The Multi-Arm Bandit Framework

A. LAZARIC (SequeL Team @INRIA-Lille)

Ecole Centrale - Option DAD

In This Lecture

In This Lecture

In This Lecture

In This Lecture

Question: which route should we take?

Inria

In This Lecture

Question: which route should we take?
Problem: each day we obtain a limited feedback: traveling time of the chosen route

In This Lecture

Question: which route should we take?
Problem: each day we obtain a limited feedback: traveling time of the chosen route

Results: if we do not repeatedly try different options we cannot learn.

In This Lecture

Question: which route should we take?
Problem: each day we obtain a limited feedback: traveling time of the chosen route

Results: if we do not repeatedly try different options we cannot learn.

Solution: trade off between optimization and learning.

Outline

Mathematical Tools

The General Multi-arm Bandit Problem

The Stochastic Multi-arm Bandit Problem

The Non-Stochastic Multi-arm Bandit Problem

Connections to Game Theory

Other Stochastic Multi-arm Bandit Problems

Concentration Inequalities

Proposition (Chernoff-Hoeffding Inequality)

Let $X_{i} \in\left[a_{i}, b_{i}\right]$ be n independent r.v. with mean $\mu_{i}=\mathbb{E} X_{i}$. Then

$$
\mathbb{P}\left[\left|\sum_{i=1}^{n}\left(X_{i}-\mu_{i}\right)\right| \geq \epsilon\right] \leq 2 \exp \left(-\frac{2 \epsilon^{2}}{\sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2}}\right)
$$

Concentration Inequalities

Proof.

$$
\begin{aligned}
\mathbb{P}\left(\sum_{i=1}^{n} X_{i}-\mu_{i} \geq \epsilon\right) & =\mathbb{P}\left(e^{s \sum_{i=1}^{n} X_{i}-\mu_{i}} \geq e^{s \epsilon}\right) \\
& \leq e^{-s \epsilon} \mathbb{E}\left[e^{s \sum_{i=1}^{n} X_{i}-\mu_{i}}\right], \quad \text { Markov inequality } \\
& =e^{-s \epsilon} \prod_{i=1}^{n} \mathbb{E}\left[e^{s\left(X_{i}-\mu_{i}\right)}\right], \quad \text { independent random variables } \\
& \leq e^{-s \epsilon} \prod_{i=1}^{n} e^{s^{2}\left(b_{i}-a_{i}\right)^{2} / 8}, \quad \text { Hoeffding inequality } \\
& =e^{-s \epsilon+s^{2} \sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2} / 8}
\end{aligned}
$$

If we choose $s=4 \epsilon / \sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2}$, the result follows.
Similar arguments hold for $\mathbb{P}\left(\sum_{i=1}^{n} X_{i}-\mu_{i} \leq-\epsilon\right)$.

Concentration Inequalities

Finite sample guarantee:

Concentration Inequalities

Finite sample guarantee:

$$
\mathbb{P}\left[\left|\frac{1}{n} \sum_{t=1}^{n} X_{t}-\mathbb{E}\left[X_{1}\right]\right|>(b-a) \sqrt{\frac{\log 2 / \delta}{2 n}}\right] \leq \delta
$$

Concentration Inequalities

Finite sample guarantee:

$$
\mathbb{P}\left[\left|\frac{1}{n} \sum_{t=1}^{n} X_{t}-\mathbb{E}\left[X_{1}\right]\right|>\epsilon\right] \leq \delta
$$

if $n \geq \frac{(b-a)^{2} \log 2 / \delta}{2 \epsilon^{2}}$.

Outline

Mathematical Tools

The General Multi-arm Bandit Problem

The Stochastic Multi-arm Bandit Problem

The Non-Stochastic Multi-arm Bandit Problem

Connections to Game Theory

Other Stochastic Multi-arm Bandit Problems

The Multi-armed Bandit Game

The learner has $i=1, \ldots, N$ arms (options, experts, \ldots)
At each round $t=1, \ldots, n$

The Multi-armed Bandit Game

The learner has $i=1, \ldots, N$ arms (options, experts, ...)
At each round $t=1, \ldots, n$

- At the same time

The Multi-armed Bandit Game

The learner has $i=1, \ldots, N$ arms (options, experts, ...)
At each round $t=1, \ldots, n$

- At the same time
- The environment chooses a vector of rewards $\left\{X_{i, t}\right\}_{i=1}^{N}$
- The learner chooses an arm I_{t}

The Multi-armed Bandit Game

The learner has $i=1, \ldots, N$ arms (options, experts, ...)
At each round $t=1, \ldots, n$

- At the same time
- The environment chooses a vector of rewards $\left\{X_{i, t}\right\}_{i=1}^{N}$
- The learner chooses an arm I_{t}
- The learner receives a reward $X_{I_{t}, t}$

The Multi-armed Bandit Game

The learner has $i=1, \ldots, N$ arms (options, experts, ...)
At each round $t=1, \ldots, n$

- At the same time
- The environment chooses a vector of rewards $\left\{X_{i, t}\right\}_{i=1}^{N}$
- The learner chooses an arm I_{t}
- The learner receives a reward $X_{I_{t}, t}$
- The environment does not reveal the rewards of the other arms

The Multi-armed Bandit Game (cont'd)

The regret

$$
R_{n}(\mathcal{A})=\max _{i=1, \ldots, N} \mathbb{E}\left[\sum_{t=1}^{n} X_{i, t}\right]-\mathbb{E}\left[\sum_{t=1}^{n} X_{l_{t}, t}\right]
$$

The Multi-armed Bandit Game (cont'd)

The regret

$$
R_{n}(\mathcal{A})=\max _{i=1, \ldots, N} \mathbb{E}\left[\sum_{t=1}^{n} X_{i, t}\right]-\mathbb{E}\left[\sum_{t=1}^{n} X_{l_{t}, t}\right]
$$

The expectation summarizes any possible source of randomness (either in X or in the algorithm)

The Exploration-Exploitation Lemma

Problem 1: The environment does not reveal the rewards of the arms not pulled by the learner

The Exploration-Exploitation Lemma

Problem 1: The environment does not reveal the rewards of the arms not pulled by the learner
\Rightarrow the learner should gain information by repeatedly pulling all the arms

The Exploration-Exploitation Lemma

Problem 1: The environment does not reveal the rewards of the arms not pulled by the learner
\Rightarrow the learner should gain information by repeatedly pulling all the arms

Problem 2: Whenever the learner pulls a bad arm, it suffers some regret

The Exploration-Exploitation Lemma

Problem 1: The environment does not reveal the rewards of the arms not pulled by the learner
\Rightarrow the learner should gain information by repeatedly pulling all the arms

Problem 2: Whenever the learner pulls a bad arm, it suffers some regret
\Rightarrow the learner should reduce the regret by repeatedly pulling the best arm

The Exploration-Exploitation Lemma

Problem 1: The environment does not reveal the rewards of the arms not pulled by the learner
\Rightarrow the learner should gain information by repeatedly pulling all the arms

Problem 2: Whenever the learner pulls a bad arm, it suffers some regret
\Rightarrow the learner should reduce the regret by repeatedly pulling the best arm
Challenge: The learner should solve two opposite problems!

The Exploration-Exploitation Lemma

Problem 1: The environment does not reveal the rewards of the arms not pulled by the learner
\Rightarrow the learner should gain information by repeatedly pulling all the arms \Rightarrow exploration

Problem 2: Whenever the learner pulls a bad arm, it suffers some regret
\Rightarrow the learner should reduce the regret by repeatedly pulling the best arm
Challenge: The learner should solve two opposite problems!

The Exploration-Exploitation Lemma

Problem 1: The environment does not reveal the rewards of the arms not pulled by the learner
\Rightarrow the learner should gain information by repeatedly pulling all the arms \Rightarrow exploration

Problem 2: Whenever the learner pulls a bad arm, it suffers some regret
\Rightarrow the learner should reduce the regret by repeatedly pulling the best arm \Rightarrow exploitation
Challenge: The learner should solve two opposite problems!

The Exploration-Exploitation Lemma

Problem 1: The environment does not reveal the rewards of the arms not pulled by the learner
\Rightarrow the learner should gain information by repeatedly pulling all the arms \Rightarrow exploration

Problem 2: Whenever the learner pulls a bad arm, it suffers some regret
\Rightarrow the learner should reduce the regret by repeatedly pulling the best arm \Rightarrow exploitation
Challenge: The learner should solve the exploration-exploitation dilemma!

The Multi-armed Bandit Game (cont'd)

Examples

- Packet routing
- Clinical trials
- Web advertising
- Computer games
- Resource mining
- ...

Outline

Mathematical Tools

The General Multi-arm Bandit Problem

The Stochastic Multi-arm Bandit Problem

The Non-Stochastic Multi-arm Bandit Problem

Connections to Game Theory

Other Stochastic Multi-arm Bandit Problems

The Stochastic Multi-armed Bandit Problem

Definition

The environment is stochastic

- Each arm has a distribution ν_{i} bounded in $[0,1]$ and characterized by an expected value μ_{i}
- The rewards are i.i.d. $X_{i, t} \sim \nu_{i}$

The Stochastic Multi-armed Bandit Problem (cont'd)

Notation

- Number of times arm i has been pulled after n rounds

$$
T_{i, n}=\sum_{t=1}^{n} \mathbb{I}\left\{I_{t}=i\right\}
$$

The Stochastic Multi-armed Bandit Problem (cont'd)

Notation

- Number of times arm i has been pulled after n rounds

$$
T_{i, n}=\sum_{t=1}^{n} \mathbb{I}\left\{I_{t}=i\right\}
$$

- Regret

$$
R_{n}(\mathcal{A})=\max _{i=1, \ldots, N} \mathbb{E}\left[\sum_{t=1}^{n} X_{i, t}\right]-\mathbb{E}\left[\sum_{t=1}^{n} X_{I_{t}, t}\right]
$$

The Stochastic Multi-armed Bandit Problem (cont'd)

Notation

- Number of times arm i has been pulled after n rounds

$$
T_{i, n}=\sum_{t=1}^{n} \mathbb{I}\left\{I_{t}=i\right\}
$$

- Regret

$$
R_{n}(\mathcal{A})=\max _{i=1, \ldots, N}\left(n \mu_{i}\right)-\mathbb{E}\left[\sum_{t=1}^{n} X_{I_{t}, t}\right]
$$

The Stochastic Multi-armed Bandit Problem (cont'd)

Notation

- Number of times arm i has been pulled after n rounds

$$
T_{i, n}=\sum_{t=1}^{n} \mathbb{I}\left\{I_{t}=i\right\}
$$

- Regret

$$
R_{n}(\mathcal{A})=\max _{i=1, \ldots ., N}\left(n \mu_{i}\right)-\sum_{i=1}^{N} \mathbb{E}\left[T_{i, n}\right] \mu_{i}
$$

The Stochastic Multi-armed Bandit Problem (cont'd)

Notation

- Number of times arm i has been pulled after n rounds

$$
T_{i, n}=\sum_{t=1}^{n} \mathbb{I}\left\{I_{t}=i\right\}
$$

- Regret

$$
R_{n}(\mathcal{A})=n \mu_{i^{*}}-\sum_{i=1}^{N} \mathbb{E}\left[T_{i, n}\right] \mu_{i}
$$

The Stochastic Multi-armed Bandit Problem (cont'd)

Notation

- Number of times arm i has been pulled after n rounds

$$
T_{i, n}=\sum_{t=1}^{n} \mathbb{I}\left\{I_{t}=i\right\}
$$

- Regret

$$
R_{n}(\mathcal{A})=\sum_{i \neq i^{*}} \mathbb{E}\left[T_{i, n}\right]\left(\mu_{i^{*}}-\mu_{i}\right)
$$

The Stochastic Multi-armed Bandit Problem (cont'd)

Notation

- Number of times arm i has been pulled after n rounds

$$
T_{i, n}=\sum_{t=1}^{n} \mathbb{I}\left\{I_{t}=i\right\}
$$

- Regret

$$
R_{n}(\mathcal{A})=\sum_{i \neq i^{*}} \mathbb{E}\left[T_{i, n}\right] \Delta_{i}
$$

The Stochastic Multi-armed Bandit Problem (cont'd)

Notation

- Number of times arm i has been pulled after n rounds

$$
T_{i, n}=\sum_{t=1}^{n} \mathbb{I}\left\{I_{t}=i\right\}
$$

- Regret

$$
R_{n}(\mathcal{A})=\sum_{i \neq i^{*}} \mathbb{E}\left[T_{i, n}\right] \Delta_{i}
$$

- Gap $\Delta_{i}=\mu_{i^{*}}-\mu_{i}$

The Stochastic Multi-armed Bandit Problem (cont'd)

$$
R_{n}(\mathcal{A})=\sum_{i \neq i^{*}} \mathbb{E}\left[T_{i, n}\right] \Delta_{i}
$$

\Rightarrow we only need to study the expected number of pulls of the suboptimal arms

The Stochastic Multi-armed Bandit Problem (cont'd)

Optimism in Face of Uncertainty Learning (OFUL)

Whenever we are uncertain about the outcome of an arm, we consider the best possible world and choose the best arm.

The Stochastic Multi-armed Bandit Problem (cont'd)

Optimism in Face of Uncertainty Learning (OFUL)

Whenever we are uncertain about the outcome of an arm, we consider the best possible world and choose the best arm.
Why it works:

- If the best possible world is correct \Rightarrow no regret
- If the best possible world is wrong \Rightarrow the reduction in the uncertainty is maximized

The Stochastic Multi-armed Bandit Problem (cont'd)

pulls $=100$

pulls $=50$

pulls $=200$

pulls $=20$

The Stochastic Multi-armed Bandit Problem (cont'd)

Optimism in face of uncertainty

The Upper-Confidence Bound (UCB) Algorithm

The idea

The Upper-Confidence Bound (UCB) Algorithm

Show time!

The Upper-Confidence Bound (UCB) Algorithm (cont'd)

At each round $t=1, \ldots, n$

- Compute the score of each arm i

$$
B_{i}=(\text { optimistic score of arm } i)
$$

- Pull arm

$$
I_{t}=\arg \max _{i=1, \ldots, N} B_{i, s, t}
$$

- Update the number of pulls $T_{l_{t}, t}=T_{l_{t}, t-1}+1$

The Upper-Confidence Bound (UCB) Algorithm (cont'd)

The score (with parameters ρ and δ)

$$
B_{i}=(\text { optimistic score of arm } i)
$$

The Upper-Confidence Bound (UCB) Algorithm (cont'd)

The score (with parameters ρ and δ)
$B_{i, s, t}=($ optimistic score of arm i if pulled s times up to round t)

The Upper-Confidence Bound (UCB) Algorithm (cont'd)

The score (with parameters ρ and δ)
$B_{i, s, t}=($ optimistic score of arm i if pulled s times up to round $t)$

Optimism in face of uncertainty:
Current knowledge: average rewards $\hat{\mu}_{i, s}$
Current uncertainty: number of pulls s

The Upper-Confidence Bound (UCB) Algorithm (cont'd)

The score (with parameters ρ and δ)

$$
B_{i, s, t}=\text { knowledge } \underbrace{+}_{\text {optimism }} \text { uncertainty }
$$

Optimism in face of uncertainty:
Current knowledge: average rewards $\hat{\mu}_{i, s}$
Current uncertainty: number of pulls s

The Upper-Confidence Bound (UCB) Algorithm (cont'd)

The score (with parameters ρ and δ)

$$
B_{i, s, t}=\hat{\mu}_{i, s}+\rho \sqrt{\frac{\log 1 / \delta}{2 s}}
$$

Optimism in face of uncertainty:
Current knowledge: average rewards $\hat{\mu}_{i, s}$
Current uncertainty: number of pulls s

The Upper-Confidence Bound (UCB) Algorithm (cont'd)

Do you remember Chernoff-Hoeffding?

Theorem

Let X_{1}, \ldots, X_{n} be i.i.d. samples from a distribution bounded in $[a, b]$, then for any $\delta \in(0,1)$

$$
\mathbb{P}\left[\left|\frac{1}{n} \sum_{t=1}^{n} X_{t}-\mathbb{E}\left[X_{1}\right]\right|>(b-a) \sqrt{\frac{\log 2 / \delta}{2 n}}\right] \leq \delta
$$

The Upper-Confidence Bound (UCB) Algorithm (cont'd)

After s pulls, arm i

$$
\mathbb{P}\left[\mathbb{E}\left[X_{i}\right] \leq \frac{1}{s} \sum_{t=1}^{s} X_{i, t}+\sqrt{\frac{\log 1 / \delta}{2 s}}\right] \geq 1-\delta
$$

The Upper-Confidence Bound (UCB) Algorithm (cont'd)

After s pulls, arm i

$$
\mathbb{P}\left[\mu_{i} \leq \hat{\mu}_{i, s}+\sqrt{\frac{\log 1 / \delta}{2 s}}\right] \geq 1-\delta
$$

The Upper-Confidence Bound (UCB) Algorithm (cont'd)

After s pulls, arm i

$$
\mathbb{P}\left[\mu_{i} \leq \hat{\mu}_{i, s}+\sqrt{\frac{\log 1 / \delta}{2 s}}\right] \geq 1-\delta
$$

\Rightarrow UCB uses an upper confidence bound on the expectation

The Upper-Confidence Bound (UCB) Algorithm (cont'd)

Theorem

For any set of N arms with distributions bounded in $[0, b]$, if $\delta=1 / t$, then $\operatorname{UCB}(\rho)$ with $\rho>1$, achieves a regret

$$
R_{n}(\mathcal{A}) \leq \sum_{i \neq i^{*}}\left[\frac{4 b^{2}}{\Delta_{i}} \rho \log (n)+\Delta_{i}\left(\frac{3}{2}+\frac{1}{2(\rho-1)}\right)\right]
$$

The Upper-Confidence Bound (UCB) Algorithm (cont'd)

Let $N=2$ with $i^{*}=1$

$$
R_{n}(\mathcal{A}) \leq O\left(\frac{1}{\Delta} \rho \log (n)\right)
$$

Remark 1: the cumulative regret slowly increases as $\log (n)$

The Upper-Confidence Bound (UCB) Algorithm (cont'd)

Let $N=2$ with $i^{*}=1$

$$
R_{n}(\mathcal{A}) \leq O\left(\frac{1}{\Delta} \rho \log (n)\right)
$$

Remark 1: the cumulative regret slowly increases as $\log (n)$ Remark 2: the smaller the gap the bigger the regret... why?

The Upper-Confidence Bound (UCB) Algorithm (cont'd)

Show time (again)!

The Worst-case Performance

Remark: the regret bound is distribution-dependent

$$
R_{n}(\mathcal{A} ; \Delta) \leq O\left(\frac{1}{\Delta} \rho \log (n)\right)
$$

The Worst-case Performance

Remark: the regret bound is distribution-dependent

$$
R_{n}(\mathcal{A} ; \Delta) \leq O\left(\frac{1}{\Delta} \rho \log (n)\right)
$$

Meaning: the algorithm is able to adapt to the specific problem at hand!

The Worst-case Performance

Remark: the regret bound is distribution-dependent

$$
R_{n}(\mathcal{A} ; \Delta) \leq O\left(\frac{1}{\Delta} \rho \log (n)\right)
$$

Meaning: the algorithm is able to adapt to the specific problem at hand!
Worst-case performance: what is the distribution which leads to the worst possible performance of UCB? what is the distribution-free performance of UCB?

$$
R_{n}(\mathcal{A})=\sup _{\Delta} R_{n}(\mathcal{A} ; \Delta)
$$

The Worst-case Performance

Problem: it seems like if $\Delta \rightarrow 0$ then the regret tends to infinity...

The Worst-case Performance

Problem: it seems like if $\Delta \rightarrow 0$ then the regret tends to infinity...
... nosense because the regret is defined as

$$
R_{n}(\mathcal{A} ; \Delta)=\mathbb{E}\left[T_{2, n}\right] \Delta
$$

The Worst-case Performance

Problem: it seems like if $\Delta \rightarrow 0$ then the regret tends to infinity...
... nosense because the regret is defined as

$$
R_{n}(\mathcal{A} ; \Delta)=\mathbb{E}\left[T_{2, n}\right] \Delta
$$

then if Δ_{i} is small, the regret is also small...

The Worst-case Performance

Problem: it seems like if $\Delta \rightarrow 0$ then the regret tends to infinity...
... nosense because the regret is defined as

$$
R_{n}(\mathcal{A} ; \Delta)=\mathbb{E}\left[T_{2, n}\right] \Delta
$$

then if Δ_{i} is small, the regret is also small...
In fact

$$
R_{n}(\mathcal{A} ; \Delta)=\min \left\{O\left(\frac{1}{\Delta} \rho \log (n)\right), \mathbb{E}\left[T_{2, n}\right] \Delta\right\}
$$

The Worst-case Performance

Then

$$
R_{n}(\mathcal{A})=\sup _{\Delta} R_{n}(\mathcal{A} ; \Delta)=\sup _{\Delta} \min \left\{O\left(\frac{1}{\Delta} \rho \log (n)\right), n \Delta\right\} \approx \sqrt{n}
$$

$$
\text { for } \Delta=\sqrt{1 / n}
$$

Tuning the confidence δ of UCB

Remark: UCB is an anytime algorithm $(\delta=1 / t)$

$$
B_{i, s, t}=\hat{\mu}_{i, s}+\rho \sqrt{\frac{\log t}{2 s}}
$$

Tuning the confidence δ of UCB

Remark: UCB is an anytime algorithm $(\delta=1 / t)$

$$
B_{i, s, t}=\hat{\mu}_{i, s}+\rho \sqrt{\frac{\log t}{2 s}}
$$

Remark: If the time horizon n is known then the optimal choice is $\delta=1 / n$

$$
B_{i, s, t}=\hat{\mu}_{i, s}+\rho \sqrt{\frac{\log n}{2 s}}
$$

Tuning the confidence δ of UCB (cont'd)

Intuition: UCB should pull the suboptimal arms

- Enough: so as to understand which arm is the best
- Not too much: so as to keep the regret as small as possible

Tuning the confidence δ of UCB (cont'd)

Intuition: UCB should pull the suboptimal arms

- Enough: so as to understand which arm is the best
- Not too much: so as to keep the regret as small as possible

The confidence $1-\delta$ has the following impact (similar for ρ)

- Big $1-\delta$: high level of exploration
- Small $1-\delta$: high level of exploitation

Tuning the confidence δ of UCB (cont'd)

Intuition: UCB should pull the suboptimal arms

- Enough: so as to understand which arm is the best
- Not too much: so as to keep the regret as small as possible

The confidence $1-\delta$ has the following impact (similar for ρ)

- Big $1-\delta$: high level of exploration
- Small $1-\delta$: high level of exploitation

Solution: depending on the time horizon, we can tune how to trade-off between exploration and exploitation

Tuning the confidence δ of UCB (cont'd)

Let's dig into the (1 page and half!!) proof.
Define the (high-probability) event [statistics]

$$
\mathcal{E}=\left\{\forall i, s\left|\hat{\mu}_{i, s}-\mu_{i}\right| \leq \sqrt{\frac{\log 1 / \delta}{2 s}}\right\}
$$

By Chernoff-Hoeffding $\mathbb{P}[\mathcal{E}] \geq 1-n N \delta$.

Tuning the confidence δ of UCB (cont'd)

Let's dig into the (1 page and half!!) proof.
Define the (high-probability) event [statistics]

$$
\mathcal{E}=\left\{\forall i, s\left|\hat{\mu}_{i, s}-\mu_{i}\right| \leq \sqrt{\frac{\log 1 / \delta}{2 s}}\right\}
$$

By Chernoff-Hoeffding $\mathbb{P}[\mathcal{E}] \geq 1-n N \delta$.
At time t we pull arm i [algorithm]

$$
B_{i, T_{i, t-1}} \geq B_{i^{*}, T_{i^{*}, t-1}}
$$

Tuning the confidence δ of UCB (cont'd)

Let's dig into the (1 page and half!!) proof.
Define the (high-probability) event [statistics]

$$
\mathcal{E}=\left\{\forall i, s\left|\hat{\mu}_{i, s}-\mu_{i}\right| \leq \sqrt{\frac{\log 1 / \delta}{2 s}}\right\}
$$

By Chernoff-Hoeffding $\mathbb{P}[\mathcal{E}] \geq 1-n N \delta$.
At time t we pull arm i [algorithm]

$$
\hat{\mu}_{i, T_{i, t-1}}+\sqrt{\frac{\log 1 / \delta}{2 T_{i, t-1}}} \geq \hat{\mu}_{i^{*}, T_{i^{*}, t-1}}+\sqrt{\frac{\log 1 / \delta}{2 T_{i^{*}, t-1}}}
$$

Tuning the confidence δ of UCB (cont'd)

Let's dig into the (1 page and half!!) proof.
Define the (high-probability) event [statistics]

$$
\mathcal{E}=\left\{\forall i, s\left|\hat{\mu}_{i, s}-\mu_{i}\right| \leq \sqrt{\frac{\log 1 / \delta}{2 s}}\right\}
$$

By Chernoff-Hoeffding $\mathbb{P}[\mathcal{E}] \geq 1-n N \delta$.
At time t we pull arm i [algorithm]

$$
\hat{\mu}_{i, T_{i, t-1}}+\sqrt{\frac{\log 1 / \delta}{2 T_{i, t-1}}} \geq \hat{\mu}_{i^{*}, T_{i^{*}, t-1}}+\sqrt{\frac{\log 1 / \delta}{2 T_{i^{*}, t-1}}}
$$

On the event \mathcal{E} we have [math]

$$
\mu_{i}+2 \sqrt{\frac{\log 1 / \delta}{2 T_{i, t-1}}} \geq \mu_{i^{*}}
$$

Tuning the confidence δ of UCB (cont'd)

Assume t is the last time i is pulled, then $T_{i, n}=T_{i, t-1}+1$, thus

$$
\mu_{i}+2 \sqrt{\frac{\log 1 / \delta}{2\left(T_{i, n}-1\right)}} \geq \mu_{i^{*}}
$$

Tuning the confidence δ of UCB (cont'd)

Assume t is the last time i is pulled, then $T_{i, n}=T_{i, t-1}+1$, thus

$$
\mu_{i}+2 \sqrt{\frac{\log 1 / \delta}{2\left(T_{i, n}-1\right)}} \geq \mu_{i^{*}}
$$

Reordering [math]

$$
T_{i, n} \leq \frac{\log 1 / \delta}{2 \Delta_{i}^{2}}+1
$$

under event \mathcal{E} and thus with probability $1-n N \delta$.

Tuning the confidence δ of UCB (cont'd)

Assume t is the last time i is pulled, then $T_{i, n}=T_{i, t-1}+1$, thus

$$
\mu_{i}+2 \sqrt{\frac{\log 1 / \delta}{2\left(T_{i, n}-1\right)}} \geq \mu_{i^{*}}
$$

Reordering [math]

$$
T_{i, n} \leq \frac{\log 1 / \delta}{2 \Delta_{i}^{2}}+1
$$

under event \mathcal{E} and thus with probability $1-n N \delta$.
Moving to the expectation [statistics]

$$
\mathbb{E}\left[T_{i, n}\right]=\mathbb{E}\left[T_{i, n} \mathbb{I} \mathcal{E}\right]+\mathbb{E}\left[T_{i, n} I \mathcal{E}^{\mathcal{C}}\right]
$$

Tuning the confidence δ of UCB (cont'd)

Assume t is the last time i is pulled, then $T_{i, n}=T_{i, t-1}+1$, thus

$$
\mu_{i}+2 \sqrt{\frac{\log 1 / \delta}{2\left(T_{i, n}-1\right)}} \geq \mu_{i^{*}}
$$

Reordering [math]

$$
T_{i, n} \leq \frac{\log 1 / \delta}{2 \Delta_{i}^{2}}+1
$$

under event \mathcal{E} and thus with probability $1-n N \delta$.
Moving to the expectation [statistics]

$$
\mathbb{E}\left[T_{i, n}\right] \leq \frac{\log 1 / \delta}{2 \Delta_{i}^{2}}+1+n(n N \delta)
$$

Tuning the confidence δ of UCB (cont'd)

Assume t is the last time i is pulled, then $T_{i, n}=T_{i, t-1}+1$, thus

$$
\mu_{i}+2 \sqrt{\frac{\log 1 / \delta}{2\left(T_{i, n}-1\right)}} \geq \mu_{i^{*}}
$$

Reordering [math]

$$
T_{i, n} \leq \frac{\log 1 / \delta}{2 \Delta_{i}^{2}}+1
$$

under event \mathcal{E} and thus with probability $1-n N \delta$.
Moving to the expectation [statistics]

$$
\mathbb{E}\left[T_{i, n}\right] \leq \frac{\log 1 / \delta}{2 \Delta_{i}^{2}}+1+n(n N \delta)
$$

Trading-off the two terms $\delta=1 / n^{2}$, we obtain

$$
\hat{\mu}_{i, T_{i, t-1}}+\sqrt{\frac{2 \log n}{2 T_{i, t-1}}}
$$

Tuning the confidence δ of UCB (cont'd)

Trading-off the two terms $\delta=1 / n^{2}$, we obtain

$$
\hat{\mu}_{i, T_{i, t-1}}+\sqrt{\frac{2 \log n}{2 T_{i, t-1}}}
$$

and

$$
\mathbb{E}\left[T_{i, n}\right] \leq \frac{\log n}{\Delta_{i}^{2}}+1+N
$$

Tuning the confidence δ of UCB (cont'd)

Multi-armed Bandit: the same for $\delta=1 / t$ and $\delta=1 / n \ldots$

Tuning the confidence δ of UCB (cont'd)

Multi-armed Bandit: the same for $\delta=1 / t$ and $\delta=1 / n \ldots$
... almost (i.e., in expectation)

Tuning the confidence δ of UCB (cont'd)

The value-at-risk of the regret for UCB-anytime

Tuning the ρ of UCB (cont'd)

UCB values (for the $\delta=1 / n$ algorithm)

$$
B_{i, s}=\hat{\mu}_{i, s}+\rho \sqrt{\frac{\log n}{2 s}}
$$

Tuning the ρ of UCB (cont'd)

UCB values (for the $\delta=1 / n$ algorithm)

$$
B_{i, s}=\hat{\mu}_{i, s}+\rho \sqrt{\frac{\log n}{2 s}}
$$

Theory

- $\rho<0.5$, polynomial regret w.r.t. n
- $\rho>0.5$, logarithmic regret w.r.t. n

Tuning the ρ of UCB (cont'd)

UCB values (for the $\delta=1 / n$ algorithm)

$$
B_{i, s}=\hat{\mu}_{i, s}+\rho \sqrt{\frac{\log n}{2 s}}
$$

Theory

- $\rho<0.5$, polynomial regret w.r.t. n
- $\rho>0.5$, logarithmic regret w.r.t. n

Practice: $\rho=0.2$ is often the best choice

Tuning the ρ of UCB (cont'd)

UCB values (for the $\delta=1 / n$ algorithm)

$$
B_{i, s}=\hat{\mu}_{i, s}+\rho \sqrt{\frac{\log n}{2 s}}
$$

Theory
$-\rho<0.5$, polynomial regret w.r.t. n

- $\rho>0.5$, logarithmic regret w.r.t. n

Practice: $\rho=0.2$ is often the best choice

Regret of $\operatorname{UCB} 1(\rho)$ for $\mathrm{n}=1000$ and $\mathrm{K}=5$ arms: $\operatorname{Ber}(0.7), \operatorname{Ber}(0.6), \operatorname{Ber}(0.5), \operatorname{Ber}(0.4)$ and $\operatorname{Ber}(0.3)$

Improvements over UCB: UCB-V

Idea: use Bernstein bounds with empirical variance

Improvements over UCB: UCB-V

Idea: use Bernstein bounds with empirical variance Algorithm:

$$
\begin{aligned}
B_{i, s, t} & =\hat{\mu}_{i, s}+\sqrt{\frac{\log t}{2 s}} & B_{i, s, t}^{V}=\hat{\mu}_{i, s}+\sqrt{\frac{2 \hat{\sigma}_{i, s}^{2} \log t}{s}}+\frac{8 \log t}{3 s} \\
R_{n} & \leq O\left(\frac{1}{\Delta} \log n\right) & R_{n} \leq O\left(\frac{\sigma^{2}}{\Delta} \log n\right)
\end{aligned}
$$

Improvements over UCB: KL-UCB

Idea: use Kullback-Leibler bounds which are tighter than other bounds

Improvements over UCB: KL-UCB

Idea: use Kullback-Leibler bounds which are tighter than other bounds
Algorithm: the algorithm is still index-based but a bit more complicated

$$
R_{n} \leq O\left(\frac{1}{\Delta} \log n\right) \quad R_{n} \leq O\left(\frac{1}{K L\left(\nu, \nu_{i^{*}}\right)} \log n\right)
$$

Improvements over UCB: Thompson strategy

Idea: Keep a distribution over the possible values of μ_{i}

Improvements over UCB: Thompson strategy

Idea: Keep a distribution over the possible values of μ_{i} Algorithm: Bayesian approach. Compute the posterior distributions given the samples.

Back to UCB: the Lower Bound

Theorem

For any stochastic bandit $\left\{\nu_{i}\right\}$, any algorithm \mathcal{A} has a regret

$$
\lim _{n \rightarrow \infty} \frac{R_{n}}{\log n} \geq \frac{\Delta_{i}}{\inf _{\nu} K L\left(\nu_{i}, \nu\right)}
$$

Back to UCB: the Lower Bound

Theorem

For any stochastic bandit $\left\{\nu_{i}\right\}$, any algorithm \mathcal{A} has a regret

$$
\lim _{n \rightarrow \infty} \frac{R_{n}}{\log n} \geq \frac{\Delta_{i}}{\inf _{\nu} K L\left(\nu_{i}, \nu\right)}
$$

Problem: this is just asymptotic

Back to UCB: the Lower Bound

Theorem

For any stochastic bandit $\left\{\nu_{i}\right\}$, any algorithm \mathcal{A} has a regret

$$
\lim _{n \rightarrow \infty} \frac{R_{n}}{\log n} \geq \frac{\Delta_{i}}{\inf _{\nu} K L\left(\nu_{i}, \nu\right)}
$$

Problem: this is just asymptotic
Open Question: what is the finite-time lower bound?

Outline

Mathematical Tools

The General Multi-arm Bandit Problem

The Stochastic Multi-arm Bandit Problem

The Non-Stochastic Multi-arm Bandit Problem

Connections to Game Theory

Other Stochastic Multi-arm Bandit Problems

The Non-Stochastic Multi-armed Bandit Problem

Definition

The environment is adversarial

- Arms have no fixed distribution
- The rewards $X_{i, t}$ are arbitrarily chosen by the environment

The Non-Stochastic Multi-armed Bandit Problem (cont'd)

The (non-stochastic bandit) regret

$$
R_{n}(\mathcal{A})=\max _{i=1, \ldots, N} \mathbb{E}\left[\sum_{t=1}^{n} X_{i, t}\right]-\mathbb{E}\left[\sum_{t=1}^{n} X_{l_{t}, t}\right]
$$

The Non-Stochastic Multi-armed Bandit Problem (cont'd)

The (non-stochastic bandit) regret

$$
R_{n}(\mathcal{A})=\max _{i=1, \ldots, N} \sum_{t=1}^{n} X_{i, t}-\mathbb{E}\left[\sum_{t=1}^{n} X_{l_{t}, t}\right]
$$

The Exponentially Weighted Average Forecaster

Initialize the weights $w_{i, 0}=1$

- Compute $\left(W_{t-1}=\sum_{i=1}^{N} w_{i, t-1}\right)$

$$
\hat{p}_{i, t}=\frac{W_{i, t-1}}{W_{t-1}}
$$

- Choose the arm at random

$$
I_{t} \sim \hat{\mathbf{p}}_{t}
$$

- Observe the rewards $\left\{X_{i, t}\right\}$
- Receive a reward $X_{I_{t}, t}$
- Update

$$
w_{i, t}=w_{i, t-1} \exp \left(+\eta X_{i, t}\right)
$$

The Non-Stochastic Multi-armed Bandit Problem (cont'd)

Problem: we only observe the reward of the specific arm chosen at time t !! (i.e., only $X_{t_{t}, t}$ is observed)

The Exponentially Weighted Average Forecaster

Initialize the weights $w_{i, 0}=1$

- Compute $\left(W_{t-1}=\sum_{i=1}^{N} w_{i, t-1}\right)$

$$
\hat{p}_{i, t}=\frac{W_{i, t-1}}{W_{t-1}}
$$

- Choose the arm at random

$$
I_{t} \sim \hat{\mathbf{p}}_{t}
$$

- Observe the rewards $\left\{X_{i, t}\right\}$
- Receive a reward $X_{I_{t}, t}$
- Update

$$
w_{i, t}=w_{i, t-1} \exp \left(\eta X_{i_{t}, t}\right) \Rightarrow \text { this update is not possible }
$$

The Non-Stochastic Multi-armed Bandit Problem (cont'd)

We use the importance weight trick

$$
\hat{X}_{i, t}= \begin{cases}\frac{X_{i, t}}{\hat{p}_{i, t}} & \text { if } i=I_{t} \\ 0 & \text { otherwise }\end{cases}
$$

The Non-Stochastic Multi-armed Bandit Problem (cont'd)

We use the importance weight trick

$$
\hat{X}_{i, t}= \begin{cases}\frac{X_{i, t}}{\hat{p}_{i, t}} & \text { if } i=I_{t} \\ 0 & \text { otherwise }\end{cases}
$$

Why it is a good idea:

$$
\mathbb{E}\left[\hat{X}_{i, t}\right]=\frac{X_{i, t}}{\hat{p}_{i, t}} \hat{p}_{i, t}+0\left(1-\hat{p}_{i, t}\right)=X_{i, t}
$$

$\hat{X}_{i, t}$ is an unbiased estimator of $X_{i, t}$

The Exp3 Algorithm

Exp3: Exponential-weight algorithm for Exploration and Exploitation

Initialize the weights $w_{i, 0}=1$

- Compute $\left(W_{t-1}=\sum_{i=1}^{N} w_{i, t-1}\right)$

$$
\hat{p}_{i, t}=\frac{W_{i, t-1}}{W_{t-1}}
$$

- Choose the arm at random

$$
I_{t} \sim \hat{\mathbf{p}}_{t}
$$

- Receive a reward $X_{t_{t}, t}$
- Update

$$
w_{i, t}=w_{i, t-1} \exp \left(\eta \hat{X}_{i_{t}, t}\right)
$$

The Exp3 Algorithm

Question: is this enough? is this algorithm actually exploring enough?

The Exp3 Algorithm

Question: is this enough? is this algorithm actually exploring enough?
Answer: more or less...

- Exp3 has a small regret in expectation
- Exp3 might have large deviations with high probability (ie, from time to time it may concentrate $\hat{\mathbf{p}}_{t}$ on the wrong arm for too long and then incur a large regret)

The Exp3 Algorithm

Fix: add some extra uniform exploration

Initialize the weights $w_{i, 0}=1$

- Compute $\left(W_{t-1}=\sum_{i=1}^{N} w_{i, t-1}\right)$

$$
\hat{p}_{i, t}=(1-\gamma) \frac{w_{i, t-1}}{W_{t-1}}+\frac{\gamma}{K}
$$

- Choose the arm at random

$$
I_{t} \sim \hat{\mathbf{p}}_{t}
$$

- Receive a reward $X_{t_{t}, t}$
- Update

$$
w_{i, t}=w_{i, t-1} \exp \left(\eta \hat{X}_{i_{t}, t}\right)
$$

The Exp3 Algorithm

Theorem

If Exp3 is run with $\gamma=\eta$, then it achieves a regret

$$
\begin{aligned}
& R_{n}(\mathcal{A})=\max _{i=1, \ldots, N} \sum_{t=1}^{n} X_{i, t}-\mathbb{E}\left[\sum_{t=1}^{n} X_{I_{t}, t}\right] \leq(e-1) \gamma G_{\max }+\frac{N \log N}{\gamma} \\
& \text { with } G_{\max }=\max _{i=1, \ldots, N} \sum_{t=1}^{n} X_{i, t}
\end{aligned}
$$

The Exp3 Algorithm

Theorem

If Exp3 is run with

$$
\gamma=\eta=\sqrt{\frac{N \log N}{(e-1) n}}
$$

then it achieves a regret

$$
R_{n}(\mathcal{A}) \leq O(\sqrt{n N \log N})
$$

The Exp3 Algorithm

Comparison with online learning

$$
\begin{aligned}
& R_{n}(E x p 3) \leq O(\sqrt{n N \log N}) \\
& R_{n}(E W A) \leq O(\sqrt{n \log N})
\end{aligned}
$$

The Exp3 Algorithm

Comparison with online learning

$$
\begin{aligned}
& R_{n}(E x p 3) \leq O(\sqrt{n N \log N}) \\
& R_{n}(E W A) \leq O(\sqrt{n \log N})
\end{aligned}
$$

Intuition: in online learning at each round we obtain N feedbacks, while in bandits we receive 1 feedback.

The Improved-Exp3 Algorithm

Initialize the weights $w_{i, 0}=1$

- Compute $\left(W_{t-1}=\sum_{i=1}^{N} w_{i, t-1}\right)$

$$
\hat{p}_{i, t}=(1-\gamma) \frac{w_{i, t-1}}{W_{t-1}}+\frac{\gamma}{K}
$$

- Choose the arm at random

$$
I_{t} \sim \hat{\mathbf{p}}_{t}
$$

- Receive a reward $X_{t_{t}, t}$
- Compute

$$
\widetilde{X}_{i, t}=\hat{X}_{i, t}+\frac{\beta}{\hat{p}_{i, t}}
$$

- Update

$$
w_{i, t}=w_{i, t-1} \exp \left(\eta \widetilde{X}_{i_{t}, t}\right)
$$

The Improved-Exp3 Algorithm

Theorem

If Improved-Exp3 is run with parameters in the ranges

$$
\gamma \leq \frac{1}{2} ; \quad 0 \leq \eta \leq \frac{\gamma}{2 N} ; \quad \sqrt{\frac{1}{n N} \log \frac{N}{\delta}} \leq \beta \leq 1
$$

then it achieves a regret

$$
R_{n}^{H P}(\mathcal{A}) \leq n(\gamma+\eta(1+\beta) N)+\frac{\log N}{\eta}+2 n N \beta
$$

with probability at least $1-\delta$.

The Improved-Exp3 Algorithm

Theorem

If Improved-Exp3 is run with parameters in the ranges

$$
\beta=\sqrt{\frac{1}{n N} \log \frac{N}{\delta}} ; \quad \gamma=\frac{4 N \beta}{3+\beta} ; \quad \eta=\frac{\gamma}{2 N}
$$

then it achieves a regret

$$
R_{n}^{H P}(\mathcal{A}) \leq \frac{11}{2} \sqrt{n N \log (N / \delta)}+\frac{\log N}{2}
$$

with probability at least $1-\delta$.

Outline

Mathematical Tools

The General Multi-arm Bandit Problem

The Stochastic Multi-arm Bandit Problem

The Non-Stochastic Multi-arm Bandit Problem

Connections to Game Theory

Other Stochastic Multi-arm Bandit Problems

Repeated Two-Player Zero-Sum Games

A two-player zero-sum game

	A	B	C
1	$30,-30$	$-10,10$	$20,-20$
2	$10,-10$	$-20,20$	$-20,20$

Repeated Two-Player Zero-Sum Games

A two-player zero-sum game

	A	B	C
1	$30,-30$	$-10,10$	$20,-20$
2	$10,-10$	$-20,20$	$-20,20$

Nash equilibrium:
A set of strategies is a Nash equilibrium if no player can do better by unilaterally changing his strategy.

Repeated Two-Player Zero-Sum Games

A two-player zero-sum game

	A	B	C
1	$30,-30$	$-10,10$	$20,-20$
2	$10,-10$	$-20,20$	$-20,20$

Nash equilibrium:
Red: take action 1 with prob. $4 / 7$ and action 2 with prob. 3/7
Blue: take action A with prob. 0 , action B with prob. $4 / 7$, and action C with prob. 3/7

Repeated Two-Player Zero-Sum Games

A two-player zero-sum game

	A	B	C
1	$30,-30$	$-10,10$	$20,-20$
2	$10,-10$	$-20,20$	$-20,20$

Nash equilibrium:
Value of the game: $V=20 / 7$ (reward of Red at the equilibrium)

Repeated Two-Player Zero-Sum Games

At each round t

- Row player computes a mixed strategy $\hat{\mathbf{p}}_{t}=\left(\hat{p}_{1, t}, \ldots, \hat{p}_{N, t}\right)$
- Column player computes a mixed strategy $\hat{\mathbf{q}}_{t}=\left(\hat{q}_{1, t}, \ldots, \hat{q}_{M, t}\right)$

Repeated Two-Player Zero-Sum Games

At each round t

- Row player computes a mixed strategy $\hat{\mathbf{p}}_{t}=\left(\hat{p}_{1, t}, \ldots, \hat{p}_{N, t}\right)$
- Column player computes a mixed strategy $\hat{\mathbf{q}}_{t}=\left(\hat{q}_{1, t}, \ldots, \hat{q}_{M, t}\right)$
- Row player selects action $I_{t} \in\{1, \ldots, N\}$
- Column player selects action $J_{t} \in\{1, \ldots, M\}$

Repeated Two-Player Zero-Sum Games

At each round t

- Row player computes a mixed strategy $\hat{\mathbf{p}}_{t}=\left(\hat{p}_{1, t}, \ldots, \hat{p}_{N, t}\right)$
- Column player computes a mixed strategy $\hat{\mathbf{q}}_{t}=\left(\hat{q}_{1, t}, \ldots, \hat{q}_{M, t}\right)$
- Row player selects action $I_{t} \in\{1, \ldots, N\}$
- Column player selects action $J_{t} \in\{1, \ldots, M\}$
- Row player suffers $\ell\left(I_{t}, J_{t}\right)$
- Column player suffers $-\ell\left(I_{t}, J_{t}\right)$

Repeated Two-Player Zero-Sum Games

At each round t

- Row player computes a mixed strategy $\hat{\mathbf{p}}_{t}=\left(\hat{p}_{1, t}, \ldots, \hat{p}_{N, t}\right)$
- Column player computes a mixed strategy $\hat{\mathbf{q}}_{t}=\left(\hat{q}_{1, t}, \ldots, \hat{q}_{M, t}\right)$
- Row player selects action $I_{t} \in\{1, \ldots, N\}$
- Column player selects action $J_{t} \in\{1, \ldots, M\}$
- Row player suffers $\ell\left(I_{t}, J_{t}\right)$
- Column player suffers $-\ell\left(I_{t}, J_{t}\right)$

Value of the game

$$
V=\max _{\mathbf{q}} \min _{\mathbf{p}} \bar{\ell}(\mathbf{p}, \mathbf{q})
$$

with

$$
\bar{\ell}(\mathbf{p}, \mathbf{q})=\sum_{i=1}^{N} \sum_{j=1}^{M} p_{i} q_{j} \ell(i, j)
$$

Repeated Two-Player Zero-Sum Games

Question: what if the two players are both bandit algorithms (e.g., Exp3)?

Repeated Two-Player Zero-Sum Games

Question: what if the two players are both bandit algorithms (e.g., Exp3)?

Row player: a bandit algorithm is able to minimize

$$
R_{n}(\text { row })=\sum_{t=1}^{n} \ell_{l_{t}, J_{t}}-\min _{i=1, \ldots, N} \sum_{t=1}^{n} \ell_{i, J_{t}}
$$

Repeated Two-Player Zero-Sum Games

Question: what if the two players are both bandit algorithms (e.g., Exp3)?

Row player: a bandit algorithm is able to minimize

$$
R_{n}(\text { row })=\sum_{t=1}^{n} \ell_{l_{t}, J_{t}}-\min _{i=1, \ldots, N} \sum_{t=1}^{n} \ell_{i, J_{t}}
$$

Col player: a bandit algorithm is able to minimize

$$
R_{n}(\mathrm{col})=\sum_{t=1}^{n} \ell_{I_{t}, J_{t}}-\min _{j=1, \ldots, M} \sum_{t=1}^{n} \ell_{I_{t}, j}
$$

Repeated Two-Player Zero-Sum Games

Theorem

If both the row and column players play according to an Hannan-consistent strategy, then

$$
\lim \sup _{n \rightarrow \infty} \frac{1}{n} \sum_{t=1}^{n} \ell\left(I_{t}, J_{t}\right)=V
$$

Repeated Two-Player Zero-Sum Games

Theorem

The empirical distribution of plays

$$
\hat{p}_{i, n}=\frac{1}{n} \sum_{t=1}^{n} \mathbb{I}\left\{I_{t}=i\right\} \quad \hat{q}_{j, n}=\frac{1}{n} \sum_{t=1}^{n} \mathbb{I}\left\{J_{t}=j\right\}
$$

induces a product distribution $\hat{\mathbf{p}}_{n} \times \hat{\mathbf{q}}_{n}$ which converges to the set of Nash equilibria $\mathbf{p} \times \mathbf{q}$.

Repeated Two-Player Zero-Sum Games

Proof idea.

Since $\bar{\ell}\left(\mathbf{p}, J_{t}\right)$ is linear, over the simplex, the minimum is at one of the corners [math]

$$
\min _{i=1, \ldots, N} \frac{1}{N} \sum_{t=1}^{n} \ell\left(i, J_{t}\right)=\min _{\mathbf{p}} \frac{1}{n} \sum_{t=1}^{n} \bar{\ell}\left(\mathbf{p}, J_{t}\right)
$$

Repeated Two-Player Zero-Sum Games

Proof idea.
Since $\bar{\ell}\left(\mathbf{p}, J_{t}\right)$ is linear, over the simplex, the minimum is at one of the corners [math]

$$
\min _{i=1, \ldots, N} \frac{1}{N} \sum_{t=1}^{n} \ell\left(i, J_{t}\right)=\min _{\mathbf{p}} \frac{1}{n} \sum_{t=1}^{n} \bar{\ell}\left(\mathbf{p}, J_{t}\right)
$$

We consider the empirical probability of the row player [def]

$$
\hat{q}_{j, n}=\frac{1}{n} \sum_{t=1}^{n} \mathbb{I} J_{t}=j
$$

Repeated Two-Player Zero-Sum Games

Proof idea.
Since $\bar{\ell}\left(\mathbf{p}, J_{t}\right)$ is linear, over the simplex, the minimum is at one of the corners [math]

$$
\min _{i=1, \ldots, N} \frac{1}{N} \sum_{t=1}^{n} \ell\left(i, J_{t}\right)=\min _{\mathbf{p}} \frac{1}{n} \sum_{t=1}^{n} \bar{\ell}\left(\mathbf{p}, J_{t}\right)
$$

We consider the empirical probability of the row player [def]

$$
\hat{q}_{j, n}=\frac{1}{n} \sum_{t=1}^{n} \mathbb{I} J_{t}=j
$$

Elaborating on it [math]

$$
\begin{aligned}
\min _{\mathbf{p}} \frac{1}{n} \sum_{t=1}^{n} \bar{\ell}\left(\mathbf{p}, J_{t}\right) & =\min _{\mathbf{p}} \sum_{j=1}^{M} \hat{q}_{j, n} \bar{\ell}(\mathbf{p}, j) \\
& =\min _{\mathbf{p}} \bar{\ell}\left(\mathbf{p}, \hat{\mathbf{q}}_{n}\right) \\
& \leq \max _{\mathbf{q}} \min _{\mathbf{p}} \bar{\ell}(\mathbf{p}, \mathbf{q})=V
\end{aligned}
$$

Repeated Two-Player Zero-Sum Games

Proof idea.
By definition of Hannan's consistent strategy [def]

$$
\lim \sup _{n \rightarrow \infty} \frac{1}{n} \sum_{t=1}^{n} \ell\left(I_{t}, J_{t}\right)=\min _{i=1, \ldots, N} \frac{1}{n} \sum_{t=1}^{n} \ell\left(i, J_{t}\right)
$$

Repeated Two-Player Zero-Sum Games

Proof idea.
By definition of Hannan's consistent strategy [def]

$$
\lim \sup _{n \rightarrow \infty} \frac{1}{n} \sum_{t=1}^{n} \ell\left(I_{t}, J_{t}\right)=\min _{i=1, \ldots, N} \frac{1}{n} \sum_{t=1}^{n} \ell\left(i, J_{t}\right)
$$

Then

$$
\lim \sup _{n \rightarrow \infty} \frac{1}{n} \sum_{t=1}^{n} \ell\left(I_{t}, J_{t}\right) \leq V
$$

Repeated Two-Player Zero-Sum Games

Proof idea.
By definition of Hannan's consistent strategy [def]

$$
\lim \sup _{n \rightarrow \infty} \frac{1}{n} \sum_{t=1}^{n} \ell\left(I_{t}, J_{t}\right)=\min _{i=1, \ldots, N} \frac{1}{n} \sum_{t=1}^{n} \ell\left(i, J_{t}\right)
$$

Then

$$
\lim \sup _{n \rightarrow \infty} \frac{1}{n} \sum_{t=1}^{n} \ell\left(I_{t}, J_{t}\right) \leq V
$$

If we do the same for the other player [zero-sum game]

$$
\lim \sup _{n \rightarrow \infty} \frac{1}{n} \sum_{t=1}^{n} \ell\left(I_{t}, J_{t}\right) \geq V
$$

Repeated Two-Player Zero-Sum Games

Question: how fast do they converge to the Nash equilibrium?

Repeated Two-Player Zero-Sum Games

Question: how fast do they converge to the Nash equilibrium? Answer: it depends on the specific algorithm. For $\operatorname{EWA}(\eta)$, we now that

$$
\sum_{t=1}^{n} \ell\left(I_{t}, J_{t}\right)-\min _{i=1, \ldots, N} \sum_{t=1}^{n} \ell\left(i, J_{t}\right) \leq \frac{\log N}{\eta}+\frac{n \eta}{8}+\sqrt{\frac{n}{2} \log \frac{1}{\delta}}
$$

Repeated Two-Player Zero-Sum Games

Generality of the results

- Players do not know the payoff matrix

Repeated Two-Player Zero-Sum Games

Generality of the results

- Players do not know the payoff matrix
- Players do not observe the loss of the other player

Repeated Two-Player Zero-Sum Games

Generality of the results

- Players do not know the payoff matrix
- Players do not observe the loss of the other player
- Players do not even observe the action of the other player

Internal Regret and Correlated Equilibria

External (expected) regret

$$
\begin{aligned}
R_{n} & =\sum_{t=1}^{n} \bar{\ell}\left(\hat{\mathbf{p}}_{t}, y_{t}\right)-\min _{i=1, \ldots, N} \sum_{t=1}^{n} \ell\left(i, y_{t}\right) \\
& =\max _{i=1, \ldots, N} \sum_{t=1}^{n} \sum_{j=1}^{N} \hat{p}_{j, t}\left(\ell\left(j, y_{t}\right)-\ell\left(i, y_{t}\right)\right)
\end{aligned}
$$

Internal Regret and Correlated Equilibria

External (expected) regret

$$
\begin{aligned}
R_{n} & =\sum_{t=1}^{n} \bar{\ell}\left(\hat{\mathbf{p}}_{t}, y_{t}\right)-\min _{i=1, \ldots, N} \sum_{t=1}^{n} \ell\left(i, y_{t}\right) \\
& =\max _{i=1, \ldots, N} \sum_{t=1}^{n} \sum_{j=1}^{N} \hat{p}_{j, t}\left(\ell\left(j, y_{t}\right)-\ell\left(i, y_{t}\right)\right)
\end{aligned}
$$

Internal (expected) regret

$$
R_{n}^{\prime}=\max _{i, j=1, \ldots, N} \sum_{t=1}^{n} \hat{p}_{j, t}\left(\ell\left(i, y_{t}\right)-\ell\left(j, y_{t}\right)\right)
$$

Internal Regret and Correlated Equilibria

Internal (expected) regret

$$
R_{n}^{\prime}=\max _{i, j=1, \ldots, N} \sum_{t=1}^{n} \hat{p}_{j, t}\left(\ell\left(i, y_{t}\right)-\ell\left(j, y_{t}\right)\right)
$$

Intuition: an algorithm has small internal regret if, for each pair of experts (i, j), the learner does not regret of not having followed expert j each time it followed expert i.

Internal Regret and Correlated Equilibria

Theorem

Given a K-person game with a set of correlated equilibria \mathcal{C}. If all the players are internal-regret minimizers, then the distance between the empirical distribution of plays and the set of correlated equilibria \mathcal{C} converges to 0 .

Nash Equilibria in Extensive Form Games

A powerful model for sequential games

- Checkers / Chess / Go
- Poker
- Bargaining
- Monitoring
- Patrolling
- ...

Nash Equilibria in Extensive Form Games

Nash Equilibria in Extensive Form Games

Nash Equilibria in Extensive Form Games

No details about the algorithm... but...

Nash Equilibria in Extensive Form Games

No details about the algorithm... but...

Theorem

If player k selects actions according to the counterfactual regret minimization algorithm, then it achieves a regret

$$
R_{k, T} \leq \# \text { states } \sqrt{\frac{\# \text { actions }}{T}}
$$

Nash Equilibria in Extensive Form Games

No details about the algorithm... but...

Theorem

If player k selects actions according to the counterfactual regret minimization algorithm, then it achieves a regret

$$
R_{k, T} \leq \# \text { states } \sqrt{\frac{\# \text { actions }}{T}}
$$

Theorem

In a two-player zero-sum extensive form game, counterfactual regret minimization algorithms achieves an 2ϵ-Nash equilibrium, with

$$
\epsilon \leq \# \text { states } \sqrt{\frac{\# \text { actions }}{T}}
$$

Outline

Mathematical Tools

The General Multi-arm Bandit Problem

The Stochastic Multi-arm Bandit Problem

The Non-Stochastic Multi-arm Bandit Problem

Connections to Game Theory

Other Stochastic Multi-arm Bandit Problems

The Best Arm Identification Problem

Motivating Examples

- Find the best shortest path in a limited number of days
- Maximize the confidence about the best treatment after a finite number of patients
- Discover the best advertisements after a training phase

The Best Arm Identification Problem

Objective: given a fixed budget n, return the best arm $i^{*}=\arg \max _{i} \mu_{i}$ at the end of the experiment

The Best Arm Identification Problem

Objective: given a fixed budget n, return the best arm $i^{*}=\arg \max _{i} \mu_{i}$ at the end of the experiment Measure of performance: the probability of error

$$
\mathbb{P}\left[J_{n} \neq i^{*}\right] \leq \sum_{i=1}^{N} \exp \left(-T_{i, n} \Delta_{i}^{2}\right)
$$

The Best Arm Identification Problem

Objective: given a fixed budget n, return the best arm $i^{*}=\arg \max _{i} \mu_{i}$ at the end of the experiment Measure of performance: the probability of error

$$
\mathbb{P}\left[J_{n} \neq i^{*}\right] \leq \sum_{i=1}^{N} \exp \left(-T_{i, n} \Delta_{i}^{2}\right)
$$

Algorithm idea: mimic the behavior of the optimal strategy

$$
T_{i, n}=\frac{\frac{1}{\Delta_{i}^{2}}}{\sum_{j=1}^{N} \frac{1}{\Delta_{j}^{2}}} n
$$

The Best Arm Identification Problem

The Successive Reject Algorithm

- Divide the budget in $N-1$ phases. Define $\left(\overline{\log }(N)=0.5+\sum_{i=2}^{N} 1 / i\right)$

$$
n_{k}=\frac{1}{\overline{\log } K} \frac{n-N}{N+1-k}
$$

The Best Arm Identification Problem

The Successive Reject Algorithm

- Divide the budget in $N-1$ phases. Define $\left(\overline{\log }(N)=0.5+\sum_{i=2}^{N} 1 / i\right)$

$$
n_{k}=\frac{1}{\overline{\log } K} \frac{n-N}{N+1-k}
$$

- Set of active arms A_{k} at phase $k\left(A_{1}=\{1, \ldots, N\}\right)$

The Best Arm Identification Problem

The Successive Reject Algorithm

- Divide the budget in $N-1$ phases. Define $\left(\overline{\log }(N)=0.5+\sum_{i=2}^{N} 1 / i\right)$

$$
n_{k}=\frac{1}{\overline{\log } K} \frac{n-N}{N+1-k}
$$

- Set of active arms A_{k} at phase $k\left(A_{1}=\{1, \ldots, N\}\right)$
- For each phase $k=1, \ldots, N-1$
- For each arm $i \in A_{k}$, pull arm i for $n_{k}-n_{k-1}$ rounds

The Best Arm Identification Problem

The Successive Reject Algorithm

- Divide the budget in $N-1$ phases. Define $\left(\overline{\log }(N)=0.5+\sum_{i=2}^{N} 1 / i\right)$

$$
n_{k}=\frac{1}{\overline{\log } K} \frac{n-N}{N+1-k}
$$

- Set of active arms A_{k} at phase $k\left(A_{1}=\{1, \ldots, N\}\right)$
- For each phase $k=1, \ldots, N-1$
- For each arm $i \in A_{k}$, pull arm i for $n_{k}-n_{k-1}$ rounds
- Remove the worst arm

$$
A_{k+1}=A_{k} \backslash \arg \min _{i \in A_{k}} \hat{\mu}_{i, n_{k}}
$$

The Best Arm Identification Problem

The Successive Reject Algorithm

- Divide the budget in $N-1$ phases. Define $\left(\overline{\log }(N)=0.5+\sum_{i=2}^{N} 1 / i\right)$

$$
n_{k}=\frac{1}{\overline{\log } K} \frac{n-N}{N+1-k}
$$

- Set of active arms A_{k} at phase $k\left(A_{1}=\{1, \ldots, N\}\right)$
- For each phase $k=1, \ldots, N-1$
- For each arm $i \in A_{k}$, pull arm i for $n_{k}-n_{k-1}$ rounds
- Remove the worst arm

$$
A_{k+1}=A_{k} \backslash \arg \min _{i \in A_{k}} \hat{\mu}_{i, n_{k}}
$$

- Return the only remaining arm $J_{n}=A_{N}$

The Best Arm Identification Problem

The Successive Reject Algorithm

Theorem

The successive reject algorithm have a probability of doing a mistake of

$$
\mathbb{P}\left[J_{n} \neq i^{*}\right] \leq \frac{K(K-1)}{2} \exp \left(-\frac{n-N}{\overline{\log N H_{2}}}\right)
$$

with $H_{2}=\max _{i=1, \ldots, N} i \Delta_{(i)}^{-2}$.

The Best Arm Identification Problem

The UCB-E Algorithm

- Define an exploration parameter a
- Compute

$$
B_{i, s}=\hat{\mu}_{i, s}+\sqrt{\frac{a}{s}}
$$

The Best Arm Identification Problem

The UCB-E Algorithm

- Define an exploration parameter a
- Compute

$$
B_{i, s}=\hat{\mu}_{i, s}+\sqrt{\frac{a}{s}}
$$

- Select

$$
I_{t}=\arg \max _{B_{i, s}}
$$

The Best Arm Identification Problem

The UCB-E Algorithm

- Define an exploration parameter a
- Compute

$$
B_{i, s}=\hat{\mu}_{i, s}+\sqrt{\frac{a}{s}}
$$

- Select

$$
I_{t}=\arg \max _{B_{i, s}}
$$

- At the end return

$$
J_{n}=\arg \max _{i} \hat{\mu}_{i, T_{i, n}}
$$

The Best Arm Identification Problem

The UCB-E Algorithm

Theorem

The UCB-E algorithm with $a=\frac{25}{36} \frac{n-N}{H_{1}}$ has a probability of doing a mistake of

$$
\mathbb{P}\left[J_{n} \neq i^{*}\right] \leq 2 n N \exp \left(-\frac{2 a}{25}\right)
$$

with $H_{1}=\sum_{i=1}^{N} 1 / \Delta_{i}^{2}$.

The Best Arm Identification Problem

Experiment 7, $\mathrm{n}=12000$

The Active Bandit Problem

Motivating Examples

- N production lines
- The test of the performance of a line is expensive
- We want an accurate estimation of the performance of each production line

The Active Bandit Problem

Objective: given a fixed budget n, return the an estimate of the means $\hat{\mu}_{i, t}$ which is as accurate as possible for all the arms

The Active Bandit Problem

Objective: given a fixed budget n, return the an estimate of the means $\hat{\mu}_{i, t}$ which is as accurate as possible for all the arms

Notice: Given an arm has a mean μ_{i} and a variance σ_{i}^{2}, if it is pulled $T_{i, n}$ times, then

$$
L_{i, n}=\mathbb{E}\left[\left(\hat{\mu}_{i, T_{i, n}}-\mu_{i}\right)^{2}\right]=\frac{\sigma_{i}^{2}}{T_{i, n}}
$$

The Active Bandit Problem

Objective: given a fixed budget n, return the an estimate of the means $\hat{\mu}_{i, t}$ which is as accurate as possible for all the arms

Notice: Given an arm has a mean μ_{i} and a variance σ_{i}^{2}, if it is pulled $T_{i, n}$ times, then

$$
\begin{gathered}
L_{i, n}=\mathbb{E}\left[\left(\hat{\mu}_{i, T_{i, n}}-\mu_{i}\right)^{2}\right]=\frac{\sigma_{i}^{2}}{T_{i, n}} \\
L_{n}=\max _{i} L_{i, n}
\end{gathered}
$$

The Active Bandit Problem

Problem: what are the number of pulls $\left(T_{1, n}, \ldots, T_{N, n}\right)$ (such that $\sum T_{i, n}=n$) which minimizes the loss?

$$
\left(T_{1, n}^{*}, \ldots, T_{N, n}^{*}\right)=\arg \min _{\left(T_{1, n}, \ldots, T_{N, n}\right)} L_{n}
$$

The Active Bandit Problem

Problem: what are the number of pulls $\left(T_{1, n}, \ldots, T_{N, n}\right)$ (such that $\sum T_{i, n}=n$) which minimizes the loss?

$$
\left(T_{1, n}^{*}, \ldots, T_{N, n}^{*}\right)=\arg \min _{\left(T_{1, n}, \ldots, T_{N, n}\right)} L_{n}
$$

Answer

$$
T_{i, n}^{*}=\frac{\sigma_{i}^{2}}{\sum_{j=1}^{N} \sigma_{j}^{2}} n
$$

The Active Bandit Problem

Problem: what are the number of pulls $\left(T_{1, n}, \ldots, T_{N, n}\right)$ (such that $\sum T_{i, n}=n$) which minimizes the loss?

$$
\left(T_{1, n}^{*}, \ldots, T_{N, n}^{*}\right)=\arg \min _{\left(T_{1, n}, \ldots, T_{N, n}\right)} L_{n}
$$

Answer

$$
\begin{gathered}
T_{i, n}^{*}=\frac{\sigma_{i}^{2}}{\sum_{j=1}^{N} \sigma_{j}^{2}} n \\
L_{n}^{*}=\frac{\sum_{i=1}^{N} \sigma_{i}^{2}}{n}=\frac{\Sigma}{n}
\end{gathered}
$$

The Active Bandit Problem

Objective: given a fixed budget n, return the an estimate of the means $\hat{\mu}_{i, t}$ which is as accurate as possible for all the arms

The Active Bandit Problem

Objective: given a fixed budget n, return the an estimate of the means $\hat{\mu}_{i, t}$ which is as accurate as possible for all the arms Measure of performance: the regret on the quadratic error

$$
R_{n}(\mathcal{A})=\max _{i} L_{n}(\mathcal{A})-\frac{\sum_{i=1}^{N} \sigma_{i}^{2}}{n}
$$

The Active Bandit Problem

Objective: given a fixed budget n, return the an estimate of the means $\hat{\mu}_{i, t}$ which is as accurate as possible for all the arms Measure of performance: the regret on the quadratic error

$$
R_{n}(\mathcal{A})=\max _{i} L_{n}(\mathcal{A})-\frac{\sum_{i=1}^{N} \sigma_{i}^{2}}{n}
$$

Algorithm idea: mimic the behavior of the optimal strategy

$$
T_{i, n}=\frac{\sigma_{i}^{2}}{\sum_{j=1}^{N} \sigma_{j}^{2}} n=\lambda_{i} n
$$

The Active Bandit Problem

An UCB-based strategy
At each time step $t=1, \ldots, n$

- Estimate

$$
\hat{\sigma}_{i, T_{i, t-1}}^{2}=\frac{1}{T_{i, t-1}} \sum_{s=1}^{T_{i, t-1}} X_{s, i}^{2}-\hat{\mu}_{i, T_{i, t-1}}^{2}
$$

- Compute

$$
B_{i, t}=\frac{1}{T_{i, t-1}}\left(\hat{\sigma}_{i, T_{i, t-1}}^{2}+5 \sqrt{\frac{\log 1 / \delta}{2 T_{i, t-1}}}\right)
$$

- Pull arm

$$
I_{t}=\arg \max B_{i, t}
$$

The Active Bandit Problem

Theorem

The UCB-based algorithm achieves a regret

$$
R_{n}(\mathcal{A}) \leq \frac{98 \log (n)}{n^{3 / 2} \lambda_{\min }^{5 / 2}}+O\left(\frac{\log n}{n^{2}}\right)
$$

The Active Bandit Problem

Theorem

The UCB-based algorithm achieves a regret

$$
R_{n}(\mathcal{A}) \leq \frac{98 \log (n)}{n^{3 / 2} \lambda_{\min }^{5 / 2}}+O\left(\frac{\log n}{n^{2}}\right)
$$

The Contextual Linear Bandit Problem

Motivating Examples

- Different users may have different preferences
- The set of available news may change over time
- We want to minimise the regret w.r.t. the best news for each user

The Contextual Linear Bandit Problem

The problem: at each time $t=1, \ldots, n$

- User u_{t} arrives and a set of news \mathcal{A}_{t} is provided
- The user u_{t} together with a news $a \in \mathcal{A}_{t}$ are described by a feature vector $x_{t, a}$
- The learner chooses a news a_{t} and receives a reward $r_{t, a_{t}}$

The optimal news: at each time $t=1, \ldots, n$, the optimal news is

$$
a_{t}^{*}=\arg \max _{a \in \mathcal{A}_{t}} \mathbb{E}\left[r_{t, a}\right]
$$

The regret:

$$
R_{n}=\mathbb{E}\left[\sum_{t=1}^{n} r_{t, a_{t}^{*}}\right]-\mathbb{E}\left[\sum_{t=1}^{n} r_{t, a_{t}}\right]
$$

The Contextual Linear Bandit Problem

The linear assumption: the reward is a linear combination between the context and an unknown parameter vector

$$
\mathbb{E}\left[r_{t, a} \mid x_{t, a}\right]=x_{t, a}^{\top} \theta_{a}
$$

The Contextual Linear Bandit Problem

The linear regression estimate:

- $\mathcal{T}_{a}=\left\{t: a_{t}=a\right\}$
- Construct the design matrix of all the contexts observed when action a has been taken $D_{a} \in \mathbb{R}^{\left|\mathcal{T}_{a}\right| \times d}$
- Construct the reward vector of all the rewards observed when action a has been taken $c_{a} \in \mathbb{R}^{\left|\mathcal{T}_{a}\right|}$
- Estimate θ_{a} as

$$
\hat{\theta}_{a}=\left(D_{a}^{\top} D_{a}+I\right)^{-1} D_{a}^{\top} c_{a}
$$

The Contextual Linear Bandit Problem

Optimism in face of uncertainty: the LinUCB algorithm

- Chernoff-Hoeffding in this case becomes

$$
\left|x_{t, a}^{\top} \hat{\theta}_{a}-\mathbb{E}\left[r_{t, a} \mid x_{t, a}\right]\right| \leq \alpha \sqrt{x_{t, a}^{\top}\left(D_{a}^{\top} D_{a}+I\right)^{-1} x_{t, a}}
$$

- and the UCB strategy is

$$
a_{t}=\arg \max _{a \in \mathcal{A}_{t}} x_{t, a}^{\top} \hat{\theta}_{a}+\alpha \sqrt{x_{t, a}^{\top}\left(D_{a}^{\top} D_{a}+l\right)^{-1} x_{t, a}}
$$

The Contextual Linear Bandit Problem

The evaluation problem

- Online evaluation: too expensive
- Offline evaluation: how to use the logged data?

The Contextual Linear Bandit Problem

Evaluation from logged data

- Assumption 1: contexts and rewards are i.i.d. from a stationary distribution

$$
\left(x_{1}, \ldots, x_{K}, r_{1}, \ldots, r_{K}\right) \sim D
$$

- Assumption 2: the logging strategy is random

The Contextual Linear Bandit Problem

Evaluation from logged data: given a bandit strategy π, a desired number of samples T, and a (infinite) stream of data

```
Algorithm 3 Policy_Evaluator.
    0 : Inputs: \(T>0\); policy \(\pi\); stream of events
    \(1: h_{0} \leftarrow \emptyset\) \{An initially empty history\}
    2: \(R_{0} \leftarrow 0\) \{An initially zero total payoff \(\}\)
    3: for \(t=1,2,3, \ldots, T\) do
    4: repeat
    5: Get next event \(\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{K}, a, r_{a}\right)\)
    6: until \(\pi\left(h_{t-1},\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{K}\right)\right)=a\)
    7: \(\quad h_{t} \leftarrow \operatorname{CONCATENATE}\left(h_{t-1},\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{K}, a, r_{a}\right)\right)\)
    8: \(\quad R_{t} \leftarrow R_{t-1}+r_{a}\)
    9: end for
10: Output: \(R_{T} / T\)
```


Bibliography I

Reinforcement Learning

Alessandro Lazaric
alessandro.lazaric@inria.fr
sequel. Iille.inria.fr

