
MVA-RL Course

Approximate Dynamic Programming

A. LAZARIC (SequeL Team @INRIA-Lille)
ENS Cachan - Master 2 MVA

SequeL – INRIA Lille



Approximate Dynamic
Programming

(a.k.a. Batch Reinforcement Learning)

Approximate Value Iteration

Approximate Policy Iteration

A. LAZARIC – Reinforcement Learning Algorithms Dec 2nd, 2014 - 2/82



Approximate Dynamic
Programming

(a.k.a. Batch Reinforcement Learning)

Approximate Value Iteration

Approximate Policy Iteration

A. LAZARIC – Reinforcement Learning Algorithms Dec 2nd, 2014 - 2/82



From DP to ADP

I Dynamic programming algorithms require an explicit
definition of

I transition probabilities p(·|x , a)
I reward function r(x , a)

I This knowledge is often unavailable (i.e., wind intensity,
human-computer-interaction).

I Can we rely on samples?
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From DP to ADP

I Dynamic programming algorithms require an exact
representation of value functions and policies

I This is often impossible since their shape is too “complicated”
(e.g., large or continuous state space).

I Can we use approximations?
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The Objective

Find a policy π such that

the performance loss ||V ∗ − V π|| is as small as possible
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From Approximation Error to Performance Loss

Question: if V is an approximation of the optimal value function
V ∗ with an error

error = ‖V − V ∗‖

how does it translate to the (loss of) performance of the greedy
policy

π(x) ∈ arg max
a∈A

∑

y
p(y |x , a)

[
r(x , a, y) + γV (y)

]

i.e.
performance loss = ‖V ∗ − V π‖
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From Approximation Error to Performance Loss

Proposition

Let V ∈ RN be an approximation of V ∗ and π its corresponding
greedy policy, then

‖V ∗ − V π‖∞︸ ︷︷ ︸
performance loss

≤ 2γ
1− γ ‖V

∗ − V ‖∞︸ ︷︷ ︸
approx. error

.

Furthermore, there exists ε > 0 such that if ‖V − V ∗‖∞ ≤ ε, then
π is optimal .
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From Approximation Error to Performance Loss

Proof.

‖V ∗ − V π‖∞ ≤ ‖T V ∗ − T πV ‖∞ + ‖T πV − T πV π‖∞
≤ ‖T V ∗ − T V ‖∞ + γ‖V − V π‖∞
≤ γ‖V ∗ − V ‖∞ + γ(‖V − V ∗‖∞ + ‖V ∗ − V π‖∞)

≤ 2γ
1− γ ‖V

∗ − V ‖∞.

�
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From Approximation Error to Performance Loss

Question: how do we compute a good V ?

Problem: unlike in standard approximation scenarios (see
supervised learning), we have a limited access to the target
function, i.e. V ∗.

Solution: value iteration tends to learn functions which are close
to the optimal value function V ∗.
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Value Iteration: the Idea

1. Let Q0 be any action-value function

2. At each iteration k = 1, 2, . . . ,K
I Compute

Qk+1(x , a) = T Qk(x , a) = r(x , a)+
∑

y
p(y |x , a)γmax

b
Qk(y , b)

3. Return the greedy policy

πK (x) ∈ arg max
a∈A

QK (x , a).

I Problem: how can we approximate T Qk?
I Problem: if Qk+1 6= T Qk , does (approx.) value iteration still work?
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Linear Fitted Q-iteration: the Approximation Space

Linear space (used to approximate action–value functions)

F =
{

f (x , a) =
d∑

j=1
αjϕj(x , a), α ∈ Rd

}

with features

ϕj : X × A→ [0, L] φ(x , a) = [ϕ1(x , a) . . . ϕd (x , a)]>
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Linear Fitted Q-iteration: the Samples

Assumption: access to a generative model , that is a black-box
simulator sim() of the environment is available.
Given (x , a),

sim(x , a) = {y , r}, with y ∼ p(·|x , a), r = r(x , a)
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Linear Fitted Q-iteration

Input: space F , iterations K , sampling distribution ρ, num of samples n

Initial function Q̂0 ∈ F
For k = 1, . . . ,K

1. Draw n samples (xi , ai )
i.i.d∼ ρ

2. Sample x ′i ∼ p(·|xi , ai ) and ri = r(xi , ai )

3. Compute yi = ri + γmaxa Q̂k−1(x ′i , a)

4. Build training set
{(

(xi , ai ), yi
)}n

i=1

5. Solve the least squares problem

fα̂k = arg min
fα∈F

1
n

n∑

i=1

(
fα(xi , ai )− yi

)2

6. Return Q̂k = fα̂k (truncation may be needed)

Return πK (·) = arg maxa Q̂K (·, a) (greedy policy)
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Linear Fitted Q-iteration: Sampling

1. Draw n samples (xi , ai )
i.i.d∼ ρ

2. Sample x ′i ∼ p(·|xi , ai ) and ri = r(xi , ai )

I In practice it can be done once before running the algorithm
I The sampling distribution ρ should cover the state-action space in

all relevant regions
I If not possible to choose ρ, a database of samples can be used
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Linear Fitted Q-iteration: The Training Set

4. Compute yi = ri + γmaxa Q̂k−1(x ′i , a)
5. Build training set

{(
(xi , ai ), yi

)}n
i=1

I Each sample yi is an unbiased sample, since

E[yi |xi , ai ] = E[ri + γmax
a

Q̂k−1(x ′i , a)] = r(xi , ai ) + γE[max
a

Q̂k−1(x ′i , a)]

= r(xi , ai ) + γ

∫

X
max

a
Q̂k−1(x ′, a)p(dy |x , a) = T Q̂k−1(xi , ai )

I The problem “reduces” to standard regression
I It should be recomputed at each iteration
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Linear Fitted Q-iteration: The Regression Problem

6. Solve the least squares problem

fα̂k = arg min
fα∈F

1
n

n∑

i=1

(
fα(xi , ai )− yi

)2

7. Return Q̂k = fα̂k (truncation may be needed)

I Thanks to the linear space we can solve it as
I Build matrix Φ =

[
φ(x1, a1)> . . . φ(xn, an)>

]

I Compute α̂k = (Φ>Φ)−1Φ>y (least–squares solution)
I Truncation to [−Vmax; Vmax] (with Vmax = Rmax/(1− γ))
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Sketch of the Analysis

Q3

greedy πK

· · ·

Q2

Q0

Q1

T

T

T Q̂2

Q̂2
ǫ2

Q̂3
ǫ3

T Q̂3

ǫ1
Q̂1

T Q̂1

T

T

Q4

· · ·

final error
Q∗

T

Q̂K

QπK

Skip Theory
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Theoretical Objectives

Objective: derive a bound on the performance (quadratic) loss
w.r.t. a testing distribution µ

||Q∗ − QπK ||µ ≤ ???

Sub-Objective 1: derive an intermediate bound on the prediction
error at any iteration k w.r.t. to the sampling distribution ρ

||T Q̂k−1 − Q̂k ||ρ ≤ ???

Sub-Objective 2: analyze how the error at each iteration is
propagated through iterations

||Q∗ − QπK ||µ ≤ propagation(||T Q̂k−1 − Q̂k ||ρ)
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The Sources of Error

I Desired solution
Qk = T Q̂k−1

I Best solution (wrt sampling distribution ρ)

fα∗k = arg inf
fα∈F

||fα − Qk ||ρ

⇒ Error from the approximation space F
I Returned solution

fα̂k = arg min
fα∈F

1
n

n∑

i=1

(
fα(xi , ai )− yi

)2

⇒ Error from the (random) samples
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||fα − Qk ||ρ

⇒ Error from the approximation space F
I Returned solution

fα̂k = arg min
fα∈F

1
n

n∑

i=1

(
fα(xi , ai )− yi

)2

⇒ Error from the (random) samples
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Per-Iteration Error

Theorem

At each iteration k, Linear-FQI returns an approximation Q̂k such
that (Sub-Objective 1)

||Qk − Q̂k ||ρ ≤ 4||Qk − fα∗k ||ρ

+ O
((

Vmax + L||α∗k ||
)
√

log 1/δ
n

)

+ O
(

Vmax

√
d log n/δ

n

)
,

with probability 1− δ.

Tools: concentration of measure inequalities, covering space, linear algebra, union
bounds, special tricks for linear spaces, ...
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Per-Iteration Error

||Qk − Q̂k ||ρ ≤ 4||Qk − fα∗k ||ρ

+ O
((

Vmax + L||α∗k ||
)
√

log 1/δ
n

)

+ O
(

Vmax

√
d log n/δ

n

)
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Per-Iteration Error

||Qk − Q̂k ||ρ ≤ 4||Qk − fα∗k ||ρ

+ O
((

Vmax + L||α∗k ||
)
√

log 1/δ
n

)

+ O
(

Vmax

√
d log n/δ

n

)

Remarks
I No algorithm can do better
I Constant 4
I Depends on the space F
I Changes with the iteration k
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Per-Iteration Error

||Qk − Q̂k ||ρ ≤ 4||Qk − fα∗k ||ρ

+ O
((

Vmax + L||α∗k ||
)
√

log 1/δ
n

)

+ O
(

Vmax

√
d log n/δ

n

)

Remarks
I Vanishing to zero as O(n−1/2)

I Depends on the features (L) and on the best solution (||α∗k ||)
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Per-Iteration Error

||Qk − Q̂k ||ρ ≤ 4||Qk − fα∗k ||ρ

+ O
((

Vmax + L||α∗k ||
)
√

log 1/δ
n

)

+ O
(

Vmax

√
d log n/δ

n

)

Remarks
I Vanishing to zero as O(n−1/2)

I Depends on the dimensionality of the space (d) and the
number of samples (n)
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Error Propagation

Objective

||Q∗ − QπK ||µ

I Problem 1: the test norm µ is different from the sampling
norm ρ

I Problem 2: we have bounds for Q̂k not for the performance
of the corresponding πk

I Problem 3: we have bounds for one single iteration
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Error Propagation

Transition kernel for a fixed policy Pπ .

I m-step (worst-case) concentration of future state distribution

c(m) = sup
π1...πm

∣∣∣∣∣

∣∣∣∣∣
d(µPπ1 . . .Pπm )

dρ

∣∣∣∣∣

∣∣∣∣∣
∞

<∞

I Average (discounted) concentration
Cµ,ρ = (1− γ)2

∑

m≥1
mγm−1c(m) < +∞
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Error Propagation

Remark: relationship to top-Lyapunov exponent

L+ = sup
π

lim sup
m→∞

1
m log+

(
||ρPπ1 Pπ2 · · ·Pπm ||

)

If L+ ≤ 0 (stable system), then c(m) has a growth rate which is
polynomial and Cµ,ρ <∞ is finite

A. LAZARIC – Reinforcement Learning Algorithms Dec 2nd, 2014 - 28/82



Error Propagation

Proposition

Let εk = Qk − Q̂k be the propagation error at each iteration, then
after K iteration the performance loss of the greedy policy πK is

||Q∗ − QπK ||2µ ≤
[

2γ
(1− γ)2

]2
Cµ,ρ max

k
||εk ||2ρ + O

(
γK

(1− γ)3 Vmax
2
)
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The Final Bound

Bringing everything together...

||Q∗ − QπK ||2µ ≤
[

2γ
(1− γ)2

]2
Cµ,ρ max

k
||εk ||2ρ + O

(
γK

(1− γ)3 Vmax
2
)

||εk ||ρ = ||Qk − Q̂k ||ρ ≤ 4||Qk − fα∗k ||ρ

+ O
((

Vmax + L||α∗k ||
)
√

log 1/δ
n

)

+ O
(

Vmax

√
d log n/δ

n

)
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log 1/δ
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√
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The Final Bound

Theorem (see e.g., Munos,’03)
LinearFQI with a space F of d features, with n samples at each iteration
returns a policy πK after K iterations such that

||Q∗ − QπK ||µ ≤
2γ

(1− γ)2

√
Cµ,ρ

(
4d(F , T F) + O

(
Vmax

(
1 +

L
√
ω

)√d log n/δ
n

))

+ O
(

γK

(1− γ)3 Vmax
2
)
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The Final Bound

Theorem
LinearFQI with a space F of d features, with n samples at each iteration returns a
policy πK after K iterations such that

||Q∗ − QπK ||µ ≤
2γ

(1− γ)2

√
Cµ,ρ

(
4d(F , T F) + O

(
Vmax

(
1 +

L
√
ω

)√d log n/δ
n

))

+ O
(

γK

(1− γ)3 Vmax
2
)

The propagation (and different norms) makes the problem more complex
⇒ how do we choose the sampling distribution?
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The Final Bound

Theorem
LinearFQI with a space F of d features, with n samples at each iteration returns a
policy πK after K iterations such that

||Q∗ − QπK ||µ ≤
2γ

(1− γ)2

√
Cµ,ρ

(
4d(F , T F) + O

(
Vmax

(
1 +

L
√
ω

)√d log n/δ
n

))

+ O
(

γK

(1− γ)3 Vmax
2
)

The approximation error is worse than in regression
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The Final Bound

The inherent Bellman error

||Qk − fα∗k ||ρ = inf
f∈F
||Qk − f ||ρ

= inf
f∈F
||T Q̂k−1 − f ||ρ

≤ inf
f∈F
||T fαk−1 − f ||ρ

≤ sup
g∈F

inf
f∈F
||T g − f ||ρ = d(F , T F)

Question: how to design F to make it “compatible” with the Bellman
operator?
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The Final Bound

Theorem
LinearFQI with a space F of d features, with n samples at each iteration returns a
policy πK after K iterations such that

||Q∗ − QπK ||µ ≤
2γ

(1− γ)2

√
Cµ,ρ

(
4d(F , T F) + O

(
Vmax

(
1 +

L
√
ω

)√d log n/δ
n

))

+ O
(

γK

(1− γ)3 Vmax
2
)

The dependency on γ is worse than at each iteration
⇒ is it possible to avoid it?
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The Final Bound

Theorem
LinearFQI with a space F of d features, with n samples at each iteration returns a
policy πK after K iterations such that

||Q∗ − QπK ||µ ≤
2γ

(1− γ)2

√
Cµ,ρ

(
4d(F , T F) + O

(
Vmax

(
1 +

L
√
ω

)√d log n/δ
n

))

+ O
(

γK

(1− γ)3 Vmax
2
)

The error decreases exponentially in K
⇒ K ≈ ε/(1− γ)
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The Final Bound

Theorem
LinearFQI with a space F of d features, with n samples at each iteration returns a
policy πK after K iterations such that

||Q∗ − QπK ||µ ≤
2γ

(1− γ)2

√
Cµ,ρ

(
4d(F , T F) + O

(
Vmax

(
1 +

L
√
ω

)√d log n/δ
n

))

+ O
(

γK

(1− γ)3 Vmax
2
)

The smallest eigenvalue of the Gram matrix
⇒ design the features so as to be orthogonal w.r.t. ρ
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The Final Bound

Theorem
LinearFQI with a space F of d features, with n samples at each iteration returns a
policy πK after K iterations such that

||Q∗ − QπK ||µ ≤
2γ

(1− γ)2

√
Cµ,ρ

(
4d(F , T F) + O

(
Vmax

(
1 +

L
√
ω

)√d log n/δ
n

))

+ O
(

γK

(1− γ)3 Vmax
2
)

The asymptotic rate O(d/n) is the same as for regression
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Summary

Approximation

space

Samples

algorithm

process

Performance
Markov decision

Dynamic programming
Approximation

algorithm

(sampling strategy, number)

Range Vmax

Concentrability Cµ,ρ

d(F , T F)
size d, features ω

number n, sampling dist. ρ

Qk − Q̂k
Propagation
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Other implementations

Replace the regression step with
I K -nearest neighbour
I Regularized linear regression with L1 or L2 regularisation
I Neural network
I Support vector regression
I ...
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Example: the Optimal Replacement Problem

State: level of wear of an object (e.g., a car).

Action: {(R)eplace, (K )eep}.
Cost:
I c(x ,R) = C
I c(x ,K ) = c(x) maintenance plus extra costs.

Dynamics:
I p(·|x ,R) = exp(β) with density d(y) = β exp−βy I{y ≥ 0},
I p(·|x ,K ) = x + exp(β) with density d(y − x).

Problem: Minimize the discounted expected cost over an infinite
horizon.
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Example: the Optimal Replacement Problem
Optimal value function

V ∗(x) = min
{

c(x) +γ

∫ ∞

0
d(y−x)V ∗(y)dy , C +γ

∫ ∞

0
d(y)V ∗(y)dy

}

Optimal policy : action that attains the minimum
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R RR KKK

Linear approximation space F :=
{

Vn(x) =
∑20

k=1 αk cos(kπ x
xmax

)
}

.
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Example: the Optimal Replacement Problem

Collect N sample on a uniform grid.
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Figure: Left: the target values computed as {T V0(xn)}1≤n≤N . Right:
the approximation V1 ∈ F of the target function T V0.
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Example: the Optimal Replacement Problem
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Figure: Left: the target values computed as {T V1(xn)}1≤n≤N . Center:
the approximation V2 ∈ F of T V1. Right: the approximation Vn ∈ F
after n iterations.
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Example: the Optimal Replacement Problem

Simulation
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Approximate Dynamic
Programming

(a.k.a. Batch Reinforcement Learning)

Approximate Value Iteration

Approximate Policy Iteration
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Policy Iteration: the Idea

1. Let π0 be any stationary policy

2. At each iteration k = 1, 2, . . . ,K
I Policy evaluation given πk , compute Vk = V πk .
I Policy improvement: compute the greedy policy

πk+1(x) ∈ arg maxa∈A
[
r(x , a) + γ

∑

y
p(y |x , a)V πk (y)

]
.

3. Return the last policy πK

I Problem: how can we approximate V πk ?
I Problem: if Vk 6= V πk , does (approx.) policy iteration still work?
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Approximate Policy Iteration: performance loss
Problem: the algorithm is no longer guaranteed to converge.

V *−V
π

k

k

Asymptotic Error

Proposition

The asymptotic performance of the policies πk generated by the API
algorithm is related to the approximation error as:

lim sup
k→∞

‖V ∗ − V πk‖∞︸ ︷︷ ︸
performance loss

≤ 2γ
(1− γ)2 lim sup

k→∞
‖Vk − V πk‖∞︸ ︷︷ ︸
approximation error
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Least-Squares Policy Iteration (LSPI)

LSPI uses
I Linear space to approximate value functions*

F =
{

f (x) =
d∑

j=1
αjϕj(x), α ∈ Rd

}

I Least-Squares Temporal Difference (LSTD) algorithm for
policy evaluation.

*In practice we use approximations of action-value functions.
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Least-Squares Temporal-Difference Learning (LSTD)

I V π may not belong to F V π /∈ F
I Best approximation of V π in F is

ΠV π = arg min
f∈F
||V π − f || (Π is the projection onto F)

F

V π
T π

ΠV π
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Least-Squares Temporal-Difference Learning (LSTD)
I V π is the fixed-point of T π

V π = T πV π = rπ + γPπV π

I LSTD searches for the fixed-point of Π2,ρT π

Π2,ρ g = arg min
f∈F
||g − f ||2,ρ

I When the fixed-point of ΠρT π exists, we call it the LSTD solution
VTD = ΠρT πVTD

F

V π

T πVTDT π

T π

ΠρV
π VTD = ΠρT πVTD
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Least-Squares Temporal-Difference Learning (LSTD)

VTD = ΠρT πVTD

I The projection Πρ is orthogonal in expectation w.r.t. the space F spanned by
the features ϕ1, . . . , ϕd

Ex∼ρ
[
(T πVTD(x)− VTD(x))ϕi (x)

]
= 0, ∀i ∈ [1, d]

〈T πVTD − VTD , ϕi 〉ρ = 0

I By definition of Bellman operator

〈rπ + γPπVTD − VTD , ϕi 〉ρ = 0

〈rπ , ϕi 〉ρ − 〈(I − γPπ)VTD , ϕi 〉ρ = 0
I Since VTD ∈ F , there exists αTD such that VTD(x) = φ(x)>αTD

〈rπ , ϕi 〉ρ −
d∑

j=1
〈(I − γPπ)ϕjαTD,j , ϕi 〉ρ = 0

〈rπ , ϕi 〉ρ −
d∑

j=1
〈(I − γPπ)ϕj , ϕi 〉ραTD,j = 0
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Least-Squares Temporal-Difference Learning (LSTD)

VTD = ΠρT πVTD

⇓

〈rπ, ϕi〉ρ︸ ︷︷ ︸
bi

−
d∑

j=1
〈(I − γPπ)ϕj , ϕi〉ρ︸ ︷︷ ︸

Ai,j

αTD,j = 0

⇓

AαTD = b
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Least-Squares Temporal-Difference Learning (LSTD)

I Problem: In general, ΠρT π is not a contraction and does not
have a fixed-point.

I Solution: If ρ = ρπ (stationary dist. of π) then ΠρπT π has a
unique fixed-point.

I Problem: In general, ΠρT π cannot be computed (because
unknown)

I Solution: Use samples coming from a “trajectory” of π.
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Least-Squares Policy Iteration (LSPI)
Input: space F , iterations K , sampling distribution ρ, num of samples n

Initial policy π0
For k = 1, . . . ,K

1. Generate a trajectory of length n from the stationary dist. ρπk

(x1, πk(x1), r1, x2, πk(x2), r2, . . . , xn−1, πk(xn−1), rn−1, xn)

2. Compute the empirical matrix Âk and the vector b̂k

[Âk ]i,j =
1
n

n∑

t=1
(ϕj(xt)− γϕj(xt+1)ϕi (xt) ≈ 〈(I − γPπ)ϕj , ϕi〉ρπk

[b̂k ]i =
1
n

n∑

t=1
ϕi (xt)rt ≈ 〈rπ, ϕi〉ρπk

3. Solve the linear system αk = Â−1
k b̂k

4. Compute the greedy policy πk+1 w.r.t. V̂k = fαk

Return the last policy πK
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Least-Squares Policy Iteration (LSPI)

1. Generate a trajectory of length n from the stationary dist. ρπk

(x1, πk(x1), r1, x2, πk(x2), r2, . . . , xn−1, πk(xn−1), rn−1, xn)

I The first few samples may be discarded because not actually drawn
from the stationary distribution ρπk

I Off-policy samples could be used with importance weighting
I In practice i.i.d. states drawn from an arbitrary distribution (but

with actions πk) may be used
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Least-Squares Policy Iteration (LSPI)

4. Compute the greedy policy πk+1 w.r.t. V̂k = fαk

I Computing the greedy policy from V̂k is difficult, so move to
LSTD-Q and compute

πk+1(x) = arg max
a

Q̂k(x , a)
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Least-Squares Policy Iteration (LSPI)

For k = 1, . . . ,K

1. Generate a trajectory of length n from the stationary dist. ρπk

(x1, πk(x1), r1, x2, πk(x2), r2, . . . , xn−1, πk(xn−1), rn−1, xn)

...

4. Compute the greedy policy πk+1 w.r.t. V̂k = fαk

Problem: This process may be unstable because πk does not cover the
state space properly

Skip Theory
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LSTD Algorithm

When n→∞ then Â→ A and b̂ → b, and thus,

α̂TD → αTD and V̂TD → VTD

Proposition (LSTD Performance)

If LSTD is used to estimate the value of π with an infinite number
of samples drawn from the stationary distribution ρπ then

||V π − VTD||ρπ ≤
1√

1− γ2
inf

V∈F
||V π − V ||ρπ

Problem: we don’t have an infinite number of samples...
Problem 2: VTD is a fixed point solution and not a standard
machine learning problem...
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LSTD Error Bound

Assumption: The Markov chain induced by the policy πk has a
stationary distribution ρπk and it is ergodic and β-mixing.

Theorem (LSTD Error Bound)

At any iteration k, if LSTD uses n samples obtained from a single
trajectory of π and a d-dimensional space, then with probability 1− δ

||V πk − V̂k ||ρπk ≤ c√
1− γ2

inf
f∈F
||V πk − f ||ρπk + O

(√
d log(d/δ)

n ν

)
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LSTD Error Bound

||V π − V̂ ||ρπ ≤
c√

1− γ2
inf

f∈F
||V π − f ||ρπ

︸ ︷︷ ︸
approximation error

+ O
(√

d log(d/δ)

n ν

)

︸ ︷︷ ︸
estimation error

I Approximation error: it depends on how well the function space F
can approximate the value function V π

I Estimation error: it depends on the number of samples n, the dim of
the function space d , the smallest eigenvalue of the Gram matrix ν, the
mixing properties of the Markov chain (hidden in O)
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LSTD Error Bound

||V πk − V̂k ||ρπk ≤ c√
1− γ2

inf
f∈F
||V πk − f ||ρπk

︸ ︷︷ ︸
approximation error

+ O



√

d log(d/δ)

n νk




︸ ︷︷ ︸
estimation error

I n number of samples and d dimensionality

A. LAZARIC – Reinforcement Learning Algorithms Dec 2nd, 2014 - 62/82



LSTD Error Bound

||V πk − V̂k ||ρπk ≤ c√
1− γ2

inf
f∈F
||V πk − f ||ρπk

︸ ︷︷ ︸
approximation error

+ O



√

d log(d/δ)

n νk




︸ ︷︷ ︸
estimation error

I νk = the smallest eigenvalue of the Gram matrix (
∫
ϕi ϕj dρπk )i,j

(Assumption: eigenvalues of the Gram matrix are strictly positive - existence of
the model-based LSTD solution)

I β-mixing coefficients are hidden in the O(·) notation
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LSPI Error Bound

Theorem (LSPI Error Bound)
If LSPI is run over K iterations, then the performance loss policy πK is

||V ∗ − VπK ||µ ≤
4γ

(1− γ)2

{√
CCµ,ρ

[
E0(F) + O

(√
d log(dK/δ)

n νρ

)]
+ γK Rmax

}

with probability 1− δ.
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LSPI Error Bound

Theorem (LSPI Error Bound)
If LSPI is run over K iterations, then the performance loss policy πK is

||V ∗ − VπK ||µ ≤
4γ

(1− γ)2

{√
CCµ,ρ

[
cE0(F) + O

(√
d log(dK/δ)

n νρ

)]
+ γK Rmax

}

with probability 1− δ.

I Approximation error: E0(F) = supπ∈G(F̃) inf f∈F ||V π − f ||ρπ
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LSPI Error Bound

Theorem (LSPI Error Bound)
If LSPI is run over K iterations, then the performance loss policy πK is

||V ∗ − VπK ||µ ≤
4γ

(1− γ)2

{√
CCµ,ρ

[
cE0(F) + O

(√
d log(dK/δ)

n νρ

)]
+ γK Rmax

}

with probability 1− δ.

I Approximation error: E0(F) = supπ∈G(F̃) inf f∈F ||V π − f ||ρπ

I Estimation error: depends on n, d , νρ,K
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LSPI Error Bound

Theorem (LSPI Error Bound)
If LSPI is run over K iterations, then the performance loss policy πK is

||V ∗ − VπK ||µ ≤
4γ

(1− γ)2

{√
CCµ,ρ

[
cE0(F) + O

(√
d log(dK/δ)

n νρ

)]
+ γK Rmax

}

with probability 1− δ.

I Approximation error: E0(F) = supπ∈G(F̃) inf f∈F ||V π − f ||ρπ

I Estimation error: depends on n, d , νρ,K

I Initialization error: error due to the choice of the initial value function or
initial policy |V ∗ − V π0 |
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LSPI Error Bound

LSPI Error Bound

||V ∗ − VπK ||µ ≤
4γ

(1− γ)2

{√
CCµ,ρ

[
cE0(F) + O

(√
d log(dK/δ)

n νρ

)]
+ γK Rmax

}

Lower-Bounding Distribution
There exists a distribution ρ such that for any policy π ∈ G(F̃), we have
ρ ≤ Cρπ, where C <∞ is a constant and ρπ is the stationary distribution of
π. Furthermore, we can define the concentrability coefficient Cµ,ρ as before.
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LSPI Error Bound

LSPI Error Bound

||V ∗ − VπK ||µ ≤
4γ

(1− γ)2

{√
CCµ,ρ

[
cE0(F) + O

(√
d log(dK/δ)

n νρ

)]
+ γK Rmax

}

Lower-Bounding Distribution
There exists a distribution ρ such that for any policy π ∈ G(F̃), we have
ρ ≤ Cρπ, where C <∞ is a constant and ρπ is the stationary distribution of
π. Furthermore, we can define the concentrability coefficient Cµ,ρ as before.

I νρ = the smallest eigenvalue of the Gram matrix (
∫
ϕi ϕj dρ)i,j
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Bellman Residual Minimization (BRM): the idea

V π

T π

F

T π

T πVBR arg min
V ∈F

‖V π − V ‖

VBR = arg min
V ∈F

‖T πV − V ‖

Let µ be a distribution over X , VBR is the minimum Bellman
residual w.r.t. T π

VBR = arg min
V∈F
‖T πV − V ‖2,µ
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Bellman Residual Minimization (BRM): the idea

The mapping α→ T πVα − Vα is affine
The function α→ ‖T πVα − Vα‖2

µ is quadratic
⇒ The minimum is obtained by computing the gradient and
setting it to zero

〈rπ + (γPπ − I)
d∑

j=1
φjαj , (γPπ − I)φi〉µ = 0,

which can be rewritten as Aα = b, with
{

Ai ,j = 〈φi − γPπφi , φj − γPπφj〉µ,
bi = 〈φi − γPπφi , rπ〉µ,
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Bellman Residual Minimization (BRM): the idea

Remark: the system admits a solution whenever the features φi are
linearly independent w.r.t. µ

Remark: let {ψi = φi − γPπφi}i=1...d , then the previous system
can be interpreted as a linear regression problem

‖α · ψ − rπ‖µ
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can be interpreted as a linear regression problem

‖α · ψ − rπ‖µ
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BRM: the approximation error

Proposition
We have

‖V π − VBR‖ ≤ ‖(I − γPπ)−1‖(1 + γ‖Pπ‖) inf
V∈F
‖V π − V ‖.

If µπ is the stationary policy of π, then ‖Pπ‖µπ = 1 and
‖(I − γPπ)−1‖µπ = 1

1−γ , thus

‖V π − VBR‖µπ ≤
1 + γ

1− γ inf
V∈F
‖V π − V ‖µπ .
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BRM: the implementation

Assumption. A generative model is available.
I Drawn n states Xt ∼ µ
I Call generative model on (Xt ,At) (with At = π(Xt)) and

obtain Rt = r(Xt ,At), Yt ∼ p(·|Xt ,At)

I Compute

B̂(V ) =
1
n

n∑

t=1

[
V (Xt)−

(
Rt + γV (Yt)

)
︸ ︷︷ ︸

T̂ V (Xt )

]2
.
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BRM: the implementation

Problem: this estimator is biased and not consistent! In fact,

E[B̂(V )] = E
[[

V (Xt)− T πV (Xt) + T πV (Xt)− T̂ V (Xt)
]2]

= ‖T πV − V ‖2
µ + E

[[
T πV (Xt)− T̂ V (Xt)

]2]

⇒ minimizing B̂(V ) does not correspond to minimizing B(V )
(even when n→∞).
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BRM: the implementation

Solution. In each state Xt , generate two independent samples Yt
et Y ′t ∼ p(·|Xt ,At)
Define

B̂(V ) =
1
n

n∑

t=1

[
V (Xt)−

(
Rt +γV (Yt)

)][
V (Xt)−

(
Rt +γV (Y ′t )

)]
.

⇒ B̂ → B for n→∞.
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BRM: the implementation

The function α→ B̂(Vα) is quadratic and we obtain the linear
system

Âi ,j =
1
n

n∑

t=1

[
φi (Xt)− γφi (Yt)

][
φj(Xt)− γφj(Y ′t )

]
,

b̂i =
1
n

n∑

t=1

[
φi (Xt)− γφi (Yt) + φi (Y ′t )

2
]

Rt .
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BRM: the approximation error

Proof. We relate the Bellman residual to the approximation error as

V π − V = V π − TπV + TπV − V = γPπ(V π − V ) + TπV − V
(I − γPπ)(V π − V ) = TπV − V ,

taking the norm both sides we obtain

‖V π − VBR‖ ≤ ‖(I − γPπ)−1‖‖T πVBR − VBR‖

and

‖T πVBR − VBR‖ = inf
V∈F
‖T πV − V ‖ ≤ (1 + γ‖Pπ‖) inf

V∈F
‖V π − V ‖.
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BRM: the approximation error

Proof. If we consider the stationary distribution µπ, then ‖Pπ‖µπ
= 1.

The matrix (I − γPπ) can be written as the power series
∑

t γ(Pπ)t .
Applying the norm we obtain

‖(I − γPπ)−1‖µπ
≤
∑

t≥0
γt‖Pπ‖t

µπ
≤ 1

1− γ

�
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LSTD vs BRM

I Different assumptions: BRM requires a generative model ,
LSTD requires a single trajectory .

I The performance is evaluated differently: BRM any
distribution, LSTD stationary distribution µπ.
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How to solve approximately an MDP

Approximate Dynamic
Programming

(a.k.a. Batch Reinforcement Learning)

Approximate Value Iteration

Neural Q-learning (aka DQN)
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Q-learning with Function Approximation

Exact Q-learning
I Compute the temporal difference on 〈xt , at , rt , xt+1〉

δt = rt + γmax
a′

Q(xt+1, a′)− Q(xt , at)

I Update the estimate of Q as

Q(xt , at) = Q(xt , at) + α(xt , at)δt
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Q-learning with Function Approximation
Approximate Q-learning
I Parameterize the Q-function Q(x , a; θ) using a NN architecture
I Define the error

L(θ) = E
[
r(x , a) + γmax Q(y , a′; θ′)− Q(x , a; θ)2]

I Compute the gradient

∇θL(θ) = E
[
(r(x , a) + γmax Q(y , a′; θ′)− Q(x , a; θ))∇θQ(x , a; θ)

]

I Update the parameter

θt+1 = θt + α∇θL(θt)

Main issues
I ∇θL(θ) cannot be computed (no expectation)
I Strong correlations between approximation, policy, and data
I Since data are then fed back into the approximation, this may lead

to instability and divergence
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Q-learning with Function Approximation

For i = 1, . . . , n
1. Set t = 0
2. Set initial state x0

3. While (xt not terminal)

3.1 Take action at with ε-greedy strategy using Q(xt , a; θi )
3.2 Observe next state xt+1 and reward rt
3.3 Store transition xt , at , xt+1, rt in D
3.4 Sample a random transition x , a, x ′, r from D [action reply]
3.5 Compute target [batch updates]

y = r + γmax
b

Q(x ′, b; θi )

3.6 Perform gradient descent on
(
y −Q(x , a; θi )

)2 and update θi+1

EndWhile
EndFor
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Q-learning with Function Approximation

Why it works:
I Action reply : de-correlate changes to θ to the current policy
I One-sample update: similar to stochastic gradient descent
I Batch updates: “freeze” the policy for a while

⇒ increase the stability by reducing the (fast) loops on changing
approximation, policy and data
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Q-learning with Function Approximation
Super-human performance
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Q-learning with Function Approximation

Why it works in Atari games:
I Based on images: ConNets work well on images
I Almost deterministic environment
I Massive amount of data

⇒ would it still work in, eg, financial applications?
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