Policy Iteration and Value Iteration
Proof of Convergence
Value Iteration

- **Algorithm**
 - we start with an arbitrary initial value function V_0
 - at each iteration k, we calculate $V_{k+1} = \mathcal{T}V_k$

- **Convergence**: show that $\lim_{k \to \infty} V_k = V^*$.

- **proof**

$$||V_{k+1} - V^*||_\infty = ||\mathcal{T}V_k - \mathcal{T}V^*||_\infty \leq \gamma ||V_k - V^*||_\infty \leq \ldots \leq \gamma^{k+1} ||V_0 - V^*||_\infty \longrightarrow 0$$
Algorithm

- we start with an arbitrary initial policy π_0
- at each iteration k, given the current policy π_k

Policy Evaluation: we calculate the value function V^{π_k}

Policy Improvement: we calculate the new policy π_{k+1} as

$$\pi_{k+1}(s) \in \arg \max_{a \in A} \left[r(s, a) + \gamma \sum_{s'} p(s'|s, a) V^{\pi_k}(s') \right]$$

Policy π_{k+1} is greedy w.r.t. the value function V^{π_k} (i.e., $\mathcal{T}^{\pi_{k+1}} V^{\pi_k} = \mathcal{T} V^{\pi_k}$)

- we stop when $V^{\pi_{k+1}} = V^{\pi_k}$.
show that $V^{\pi_{k+1}} \geq V^{\pi_k}$

proof: from the definitions, we have

$$V^{\pi_k} = \mathcal{T}^{\pi_k} V^{\pi_k} \leq \mathcal{T} V^{\pi_k} = \mathcal{T}^{\pi_{k+1}} V^{\pi_k}$$

because of the monotonicity of $\mathcal{T}^{\pi_{k+1}}$, from $V^{\pi_k} \leq \mathcal{T}^{\pi_{k+1}} V^{\pi_k}$, we may deduce

$$V^{\pi_k} \leq \mathcal{T}^{\pi_{k+1}} V^{\pi_k} \leq (\mathcal{T}^{\pi_{k+1}})^2 V^{\pi_k} \leq \ldots \leq \lim_{n \to \infty} (\mathcal{T}^{\pi_{k+1}})^n V^{\pi_k} = V^{\pi_{k+1}}$$
algorithm stops after a finite number of steps q with the optimal policy $V^{\pi_q} = V^*$

proof: since there exists only a finite number of policies, the algorithm stops after a finite number of steps q with $V^{\pi_q} = V^{\pi_{q+1}}$

\[
V^{\pi_q} = V^{\pi_{q+1}} = \mathcal{T}^{\pi_{q+1}} V^{\pi_{q+1}} = \mathcal{T}^{\pi_{q+1}} V^{\pi_q} = \mathcal{T} V^{\pi_q}
\]

so V^{π_q} is a fixed point of \mathcal{T}. Since \mathcal{T} has a unique fixed point, we may deduce that $V^{\pi_q} = V^*$, and thus, π_q is an optimal policy.