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In This Lecture

I How do we formalize the agent-environment interaction?

⇒ Markov Decision Process (MDP)

I How do we solve an MDP?

⇒ Dynamic Programming
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Mathematical Tools

Probability Theory

Definition (Conditional probability)
Given two events A and B with P(B) > 0, the conditional
probability of A given B is

P(A|B) =
P(A ∪ B)

P(B)
.

Similarly, if X and Y are non-degenerate and jointly continuous
random variables with density fX ,Y (x , y) then if B has positive
measure then the conditional probability is

P(X ∈ A|Y ∈ B) =

∫
y∈B

∫
x∈A fX ,Y (x , y)dxdy∫

y∈B
∫

x fX ,Y (x , y)dxdy
.
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Mathematical Tools

Probability Theory

Definition (Law of total expectation)
Given a function f and two random variables X ,Y we have that

EX ,Y
[
f (X ,Y )

]
= EX

[
EY
[
f (x ,Y )|X = x

]]
.
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Mathematical Tools

Norms and Contractions

Definition

Given a vector space V ⊆ Rd a function f : V → R+
0 is a norm if

an only if
I If f (v) = 0 for some v ∈ V, then v = 0.
I For any λ ∈ R, v ∈ V, f (λv) = |λ|f (v).
I Triangle inequality: For any v , u ∈ V, f (v + u) ≤ f (v) + f (u).
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Mathematical Tools

Norms and Contractions
I Lp-norm

||v ||p =

( d∑
i=1
|vi |p

)1/p
.

I L∞-norm
||v ||∞ = max1≤i≤d |vi |.

I Lµ,p-norm

||v ||µ,p =

( d∑
i=1

|vi |p

µi

)1/p
.

I Lµ,p-norm

||v ||µ,∞ = max
1≤i≤d

|vi |
µi
.

I L2,P -matrix norm (P is a positive definite matrix)

||v ||2P = v>Pv .
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Mathematical Tools

Norms and Contractions

Definition

A sequence of vectors vn ∈ V (with n ∈ N) is said to converge in norm
|| · || to v ∈ V if

lim
n→∞

||vn − v || = 0.

Definition

A sequence of vectors vn ∈ V (with n ∈ N) is a Cauchy sequence if

lim
n→∞

supm≥n||vn − vm|| = 0.

Definition

A vector space V equipped with a norm || · || is complete if every Cauchy
sequence in V is convergent in the norm of the space.
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Mathematical Tools

Norms and Contractions

Definition

An operator T : V → V is L-Lipschitz if for any v , u ∈ V

||T v − T u|| ≤ L||u − v ||.

If L ≤ 1 then T is a non-expansion, while if L < 1 then T is a
L-contraction.
If T is Lipschitz then it is also continuous, that is

if vn→||·||v then T vn→||·||T v .

Definition

A vector v ∈ V is a fixed point of the operator T : V → V if T v = v.
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Mathematical Tools

Norms and Contractions

Proposition (Banach Fixed Point Theorem)
Let V be a complete vector space equipped with the norm || · || and
T : V → V be a γ-contraction mapping. Then

1. T admits a unique fixed point v .

2. For any v0 ∈ V, if vn+1 = T vn then vn →||·|| v with a geometric
convergence rate:

||vn − v || ≤ γn||v0 − v ||.
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Mathematical Tools

Linear Algebra

Given a square matrix A ∈ RN×N :
I Eigenvalues of a matrix (1). v ∈ RN and λ ∈ R are

eigenvector and eigenvalue of A if

Av = λv .

I Eigenvalues of a matrix (2). If A has eigenvalues {λi}Ni=1,
then B = (I − αA) has eigenvalues {µi}

µi = 1− αλi .

I Matrix inversion. A can be inverted if and only if ∀i , λi 6= 0.
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Mathematical Tools

Linear Algebra

I Stochastic matrix. A square matrix P ∈ RN×N is a stochastic
matrix if

1. all non-zero entries, ∀i , j , [P]i,j ≥ 0
2. all the rows sum to one, ∀i ,

∑N
j=1[P]i,j = 1.

All the eigenvalues of a stochastic matrix are bounded by 1,
i.e., ∀i , λi ≤ 1.
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The Markov Decision Process

Outline
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The Markov Decision Process

The Reinforcement Learning Model

Agent

Environment

Learning

reward perception

Critic

actuation
action / state /
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The Markov Decision Process

Markov Chains

Definition (Markov chain)
Let the state space X be a bounded compact subset of the
Euclidean space, the discrete-time dynamic system (xt)t∈N ∈ X is
a Markov chain if it satisfies the Markov property

P(xt+1 = x | xt , xt−1, . . . , x0) = P(xt+1 = x | xt),

Given an initial state x0 ∈ X, a Markov chain is defined by the
transition probability p

p(y |x) = P(xt+1 = y |xt = x).
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The Markov Decision Process

Example: Weather prediction

Informal definition: we want to describe how the weather evolves
over time.
⇒ Board!
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The Markov Decision Process

Markov Decision Process

Definition (Markov decision process [1, 4, 3, 5, 2])
A Markov decision process is defined as a tuple M = (X ,A, p, r)
where

I t is the time clock,
I X is the state space,
I A is the action space,
I p(y |x , a) is the transition probability with

p(y |x , a) = P(xt+1 = y |xt = x , at = a),

I r(x , a, y) is the reward of transition (x , a, y).
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The Markov Decision Process

Examples

I Park a car
I Find the shortest path from home to school
I Schedule a fleet of truck
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The Markov Decision Process

Policy

Definition (Policy)
A decision rule πt can be
I Deterministic: πt : X → A,
I Stochastic: πt : X → ∆(A),

A policy (strategy, plan) can be
I Non-stationary: π = (π0, π1, π2, . . . ),
I Stationary (Markovian): π = (π, π, π, . . . ).

Remark: MDP M + stationary policy π ⇒ Markov chain of state
X and transition probability p(y |x) = p(y |x , π(x)).
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The Markov Decision Process

Question

Is the MDP formalism powerful enough?

⇒ Let’s try!
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The Markov Decision Process

Example: the Retail Store Management Problem

Description. At each month t, a store contains xt items of a specific
goods and the demand for that goods is Dt . At the end of each month
the manager of the store can order at more items from his supplier.
Furthermore we know that
I The cost of maintaining an inventory of x is h(x).
I The cost to order a items is C(a).
I The income for selling q items is f (q).
I If the demand D is bigger than the available inventory x , customers

that cannot be served leave.
I The value of the remaining inventory at the end of the year is g(x).
I Constraint: the store has a maximum capacity M.
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The Markov Decision Process

Example: the Retail Store Management Problem

I State space: x ∈ X = {0, 1, . . . ,M}.

I Action space: it is not possible to order more items that the
capacity of the store, then the action space should depend on the
current state. Formally, at statex , a ∈ A(x) = {0, 1, . . . ,M − x}.

I Dynamics: xt+1 = [xt + at − Dt ]+.
Problem: the dynamics should be Markov and stationary!

I The demand Dt is stochastic and time-independent. Formally,
Dt

i.i.d.∼ D.
I Reward : rt = −C(at)− h(xt + at) + f ([xt + at − xt+1]+).
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The Markov Decision Process

Exercise: the Parking Problem
A driver wants to park his car as close as possible to the restaurant.

T21

Reward t

p(t)

Reward 0

Restaurant

I The driver cannot see whether a place is available unless he is in
front of it.

I There are P places.
I At each place i the driver can either move to the next place or park

(if the place is available).
I The closer to the restaurant the parking, the higher the satisfaction.
I If the driver doesn’t park anywhere, then he/she leaves the

restaurant and has to find another one.

A. LAZARIC – Markov Decision Processes and Dynamic Programming 23/81



The Markov Decision Process

Exercise: the Parking Problem
A driver wants to park his car as close as possible to the restaurant.

T21

Reward t

p(t)

Reward 0

Restaurant

I The driver cannot see whether a place is available unless he is in
front of it.

I There are P places.
I At each place i the driver can either move to the next place or park

(if the place is available).
I The closer to the restaurant the parking, the higher the satisfaction.
I If the driver doesn’t park anywhere, then he/she leaves the

restaurant and has to find another one.

A. LAZARIC – Markov Decision Processes and Dynamic Programming 23/81



The Markov Decision Process

Question

How do we evaluate a policy and compare two policies?

⇒ Value function!
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The Markov Decision Process

Optimization over Time Horizon

I Finite time horizon T : deadline at time T , the agent focuses
on the sum of the rewards up to T .

I Infinite time horizon with discount: the problem never
terminates but rewards which are closer in time receive a
higher importance.

I Infinite time horizon with terminal state: the problem never
terminates but the agent will eventually reach a termination
state.

I Infinite time horizon with average reward : the problem never
terminates but the agent only focuses on the (expected)
average of the rewards.
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The Markov Decision Process

State Value Function

I Finite time horizon T : deadline at time T , the agent focuses
on the sum of the rewards up to T .

V π(t, x) = E
[ T−1∑

s=t
r(xs , πs(xs)) + R(xT )| xt = x ;π

]
,

where R is a value function for the final state.
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The Markov Decision Process

State Value Function

I Infinite time horizon with discount: the problem never
terminates but rewards which are closer in time receive a
higher importance.

V π(x) = E
[ ∞∑

t=0
γtr(xt , π(xt)) | x0 = x ;π

]
,

with discount factor 0 ≤ γ < 1:
I small = short-term rewards, big = long-term rewards
I for any γ ∈ [0, 1) the series always converge (for bounded

rewards)
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The Markov Decision Process

State Value Function

I Infinite time horizon with terminal state: the problem never
terminates but the agent will eventually reach a termination
state.

V π(x) = E
[ T∑

t=0
r(xt , π(xt))|x0 = x ;π

]
,

where T is the first (random) time when the termination
state is achieved.
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The Markov Decision Process

State Value Function

I Infinite time horizon with average reward : the problem never
terminates but the agent only focuses on the (expected)
average of the rewards.

V π(x) = lim
T→∞

E
[

1
T

T−1∑
t=0

r(xt , π(xt)) | x0 = x ;π

]
.
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The Markov Decision Process

State Value Function

Technical note: the expectations refer to all possible stochastic
trajectories.

A non-stationary policy π applied from state x0 returns

(x0, r0, x1, r1, x2, r2, . . .)

with rt = r(xt , πt(xt)) and xt ∼ p(·|xt−1, at = π(xt)) are random
realizations.
The value function (discounted infinite horizon) is

V π(x) = E(x1,x2,...)

[ ∞∑
t=0

γtr(xt , π(xt)) | x0 = x ;π

]
,
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The Markov Decision Process

Optimal Value Function

Definition (Optimal policy and optimal value function)

The solution to an MDP is an optimal policy π∗ satisfying

π∗ ∈ arg maxπ∈ΠV π

in all the states x ∈ X, where Π is some policy set of interest.

The corresponding value function is the optimal value function
V ∗ = V π∗ .

Remark: π∗ ∈ arg max(·) and not π∗ = arg max(·) because an MDP may
admit more than one optimal policy.
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The Markov Decision Process

Example: the EC student dilemma
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The Markov Decision Process

Example: the EC student dilemma

I Model : all the transitions are Markov, states x5, x6, x7 are
terminal.

I Setting : infinite horizon with terminal states.
I Objective: find the policy that maximizes the expected sum of

rewards before achieving a terminal state.

A. LAZARIC – Markov Decision Processes and Dynamic Programming 33/81



The Markov Decision Process

Example: the EC student dilemma
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The Markov Decision Process

Example: the EC student dilemma

V7 = −1000
V6 = 100
V5 = −10
V4 = −10 + 0.9V6 + 0.1V4 ' 88.9
V3 = −1 + 0.5V4 + 0.5V3 ' 86.9
V2 = 1 + 0.7V3 + 0.3V1

V1 = max{0.5V2 + 0.5V1, 0.5V3 + 0.5V1}
V1 = V2 = 88.3
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The Markov Decision Process

State-Action Value Function

Definition
In discounted infinite horizon problems, for any policy π, the
state-action value function (or Q-function) Qπ : X × A 7→ R is

Qπ(x , a) = E
[∑

t≥0
γtr(xt , at)|x0 = x , a0 = a, at = π(xt), ∀t ≥ 1

]
,

and the corresponding optimal Q-function is

Q∗(x , a) = max
π

Qπ(x , a).
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The Markov Decision Process

State-Action Value Function

The relationships between the V-function and the Q-function are:

Qπ(x , a) = r(x , a) + γ
∑
y∈X

p(y |x , a)V π(y)

V π(x) = Qπ(x , π(x))

Q∗(x , a) = r(x , a) + γ
∑
y∈X

p(y |x , a)V ∗(y)

V ∗(x) = Q∗(x , π∗(x)) = maxa∈AQ∗(x , a).
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Bellman Equations for Discounted Infinite Horizon Problems
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Bellman Equations for Discounted Infinite Horizon Problems

Question

Is there any more compact way to describe a value function?

⇒ Bellman equations!
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Bellman Equations for Discounted Infinite Horizon Problems

The Bellman Equation

Proposition
For any stationary policy π = (π, π, . . . ), the state value function
at a state x ∈ X satisfies the Bellman equation:

V π(x) = r(x , π(x)) + γ
∑

y
p(y |x , π(x))V π(y).
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Bellman Equations for Discounted Infinite Horizon Problems

The Bellman Equation

Proof.
For any policy π,

V π(x) = E
[∑

t≥0
γtr(xt , π(xt)) | x0 = x ;π

]
= r(x , π(x)) + E

[∑
t≥1

γtr(xt , π(xt)) | x0 = x ;π
]

= r(x , π(x))

+ γ
∑

y
P(x1 = y | x0 = x ;π(x0))E

[∑
t≥1

γt−1r(xt , π(xt)) | x1 = y ;π
]

= r(x , π(x)) + γ
∑

y
p(y |x , π(x))V π(y).

�
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Bellman Equations for Discounted Infinite Horizon Problems

The Optimal Bellman Equation

Bellman’s Principle of Optimality [1]:
“An optimal policy has the property that, whatever the
initial state and the initial decision are, the remaining
decisions must constitute an optimal policy with regard
to the state resulting from the first decision.”
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Bellman Equations for Discounted Infinite Horizon Problems

The Optimal Bellman Equation

Proposition

The optimal value function V ∗ (i.e., V ∗ = maxπ V π) is the
solution to the optimal Bellman equation:

V ∗(x) = maxa∈A
[
r(x , a) + γ

∑
y

p(y |x , a)V ∗(y)
]
.

and the optimal policy is

π∗(x) = arg max
a∈A

[
r(x , a) + γ

∑
y

p(y |x , a)V ∗(y)
]
.
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Bellman Equations for Discounted Infinite Horizon Problems

The Optimal Bellman Equation

Proof.
For any policy π = (a, π′) (possibly non-stationary),

V ∗(x)
(a)
= max

π
E
[∑

t≥0
γtr(xt , π(xt)) | x0 = x ;π

]
(b)
= max

(a,π′)

[
r(x , a) + γ

∑
y

p(y |x , a)V π′
(y)
]

(c)
= max

a

[
r(x , a) + γ

∑
y

p(y |x , a) max
π′

V π′
(y)
]

(d)
= max

a

[
r(x , a) + γ

∑
y

p(y |x , a)V ∗(y)
]
.

�
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Bellman Equations for Discounted Infinite Horizon Problems

The Bellman Operators

Notation. w.l.o.g. a discrete state space |X | = N and V π ∈ RN .

Definition

For any W ∈ RN , the Bellman operator T π : RN → RN is

T πW (x) = r(x , π(x)) + γ
∑

y
p(y |x , π(x))W (y),

and the optimal Bellman operator (or dynamic programming
operator) is

TW (x) = maxa∈A
[
r(x , a) + γ

∑
y

p(y |x , a)W (y)
]
.
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Bellman Equations for Discounted Infinite Horizon Problems

The Bellman Operators

Proposition
Properties of the Bellman operators

1. Monotonicity : for any W1,W2 ∈ RN , if W1≤W2
component-wise, then

T πW1 ≤ T πW2,

TW1 ≤ TW2.

2. Offset: for any scalar c ∈ R,

T π(W + cIN) = T πW + γcIN ,
T (W + cIN) = TW + γcIN ,
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Bellman Equations for Discounted Infinite Horizon Problems

The Bellman Operators
Proposition

3. Contraction in L∞-norm: for any W1,W2 ∈ RN

||T πW1 − T πW2||∞ ≤ γ||W1 −W2||∞,
||TW1 − TW2||∞ ≤ γ||W1 −W2||∞.

4. Fixed point: For any policy π

V π is the unique fixed point of T π,
V ∗ is the unique fixed point of T .

Furthermore for any W ∈ RN and any stationary policy π

lim
k→∞

(T π)kW = V π,

lim
k→∞

(T )kW = V ∗.
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Bellman Equations for Discounted Infinite Horizon Problems

The Bellman Equation

Proof.
The contraction property (3) holds since for any x ∈ X we have

|TW1(x)− TW2(x)|

=
∣∣∣max

a

[
r(x , a) + γ

∑
y

p(y |x , a)W1(y)
]
−max

a′

[
r(x , a′) + γ

∑
y

p(y |x , a′)W2(y)
]∣∣∣

(a)

≤ max
a

∣∣∣[r(x , a) + γ
∑

y
p(y |x , a)W1(y)

]
−
[
r(x , a) + γ

∑
y

p(y |x , a)W2(y)
]∣∣∣

= γmax
a

∑
y

p(y |x , a)|W1(y)−W2(y)|

≤ γ||W1 −W2||∞max
a

∑
y

p(y |x , a) = γ||W1 −W2||∞,

where in (a) we used maxa f (a)−maxa′ g(a′) ≤ maxa(f (a)− g(a)). �
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Bellman Equations for Discounted Infinite Horizon Problems

Exercise: Fixed Point

Revise the Banach fixed point theorem and prove the fixed point
property of the Bellman operator.
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Bellman Equations for Uniscounted Infinite Horizon Problems

Question

Is there any more compact way to describe a value function when
we consider an infinite horizon with no discount?

⇒ Proper policies and Bellman equations!
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Bellman Equations for Uniscounted Infinite Horizon Problems

The Undiscounted Infinite Horizon Setting

The value function is

V π(x) = E
[ T∑

t=0
r(xt , π(xt))|x0 = x ;π

]
,

where T is the first random time when the agent achieves a
terminal state.
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Bellman Equations for Uniscounted Infinite Horizon Problems

Proper Policies

Definition

A stationary policy π is proper if ∃n ∈ N such that ∀x ∈ X the
probability of achieving the terminal state x̄ after n steps is strictly
positive. That is

ρπ = maxxP(xn 6= x̄ | x0 = x , π) < 1.

A. LAZARIC – Markov Decision Processes and Dynamic Programming 53/81



Bellman Equations for Uniscounted Infinite Horizon Problems

Bounded Value Function

Proposition
For any proper policy π with parameter ρπ after n steps, the value
function is bounded as

||V π||∞ ≤ rmax
∑
t≥0

ρbt/nc
π .
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Bellman Equations for Uniscounted Infinite Horizon Problems

The Undiscounted Infinite Horizon Setting
Proof.
By definition of proper policy

P(x2n 6= x̄ | x0 = x , π) = P(x2n 6= x̄ | xn 6= x̄ , π)×P(xn 6= x̄ | x0 = x , π) ≤ ρ2
π.

Then for any t ∈ N

P(xt 6= x̄ | x0 = x , π) ≤ ρbt/nc
π ,

which implies that eventually the terminal state x̄ is achieved with
probability 1. Then

||V π||∞ = max
x∈X

E
[ ∞∑

t=0
r(xt , π(xt))|x0 = x ;π

]
≤ rmax

∑
t>0

P(xt 6= x̄ | x0 = x , π)

≤ nrmax + rmax
∑
t≥n

ρbt/nc
π .

�
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Bellman Equations for Uniscounted Infinite Horizon Problems

Bellman Operator

Assumption. There exists at least one proper policy and for any
non-proper policy π there exists at least one state x where
V π(x) = −∞ (cycles with only negative rewards).

Proposition ([2])
Under the previous assumption, the optimal value function is
bounded, i.e., ||V ∗||∞ <∞ and it is the unique fixed point of the
optimal Bellman operator T such that for any vector W ∈ Rn

TW (x) = max
a∈A

[
r(x , a) +

∑
y

p(y |x , a)W (y)].

Furthermore
V ∗ = limk→∞(T )kW .
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Bellman Equations for Uniscounted Infinite Horizon Problems

Bellman Operator

Proposition

Let all the policies π be proper , then there exist µ ∈ RN with
µ > 0 and a scalar β < 1 such that, ∀x , y ∈ X , ∀a ∈ A,∑

y
p(y |x , a)µ(y) ≤ βµ(x).

Thus both operators T and T π are contraction in the weighted
norm L∞,µ, that is

||TW1 − TW2||∞,µ ≤ β||W1 −W2||∞,µ.
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Bellman Equations for Uniscounted Infinite Horizon Problems

Bellman Operator
Proof.
Let µ be the maximum (over policies) of the average time to the
termination state. This can be easily casted to a MDP where for any
action and any state the rewards are 1 (i.e., for any x ∈ X and a ∈ A,
r(x , a) = 1).
Under the assumption that all the policies are proper, then µ is finite and
it is the solution to the dynamic programming equation

µ(x) = 1 + max
a

∑
y

p(y |x , a)µ(y).

Then µ(x) ≥ 1 and for any a ∈ A, µ(x) ≥ 1 +
∑

y p(y |x , a)µ(y).
Furthermore, ∑

y
p(y |x , a)µ(y) ≤ µ(x)− 1 ≤ βµ(x),

for
β = max

x

µ(x)− 1
µ(x)

< 1.
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Bellman Equations for Uniscounted Infinite Horizon Problems

Bellman Operator

Proof (cont’d).
From this definition of µ and β we obtain the contraction property of T
(similar for T π) in norm L∞,µ:

||TW1 − TW2||∞,µ = max
x

|TW1(x)− TW2(x)|
µ(x)

≤ max
x ,a

∑
y p(y |x , a)

µ(x)
|W1(y)−W2(y)|

≤ max
x ,a

∑
y p(y |x , a)µ(y)

µ(x)
‖W1 −W2‖µ

≤ β‖W1 −W2‖µ

�
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Dynamic Programming

Question

How do we compute the value functions / solve an MDP?

⇒ Value/Policy Iteration algorithms!
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Dynamic Programming

System of Equations

The Bellman equation

V π(x) = r(x , π(x)) + γ
∑

y
p(y |x , π(x))V π(y).

is a linear system of equations with N unknowns and N linear
constraints.

The optimal Bellman equation

V ∗(x) = maxa∈A
[
r(x , a) + γ

∑
y

p(y |x , a)V ∗(y)
]
.

is a (highly) non-linear system of equations with N unknowns and
N non-linear constraints (i.e., the max operator).
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Dynamic Programming
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Dynamic Programming

Value Iteration: the Idea

1. Let V0 be any vector in RN

2. At each iteration k = 1, 2, . . . ,K
I Compute Vk+1 = T Vk

3. Return the greedy policy

πK (x) ∈ arg max
a∈A

[
r(x , a) + γ

∑
y

p(y |x , a)VK (y)
]
.
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Dynamic Programming

Value Iteration: the Guarantees

I From the fixed point property of T :

lim
k→∞

Vk = V ∗

I From the contraction property of T

||Vk+1−V ∗||∞ = ||T Vk−T V ∗||∞ ≤ γ||Vk−V ∗||∞ ≤ γk+1||V0−V ∗||∞ → 0

I Convergence rate. Let ε > 0 and ||r ||∞ ≤ rmax, then after at most

K =
log(rmax/ε)

log(1/γ)

iterations ||VK − V ∗||∞ ≤ ε.
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Dynamic Programming

Value Iteration: the Complexity

One application of the optimal Bellman operator takes O(N2|A|)
operations.
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Dynamic Programming

Value Iteration: Extensions and Implementations
Q-iteration.

1. Let Q0 be any Q-function
2. At each iteration k = 1, 2, . . . ,K

I Compute Qk+1 = T Qk

3. Return the greedy policy
πK (x) ∈ arg max

a∈A
Q(x,a)

Asynchronous VI.
1. Let V0 be any vector in RN

2. At each iteration k = 1, 2, . . . ,K
I Choose a state xk
I Compute Vk+1(xk) = T Vk(xk)

3. Return the greedy policy

πK (x) ∈ arg max
a∈A

[
r(x , a) + γ

∑
y

p(y |x , a)VK (y)
]
.
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Dynamic Programming

Policy Iteration: the Idea

1. Let π0 be any stationary policy

2. At each iteration k = 1, 2, . . . ,K
I Policy evaluation given πk , compute V πk .
I Policy improvement: compute the greedy policy

πk+1(x) ∈ arg maxa∈A
[
r(x , a) + γ

∑
y

p(y |x , a)V πk (y)
]
.

3. Return the last policy πK

Remark: usually K is the smallest k such that V πk = V πk+1 .
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Dynamic Programming

Policy Iteration: the Guarantees

Proposition

The policy iteration algorithm generates a sequences of policies
with non-decreasing performance

V πk+1≥V πk ,

and it converges to π∗ in a finite number of iterations.
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Dynamic Programming

Policy Iteration: the Guarantees
Proof.
From the definition of the Bellman operators and the greedy policy πk+1

V πk = T πk V πk ≤ T V πk = T πk+1 V πk , (1)

and from the monotonicity property of T πk+1 , it follows that
V πk ≤ T πk+1 V πk ,

T πk+1 V πk ≤ (T πk+1 )2V πk ,

. . .

(T πk+1 )n−1V πk ≤ (T πk+1 )nV πk ,

. . .

Joining all the inequalities in the chain we obtain
V πk ≤ lim

n→∞
(T πk+1 )nV πk = V πk+1 .

Then (V πk )k is a non-decreasing sequence.
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Dynamic Programming

Policy Iteration: the Guarantees

Proof (cont’d).
Since a finite MDP admits a finite number of policies, then the
termination condition is eventually met for a specific k.
Thus eq. 1 holds with an equality and we obtain

V πk = T V πk

and V πk = V ∗ which implies that πk is an optimal policy. �
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Dynamic Programming

Exercise: Convergence Rate

Read the more refined convergence rates in:
“Improved and Generalized Upper Bounds on the Complexity of
Policy Iteration” by B. Scherrer.

A. LAZARIC – Markov Decision Processes and Dynamic Programming 71/81



Dynamic Programming

Policy Iteration

Notation. For any policy π the reward vector is rπ(x) = r(x , π(x))
and the transition matrix is [Pπ]x ,y = p(y |x , π(x))
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Dynamic Programming

Policy Iteration: the Policy Evaluation Step
I Direct computation. For any policy π compute

V π = (I − γPπ)−1rπ.

Complexity: O(N3) (improvable to O(N2.807)).

Exercise: prove the previous equality .
I Iterative policy evaluation. For any policy π

lim
n→∞

T πV0 = V π.

Complexity: An ε-approximation of V π requires O(N2 log 1/ε
log 1/γ ) steps.

I Monte-Carlo simulation. In each state x , simulate n trajectories
((x i

t )t≥0,)1≤i≤n following policy π and compute

V̂ π(x) ' 1
n

n∑
i=1

∑
t≥0

γtr(x i
t , π(x i

t )).

Complexity: In each state, the approximation error is O(1/
√

n).
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Dynamic Programming

Policy Iteration: the Policy Improvement Step

I If the policy is evaluated with V , then the policy improvement
has complexity O(N|A|) (computation of an expectation).

I If the policy is evaluated with Q, then the policy improvement
has complexity O(|A|) corresponding to

πk+1(x) ∈ arg max
a∈A

Q(x , a),
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Dynamic Programming

Comparison between Value and Policy Iteration

Value Iteration
I Pros: each iteration is very computationally efficient.
I Cons: convergence is only asymptotic.

Policy Iteration
I Pros: converge in a finite number of iterations (often small in

practice).
I Cons: each iteration requires a full policy evaluation and it

might be expensive.
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Dynamic Programming

Exercise: Review Extensions to Standard DP Algorithms

I Modified Policy Iteration
I λ-Policy Iteration
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Dynamic Programming

Exercise: Review Linear Programming

I Linear Programming: a one-shot approach to computing V ∗
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Conclusions

Things to Remember

I The Markov Decision Process framework

I The discounted infinite horizon setting
I State and state-action value function
I Bellman equations and Bellman operators
I The value and policy iteration algorithms

A. LAZARIC – Markov Decision Processes and Dynamic Programming 79/81



Conclusions

Things to Remember

I The Markov Decision Process framework
I The discounted infinite horizon setting

I State and state-action value function
I Bellman equations and Bellman operators
I The value and policy iteration algorithms

A. LAZARIC – Markov Decision Processes and Dynamic Programming 79/81



Conclusions

Things to Remember

I The Markov Decision Process framework
I The discounted infinite horizon setting
I State and state-action value function

I Bellman equations and Bellman operators
I The value and policy iteration algorithms

A. LAZARIC – Markov Decision Processes and Dynamic Programming 79/81



Conclusions

Things to Remember

I The Markov Decision Process framework
I The discounted infinite horizon setting
I State and state-action value function
I Bellman equations and Bellman operators

I The value and policy iteration algorithms

A. LAZARIC – Markov Decision Processes and Dynamic Programming 79/81



Conclusions

Things to Remember

I The Markov Decision Process framework
I The discounted infinite horizon setting
I State and state-action value function
I Bellman equations and Bellman operators
I The value and policy iteration algorithms

A. LAZARIC – Markov Decision Processes and Dynamic Programming 79/81



Conclusions

Bibliography I

R. E. Bellman.
Dynamic Programming.
Princeton University Press, Princeton, N.J., 1957.

D.P. Bertsekas and J. Tsitsiklis.
Neuro-Dynamic Programming.
Athena Scientific, Belmont, MA, 1996.

W. Fleming and R. Rishel.
Deterministic and stochastic optimal control.
Applications of Mathematics, 1, Springer-Verlag, Berlin New York, 1975.

R. A. Howard.
Dynamic Programming and Markov Processes.
MIT Press, Cambridge, MA, 1960.

M.L. Puterman.
Markov Decision Processes: Discrete Stochastic Dynamic Programming.
John Wiley & Sons, Inc., New York, Etats-Unis, 1994.

A. LAZARIC – Markov Decision Processes and Dynamic Programming 80/81



Conclusions

Reinforcement Learning

Alessandro Lazaric
alessandro.lazaric@inria.fr

sequel.lille.inria.fr


	Mathematical Tools
	The Markov Decision Process
	Bellman Equations for Discounted Infinite Horizon Problems
	Bellman Equations for Uniscounted Infinite Horizon Problems
	Dynamic Programming
	Conclusions

