

Approximate Dynamic Programming

A. LAZARIC (SequeL Team @INRIA-Lille)
Ecole Centrale - Option DAD

SequeL - INRIA Lille

1. Let V_0 be any vector in \mathbb{R}^N

- 1. Let V_0 be any vector in R^N
- 2. At each iteration k = 1, 2, ..., K

- 1. Let V_0 be any vector in \mathbb{R}^N
- 2. At each iteration k = 1, 2, ..., K
 - Compute $V_{k+1} = \mathcal{T}V_k$

- 1. Let V_0 be any vector in \mathbb{R}^N
- 2. At each iteration k = 1, 2, ..., K
 - ▶ Compute $V_{k+1} = \mathcal{T}V_k$
- 3. Return the greedy policy

$$\pi_{\mathcal{K}}(x) \in \arg\max_{a \in A} \left[r(x, a) + \gamma \sum_{y} p(y|x, a) V_{\mathcal{K}}(y) \right].$$

Value Iteration: the Guarantees

From the *fixed point* property of \mathcal{T} :

$$\lim_{k\to\infty}V_k=V^*$$

Value Iteration: the Guarantees

▶ From the *fixed point* property of \mathcal{T} :

$$\lim_{k\to\infty}V_k=V^*$$

From the *contraction* property of \mathcal{T}

$$||V_{k+1} - V^*||_{\infty} \le \gamma^{k+1} ||V_0 - V^*||_{\infty} \to 0$$

Value Iteration: the Guarantees

▶ From the *fixed point* property of \mathcal{T} :

$$\lim_{k\to\infty}V_k=V^*$$

From the *contraction* property of \mathcal{T}

$$||V_{k+1} - V^*||_{\infty} \le \gamma^{k+1} ||V_0 - V^*||_{\infty} \to 0$$

Problem: what if $V_{k+1} \neq \mathcal{T}V_k$??

1. Let π_0 be any stationary policy

- 1. Let π_0 be any stationary policy
- 2. At each iteration $k = 1, 2, \dots, K$

- 1. Let π_0 be any stationary policy
- 2. At each iteration k = 1, 2, ..., K
 - ▶ Policy evaluation given π_k , compute $V_k = V^{\pi_k}$.

- 1. Let π_0 be any stationary policy
- 2. At each iteration k = 1, 2, ..., K
 - Policy evaluation given π_k , compute $V_k = V^{\pi_k}$.
 - ► *Policy improvement*: compute the *greedy* policy

$$\pi_{k+1}(x) \in \arg\max_{a \in A} \big[r(x,a) + \gamma \sum_{v} p(y|x,a) V^{\pi_k}(y) \big].$$

- 1. Let π_0 be any stationary policy
- 2. At each iteration k = 1, 2, ..., K
 - Policy evaluation given π_k , compute $V_k = V^{\pi_k}$.
 - ▶ *Policy improvement*: compute the *greedy* policy

$$\pi_{k+1}(x) \in \arg\max_{a \in A} \left[r(x, a) + \gamma \sum_{y} p(y|x, a) V^{\pi_k}(y) \right].$$

3. Return the last policy π_K

Policy Iteration: the Guarantees

The policy iteration algorithm generates a sequences of policies with *non-decreasing* performance

$$V^{\pi_{k+1}} \geq V^{\pi_k}$$
,

and it converges to π^* in a *finite* number of iterations.

Policy Iteration: the Guarantees

The policy iteration algorithm generates a sequences of policies with *non-decreasing* performance

$$V^{\pi_{k+1}} \geq V^{\pi_k}$$
,

and it converges to π^* in a *finite* number of iterations.

Problem: what if $V_k \neq V^{\pi_k}$??

Sources of Error

- ► **Approximation error**. If *X* is *large* or *continuous*, value functions *V* cannot be *represented* correctly
 - \Rightarrow use an *approximation space* ${\cal F}$

Sources of Error

- ► **Approximation error**. If *X* is *large* or *continuous*, value functions *V* cannot be *represented* correctly
 - \Rightarrow use an *approximation space* ${\cal F}$
- ▶ Estimation error. If the reward r and dynamics p are unknown, the Bellman operators \mathcal{T} and \mathcal{T}^{π} cannot be computed exactly
 - ⇒ *estimate* the Bellman operators from *samples*

Outline

Performance Loss

Approximate Value Iteration

Approximate Policy Iteration

Question: if V is an approximation of the optimal value function V^* with an error

$$\mathsf{error} = \|V - V^*\|$$

Question: if V is an approximation of the optimal value function V^* with an error

$$error = ||V - V^*||$$

how does it translate to the (loss of) performance of the *greedy* policy

$$\pi(x) \in \arg\max_{a \in A} \sum_{v} p(y|x,a) \big[r(x,a,y) + \gamma V(y) \big]$$

Question: if V is an approximation of the optimal value function V^* with an error

$$error = \|V - V^*\|$$

how does it translate to the (loss of) performance of the *greedy policy*

$$\pi(x) \in \arg\max_{a \in A} \sum_{v} p(y|x,a) \big[r(x,a,y) + \gamma V(y) \big]$$

i.e.

performance loss =
$$\|V^* - V^{\pi}\|$$

???

Proposition

Let $V \in \mathbb{R}^N$ be an approximation of V^* and π its corresponding greedy policy, then

$$\frac{\|V^* - V^{\pi}\|_{\infty}}{\text{performance loss}} \leq \frac{2\gamma}{1 - \gamma} \underbrace{\|V^* - V\|_{\infty}}_{\text{approx. error}}.$$

Furthermore, there exists $\epsilon > 0$ such that if $\|V - V^*\|_{\infty} \le \epsilon$, then π is *optimal*.

Question: how do we compute V?

Question: how do we compute V?

Problem: unlike in standard approximation scenarios (see supervised learning), we have a *limited access* to the target function, i.e. V^*

Question: how do we compute V?

Problem: unlike in standard approximation scenarios (see supervised learning), we have a *limited access* to the target function, i.e. V^*

Objective: given an approximation space \mathcal{F} , compute an approximation V which is as close as possible to the best approximation of V^* in \mathcal{F} , i.e.

$$V pprox rg \inf_{f \in \mathcal{F}} ||V^* - f||$$

Outline

Performance Loss

Approximate Value Iteration

Approximate Policy Iteration

Approximate Value Iteration: the Idea

Let \mathcal{A} be an approximation operator.

Approximate Value Iteration: the Idea

Let A be an approximation operator.

- 1. Let V_0 be any vector in R^N
- 2. At each iteration $k = 1, 2, \dots, K$
 - Compute $V_{k+1} = \mathcal{A}\mathcal{T}V_k$
- 3. Return the greedy policy

$$\pi_K(x) \in \arg\max_{a \in A} \Big[r(x, a) + \gamma \sum_{y} p(y|x, a) V_K(y) \Big].$$

Approximate Value Iteration: the Idea

Let $\mathcal{A} = \Pi_{\infty}$ be a projection operator in L_{∞} -norm, which corresponds to

$$V_{k+1} = \Pi_{\infty} \mathcal{T} V_k = \text{arg} \inf_{V \in \mathcal{F}} \lVert \mathcal{T} V_k - V
V_\infty$$

Approximate Value Iteration: convergence

Proposition

The projection Π_{∞} is a *non-expansion* and the joint operator $\Pi_{\infty}\mathcal{T}$ is a *contraction*.

Then there exists a unique fixed point $\tilde{V} = \Pi_{\infty} \mathcal{T} \tilde{V}$ which guarantees the *convergence* of AVI.

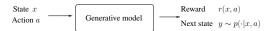
Approximate Value Iteration: performance loss

Proposition (Bertsekas & Tsitsiklis, 1996)

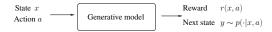
Let V^K be the function returned by AVI after K iterations and π_K its corresponding greedy policy. Then

$$\|V^* - V^{\pi_K}\|_{\infty} \leq \frac{2\gamma}{(1-\gamma)^2} \underbrace{\max_{0 \leq k < K} \|\mathcal{T}V_k - \mathcal{A}\mathcal{T}V_k\|_{\infty}}_{\text{worst approx. error}} + \frac{2\gamma^{K+1}}{1-\gamma} \underbrace{\|V^* - V_0\|_{\infty}}_{\text{initial error}}.$$

Assumption: access to a generative model.



Assumption: access to a generative model.



Idea: work with *Q*-functions and linear spaces.

Assumption: access to a generative model.

Idea: work with Q-functions and linear spaces.

• Q^* is the unique fixed point of \mathcal{T} defined over $X \times A$ as:

$$\mathcal{T}Q(x,a) = \sum_{y} p(y|x,a)[r(x,a,y) + \gamma \max_{b} Q(y,b)].$$

Assumption: access to a generative model.

Idea: work with *Q*-functions and linear spaces.

▶ Q^* is the unique fixed point of \mathcal{T} defined over $X \times A$ as:

$$TQ(x,a) = \sum_{y} p(y|x,a)[r(x,a,y) + \gamma \max_{b} Q(y,b)].$$

▶ \mathcal{F} is a space defined by d features $\phi_1, \ldots, \phi_d : X \times A \to \mathbb{R}$ as:

$$\mathcal{F} = \left\{ Q_{\alpha}(x, a) = \sum_{i=1}^{d} \alpha_{j} \phi_{j}(x, a), \alpha \in \mathbb{R}^{d} \right\}.$$

Assumption: access to a generative model.

Idea: work with *Q*-functions and linear spaces.

▶ Q^* is the unique fixed point of \mathcal{T} defined over $X \times A$ as:

$$\mathcal{T}Q(x,a) = \sum_{y} p(y|x,a)[r(x,a,y) + \gamma \max_{b} Q(y,b)].$$

▶ \mathcal{F} is a space defined by d features $\phi_1, \ldots, \phi_d : X \times A \to \mathbb{R}$ as:

$$\mathcal{F} = \left\{ Q_{\alpha}(x, a) = \sum_{i=1}^{d} \alpha_{j} \phi_{j}(x, a), \alpha \in \mathbb{R}^{d} \right\}.$$

 \Rightarrow At each iteration compute $Q_{k+1} = \Pi_{\infty} \mathcal{T} Q_k$

 \Rightarrow At each iteration compute $Q_{k+1} = \Pi_{\infty} \mathcal{T} Q_k$

Problems:

- the Π_{∞} operator cannot be computed *efficiently*
- ▶ the Bellman operator \mathcal{T} is often *unknown*

Problem: the Π_{∞} operator cannot be computed *efficiently*.

Problem: the Π_{∞} operator cannot be computed *efficiently*.

Let μ a distribution over X. We use a projection in $L_{2,\mu}$ -norm onto the space \mathcal{F} :

$$Q_{k+1} = \arg\min_{Q \in \mathcal{F}} \|Q - \mathcal{T}Q_k\|_{\mu}^2.$$

Problem: the Bellman operator \mathcal{T} is often *unknown*.

1. Sample *n* state actions (X_i, A_i) with $X_i \sim \mu$ and A_i random,

- 1. Sample *n* state actions (X_i, A_i) with $X_i \sim \mu$ and A_i random,
- 2. Simulate $Y_i \sim p(\cdot|X_i, A_i)$ and $R_i = r(X_i, A_i, Y_i)$ with the generative model,

- 1. Sample *n* state actions (X_i, A_i) with $X_i \sim \mu$ and A_i random,
- 2. Simulate $Y_i \sim p(\cdot|X_i, A_i)$ and $R_i = r(X_i, A_i, Y_i)$ with the generative model,
- 3. Estimate $\mathcal{T}Q_k(X_i, A_i)$ with

$$Z_i = R_i + \gamma \max_{a \in A} Q_k(Y_i, a)$$

- 1. Sample *n* state actions (X_i, A_i) with $X_i \sim \mu$ and A_i random,
- 2. Simulate $Y_i \sim p(\cdot|X_i, A_i)$ and $R_i = r(X_i, A_i, Y_i)$ with the generative model,
- 3. Estimate $\mathcal{T}Q_k(X_i, A_i)$ with

$$Z_i = R_i + \gamma \max_{a \in A} Q_k(Y_i, a)$$

(unbiased
$$\mathbb{E}[Z_i|X_i,A_i] = \mathcal{T}Q_k(X_i,A_i)$$
),

At each iteration k compute Q_{k+1} as

$$Q_{k+1} = \arg\min_{Q_{lpha} \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \left[Q_{lpha}(X_i, A_i) - Z_i \right]^2$$

At each iteration k compute Q_{k+1} as

$$Q_{k+1} = \arg\min_{Q_{lpha} \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \left[Q_{lpha}(X_i, A_i) - Z_i \right]^2$$

 \Rightarrow Since Q_{α} is a linear function in α , the problem is a simple *quadratic minimization* problem with *closed form* solution.

Other implementations

- K-nearest neighbour
- ▶ Regularized linear regression with L_1 or L_2 regularisation
- ► Neural network
- Support vector machine

State: level of wear of an object (e.g., a car).

State: level of wear of an object (e.g., a car).

Action: $\{(R) \text{ eplace}, (K) \text{ eep}\}.$

State: level of wear of an object (e.g., a car).

Action: $\{(R) \text{ eplace}, (K) \text{ eep}\}.$

Cost:

- ightharpoonup c(x,R) = C
- c(x, K) = c(x) maintenance plus extra costs.

State: level of wear of an object (e.g., a car).

Action: $\{(R) \text{ eplace}, (K) \text{ eep}\}.$

Cost:

- ightharpoonup c(x,R) = C
- c(x, K) = c(x) maintenance plus extra costs.

Dynamics:

- ▶ $p(\cdot|x,R) = \exp(\beta)$ with density $d(y) = \beta \exp^{-\beta y} \mathbb{I}\{y \ge 0\}$,
- ▶ $p(\cdot|x,K) = x + \exp(\beta)$ with density d(y-x).

State: level of wear of an object (e.g., a car).

Action: $\{(R) \text{ eplace}, (K) \text{ eep}\}.$

Cost:

- ightharpoonup c(x,R) = C
- c(x, K) = c(x) maintenance plus extra costs.

Dynamics:

- ▶ $p(\cdot|x,R) = \exp(\beta)$ with density $d(y) = \beta \exp^{-\beta y} \mathbb{I}\{y \ge 0\}$,
- ▶ $p(\cdot|x,K) = x + \exp(\beta)$ with density d(y-x).

Problem: Minimize the discounted expected cost over an infinite horizon.

Optimal value function

$$V^*(x) = \min \left\{ c(x) + \gamma \int_0^\infty d(y-x) V^*(y) dy, \ C + \gamma \int_0^\infty d(y) V^*(y) dy \right\}$$

Optimal value function

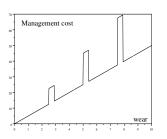
$$V^*(x) = \min \left\{ c(x) + \gamma \int_0^\infty d(y - x) V^*(y) dy, \ C + \gamma \int_0^\infty d(y) V^*(y) dy \right\}$$

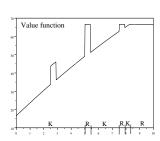
Optimal policy: action that attains the minimum

Optimal value function

$$V^*(x) = \min \left\{ c(x) + \gamma \int_0^\infty d(y - x) V^*(y) dy, \ C + \gamma \int_0^\infty d(y) V^*(y) dy \right\}$$

Optimal policy: action that attains the minimum

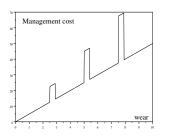


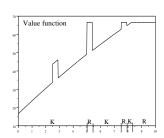


Optimal value function

$$V^*(x) = \min \left\{ c(x) + \gamma \int_0^\infty d(y - x) V^*(y) dy, \ C + \gamma \int_0^\infty d(y) V^*(y) dy \right\}$$

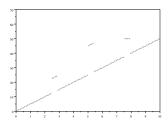
Optimal policy: action that attains the minimum



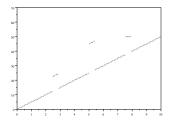


Linear approximation space $\mathcal{F} := \left\{ V_n(x) = \sum_{k=1}^{20} \alpha_k \cos(k\pi \frac{x}{x_{\max}}) \right\}$.

Collect N sample on a uniform grid.



Collect N sample on a uniform grid.



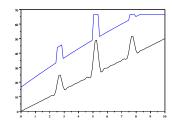
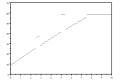
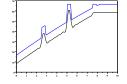


Figure: Left: the *target* values computed as $\{\mathcal{T}V_0(x_n)\}_{1\leq n\leq N}$. Right: the approximation $V_1\in\mathcal{F}$ of the target function $\mathcal{T}V_0$.





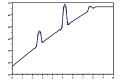


Figure: Left: the *target* values computed as $\{\mathcal{T}V_1(x_n)\}_{1\leq n\leq N}$. Center: the approximation $V_2\in\mathcal{F}$ of $\mathcal{T}V_1$. Right: the approximation $V_n\in\mathcal{F}$ after n iterations.

Outline

Performance Loss

Approximate Value Iteration

Approximate Policy Iteration

Linear Temporal-Difference Least-Squares Temporal Difference Bellman Residual Minimization

Approximate Policy Iteration: the Idea

Let A be an approximation operator.

- ▶ Policy evaluation: given the current policy π_k , compute $V_k = AV^{\pi_k}$
- ▶ Policy improvement: given the approximated value of the current policy, compute the greedy policy w.r.t. V_k as

$$\pi_{k+1}(x) \in \arg\max_{a \in A} \big[r(x,a) + \gamma \sum_{y \in X} p(y|x,a) V_k(y) \big].$$

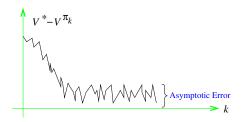
Approximate Policy Iteration: the Idea

Let \mathcal{A} be an approximation operator.

- ▶ Policy evaluation: given the current policy π_k , compute $V_k = AV^{\pi_k}$
- ▶ Policy improvement: given the approximated value of the current policy, compute the greedy policy w.r.t. V_k as

$$\pi_{k+1}(x) \in \arg\max_{a \in A} \big[r(x,a) + \gamma \sum_{y \in X} p(y|x,a) V_k(y) \big].$$

Problem: the algorithm is no longer guaranteed to converge.



Approximate Policy Iteration: performance loss

Proposition

The asymptotic performance of the policies π_k generated by the API algorithm is related to the approximation error as:

$$\limsup_{k \to \infty} \underbrace{\|V^* - V^{\pi_k}\|_{\infty}}_{\textit{performance loss}} \leq \frac{2\gamma}{(1 - \gamma)^2} \limsup_{k \to \infty} \underbrace{\|V_k - V^{\pi_k}\|_{\infty}}_{\textit{approximation error}}$$

Performance Loss

Approximate Value Iteration

Approximate Policy Iteration

Linear Temporal-Difference Least-Squares Temporal Difference Bellman Residual Minimization

Linear $TD(\lambda)$: the algorithm

Algorithm Definition

Given a linear space $\mathcal{F} = \{V_{\alpha}(x) = \sum_{i=1}^{d} \alpha_{i}\phi_{i}(x), \alpha \in \mathbb{R}^{d}\}$. Trace vector $z \in \mathbb{R}^{d}$ and parameter vector $\alpha \in \mathbb{R}^{d}$ initialized to zero. Generate a sequence of states $(x_{0}, x_{1}, x_{2}, \dots)$ according to π . At each step t, the temporal difference is

$$d_t = r(x_t, \pi(x_t)) + \gamma V_{\alpha_t}(x_{t+1}) - V_{\alpha_t}(x_t)$$

and the parameters are updated as

$$\alpha_{t+1} = \alpha_t + \eta_t \mathbf{d}_t z_t,$$

$$z_{t+1} = \lambda \gamma z_t + \phi(x_{t+1}),$$

where η_t is learning step.

Linear $TD(\lambda)$: approximation error

Proposition (Tsitsiklis et Van Roy, 1996)

Let the learning rate η_t satisfy

$$\sum_{t\geq 0}\eta_t=\infty, \text{ and } \sum_{t\geq 0}\eta_t^2<\infty.$$

We assume that π admits a stationary distribution μ_{π} and that the features $(\phi_i)_{1 \le k \le K}$ are *linearly independent*. There exists a fixed α^* such that

$$\lim_{t\to\infty}\alpha_t=\alpha^*.$$

Furthermore we obtain

$$\underbrace{\|V_{\alpha^*} - V^{\pi}\|_{2,\mu^{\pi}}}_{\text{approximation error}} \leq \frac{1 - \lambda \gamma}{1 - \gamma} \quad \inf_{\alpha} \|V_{\alpha} - V^{\pi}\|_{2,\mu^{\pi}} \quad .$$

Linear $TD(\lambda)$: approximation error

Remark: for $\lambda = 1$, we recover Monte-Carlo (or TD(1)) and the bound is the smallest!

Linear $TD(\lambda)$: approximation error

Remark: for $\lambda = 1$, we recover Monte-Carlo (or TD(1)) and the bound is the smallest!

Problem: the bound does not consider the variance (i.e., samples needed for α_t to converge to α^*).

Linear $TD(\lambda)$: implementation

- ▶ **Pros**: simple to implement, computational cost *linear* in *d*.
- **Cons**: very sample *inefficient*, many samples are needed to converge.

Outline

Performance Loss

Approximate Value Iteration

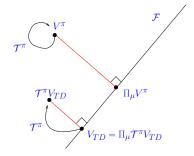
Approximate Policy Iteration

Linear Temporal-Difference Least-Squares Temporal Difference Bellman Residual Minimization

Least-squares TD: the algorithm

Recall: $V^{\pi} = \mathcal{T}^{\pi}V^{\pi}$.

Intuition: compute $V = AT^{\pi}V$.



Focus on the $L_{2,\mu}$ -weighted norm and projection Π_{μ}

$$\Pi_{\mu}g = \arg\min_{f \in \mathcal{F}} \|f - g\|_{\mu}.$$

Least-squares TD: the algorithm

By construction, the Bellman residual of V_{TD} is orthogonal to \mathcal{F} , thus for any $1 \leq i \leq d$

$$\langle \mathcal{T}^{\pi} V_{TD} - V_{TD}, \phi_i \rangle_{\mu} = 0,$$

Least-squares TD: the algorithm

By construction, the Bellman residual of V_{TD} is orthogonal to \mathcal{F} , thus for any $1 \le i \le d$

$$\langle \mathcal{T}^{\pi} V_{TD} - V_{TD}, \phi_i \rangle_{\mu} = 0,$$

and

$$\langle r^{\pi} + \gamma P^{\pi} V_{TD} - V_{TD}, \phi_i \rangle_{\mu} = 0$$

$$\langle r^{\pi}, \phi_i \rangle_{\mu} + \sum_{i=1}^{d} \langle \gamma P^{\pi} \phi_j - \phi_j, \phi_i \rangle_{\mu} \alpha_{TD,j} = 0,$$

Least-squares TD: the algorithm

By construction, the Bellman residual of V_{TD} is orthogonal to \mathcal{F} , thus for any $1 \le i \le d$

$$\langle \mathcal{T}^{\pi} V_{TD} - V_{TD}, \phi_i \rangle_{\mu} = 0,$$

and

$$\langle r^{\pi} + \gamma P^{\pi} V_{TD} - V_{TD}, \phi_i \rangle_{\mu} = 0$$
$$\langle r^{\pi}, \phi_i \rangle_{\mu} + \sum_{i=1}^{d} \langle \gamma P^{\pi} \phi_j - \phi_j, \phi_i \rangle_{\mu} \alpha_{TD,j} = 0,$$

 $\Rightarrow \alpha_{TD}$ is the solution of a *linear system* of order d.

Least-squares TD: the algorithm

Algorithm Definition

The LSTD solution α_{TD} can be computed by computing the matrix A and vector b defined as

$$A_{i,j} = \langle \phi_i, \phi_j - \gamma P^{\pi} \phi_j \rangle_{\mu} b_i = \langle \phi_i, r^{\pi} \rangle_{\mu}$$

and then solving the system $A\alpha = b$.

Least-squares TD: the approximation error

Problem: in general $\Pi_{\mu}\mathcal{T}^{\pi}$ does not admit a fixed point (i.e., matrix A is not invertible).

Least-squares TD: the approximation error

Problem: in general $\Pi_{\mu}\mathcal{T}^{\pi}$ does not admit a fixed point (i.e., matrix A is not invertible).

Solution: use the stationary distribution μ_{π} of policy π , that is

$$\mu_{\pi}P^{\pi}=\mu_{\pi}, \text{ and } \mu_{\pi}(y)=\sum_{x}p(y|x,\pi(x))\mu_{\pi}(x)$$

Least-squares TD: the approximation error

Proposition

The Bellman operator \mathcal{T}^{π} is a contraction in the weighted $L_{2,\mu_{\pi}}$ -norm. Thus the joint operator $\Pi_{\mu_{\pi}}\mathcal{T}^{\pi}$ is a contraction and it admits a unique fixed point V_{TD} . Then

$$\frac{\|V^{\pi} - V_{TD}\|_{\mu_{\pi}}}{\text{approximation error}} \leq \frac{1}{\sqrt{1 - \gamma^2}} \underbrace{\inf_{V \in \mathcal{F}} \|V^{\pi} - V\|_{\mu_{\pi}}}_{\text{smallest approximation error}}$$

• Generate $(X_0, X_1, ...)$ from *direct execution* of π and observes $R_t = r(X_t, \pi(X_t))$

- ▶ Generate $(X_0, X_1,...)$ from *direct execution* of π and observes $R_t = r(X_t, \pi(X_t))$
- Compute estimates

$$\hat{A}_{ij} = \frac{1}{n} \sum_{t=1}^{n} \phi_i(X_t) [\phi_j(X_t) - \gamma \phi_j(X_{t+1})],$$

$$\hat{b}_i = \frac{1}{n} \sum_{t=1}^{n} \phi_i(X_t) R_t.$$

- ▶ Generate $(X_0, X_1,...)$ from *direct execution* of π and observes $R_t = r(X_t, \pi(X_t))$
- Compute estimates

$$\hat{A}_{ij} = \frac{1}{n} \sum_{t=1}^{n} \phi_i(X_t) [\phi_j(X_t) - \gamma \phi_j(X_{t+1})],$$

$$\hat{b}_i = \frac{1}{n} \sum_{t=1}^{n} \phi_i(X_t) R_t.$$

Solve $\hat{A}\alpha = \hat{b}$

- ▶ Generate $(X_0, X_1,...)$ from *direct execution* of π and observes $R_t = r(X_t, \pi(X_t))$
- Compute estimates

$$\hat{A}_{ij} = \frac{1}{n} \sum_{t=1}^{n} \phi_i(X_t) [\phi_j(X_t) - \gamma \phi_j(X_{t+1})],$$

$$\hat{b}_i = \frac{1}{n} \sum_{t=1}^{n} \phi_i(X_t) R_t.$$

Solve $\hat{A}\alpha = \hat{b}$

Remark:

- ► No need for a generative model.
- ▶ If the chain is ergodic, $\hat{A} \to A$ et $\hat{b} \to b$ when $n \to \infty$.

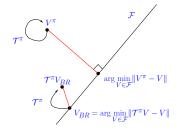
Outline

Performance Loss

Approximate Value Iteration

Approximate Policy Iteration

Linear Temporal-Difference Least-Squares Temporal Difference Bellman Residual Minimization



Let μ be a distribution over X, V_{BR} is the minimum Bellman residual w.r.t. \mathcal{T}^{π}

$$V_{BR} = \arg\min_{V \in \mathcal{F}} \|T^{\pi}V - V\|_{2,\mu}$$

The mapping $\alpha \to \mathcal{T}^\pi V_\alpha - V_\alpha$ is affine The function $\alpha \to \|\mathcal{T}^\pi V_\alpha - V_\alpha\|_\mu^2$ is quadratic \Rightarrow The minimum is obtained by computing the *gradient and setting it to zero*

$$\langle r^{\pi} + (\gamma P^{\pi} - I) \sum_{i=1}^{d} \phi_{j} \alpha_{j}, (\gamma P^{\pi} - I) \phi_{i} \rangle_{\mu} = 0,$$

which can be rewritten as $A\alpha = b$, with

$$\begin{cases} A_{i,j} = \langle \phi_i - \gamma P^{\pi} \phi_i, \phi_j - \gamma P^{\pi} \phi_j \rangle_{\mu}, \\ b_i = \langle \phi_i - \gamma P^{\pi} \phi_i, r^{\pi} \rangle_{\mu}, \end{cases}$$

Remark: the system admits a solution whenever the features ϕ_i are linearly independent w.r.t. μ

Remark: the system admits a solution whenever the features ϕ_i are linearly independent w.r.t. μ

Remark: let $\{\psi_i = \phi_i - \gamma P^{\pi} \phi_i\}_{i=1...d}$, then the previous system can be interpreted as a linear regression problem

$$\|\alpha \cdot \psi - r^{\pi}\|_{\mu}$$

BRM: the approximation error

Proposition

We have

$$\|V^{\pi} - V_{BR}\| \le \|(I - \gamma P^{\pi})^{-1}\|(1 + \gamma \|P^{\pi}\|) \inf_{V \in \mathcal{F}} \|V^{\pi} - V\|.$$

If μ_{π} is the *stationary policy* of π , then $\|P^{\pi}\|_{\mu_{\pi}}=1$ and $\|(I-\gamma P^{\pi})^{-1}\|_{\mu_{\pi}}=\frac{1}{1-\gamma}$, thus

$$\|V^{\pi} - V_{BR}\|_{\mu_{\pi}} \leq \frac{1+\gamma}{1-\gamma} \inf_{V \in \mathcal{F}} \|V^{\pi} - V\|_{\mu_{\pi}}.$$

Assumption. A generative model is available.

- ▶ Drawn *n* states $X_t \sim \mu$
- ▶ Call generative model on (X_t, A_t) (with $A_t = \pi(X_t)$) and obtain $R_t = r(X_t, A_t)$, $Y_t \sim p(\cdot|X_t, A_t)$
- Compute

$$\hat{\mathcal{B}}(V) = \frac{1}{n} \sum_{t=1}^{n} \left[V(X_t) - \underbrace{\left(R_t + \gamma V(Y_t) \right)}_{\hat{T}V(X_t)} \right]^2.$$

Problem: this estimator is *biased and not consistent!* In fact,

$$\mathbb{E}[\hat{\mathcal{B}}(V)] = \mathbb{E}\Big[\big[V(X_t) - \mathcal{T}^{\pi}V(X_t) + \mathcal{T}^{\pi}V(X_t) - \hat{\mathcal{T}}V(X_t)\big]^2\Big]$$
$$= \|\mathcal{T}^{\pi}V - V\|_{\mu}^2 + \mathbb{E}\Big[\big[\mathcal{T}^{\pi}V(X_t) - \hat{\mathcal{T}}V(X_t)\big]^2\Big]$$

 \Rightarrow minimizing $\hat{\mathcal{B}}(V)$ does not correspond to minimizing $\mathcal{B}(V)$ (even when $n \to \infty$).

Solution. In each state X_t , generate two independent samples Y_t et $Y'_t \sim p(\cdot|X_t, A_t)$ Define

$$\hat{\mathcal{B}}(V) = \frac{1}{n} \sum_{t=1}^{n} \left[V(X_t) - \left(R_t + \gamma V(Y_t) \right) \right] \left[V(X_t) - \left(R_t + \gamma V(Y_t') \right) \right].$$

$$\Rightarrow \hat{\mathcal{B}} \to \mathcal{B} \text{ for } n \to \infty.$$

The function $\alpha \to \hat{\mathcal{B}}(V_{\alpha})$ is quadratic and we obtain the linear system

$$\widehat{A}_{i,j} = \frac{1}{n} \sum_{t=1}^{n} \left[\phi_i(X_t) - \gamma \phi_i(Y_t) \right] \left[\phi_j(X_t) - \gamma \phi_j(Y_t') \right],$$

$$\widehat{b}_i = \frac{1}{n} \sum_{t=1}^{n} \left[\phi_i(X_t) - \gamma \frac{\phi_i(Y_t) + \phi_i(Y_t')}{2} \right] R_t.$$

LSTD vs BRM

- ▶ **Different assumptions:** BRM requires a *generative model*, LSTD requires a *single trajectory*.
- ► The performance is evaluated differently: BRM any distribution, LSTD stationary distribution μ^{π} .

Bibliography I

Reinforcement Learning

Alessandro Lazaric alessandro.lazaric@inria.fr sequel.lille.inria.fr