
Master MVA: Reinforcement Learning Lecture: 3

Reinforcement Learning Algorithms

Lecturer: Alessandro Lazaric http://researchers.lille.inria.fr/∼lazaric/Webpage/Teaching.html

Objectives of the lecture

1. Understand: Stochastic approximation.

2. Use: TD(λ), Q-learning.

1 Solving MPDs with Unknown Dynamics and Rewards

Remark: the standard DP algorithms explicitly assume that both the transition probability p and the reward
function r are known. On the other hand, in the general reinforcement learning setting, this information is
not available to the agent which need a direct interaction with the environment (i.e., the MDP) in order to
solve it. This is a very common scenario in all those problems where the dynamics is very difficult to formalize
precisely (e.g., wind) and the reward function is not explicitly known in advance (e.g., in human-computer
interaction problems).

Depending on the level of knowledge and interaction available with the environment we define:

• Online learning: At each time t the agent is at state xt, it takes action at, it observes a transition to
state xt+1, and it receives a reward rt. We still assume that xt+1 ∼ p(·|xt, at) and rt = r(xt, at) (i.e.,
MDP assumption) but p and r are unknown. In order to guarantee that an agent could converge to
the optimal policy it is critical that the MDP is such that all the states can be experienced multiple
times.

• Episodic learning: It is possible to generate different trajectories over multiple episodes. In each
episode the agent is place in an arbitrary state and a policy is followed. An episode terminates after a
possibly random amount of time, after which the agent is reset and the next episode is started.

• Learning with generative model: Although p and r are not known in closed form, a black-box
simulator of the environment is available, so that for any arbitrary pair (x, a) it is possible to compute
the corresponding next state y ∼ p(·|x, a) and reward r = r(x, a).

1

2 Reinforcement Learning Algorithms

2 Policy Evaluation with Monte-Carlo Algorithms

2.1 Definition

We consider the undiscounted setting with infinite horizon and terminal state. Let π be a proper policies,
then the value function is defined as

V π(x) = E
[T−1∑

t=0

rπ(xt) |x0 = x;π
]
,

where rπ(xt) = r(xt, π(xt)) and T is the random time when the terminal state is achieved.

A simple estimation of V π(x) can be obtained as the average of the returns of independent trajectories.

Algorithm Definition 1 (Monte-Carlo). Let (xi
0 = x, xi

1, . . . , x
i
Ti

= 0)i≤n be a set of n independent
trajectories all starting from the initial state x and terminating after Ti steps. For any t < Ti, we
denote by

R̂i(xi
t) =

[
rπ(xi

t) + rπ(xi
t+1) + · · ·+ rπ(xi

Ti−1)
]

the return of the i-th trajectory at state xi
t. Then the Monte-Carlo estimator of V π(x) is defined

as

Vn(x) =
1

n

n∑

i=1

[
rπ(xi

0) + rπ(xi
1) + · · ·+ rπ(xi

Ti−1)
]
=

1

n

n∑

i=1

R̂i(x)

Guarantees. Since the MC estimator is just the empirical mean of n independent random variables all with
the same mean V π(x) (i.e., E[Ri(x)] = V π(x)), then according to the strong law of large numbers we obtain
that

Vn(x)
a.s.−→ V π(x).

2.2 First-visit and Every-visit Monte-Carlo

Remark: any trajectory (x0, x1, x2, . . . , xT) contains also the sub-trajectory (xt, xt+1, . . . , xT) whose return

R̂(xt) = rπ(xt) + · · · + rπ(xT−1) could be used to build an estimator of V π(xt). Thus one single trajec-
tory provides a sample for the estimation of all the {V π(xt)}t over all the states traversed by the policy.
Furthermore, a trajectory may visit the same state multiple times.

First-visit Monte-Carlo. For each state x we only consider the sub-trajectory when x is first achieved.
Although the estimator is unbiased, we only have one sample per trajectory.

Every-visit Monte-Carlo. Given a trajectory (x0 = x, x1, x2, . . . , xT), we list all the m sub-trajectories
starting from x up to xT . We denote by (xj

0 = x, xj
1, x

j
2, . . . , x

j
Tj
)mj=1 the j-th sub-trajectory obtained when

state x is observed for the j-th time within the original trajectory (x0 = x, x1, x2, . . . , xT). In this case the
sub-trajectories are not longer independent samples. Furthermore the number of sub-trajectories obtained
from one trajectory is itself a random variable. As a result, although from one trajectory we can obtain
more than one sample, the average of the sum of rewards over different sub-trajectories could be biased.

In order to compare the two methods, we measure the mean squared error (MSE) of an estimator V̂ w.r.t.
V (we omit the dependency on the state x and the policy π since it is clear from the context) as

E
[
(V̂ − V)2

]
=

(
E[V̂]− V

)2
︸ ︷︷ ︸

Bias2

+E
[(
V̂ − E[V̂]

)2]
︸ ︷︷ ︸

Variance

Reinforcement Learning Algorithms 3

Example: 2-state Markov Chain We consider the Markov chain (notice that once π is fixed any MDP
reduces to a Markov chain):

1−p

p

1

1 0

The reward is 1 while in state 1 (while is 0 in the terminal state). All the trajectories (x0, x1, . . . , xT) are
such that for any 0 ≤ t ≤ T − 1, xt = 1 and xT = 0. By using Bellman equations we have that the value
function in state 1 can be simply computed as

V (1) = 1 + (1− p)V (1) + p0 =
1

p
,

since V (0) = 0.

First-visit Monte-Carlo. Since all the trajectories start from state 1, then the reward cumulate over one
single trajectory is exactly T , i.e., V̂ = T . The time-to-end T is a geometric random variable since it is the
probability of obtaining a 0 from a Bernoulli random variable of probability p. Thus its expectation is

E[V̂] = E[T] =
1

p
= V π(1) ⇒ unbiased estimator.

Thus the MSE of V̂ coincides with the variance of T , which is

E

[(
T − 1

p

)2]
=

1

p2
− 1

p
.

Every-visit Monte-Carlo. Given one single trajectory of length T , we can construct as many sub-trajectories
as the number of times state 1 has been visited. Thus the estimator is the average of the T sub-trajectories
each of them with a cumulative reward T − t, that is

V̂ =
1

T

T−1∑

t=0

(T − t) =
1

T

T∑

t′=1

t′ =
T + 1

2
.

The corresponding expectation is

E

[T + 1

2

]
=

1 + p

2p
6= V π(1) ⇒ biased estimator.

Let now consider the case we n independent trajectories are generated, each of length Ti. In this case the
total number of samples available is

∑n
i=1 Ti and the estimator V̂n is

V̂n =

∑n
i=1

∑Ti−1
t=0 (Ti − t)∑n
i=1 Ti

=

∑n
i=1 Ti(Ti + 1)

2
∑n

i=1 Ti

=
1/n

∑n
i=1 Ti(Ti + 1)

2/n
∑n

i=1 Ti

a.s.−→ E[T 2] + E[T]

2E[T]
=

1

p
= V π(1) ⇒ consistent estimator.

We now compute the MSE of this estimator:

E

[(T + 1

2
− 1

p

)2]
=

1

2p2
− 3

4p
+

1

4
,

4 Reinforcement Learning Algorithms

which is smaller than the MSE of the first-visit Monte-Carlo estimator.

Summing up we have that:

• Every-visit Monte-Carlo: biased but consistent estimator.

• First-visit Monte-Carlo: unbiased estimator with potentially bigger MSE.

Remark: when the state space is large the probability of visiting multiple times the same state is low, then
the performance of the two methods tends to be the same.

3 Policy Evaluation with Stochastic Approximation

3.1 The TD(1) Algorithm

The algorithm is similar to the MC algorithm but applies the stochastic approximation idea.1

Algorithm Definition 2 (TD(1)). Let (xn
0 = x, xn

1 , . . . , x
n
Tn

) be the n-th trajectory and R̂n be the
corresponding return. For all xt with t ≤ T − 1 observed along the trajectory, we update the value
function estimate as

Vn(x
n
t) = (1− ηn(x

n
t))Vn−1(x

n
t) + ηn(x

n
t)R̂

n(xn
t). (1)

In the following we drop the dependency of the trajectory on the index n for sake of clarity.

Guarantees. Since each sample is an unbiased estimator of the actual value function, i.e.,

E
[
rπ(xt) + rπ(xt+1) + · · ·+ rπ(xT−1)|xt

]
= V π(xt),

then we can directly apply the convergence result in Proposition 7 and obtain that if all the states are visited
in an infinite number of trajectories and for all x ∈ X

∑

n

ηn(x) = ∞
∑

n

ηn(x)
2 < ∞,

then Vn(x)
a.s.→ V π(x). Notice that this statement can be extended to any x ∈ X if all the states are traversed

infinitely often.

3.2 The TD(0) Algorithm

The TD(1) algorithm relies on the fact that in its original definition, the state value function V π is an
expected value over random variables, that is

V π(x) = E
[T−1∑

t=0

rπ(xk) |x0 = x;π
]
.

1Here we assume that no state is not observed multiple times along the trajectory. In practice, the update is done recursively

at each state observed along the trajectory, thus the subscript n in Vn is not accurate anymore, since a value function could be

update more than once for each new trajectory.

Reinforcement Learning Algorithms 5

On the other hand, we recall that V π can be also defined recursively through the Bellman equations and
can viewed as the fixed point of the operator T π, so that

V π(x) = r(x, π(x)) +
∑

y∈X

p(y|x, π(x)V π(x) = T πV π(x).

Then we can apply the stochastic approximation algorithm for contraction operators and obtain the TD(0)
algorithm.

In order to apply stochastic approximation for contraction operators, we need a noisy observation of the
operator T π. We notice that for any x ∈ X and any V ,

T̂ πV (xt) = rπ(xt) + V (xt+1), with xt = x,

is an unbiased estimator of T πV (x) since

E[T̂ πV (xt)|xt = x] = E[rπ(xt) + V (xt+1)|xt = x] = r(x, π(x)) +
∑

y

p(y|x, π(x))V (y) = T πV (x).

Traditionally, the corresponding algorithm is not defined with V̂ but with the notion of temporal difference.

Definition 1. At iteration n, given the estimator Vn−1, for any observed transition from state xt to state
xt+1 we define its corresponding temporal difference as

dnt = rπ(xt) + Vn−1(xt+1)− Vn−1(xt).

Remark: Recalling the definition of Bellman equation for state value function, the temporal difference dnt
provides a measure of coherence of the estimator Vn−1 w.r.t. the transition xt → xt+1.

Algorithm Definition 3 (TD(0)). Let (xn
0 = x, xn

1 , . . . , x
n
Tn

) be the n-th trajectory, {T̂ πVn−1(x
n
t)}t

the noisy observation of the operator T π, and (dnt)
Tn
t=1 be the corresponding temporal differences.

For all xt with t ≤ T − 1 observed along the trajectory, we update the value function estimate as

Vn(x
n
t) = (1− ηn(x

n
t))Vn−1(x

n
t) + ηn(x

n
t)T̂ πVn−1(x

n
t)

= (1− ηn(x
n
t))Vn−1(x

n
t) + ηn(x

n
t)
(
rπ(xt) + Vn−1(xt+1)

)

= Vn−1(x
n
t) + ηn(x

n
t)d

n
t . (2)

Guarantees. The previous algorithm is a direct application of the stochastic approximation algorithm for
fixed point operators, then from Proposition 8 we have that Vn(x)

a.s→ V π(x). Notice that this statement can
be extended to any x ∈ X if all the states are traversed infinitely often.

(TODO: Need to show the definition of the noise and its boundedness.)

3.3 Temporal Differences TD(λ)

Comparison between TD(1) and TD(0). Notice that the update scheme in eq. 2 can be written as

Vn(xt) = Vn−1(xt) + ηn(xt)[d
n
t + dnt+1 + · · ·+ dnT−1]

6 Reinforcement Learning Algorithms

where dnt = rπ(xt) + Vn−1(xt+1) − Vn−1(xt) is the temporal difference in the evaluation of Vn when the
transition xt → xt+1 is observed. Thus algorithms TD(0) and TD(1) differ in the temporal difference
elements used in the update. The following algorithm proposes an intermediate approach between the two
extremes of TD(1) and TD(0) by using a discount over temporal differences.

Definition 2 (The T π
λ Bellman operator). Let λ < 1 be a fixed parameter, then the Bellman operator T π

λ is
a convex combination of the m-step Bellman operators (T π)m weighted by a sequences of coefficients defined
as a function of a λ as

T π
λ = (1 − λ)

∑

m≥0

λm(T π)m+1. (3)

Proposition 1. If π is a proper policy and the Bellman operator T π is a β-contraction in a weighted
Lµ,∞ norm, then Bellman operator T π

λ of parameter λ is a contraction of factor

(1− λ)β

1− βλ
∈ [0, β].

Proof. Let P π be the transition matrix of the Markov chain induced by the policy π then

T π
λ V = (1− λ)

[∑

m≥0

λm
m∑

i=0

(P π)i
]
rπ + (1 − λ)

∑

m≥0

λm(P π)m+1V

=
[∑

m≥0

λm(P π)m
]
rπ + (1− λ)

∑

m≥0

λm(P π)m+1V

= (I − λP π)−1rπ + (1− λ)
∑

m≥0

λm(P π)m+1V.

Since T π is a β-contraction in Lµ,∞ then ||P πV ||µ ≤ β||V ||µ and ||(P π)mV ||µ ≤ βm||V ||µ. Thus

||(1− λ)
∑

m≥0

λm(P π)m+1V ||µ ≤ (1− λ)
∑

m≥0

λm||(P π)m+1V ||µ ≤ (1− λ)β

1− βλ
||V ||µ,

which implies that T π
λ is a contraction in L∞,µ as well.

Similarly to TD(1) and TD(0) we now apply a stochastic approximation algorithm to the T π
λ Bellman

operator and obtain the following algorithm.

Algorithm Definition 4 (Sutton, 1988). Let (xn
0 = x, xn

1 , . . . , x
n
Tn

) be the n-th trajectory, and (dnt)
Tn
t=1

be the corresponding temporal differences. For all xt with t ≤ T − 1 observed along the trajectory,
we update the value function estimate as

Vn(x
n
t) = Vn−1(x

n
t) + ηn(x

n
t)

Tn−1∑

s=t

λs−tdns . (4)

Reinforcement Learning Algorithms 7

Guarantees. The previous algorithm is based on the observation that
∑T−1

s=t λs−tds|xt = x is an unbiased
estimator T π

λ Vn−1(x)− Vn−1(x), since for any s ≥ t, (we omit the dependency on n)

E[ds|xt = x] = E

[
rπ(xs) + Vn−1(xs+1)− Vn−1(xs)

∣∣xt = x
]

= E

[s∑

i=t

rπ(xi) + Vn−1(xs+1)
∣∣xt = x

]
− E

[s−1∑

i=k

rπ(xi) + Vn−1(xs)
∣∣xt = x

]

= (T π)s−t+1Vn−1(x)− (T π)s−tVn−1(x),

and thus

E[

T−1∑

s=t

λs−tds|xt = x] =

T−1∑

s=t

λs−t
[
(T π)s−t+1Vn−1(x) − (T π)s−tVn−1(x)

]

=
∑

m≥0

λm
[
(T π)m+1Vn−1(x)− (T π)mVn−1(x)

]

=
∑

m≥0

λm(T π)m+1Vn−1(x)−
[
Vn−1(x) +

∑

m>0

λm(T π)mVn−1(x)
]

=
∑

m≥0

λm(T π)m+1Vn−1(x)−
[
Vn−1(x) + λ

∑

m>0

λm−1(T π)mVn−1(x)
]

=
∑

m≥0

λm(T π)m+1Vn−1(x)−
[
Vn−1(x) + λ

∑

m≥0

λm(T π)m+1Vn−1(x)
]

= (1− λ)
∑

m≥0

λm(T π)m+1Vn−1(x)− Vn−1(x) = T π
λ Vn−1(x) − Vn−1(x).

Then from Proposition 8 it follows that Vn
a.s.−→ V π.

(TODO: Need to show the definition of the noise and its boundedness.)

Sensitivity to λ. Simple linear chain example

0 1 3 4
−1

2
0 0 0

05
1

The MSE of Vn w.r.t. V π after n = 100 trajectories:

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

0.2 0.4 0.6 0.8 1 λ0

• λ < 1: smaller variance w.r.t. λ = 1 (MC/TD(1)).

• λ > 0: faster propagation of rewards w.r.t. λ = 0.

8 Reinforcement Learning Algorithms

Implementation of TD(λ). Although in the previous paragraphs we described the TD algorithms as
incremental over trajectories, in practice we apply the update rule at each time step after observing an
transition. Thus, in the following we drop the transition index n, since at each step t the current value
function estimate V is updated. In particular, TD algorithm are often implemented using the eligibility
tracesz ∈ R

N . For every transition xt → xt+1 we first compute the temporal difference dt = rπ(xt) +
Vn(xt+1)− Vn(xt) and then we update the eligibility traces as

z(x) =

λz(x) if x 6= xt

1 + λz(x) if x = xt

0 if xt = 0 (reset the traces)

and finally for all states x we update the value function estimate as

V (x) = V (x) + ηt(x)z(x)dt.

TD(λ) in discounted reward MDPs. The Bellman operator T π
λ is defined as

T π
λ V (x0) = (1 − λ)E

[∑

t≥0

λt
(t∑

i=0

γirπ(xi) + γt+1V (xt+1)
)]

= E
[
(1 − λ)

∑

i≥0

γirπ(xi)
∑

t≥i

λt +
∑

t≥0

γt+1V (xt+1)(λ
t − λt+1)

]

= E
[∑

i≥0

λi
(
γirπ(xi) + γi+1V (xi+1)− γiV (xi)

)]
+ Vn(x0)

= E
[∑

i≥0

(γλ)idi
]
+ V (x0),

with the temporal difference di = rπ(xi) + γV (xi+1)− V (xi).

The corresponding TD(λ) algorithm becomes

Vn+1(xt) = Vn(xt) + ηn(xt)
∑

s≥t

(γλ)s−tdt.

4 Q-learning

Remark: all previous algorithms allow to have an (asymptotically) accurate estimation of the value function
for any fixed policy π. Nonetheless, in a policy iteration structure, at iteration k, given a policy πk and an
estimate Vn of its value function V π, the greedy policy step requires to compute

πk+1(x) ∈ argmax
a

[
r(x, a) +

∑

y

p(y|x, a)Vn(y)
]
.

In an online setting, the transition probabilities p are unknown, then it is not possible to compute πk+1. On
the other hand, we notice that if an estimate of the action value function Qn is available, the greedy policy
step simplifies to

πk+1(x) ∈ argmax
a

Qn(x, a),

which does not require any knowledge about the transition probabilities.

The Q-learning algorithm follows a value iteration scheme, whose objective is to directly provide an approx-
imation of the optimal action value function Q∗.

Reinforcement Learning Algorithms 9

Algorithm Definition 5 (Watkins, 1989). We build a sequence of Q-functions Qn in such a way that
for every observed transition (x, a, y, r), the Q-function in (x, a) is updated as

Qn+1(x, a) = (1− ηn(x, a))Qn(x, a) + ηn(x, a)
[
r +max

b∈A
Qn(y, b)

]
.

Proposition 2. [Watkins et Dayan, 1992] Let assume that all the policies π are proper and that all
the state-action pairs are visited infinitely often. If the learning steps satisfy the condition that
∀x, a, ∑n≥0 ηn(x, a) = ∞,

∑
n≥0 η

2
n(x, a) < ∞. Then for any x ∈ X , a ∈ A,

Qn(x, a)
a.s.−→ Q∗(x, a).

Proof. We recall the definition of the optimal Bellman operator T as

T W (x, a) = r(x, a) +
∑

y

p(y|x, a)max
b∈A

W (y, b),

which has Q∗ has the unique fixed point. Since all the policies are proper, then there exist a vector µ ∈ R
N

and a scalar β < 1 such that
∑

y p(y|x, a)µ(y) ≤ βµ(x), which implies that T is a contraction in the
Lµ,∞-norm.

We can rewrite the Q-learning algorithm as an explicit stochastic approximation of the optimal Bellman
operator using noisy observations of the operator, that is

Qn+1(x, a) = (1− ηn(x, a))Qn(x, a) + ηn[T Qn(x, a) + bn(x, a)],

where bn(x, a) is a zero-mean random variable such thatE[b2n(x, a)] ≤ c(1 + maxy,b Q
2
n(y, b)) (where c is a

constant). Then we can directly apply Proposition 8 and obtain the almost surely convergence result.

Q-learning in discounted reward MDPs. The previous algorithm can be simply extended to the
discounted case as

Qn+1(x, a) = Qn(x, a) + ηn(x, a)
[
r + γmax

b∈A
Qn(y, b)−Qn(x, a)

]
,

which converges to Q∗ exactly under the same conditions as before.

10 Reinforcement Learning Algorithms

A Concentration Inequalities

Definition 3. Let X be a random variable and {Xn}n∈N a sequence of random variables. Then

(a) {Xn} converges to X almost surely, Xn
a.s.−→ X, if

P(lim
n→∞

Xn = X) = 1,

(b) {Xn} converges to X in probability, Xn
P−→ X, if for any ǫ > 0,

lim
n→∞

P[|Xn −X | > ǫ] = 0,

(c) {Xn} converges to X in law (or in distribution), Xn
D−→ X, if for any bounded continuous function f

lim
n→∞

E[f(Xn)] = E[f(X)].

Remark: given the previous definitions we have Xn
a.s.−→ X =⇒ Xn

P−→ X =⇒ Xn
D−→ X .

Proposition 3 (Markov Inequality). Let X be a positive random variable. Then for any a > 0,

P(X ≥ a) ≤ EX

a
.

Proof. We have that P(X ≥ a) = E[I{X ≥ a}] = E[I{X/a ≥ 1}] ≤ E[X/a].

Proposition 4 (Hoeffding Inequality). Let X be a centered random variable bounded in [a, b].
Then for any s ∈ R,

E[esX] ≤ es
2(b−a)2/8.

Proof. From convexity of the exponential function, we have that for any a ≤ x ≤ b,

esx ≤ x− a

b− a
esb +

b− x

b− a
esa.

Let p = −a/(b− a) then (recall that E[X] = 0)

Eesx ≤ b

b− a
esa − a

b− a
esb

= (1− p+ pes(b−a))e−ps(b−a) = eφ(u)

with u = s(b − a) et φ(u) = −pu + log(1 − p + peu). The derivative of φ is φ′(u) = −p + p
p+(1−p)e−u .

Furthermore φ(0) = φ′(0) = 0 and φ′′(u) = p(1−p)e−u

(p+(1−p)e−u)2 ≤ 1/4.

Thus from Taylor’s theorem, the exists a θ ∈ [0, u] such that

φ(u) = φ(0) + uφ′(0) +
u2

2
φ′′(θ) ≤ u2

8
=

s2(b− a)2

8
.

Reinforcement Learning Algorithms 11

Proposition 5 (Chernoff-Hoeffding Inequality). Let Xi ∈ [ai, bi] be n independent random variables
with mean µi = EXi. Then

P
(∣∣

n∑

i=1

Xi − µi

∣∣ ≥ ǫ
)
≤ 2 exp

(
− 2ǫ2∑n

i=1(bi − ai)2

)
. (5)

Proof. We have

P(

n∑

i=1

Xi − µi ≥ ǫ) = P(es
∑n

i=1 Xi−µi ≥ esǫ)

≤ e−sǫ
E[es

∑n
i=1 Xi−µi], Markov inequality

= e−sǫ
n∏

i=1

E[es(Xi−µi)], independent random variables

≤ e−sǫ
n∏

i=1

es
2(bi−ai)

2/8, Hoeffding inequality

= e−sǫ+s2
∑n

i=1(bi−ai)
2/8

If we choose s = 4ǫ/
∑n

i=1(bi − ai)
2, then P

(∑n
i=1 Xi − µi ≥ ǫ

)
≤ e

− 2ǫ2∑n
i=1

(bi−ai)
2
. Similar computation for

P
(∑n

i=1 Xi − µi ≤ −ǫ
)
leads to the result in eq. (5).

B Basics of Stochastic Approximation

B.1 Monte-Carlo Approximation of a Mean

Definition 4. Let X be a random variable with mean µ = E[X] and variance σ2 = V[X] and xn ∼ X be n
i.i.d. realizations of X. The empirical mean built on n i.i.d. realizations is defined as

µn =
1

n

n∑

i=1

xi.

Then E[µn] = µ, V[µn] =
V[X]
n and

• Weak law of large numbers: µn
P−→ µ.

• Strong law of large numbers: µn
a.s.−→ µ.

• Central limit theorem (CLT):
√
n(µn − µ)

D−→ N (0,V[X]).

B.2 Stochastic Approximation of a Mean

Definition 5. Let X a random variable bounded in [0, 1] with mean µ = E[X] and xn ∼ X be n i.i.d.
realizations of X. Let the estimator µn be defined as µ1 = x1, and n > 1,

µn = (1− ηn)µn−1 + ηnxn (6)

12 Reinforcement Learning Algorithms

where (ηn) is a sequence of learning steps.

Before stating the main result for the previous estimator, we report a useful lemma.

Proposition 6 (Borel-Cantelli). Let (En)n≥1 be a sequence of events such that
∑

n≥1 P(En) < ∞,
then the probability of the intersection of an infinite of those elements is 0. More formally,

P

(
lim sup
n→∞

En

)
= P

(∞⋂

n=1

∞⋃

k=n

Ek

)
= 0.

Proof. Let assume that the probability that an infinite number of event En occur is≥ a > 0, i.e. P
(
lim sup
n→∞

En

)
≥

a and let denote this set as E . Then the probability of each of the events Ei ∈ E is at least a, which leads
to

∑
n≥1 P(En) ≥

∑
En∈E a = ∞, which contradicts the assumption.

Proposition 7. If for any n, ηn ≥ 0 and are such that

∑

n≥0

ηn = ∞, (7)

∑

n≥0

η2n < ∞, (8)

then µn
a.s.−→ µ and we say that µn is a consistent estimator.

Remark: The learning steps ηn = 1
n satisfies the previous conditions. Thus the previous proposition corre-

sponds to the strong law of large numbers for the empirical mean µn = 1
n

∑n
i=1 xi.

Proof. We focus on the case ηn = n−α. The general proof can be found in On Stochastic Approximation,
Dvoretzky, 1956.

In order to satisfy the two conditions we need 1/2 < α ≤ 1. In fact, as an example we have that

α = 2 ⇒
∑

n≥0

1

n2
=

π2

6
< ∞ (see the Basel problem for the proof)

α = 1/2 ⇒
∑

n≥0

(1√
n

)2

=
∑

n≥0

1

n
= ∞ (harmonic series).

Case α = 1 In this case µn is the empirical mean of xi and thus we can directly apply the Chernoff-
Hoeffding inequality in Proposition 5, and we have that for any fixed n

P
(∣∣µn − µ

∣∣ ≥ ǫ
)
≤ 2e−2nǫ2 . (9)

Although as n increases the probability to have a deviation of ǫ between the empirical mean and the true
expectation reduces to zero, this is not enough to prove an almost surely convergence. In particular, let (ǫk)k
an arbitrary sequence converging to 0 as k → ∞, then the almost surely convergence can be rewritten as

P

(
lim
n→∞

µn = µ
)
= P(∀k, ∃nk, ∀n ≥ nk,

∣∣µn − µ
∣∣ ≤ ǫk) = 1.

Reinforcement Learning Algorithms 13

We define the sequence of events En = {
∣∣µn − µ

∣∣ ≥ ǫ}. From eq.(9) we have that
∑

n≥1 P(En) < ∞ which
allows us to apply the Borel-Cantelli lemma and obtain that with probability 1 there exist only a finite
number of n values such that

∣∣µn−µ
∣∣ ≥ ǫ. Given a sequence (ǫk)k such that ǫk → 0, we have that for any ǫk

there exist only a finite number of instants were
∣∣µn − µ

∣∣ ≥ ǫk, which corresponds to have that there exists

a value nk such that P(∀n ≥ nk,
∣∣µn − µ

∣∣ ≤ ǫk) = 1. We can repeat the same reasoning for all ǫk in the
sequence and obtain that

P(∀k, ∃nk, ∀n ≥ nk,
∣∣µn − µ

∣∣ ≤ ǫk) = 1,

which is exactly the definition of convergence almost surely.

Case 1/2 < α < 1. We first notice that the stochastic approximation µn can be written as

µ1 = x1

µ2 = (1− η2)µ1 + η2x2 = (1 − η2)x1 + η2x2

µ3 = (1− η3)µ2 + η3x3 = (1 − η2)(1 − η3)x1 + η2(1− η3)x2 + η3x3

. . .

µn =

n∑

i=1

λixi, (10)

with λi = ηi
∏n

j=i+1(1− ηj) such that
∑n

i=1 λi = 1. The previous expression highlights the fact that µn can
be interpreted as a weighted sum of the samples xi, which allows us to apply again the Chernoff-Hoeffding
inequality as

P
(∣∣

n∑

i=1

λixi −
n∑

i=1

λiE[xi]
∣∣ ≥ ǫ

)
= P

(∣∣µn − µ
∣∣ ≥ ǫ

)
≤ e

− 2ǫ2
∑n

i=1
λ2
i .

We now need to provide a bound on the sum of the squared coefficients λi. From the definition of the
coefficients λi we have that

logλi = log ηi +

n∑

j=i+1

log(1− ηj) ≤ log ηi −
n∑

j=i+1

ηj

where the inequality follows from log(1 − x) < −x. Thus we obtain λi ≤ ηie
−

∑n
j=i+1 ηj . Furthermore, for

any 1 ≤ m ≤ n,

n∑

i=1

λ2
i ≤

n∑

i=1

η2i e
−2

∑n
j=i+1 ηj

(a)

≤
m∑

i=1

e−2
∑n

j=i+1 ηj +

n∑

i=m+1

η2i

(b)

≤ me−2(n−m)ηn + (n−m)η2m
(c)
= me−2(n−m)n−α

+ (n−m)m−2α,

where (a) follows from ηi ≤ 1, (b) from taking the elements which maximize the summations, and (c) from
the definition of ηm = m−α. Let m = nβ with β = (1 + α/2)/2 (i.e. 1− 2αβ = 1/2− α):

n∑

i=1

λ2
i ≤ ne−2(1−n−1/4)n1−α

+ n1/2−α ≤ 2n1/2−α

14 Reinforcement Learning Algorithms

for n big enough, which leads to

P
(∣∣µn − µ

∣∣ ≥ ǫ
)
≤ e

− ǫ2

n1/2−α .

From this point we follow the same steps as for α = 1 (application of the Borel-Cantelli lemma) and obtain
the convergence result for µn.

B.3 Stochastic Approximation of a Fixed Point

Let T : R
N → R

N a contraction in the weighted Lµ,∞, that is, ∃β < 1, ∃µ ∈ R
N
+,∗, ∀V1, V2 ∈ R

N ,
||T V1−T V2||µ,∞ ≤ β||V1−V2||µ,∞. We denote by V the fixed point of T . We assume that noisy observations

of the unknown operator T are available, i.e., T̂ V = T V + b, with b a zero-mean noise (i.e., E[b] = 0). Given
a series of noisy observations, we apply stochastic approximation to estimate the operator T . For any
x ∈ X = {1, . . . , N}, we defined the stochastic approximation

Vn+1(x) = (1− ηn(x))Vn(x) + ηn(x)(T̂ Vn(x)) = (1− ηn(x))Vn(x) + ηn(x)(T Vn(x) + bn),

where ηn is a learning step.

Let Fn = {V0, . . . , Vn, b0, . . . , bn−1, η0, . . . , ηn} be the history of the algorithm. Then the following proposition
guarantees the convergence of the stochastic approximation.

Proposition 8. Let be the noise b have zero mean conditioned on the filtration Fn, i.e., E[bn(x)|Fn] =
0 and its variance be bounded as E[b2n(x)|Fn] ≤ c(1+||Vn||2) for a constant c. For any x, the learning
rates η(x) are positive and satisfy the stochastic approximation conditions

∑

n≥0

ηn = ∞,

∑

n≥0

η2n < ∞,

then for any x ∈ X
Vn(x)

a.s.−→ V (x).

Proof. Although the proof follows similar arguments as before, in this case the arguments are most sophisti-
cated because of the operator T and different approaches are possible. In Neuro Dynamic Programming de
Bertsekas et Tsitsiklis, 1996, the proof uses the notion of Lyapunov function. A more general proof is based
on a continuous time approximation using ODE (ordinary differential equations), see e.g., Kushner et Yin
Stochastic Approximation and Recursive Algorithms and Applications, 2003. Finally, a first proof has been
simultaneously produced in Jaakola, Jordan et Singh, On the convergence of Stochastic Iterative Dynamic
Programming Algorithms, 1994, and Tsitsiklis, Asynchronous Stochastic Approximation and Q-Learning,
1994.

B.4 Other Stochastic Approximation Algorithms

Robbins-Monro (1951) algorithm. We want to find the zero of a noisy function f , i.e., solve the equation
f(x) = 0. Since f is noise, in each xn we observe yn = f(xn) + bn where bn is a zero-mean independent
noise. Let

xn+1 = xn − ηnyn.

Reinforcement Learning Algorithms 15

If f is an increasing function and x∗ is the solution, then under the same assumptions on the learning step,
we have that xn

a.s.−→ x∗.

Kiefer-Wolfowitz (1952) algorithm. We want to find the local minimum of a function f such that its
gradient is noisy, that is for any xn we can compute gn = ∇f(xn) + bn. Then by using the stochastic
approximation

xn+1 = xn − ηngn.

we obtain that under the same assumptions on the learning steps (ηn) (and an additional assumption on the

fact that the Hessian ∇2f is positive), we have that xn
a.s.−→ x∗ where x∗ is the minimum of f . This is often

referred to as the stochastic gradient algorithm.

	Solving MPDs with Unknown Dynamics and Rewards
	Policy Evaluation with Monte-Carlo Algorithms
	Definition
	First-visit and Every-visit Monte-Carlo

	Policy Evaluation with Stochastic Approximation
	The TD(1) Algorithm
	The TD(0) Algorithm
	Temporal Differences TD()

	Q-learning
	Concentration Inequalities
	Basics of Stochastic Approximation
	Monte-Carlo Approximation of a Mean
	Stochastic Approximation of a Mean
	Stochastic Approximation of a Fixed Point
	Other Stochastic Approximation Algorithms

