t

∣

∣

∣

∣

∣

≤ e−2
√

2

2
r
(

1+r
√

2

2

)

(

1
2 +

(

r +
√

2
2

)2
)1/2

emax(0,1+
√

2

2
r)x.

Since this bound is integrable on R and independent of t ≥ 1, we derive that
∫

Γ1+Γ3

e−iz2

z
e
iz x√

t dz −→
t→+∞

∫

Γ1+Γ3

e−iz2

z
dz.

This last integral is equal to iπ by Lemma 2.11. Finally,

1

2iπ

∫

Γ1+Γ2

2eikx−ik2t

k
dk −→

t→+∞
1,

and the result is proved.

Remark 2.13 This lemma even allows us to consider boundary data f0 that do
not satisfy the compatibility condition (2.13).

Finally, we are able to use the linearity of the problem to combine Theorem
2.7 with Lemma 2.12 to obtain the following theorem:
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Theorem 2.14 Assume f0 is a given sufficiently smooth 2π-periodic complex-
valued function written in the form (2.12) and satisfying (2.13). We have the
following result for the asymptotic behaviour of the exact solution q of Problem
(2.1): for all x > 0,

q(t, x) ∼
t→+∞

f̂0 +

∞
∑

n=1

(

f̂ne−x
√

neint + f̂−neix
√

ne−int
)

.

Remark 2.15 This result gives an explicit description of the asymptotic profile
of the exact solution of the linear Schrödinger equation on the half-line (2.1) for
homogeneous initial datum and periodic boundary datum.

3 The linear heat equation and the linear

KdV equation on the half-line

This section is devoted to another illustration of the efficiency of the Fokas’
method for the analysis of the asymptotic behaviour of the solutions of linear
initial boundary value problems on the half-line. As we did in Section 2, we apply
this integral representation method to the solutions of linear evolution partial
differential equations with constant coefficients of the form (1.1) on the half-
line with periodic boundary data and we use contour deformation and Cauchy’s
residue theorem to derive the existence of periodic profiles and obtain explicit
formulae involving the Fourier coefficients of the boundary data (see Theorem
3.1, Theorem 3.5 and Theorem 3.6). Since the method is very similar to the
one used in the previous section (Section 2), the results are presented in a more
concise form. We first look at the linear heat equation in Section 3.1. Then
we investigate the case of the linear KdV equation in Section 3.2, providing an
explicit description of the periodic profile whose existence was stated in [4].

3.1 The linear heat equation on the half-line

In this section, we investigate the long time behaviour of the solutions of the
linear heat equation on the half-line with periodic boundary data. This problem
is of the form (1.1) with ω(k) = k2. Using the linearity of the problem, we
restrict ourselves to the case of homogeneous initial data q0 ≡ 0. Moreover, we
assume that f0 is a smooth function of t and is 2π-periodic.

3.1.1 The transformation method

We are interested in the long time behaviour of the solution of the following
problem:











∂tq − ∂xxq = 0 t > 0, x > 0

q(0, x) = 0 x > 0
q(t, 0) = f0(t) t > 0,

(3.1)

12



where f0 is a smooth 2π-periodic function. Applying the Fokas’ transformation
method (see Section 2.2), we obtain the following representation formula for the
exact solution of Problem (3.1):

∀t, x > 0, q(t, x) =
1

2iπ

∫ +∞

−∞
2keikx−k2tf̃0(t, ω(k))dk, (3.2)

where ω(k) = k2 and

f̃0(t, κ) =

∫ t

0
eκsf0(s)ds.

3.1.2 Periodic boundary data with zero mean

Theorem 3.1 We have the following asymptotic periodic profile for the exact
solution of Problem (3.1) with smooth 2π-periodic boundary data f0 written in
the form (2.12) and satisfying (2.13) and (2.14): for all x > 0,

q(t, x) ∼
t→+∞

∞
∑

n=1

e−x
√

n
√

2

2

(

f̂ne−ix
√

n
√

2

2 eint + f̂−neix
√

n
√

2

2 e−int
)

. (3.3)

Moreover, the convergence is uniform with respect to x.

Proof. By a straightforward calculation, we get, for n ∈ Z \ {0},

f̃0(t, k
2) =

eintek2t − 1

k2 + in
.

Hence, defining for all t, x > 0,

F1(t, x, k) = 2keikx −e−k2t

k2 + in

and

F2(t, x, k) = 2keikx eint

k2 + in
,

we get,
2keikxe−k2tf̃0(t, ω(k)) = F1(t, x, k) + F2(t, x, k).

Using (3.2), we derive that for all t, x > 0,

q(t, x) =
1

2iπ

∫ +∞

−∞
F1(t, x, k)dk +

1

2iπ

∫ +∞

−∞
F2(t, x, k)dk.

One easily checks that

1

2iπ

∫ +∞

−∞
F1(t, x, k)dk −→

t→+∞
0,

uniformly in n and x. Moreover, using Jordan’s lemma, we have

1

2iπ

∫ +∞

−∞
F2(t, x, k)dk = e−x

√
n

√
2

2 e−ix
√

n
√

2

2 eint,
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if n ≥ 1 and

1

2iπ

∫ +∞

−∞
F2(t, x, k)dk = e−x

√
−n

√
2

2 eix
√
−n

√
2

2 eint,

if n ≤ −1. This completes the proof.

Remark 3.2 One observes in Theorem 3.1 the following smoothing effect of the
heat equation: for any periodic boundary datum f0 with (sufficient) Sobolev-type
regularity, for all x > 0, the asymptotic profile of the exact solution of Problem
(3.1) at point x has a Gevrey-type regularity.

3.1.3 General periodic boundary data

As we did for the Schrödinger equation in Section 2.4, we investigate the asymp-
totic behaviour of the solution of Problem (3.1) with boundary datum g0 ≡ 1.

Lemma 3.3 Let Γ be the complex path defined for r ∈ R by Γ(r) = r − i. One
has

1

2iπ

∫

Γ

e−z2

z
dz =

1

2
.

Proof. The proof is similar to that of Lemma 2.11.

Lemma 3.4 For all x > 0,

1

2iπ

∫ +∞

−∞
2keikxe−k2t

∫ t

0
ek2sdsdk −→

t→+∞
1.

Proof. The proof is similar to that of Lemma 2.12. The above integral reads
by contour deformation

1

2iπ

∫ +∞

−∞
2eikx 1 − e−k2t

k
dk =

1

2iπ

∫

Γ
2eikx 1 − e−k2t

k
dk,

where Γ is the complex path defined for r ∈ R by Γ(r) = r − i. Note that

1

2iπ

∫

Γ
2
eikx

k
dk = 2,

by Jordan’s lemma and

1

2iπ

∫

Γ
2eikx e−k2t

k
dk −→

t→+∞
1,

by Lemma 3.3. This completes the proof.

These lemmas allow us to generalise Theorem 3.1 to the case of general peri-
odic boundary conditions:
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Theorem 3.5 We have the following asymptotic expansion for the exact solution
of Problem (3.1) with smooth 2π-periodic boundary data f0 written in the form
(2.12) and satisfying (2.13): For all x > 0,

q(t, x) ∼
t→+∞

f̂0 +
∞
∑

n=1

e−x
√

n
√

2

2

(

f̂ne−ix
√

n
√

2

2 eint + f̂−neix
√

n
√

2

2 e−int
)

. (3.4)

Proof. The proof consists in adding Lemma (3.4) to Theorem (3.1) by linearity.

3.2 The linearised KdV equation

In this section, we investigate the long time behaviour of the solutions of the linear
Korteweg-de Vries (KdV) equation on the half-line with periodic boundary data.
This problem is of the form (1.1) with ω(k) = −ik3. Using the linearity of the
problem, we restrict ourselves to the case of homogeneous initial data q0 ≡ 0.
Moreover, we assume that f0 is a smooth function of t and is 2π-periodic.

3.2.1 The transformation method

We are interested in the long time behaviour of the solution of the following
problem:











∂tq + ∂xxxq = 0 t > 0, x > 0

q(0, x) = 0 x > 0
q(t, 0) = f0(t) t > 0,

(3.5)

where f0 is a smooth 2π-periodic function. Applying the Fokas’ transformation
method, we obtain the following representation formula for the exact solution of
Problem (3.5):

∀t, x > 0, q(t, x) =
1

2π

∫ +∞

−∞
−3k2eikx+ik3tf̃0(t, ω(k))dk, (3.6)

where ω(k) = −ik3 and

f̃0(t, κ) =

∫ t

0
eκsf0(s)ds.

3.2.2 Periodic boundary data with zero mean

We denote by α the complex number ei 2π

3 . We define the two following complex
paths for θ ∈ (0, π

3 ):

∀r ∈ (−∞, 0), Γ1(r) = re−i(π

3
−θ),

∀r ∈ (0,+∞), Γ2(r) = rei(π

3
−θ).
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Theorem 3.6 We have the following asymptotic expansion for the exact solution
of Problem (3.5) with smooth 2π-periodic boundary data f0 written in the form
(2.12) and satisfying (2.13) and (2.14): for all x > 0,

q(t, x) ∼
t→+∞

∞
∑

n=1

(

f̂neiα 3
√

nxeint + f̂−ne−iα2 3
√

nxe−int
)

. (3.7)

Remark 3.7 Note that for all λ ∈ R, the complex conjugate of eiαλ is e−iα2λ.

If the boundary datum f0 is real valued then for all n ∈ Z, f̂n = f̂−n. Hence, the
asymptotic profile given by formula (3.7) is real valued as well.

Remark 3.8 Using the definition of α, relation (3.7) also reads

q(t, x) ∼
t→+∞

∞
∑

n=1

e−
√

3

2
3
√

nx
(

f̂ne−i 1

2
3
√

nxeint + f̂−nei 1

2
3
√

nxe−int
)

. (3.8)

Proof. By a straightforward calculation, we get, for n ∈ Z \ {0},

f̃0(t,−ik3) =
einte−ik3t − 1

i(n − k3)
.

Hence, defining for all t, x > 0,

F1(t, x, k) = 3k2eikx −eik3t

(k3 − n)

and

F2(t, x, k) = 3k2eikx eint

(k3 − n)
,

we get,
−3ik2eikxeik3tf̃0(t, ω(k)) = F1(t, x, k) + F2(t, x, k).

Note that for all t, x > 0, F1 + F2 is an analytic function of k. Using (3.6) and
contour deformation, we derive that for all t, x > 0,

q(t, x) =
1

2iπ

∫

Γ1+Γ2

F1(t, x, k)dk +
1

2iπ

∫

Γ1+Γ2

F2(t, x, k)dk.

One easily checks that

1

2iπ

∫

Γ1+Γ2

F1(t, x, k)dk −→
t→+∞

0,

uniformly in n and x. Moreover, using Jordan’s lemma, we have

1

2iπ

∫

Γ1+Γ2

F2(t, x, k)dk = eiα 3
√

nxeint,

if n ≥ 1 and
1

2iπ

∫

Γ1+Γ2

F2(t, x, k)dk = eiα2 3
√

nxeint,

if n ≤ −1. This completes the proof.
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4 IBVP over the finite interval

4.1 Introduction

In this section, we consider linear evolution PDEs with constant coefficients on
a finite interval (0, L) where L is a given positive real number. These problems
are of the form (1.2). Such problems have been studied in [9] by implementing
the Fokas’ transformation method.

We are interested in the long time behaviour of the solutions of these problems
when the boundary data are periodic in time. In particular, just as we did for
problems on the half line in the previous sections (see Section 2 and Section 3), we
investigate the existence of a periodic profile for the solutions of such problems.
More precisely, if q(t, x) denotes the solution of such a problem for t ≥ 0 and
x ∈ [0, L], we define an asymptotic profile qp(t, x) as a smooth periodic function
of t satisfying for all x ∈ [0, L]

|q(t, x) − qp(t, x)| −→
t→+∞

0.

With the linear Schrödinger equation as an example, we present in this section
different types of asymptotic behaviours that occur when the boundary condi-
tions are periodic and share the same period. In contrast to the case of linear
problems on the half-line (see Theorem 2.14), it turns out that an asymptotic
profile does not exist in general (see Theorem 4.1, Theorem 4.4 and Theorem
4.9).

4.2 The linear Schrödinger equation

We investigate the long time behaviour of the solution of the following homoge-
nous linear initial boundary value problem :



















i∂tq + ∂xxq = 0 t > 0, x ∈ (0, L)

q(0, x) = 0 x ∈ (0, L)
q(t, 0) = f0(t) t > 0
q(t, L) = g0(t) t > 0,

(4.1)

where L and T are given positive real numbers and f0 and g0 are given smooth
T -periodic functions. Note that this problem is of the form (1.2) with ω(k) = ik2

and N1 = N2 = 1. Our analysis is based on the following classical representation
formula of the solution of (4.1) (see [9], equation (3.2)): for all t > 0 and x ∈
(0, L),

q(t, x) =
i

4L

∑

m∈Z

sin(kmx)e−ik2
mt
[

N(t, km) − N(t,−km)
]

, km =
mπ

L
, (4.2)

where the function N is given by

N(t, k) = k(f̃0(t, k) − e−ikLg̃0(t, k)),
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and the functions f̃0 and g̃0 are the following t-transforms of f0 and g0: for all
k ∈ C and t ≥ 0,

f̃0(t, k) =

∫ t

0
eik2sf0(s)ds and g̃0(t, k) =

∫ t

0
eik2sg0(s)ds. (4.3)

Although the exact solution of Problem (4.1) is a smooth function of (t, x), the
representation formula (4.2) involves a series whose convergence can be weak (and
is usually not uniform on (0, L) for example). However, as an exact representation
of the solution in terms of transforms of the boundary data, it provides much
information in particular about the long time behaviour.

It turns out that the typical behaviour of the exact solution q of (4.1) depends
on whether T and L2/π are linearly independent on Q or not. As we shall see,
this condition corresponds to the possibility for a periodic signal of frequency
2π/T given at a boundary to get reflected on the other boundary in a specific
way. Subsection 4.3 is devoted to the case T and L2/π are Q-linearly dependent.
Subsection 4.4 is devoted to the case T and L2/π are Q-linearly independent.

In the following, we set b = 2π/T . Moreover, for all measurable complex
functions h defined on (0, L), we define

‖h‖
L2(0,L)

=
( 1

L

∫ L

0
|h(x)|2dλ(x)

)1/2
,

and

‖h‖
L∞(0,L)

= inf
{

y ∈ R

∣

∣

∣
λ
(

{

x ∈ (0, L)
∣

∣ |h(x)| > y
}

)

= 0
}

,

where λ denotes the Lebesgue measure on R. Of course, L2(0, L) (respectively
L∞(0, L)) denotes the space of (classes of) complex functions h on (0, L) such
that ‖h‖

L2(0,L)
< +∞ (resp. ‖h‖

L∞(0,L)
< +∞).

4.3 The dependent case

4.3.1 A simple example

Before dealing with the general dependent case, we investigate a simple example.
In this subsection, we assume that T and L2/π are linearly dependent on Q in
the following way:

2

T
=

π

L2
. (4.4)

Hence, we have b = π2/L2. Moreover, we take as boundary data in Problem
(4.1) the following functions:

f0(t) = sin(bt) and g0(t) = 0, (4.5)

for all t ∈ R. Our result on the long time behaviour of q in that case is the
following:
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Theorem 4.1 Assume the period T of the boundary conditions f0 and g0 defined
in (4.5) satisfies relation (4.4). Then the exact solution of the linear Schrödinger
equation (4.1) on (0, L) satisfies

‖q(t)‖
L∞(0,L)

−→
t→+∞

+∞.

Remark 4.2 In particular, the solution of Problem (4.1) with periodic boundary
conditions (4.5) does not become asymptotically periodic.

Proof. Note that formula (4.2) reads

q(t, x) =
i

2L

∑

m∈Z

km sin(kmx)e−ik2
mtf̃0(t, km), km =

mπ

L
. (4.6)

As in Section 2.3, using (4.5), we derive that

f̃0(t, k) =
b + ik2eik2t sin(bt) − beik2t cos(bt)

b2 − k4
and g̃0(t, k) = 0.

Hence,

f̃0(t,±
π

L
) = L2 1 − e2i π

2

L2 t

4π2
+ i

t

2
, (4.7)

and for all m ∈ Z such that |m| ≥ 2,

f̃0(t,m
π

L
) =

L2

π2

1 + eim2 π
2

L2 t(im2 sin( π2

L2 t) − cos( π2

L2 t)
)

1 − m4
. (4.8)

Using Lemma 4.3, we get that ‖q(t)‖2

L2(0,L)
is the sum of

1

2

π2

L2

(

|f̃0(t, k−1)|2 + |f̃0(t, k1)|2 + f̃0(t, k−1)f̃0(t, k1) + f̃0(t, k1)f̃0(t, k−1)
)

, (4.9)

and
1

2

(

∑

|m|≥2

|kmf̃0(t, km)|2 −
∑

|m|≥2

kmf̃0(t, km)kmf̃0(t,−km)
)

. (4.10)

Using Hölder’s inequality, we have that the real number (4.10) is non-negative.
Moreover, since for all k ∈ C, f̃0(t, k) = f̃0(t,−k), we have that the real number
(4.9) is equal to

2
π2

L2
|f̃0(t, k1)|2.

Finally, (4.7) implies that |f̃0(t, k1)| −→
t→+∞

+∞. Hence, ‖q(t)‖
L2(0,L)

−→
t→+∞

+∞,

and so ‖q(t)‖
L∞(0,L)

−→
t→+∞

+∞.

Lemma 4.3 For all sequences of complex numbers (ak)k∈Z such that
∑

k∈Z |ak|2 <
+∞, the series

∑

k∈Z

ak sin
(

kπ
x

L

)

,
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converges in L2(0, L) and its sum f satisfies

1

L

∫ L

0
|f(x)|2dx =

1

2

∑

k∈Z

|ak|2 −
1

2

∑

k∈Z

aka−k.

Proof. Essentially, the proof is based on the identity valid for all k1, k2 ∈ Z:

1

L

∫ L

0
sin
(

k1π
x

L

)

sin
(

k2π
x

L

)

dx =
1

2

(

δk1,k2
− δk1,−k2

)

,

where δ is the Kronecker’s symbol (i.e. δa,b = 1 if a = b and δa,b = 0 otherwise).

4.3.2 The general dependent case

In this subsection, we still assume that T and L2/π are linearly dependent on
Q. Since Problem (4.1) is linear and homogeneous, one can easily deduce the
asymptotic behaviour of the general case (where both f0 and g0 are non-zero)
from the one where f0 ≡ 0 or g0 ≡ 0. Of course, while doing so, one has to
keep in mind that the possible explosions as t → +∞ (see Theorem 4.1) arising
from each boundary datum can interact in a destructive way and indeed lead to
a bounded solution. Consider for example the case f0(t) = g0(t) = sin(bt) with
b = π2/L2 = 2π/T . In that case, N(t, k±1) = 0 and for |m| ≥ 2, N(t, km) is a
2L2/π-periodic function of t (see (4.8)). Therefore, q is itself a 2L2/π-periodic
function of t.

Hence, we can focus without too much loss of generality on the asymptotic
behaviour of the solution of (4.1) with g0 ≡ 0. Any linear relation on Q between
T and L2/π yields a relation of the form

α
2π

T
+ β

π2

L2
= 0, (4.11)

with (α, β) ∈ (Z \ {0})2 relatively primes, α ≥ 1, β ≤ −1. Such a couple (α, β)
is uniquely determined. Note that the hypotheses of Theorem 4.1 correspond to
(α, β) = (1,−1).

Theorem 4.4 Let T > 0 denote a period of the smooth function f0, and set
g0 ≡ 0. Define b = 2π/T . Denote (f̂n)n∈Z the Fourier coefficients of f0:

∀t ∈ R, f0(t) =
∑

n∈Z

f̂neinbt

Assume that T and L2/π are linearly dependent on Q so that (4.11) holds. Let
us denote

R =
{

(n,m) ∈ Z × Z

∣

∣

∣
αm2 − βn = 0

}

.

If there exists (n,m) ∈ R such that f̂n 6= 0, then the solution q of Problem (4.1)
satisfies

‖q(t)‖
L∞(0,L)

−→
t→+∞

+∞,
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and hence is not asymptotically periodic. Otherwise, q is a periodic function of
period

(

2L2/π
)

× max(1,−α/β).

Proof. Formula (4.6) can be rewritten

q(t, x) =
i

L

∑

m≥1

km sin(kmx)e−ik2
mtf̃0(t, km), km =

mπ

L
. (4.12)

Note that for all (n,m) ∈ Z2,
(

(n,m) ∈ R
)

⇐⇒
(

k2
m + nb = 0

)

.

For all m ≥ 1, all n ∈ Z and all t ≥ 0,

∫ t

0
eik2

mseibnsds =











eik2
mteinbt − 1

i(k2
m + nb)

if (n,m) 6∈ R

t if (n,m) ∈ R.

Note that, since f0 is smooth, the coefficients f̂n tend to zero rapidly as |n| →
+∞. Using (4.12), we write

q(t, x) = qp(t, x) + qr(t, x),

where

qp(t, x) =
i

L

∑

m≥1

km sin(kmx)e−ik2
mt

∑

n∈Z|(n,m)6∈R

f̂n
eik2

mteinbt − 1

i(k2
m + nb)

,

and

qr(t, x) = t
i

L

∑

m≥1

km sin(kmx)e−ik2
mt

∑

n∈Z|(n,m)∈R

f̂n.

Note that qp is a periodic function and
(

2L2/π
)

× max(1,−α/β) is one if its
periods. In particular, ‖qp(t)‖L2(0,L)

is bounded. Moreover, for all m ≥ 1,
∑

n∈Z|(n,m)∈R f̂n contains at most 1 term. Using Lemma 4.3, we derive that

1

L

∫ L

0
|qr(t, x)|2dx =

t2

2L2

∑

k≥1

k2
m

∣

∣

∣

∑

n∈Z|(n,m)∈R

f̂n

∣

∣

∣

2
.

This proves the result.

4.4 The independent case

In this section, we consider the long time behaviour of the solution q of Problem
(4.1) on (0, L) with g0 ≡ 0 and f0 a T -periodic smooth function such that T and
L2/π are linearly independent on Q. Under these assumptions, we shall prove
that q is not asymptotically periodic (see Section 4.1 for a definition) in general
(see Theorem 4.9).

In order to prove this result, we recall the following:
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Theorem 4.5 (Kronecker’s approximation theorem) For all n ∈ N⋆, for
all (α1, . . . , αn) ∈ Rn, for all ε, T > 0 and all linearly independent real numbers
θ1, . . . , θn, there exists a real number t > T and n integers h1, . . . , hn such that

∀i ∈ {1, . . . , n}, |tθi − hi − αi| < ε.

See [1], Theorem 7.9 and Exercise 7 of Chapter 7 for a proof of this result.

Theorem 4.6 Assume that f , g and h are periodic complex functions defined
on R with

h = f + g.

Assume that f and g have positive smallest periods. We denote these periods by
T1 and T2 respectively. Assume that T1 and T2 are linearly independent on Q.
Assume that f is bounded. Then f does not have any open interval of continuity.

See [11], Theorem 5 for a proof of this result.

4.4.1 Preliminary results

Lemma 4.7 Assume that f , g and h are periodic complex-valued functions. Let
us denote respectively T1, T2 and T3 any of their positive periods. Assume that
f and g are continuous functions on R and that the function

d(t) = f(t) + g(t) − h(t),

tends to 0 when t tends to +∞. Then h is continuous on R.

Proof. Assume ε > 0 and t0 ∈ R are given. Since d(t) −→
t→+∞

0 and T3 > 0,

there exists n ∈ N such that

∀s ≥ t0 − 1, |d(s + nT3)| < ε/4. (4.13)

We infer that for all s ≥ t0 − 1,

|h(t0) − h(s)| = |h(t0 + nT3) − h(s + nT3)|
≤ |f(t0 + nT3) − f(s + nT3)| + |g(t0 + nT3) − g(s + nT3)| + ε/2.

Since f and g are continuous at t0 + nT3, we derive that there exists η > 0 such
that for all s ∈ (t0 − η, t0 + η),

|f(t0 + nT3) − f(s + nT3)| < ε/4 and |g(t0 + nT3) − g(s + nT3)| < ε/4.

Hence, for all s ∈ R such that |s − t0| < min(1, η), we have

|h(t0) − h(s)| ≤ ε.

Therefore, h is continuous in t0.

The next theorem states that, if a sum of two continuous periodic functions
with uncommensurable smallest positive periods is asymptotically periodic, then
it is periodic.
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Theorem 4.8 Assume that f , g and h are periodic complex-valued functions
defined on R. Assume that f and g are continuous on R and that they admit
smallest positive periods denoted by T1 and T2 respectively. Assume that T1 and
T2 are linearly independent on Q and that the function

d(t) = f(t) + g(t) − h(t), (4.14)

tends to 0 when t tends to +∞. Then d ≡ 0. In other words,

∀t ∈ R, f(t) + g(t) = h(t). (4.15)

Proof. Let T3 denote any of the positive periods of h. Using Lemma 4.7, the
function h is continuous on R. Since f , g and h are periodic continuous functions
on R, they are uniformly continuous on R. Since T1 and T2 are positive Q-linearly
independent real numbers, so are 1/T1 and 1/T2. This proof is divided in two
parts, depending on whether 1/T3 ∈ SpanQ(1/T1, 1/T2) or not.

Assume that 1/T3 ∈ SpanQ(1/T1, 1/T2).

There exists a, b, c ∈ Z such that

a
1

T3
= b

1

T2
+ c

1

T1
,

and one can assume without loss of generality that a > 0. Hence,

aT1T2 = bT1T3 + cT2T3. (4.16)

Fix s ∈ R. Assume ε > 0 is given. Since d(t) −→
t→+∞

0 and aT1T2 > 0, we can

choose T > 0 such that

∀t > T, |d(s + taT1T2)| < ε. (4.17)

Moreover, since f ,g and h are uniformly continuous on R, there exists η > 0 such
that for all t, u ∈ R with |t − u| < η, one has

|f(t) − f(u)| < ε and |g(t) − g(u)| < ε and |h(t) − h(u)| < ε.
(4.18)

Since 1/T1 and 1/T2 are linearly independent, so are T1 and T2. Hence, the
Kronecker’s approximation theorem (Theorem 4.5) ensures that there exists t >
T and x1, x2 ∈ Z such that

|tT1−x1| <
η

max(aT2, |b|T3, |c|T3)
and |tT2−x2| <

η

max(aT1, |b|T3, |c|T3)
.

(4.19)
Relation (4.14) ensures that

d(s) = d(s + atT1T2) + δ1
t (s) + δ2

t (s) − δ3
t (s),

where

δ1
t (s) = f(s) − f(s + atT1T2), δ2

t (s) = g(s) − g(s + atT1T2), (4.20)

and
δ3
t (s) = h(s) − h(s + atT1T2). (4.21)
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Since f is T1-periodic, we have

δ1
t (s) = f(s + ax2T1) − f(s + atT1T2). (4.22)

Moreover, using (4.19), we have

|(s + ax2T1) − (s + atT1T2)| = aT1|x2 − tT2| < η.

Hence, using (4.18) and (4.20), we have

|δ1
t (s)| < ε. (4.23)

Similarly, we have

δ2
t (s) = g(s + ax1T2) − g(s + atT1T2),

and, using (4.19),

|(s + ax1T2) − (s + atT1T2)| = aT2|x1 − tT1| < η,

and hence
|δ2

t (s)| < ε. (4.24)

In order to get a bound on δ3
t (s), we note that, using (4.16), we have

atT1T2 = btT1T3 + ctT2T3.

Therefore, using (4.21),

δ3
t (s) = h(s) − h(s + bT3tT1 + cT3tT2).

Hence, defining
δ4
t (s) = h(s) − h(s + bT3x1 + cT3tT2),

and
δ5
t (s) = h(s + bT3x1 + cT3tT2) − h(s + bT3tT1 + cT3tT2),

we have,
δ3
t (s) = δ4

t (s) + δ5
t (s).

Note that, since h is T3-periodic and b, c, x1, x2 ∈ Z,

δ4
t (s) = h(s + (bx1 + cx2)T3) − h(s + bT3x1 + cT3tT2).

Using (4.18) and (4.19), we derive that

|δ4
t (s)| < ε and |δ5

t (s)| < ε.

This yields
|δ3

t (s)| < 2ε. (4.25)

We derive from the inequalities (4.17), (4.23), (4.24) and (4.25) that

|d(s)| < 5ε.

Since s ∈ R and ε > 0 are arbitrary, this proves that (4.15) holds true when
1/T3 ∈ SpanQ(1/T1, 1/T2).

Assume now that 1/T3 6∈ SpanQ(1/T1, 1/T2).
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In that case, 1/T1, 1/T2 and 1/T3 are linearly independent on Q. After multipli-
cation by T1T2T3, this implies that T1T2, T2T3 and T1T3 are linearly independent
on Q. Assume ε > 0 is given. We choose η > 0 as we did in (4.18) from the
uniform continuity of f , g and h on R. Fix s ∈ R. As before, since d(t) −→

t→+∞
0,

we can choose T > 0 big enough to ensure that |d(s + tT1T2T3)| < ε. Using Kro-
necker’s approximation theorem (Theorem 4.5), we get the existence of t > T
and (x1, x2, x3) ∈ Z3 such that

|tT1T2 − x3| < η/T3, |tT1T3 − x2| < η/T2, and |tT2T3 − x1| < η/T1.
(4.26)

Using (4.14), we derive that

d(s) = d(s + tT1T2T3) + δ̃1
t (s) + δ̃2

t (s) − δ̃3
t (s), (4.27)

with

δ̃1
t (s) = f(s) − f(s + tT1T2T3), δ̃2

t (s) = g(s) − g(s + tT1T2T3),

and
δ̃3
t = h(s) − h(s + tT1T2T3).

From (4.26), we derive that |tT1T2T3 − x1T1| < η, so that

|δ̃1
t (s)| = |f(s) − f(s + tT1T2T3)| = |f(s + x1T1) − f(s + tT1T2T3)| < ε,

using the T1-periodicity of f . Similarly, we have

|δ̃2
t (s)| = |g(s) − g(s + tT1T2T3)| = |g(s + x2T2) − g(s + tT1T2T3)| < ε,

and

|δ̃3
t (s)| = |h(s) − h(s + tT1T2T3)| = |h(s + x2T2) − h(s + tT1T2T3)| < ε.

Using the triangle inequality in (4.27), we obtain

|d(s)| < 4ε.

This proves (4.15) when 1/T3 6∈ SpanQ(1/T1, 1/T2).

4.4.2 Long time asymptotics in the independent case

Theorem 4.9 Let us denote by q the smooth solution of problem (4.1) corre-
sponding to a smooth periodic boundary datum f0 with smallest period T > 0
and g0 ≡ 0. Assume that T and L2/π are linearly independent on Q. For all
x ∈ (0, L), the function t 7→ q(t, x) is not asymptotically periodic.

See Section 4.1 for a definition of asymptotic periodicity.
Proof. For all t > 0, we have, using (4.2)

q(t, x) =
i

2L

∑

k∈Z

km sin(kmx)e−ik2
mtf̃0(t, km), (4.28)

in L2(0, L), where f̃0 is defined in (4.3). Since f0 is T -periodic, we write the
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Fourier expansion of f0, setting as before b = 2π/T :

∀t ∈ R, f0(t) =
∑

n∈Z

f̂neinbt.

Since T and L2/π are Q-linearly independent, we have for all m,n ∈ Z

k2
m + nb =

π2

L2
m2 + n

2π

T
=

π2

TL2

(

m2T + 2n
L2

π

)

6= 0.

We derive that for all m ∈ Z,

f̃0(t, km) =
∑

n∈Z

f̂n
eik2

mteinbt − 1

i(k2
m + bn)

.

Hence, using (4.28), we can define the functions

fx(t) =
1

2L

∑

k∈Z

km sin(kmx)
(

∑

n∈Z

f̂n
einbt

k2
m + nb

)

,

and

gx(t) = − 1

2L

∑

k∈Z

km sin(kmx)
(

∑

n∈Z

f̂n
e−ik2

mt

k2
m + nb

)

,

to have the following decomposition of the function q:

∀x ∈ (0, L),∀t ∈ R, q(t, x) = fx(t) + gx(t).

Note that fx is T -periodic and gx is 2L2/π-periodic so that q is an almost periodic
function (see [2] and [3] for a definition). Note that, since f0 is smooth, fx is
a smooth function of time. Since q is also a smooth function of time, so is gx.
Assume that for all x ∈ (0, L) there exists a continuous periodic profile qp(t, x)
such that

dx(t) = fx(t) + gx(t) − qp(t, x) −→
t→+∞

0.

Fix x0 ∈ (0, L). Since T and 2L2/π are linearly independent on Q, so are
the smallest positive periods of the continuous functions fx0

and gx0
. Hence,

Theorem 4.8 ensures that d ≡ 0. This yields

∀t ∈ R, fx0
(t) + gx0

(t) = qp(t, x0).

Finally, Theorem 4.6 ensures that fx0
does not have any open interval of conti-

nuity. This is a contradiction. We derive that t 7→ q(t, x0) is not asymptotically
periodic.
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5 Numerical experiments

5.1 Linear IBVP on the half-line

5.1.1 The Schrödinger equation

We first compute the numerical solution q of the homogeneous linear initial
boundary value problem (2.1) on the half-line, with the boundary datum f0 = sin.
This fits the framework of Section 2.3 with b = 1 in formula (2.9).

For any given positive values of t and x, the numerical value of q(t, x) is
computed by integrating the integrand in relation (2.8) on the line γ1 + γ3 (see
(2.15),(2.16)). Since this function and all its derivatives have exponentially de-
caying moduli, we truncate the integral to a bounded interval with an error of at
most ε/2 where ε is a given positive (small) given real number. Then, we use the
trapezoidal method to compute an approximation of the integral on the bounded
interval with sufficiently many steps to ensure an error of at most ε/2.

We plot the results obtained for t ∈ [0, 20] and s ∈ [0, 7] on Figure 1 (real
part of q) and Figure 2 (imaginary part of q).
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Figure 1: Real part of the solution of Problem (2.1) with boundary datum (2.9) and
b = 1.

In order to illustrate the convergence of the solution q to the periodic profile
provided by Theorem 2.4 and Theorem 2.14, we plot the real part of q and of
the profile on Figure 3 at point x = 2.0 as functions of time. Of course, the
numerical values of q are computed as before.

27



0

1

2

3

4

5

6

7

0

2

4

6

8

10

12

14

16

18

20

−1

0

1

space
time

so
lu

tio
n 

(im
ag

in
ar

y 
pa

rt
)

Figure 2: Imaginary part of the solution of Problem (2.1) with boundary datum (2.9)
and b = 1.

5.1.2 The heat equation

We now compute the numerical solution q of the homogeneous linear initial
boundary value problem (3.1) on the half-line, with the boundary datum f0 = sin.
This fits the framework of Section 3.1.

To compute numerical values for q, we use contour deformation just as we did
for the Schröginger equation above. We plot the solution we obtain on Figure 4
for t ∈ [0, 20] and x ∈ [0, 7].

In order to illustrate the convergence of the solution q to the periodic profile
provided by Theorem 3.5, we plot q and the profile on Figure 5 at point x = 2.0
as functions of time.

5.1.3 The linearised KdV equation

As a last illustration for the asymptotics of linear IBVP problems on the half-line
with periodic boundary data, we compute the solution q of the linear problem
(3.5) with the boundary datum

∀t ≥ 0, f0(t) = sin(t) +
1

10
sin(10t). (5.1)

On Figure 6, we plot the numerical results obtained for t ∈ [0, 30] and x ∈
[0, 4].

In order to illustrate the convergence of the solution q to the periodic profile
provided by Theorem 3.6, we plot q and the profile on Figure 7 at point x = 2.0
as functions of time.
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Figure 3: Solution of Problem (2.1) at point x = 2.0 with boundary datum (2.9) and
b = 1 (full line) and the asymptotic profile given by Theorem 2.14 (dotted line).

5.2 The linear Schrödinger equation on bounded in-
tervals

5.2.1 The dependent case

We investigate the asymptotic behaviour of the solutions of the IBVP (4.1) on
the finite interval (0, L) with L = π. We compute the numerical values of the
solution q using a finite difference method scheme in both time and space, with
a CFL number 0.05 and 50 discretisation points in space.

Firstly, we consider periodic boundary data f0 and g0 defined in (4.5) with
b = 1 (i.e. T = 2π). Note that relation (4.4) holds true. We plot on Figure 8 the
numerical values of ‖q‖

L2(0,L)
as a function of time for t ∈ [0, 50]. We observe

that the L2-norm of q is equivalent to a linear function of time in that case and
hence tends to +∞. This is consistent with Theorem 4.1. Note that, with the
notations of Theorem 4.4, we have α = 1 and β = −1 in that case. Moreover,
f0 is 2π-periodic and its only non-zero Fourier coefficients are f̂±1 = ±1/(2i).
Hence, (1,−1) ∈ R and f̂−1 6= 0. Therefore, the numerical results of Figure 8
also illustrate part of Theorem (4.4).

Secondly, we consider periodic boundary data f0 and g0 defined in (4.5) with
b = 2 (i.e. T = π). Note that relation (4.11) holds, with α = 1 and β = −2. The
only non-zero Fourier coefficients of f0 are f̂±1 = ±1/(2i) (see their definition
in Theorem 4.4). Hence, for all (n,m) ∈ R, f̂n = 0. Theorem 4.4 ensures that
q is a periodic function of time in that case, with period 2π. This is illustrated
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Figure 4: Solution of Problem (3.1) with boundary datum (2.9) and b = 1.

by Figure 9 where the numerical values of ‖q‖
L2(0,L)

are plotted as a function of

time for t ∈ [0, 50] in that case.

5.2.2 The independent case

We investigate the asymptotic behaviour of the solutions of the IBVP (4.1) on
the finite interval (0, L) with L = 1. We compute the numerical values of the
solution q using a finite difference method scheme in both time and space, with
a CFL number 0.05 and 50 discretisation points in space.

We consider the boundary data f0 and g0 given by (4.5) with b = 1 (i.e
T = 2π). Theorem 4.9 ensures that the solution q is not asymptotically periodic
in that case. This is illustrated on Figure 10 where the L2-norm of q is plotted as a
function of time for t ∈ [0, 50]. The global behaviour of the solution is illustrated
on Figure 11 where the real part of the solution is plotted for t ∈ [0, 50] and
x ∈ [0, 1]. Moreover, we plot on Figure 12 the real part of q(t, x) evaluated at
x = 0.5 as a function of time. Figure 10, Figure 11 and Figure 12 show that,
even if the solution has some stability property (the L2-norm seems to remain
bounded in that case), no periodic asymptotic behaviour seems to take place.
This illustrates the result of Theorem 4.9.
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(full line) and the corresponding periodic profile provided by Theorem 3.6 (dotted line).
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Figure 8: L2-norm of the solution of Problem (4.1) on (0, π) with boundary data
f0(t) = sin(t) and g0 ≡ 0 as a function of time.
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Figure 9: L2-norm of the solution of Problem (4.1) on (0, π) with boundary data
f0(t) = sin(2t) and g0 ≡ 0 as a function of time.
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Figure 10: L2-norm of the solution of Problem (4.1) on (0, 1) with boundary data
f0(t) = sin(t) and g0 ≡ 0 as a function of time.
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Figure 11: Real part of the solution of Problem (4.1) on (0, 1) with boundary data
f0(t) = sin(t) and g0 ≡ 0.
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Figure 12: Real part of the solution of Problem (4.1) on (0, 1) with boundary data
f0(t) = sin(t) and g0 ≡ 0 evaluated at x = 0.5 as a function of time.
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