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In This Lecture

Question: which route should we take?

Problem: each day we obtain a limited feedback: traveling time
of the chosen route

Results: if we do not repeatedly try different options we cannot
learn.

Solution: trade off between optimization and learning .
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Mathematical Tools

Concentration Inequalities

Proposition (Chernoff-Hoeffding Inequality)

Let Xi ∈ [ai , bi ] be n independent r.v. with mean µi = EXi . Then

P
[∣∣∣ n∑

i=1

(
Xi − µi

)∣∣∣ ≥ ε] ≤ 2 exp
(
− 2ε2∑n

i=1(bi − ai )2

)
.
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Mathematical Tools

Concentration Inequalities

Proof.

P
( n∑

i=1
Xi − µi ≥ ε

)
= P(es

∑n
i=1 Xi−µi ≥ esε)

≤ e−sεE[es
∑n

i=1 Xi−µi ], Markov inequality

= e−sε
n∏

i=1
E[es(Xi−µi )], independent random variables

≤ e−sε
n∏

i=1
es2(bi−ai )

2/8, Hoeffding inequality

= e−sε+s2 ∑n
i=1(bi−ai )

2/8

If we choose s = 4ε/
∑n

i=1(bi − ai )
2, the result follows.

Similar arguments hold for P
(∑n

i=1 Xi − µi ≤ −ε
)
.
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Mathematical Tools

Concentration Inequalities

Finite sample guarantee:

P

[ ∣∣∣1n
n∑

t=1
Xt − E[X1]

∣∣∣︸ ︷︷ ︸
deviation

> ε︸︷︷︸
accuracy

]
≤ 2 exp

(
− 2nε2

(b − a)2

)
︸ ︷︷ ︸

confidence
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Mathematical Tools

Concentration Inequalities

Finite sample guarantee:

P

[∣∣∣1n
n∑

t=1
Xt − E[X1]

∣∣∣ > (b − a)

√
log 2/δ

2n

]
≤ δ
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Mathematical Tools

Concentration Inequalities

Finite sample guarantee:

P

[∣∣∣1n
n∑

t=1
Xt − E[X1]

∣∣∣ > ε

]
≤ δ

if n ≥ (b−a)2 log 2/δ
2ε2 .
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The General Multi-arm Bandit Problem

The Multi–armed Bandit Game

The learner has i = 1, . . . ,N arms (options, experts, ...)

At each round t = 1, . . . , n
I At the same time

I The environment chooses a vector of rewards {Xi,t}N
i=1

I The learner chooses an arm It
I The learner receives a reward XIt ,t
I The environment does not reveal the rewards of the other

arms
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The General Multi-arm Bandit Problem

The Multi–armed Bandit Game (cont’d)

The regret

Rn(A) = max
i=1,...,N

E
[ n∑

t=1
Xi ,t
]
− E

[ n∑
t=1

XIt ,t

]
The expectation summarizes any possible source of randomness (either in
X or in the algorithm)
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The General Multi-arm Bandit Problem

The Exploration–Exploitation Lemma

Problem 1: The environment does not reveal the rewards of the
arms not pulled by the learner
⇒ the learner should gain information by repeatedly pulling all the
arms ⇒ exploration

Problem 2: Whenever the learner pulls a bad arm, it suffers some
regret
⇒ the learner should reduce the regret by repeatedly pulling the
best arm ⇒ exploitation
Challenge: The learner should solve two opposite problems!
Challenge: The learner should solve the exploration-exploitation
dilemma!
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The General Multi-arm Bandit Problem

The Multi–armed Bandit Game (cont’d)

Examples
I Packet routing
I Clinical trials
I Web advertising
I Computer games
I Resource mining
I ...

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 14/94



The Stochastic Multi-arm Bandit Problem
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The Stochastic Multi-arm Bandit Problem

The Stochastic Multi–armed Bandit Problem

Definition
The environment is stochastic

I Each arm has a distribution νi bounded in [0, 1] and
characterized by an expected value µi

I The rewards are i.i.d. Xi ,t ∼ νi

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 16/94



The Stochastic Multi-arm Bandit Problem

The Stochastic Multi–armed Bandit Problem (cont’d)
Notation

I Number of times arm i has been pulled after n rounds

Ti ,n =
n∑

t=1
I{It = i}

I Regret

Rn(A) = max
i=1,...,N

E
[ n∑

t=1
Xi ,t
]
− E

[ n∑
t=1

XIt ,t

]
Rn(A) = max

i=1,...,N
(nµi )− E

[ n∑
t=1

XIt ,t

]

Rn(A) = max
i=1,...,N

(nµi )−
N∑

i=1
E[Ti ,n]µi

Rn(A) = nµi∗ −
N∑

i=1
E[Ti ,n]µi

Rn(A) =
∑
i 6=i∗

E[Ti ,n](µi∗ − µi )

Rn(A) =
∑
i 6=i∗

E[Ti ,n]∆i

I Gap ∆i = µi∗ − µi

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 17/94



The Stochastic Multi-arm Bandit Problem

The Stochastic Multi–armed Bandit Problem (cont’d)

Rn(A) =
∑
i 6=i∗

E[Ti ,n]∆i

⇒ we only need to study the expected number of pulls of the
suboptimal arms
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The Stochastic Multi-arm Bandit Problem

The Stochastic Multi–armed Bandit Problem (cont’d)

Optimism in Face of Uncertainty Learning (OFUL)

Whenever we are uncertain about the outcome of an arm, we
consider the best possible world and choose the best arm.
Why it works:

I If the best possible world is correct ⇒ no regret
I If the best possible world is wrong ⇒ the reduction in the

uncertainty is maximized
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The Stochastic Multi-arm Bandit Problem

The Stochastic Multi–armed Bandit Problem (cont’d)
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The Stochastic Multi-arm Bandit Problem

The Stochastic Multi–armed Bandit Problem (cont’d)
Optimism in face of uncertainty
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The Stochastic Multi-arm Bandit Problem

The Upper–Confidence Bound (UCB) Algorithm
The idea
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The Stochastic Multi-arm Bandit Problem

The Upper–Confidence Bound (UCB) Algorithm

Show time!
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The Stochastic Multi-arm Bandit Problem

The Upper–Confidence Bound (UCB) Algorithm (cont’d)

At each round t = 1, . . . , n
I Compute the score of each arm i

Bi = (optimistic score of arm i)

I Pull arm
It = arg max

i=1,...,N
Bi ,s,t

I Update the number of pulls TIt ,t = TIt ,t−1 + 1
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The Stochastic Multi-arm Bandit Problem

The Upper–Confidence Bound (UCB) Algorithm (cont’d)

The score (with parameters ρ and δ)

Bi = (optimistic score of arm i)

Bi ,s,t = (optimistic score of arm i if pulled s times up to round t)

Bi ,s,t = knowledge +︸︷︷︸
optimism

uncertainty

Bi ,s,t = µ̂i ,s + ρ

√
log 1/δ

2s
Optimism in face of uncertainty:
Current knowledge: average rewards µ̂i ,s
Current uncertainty : number of pulls s
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The Stochastic Multi-arm Bandit Problem

The Upper–Confidence Bound (UCB) Algorithm (cont’d)

Do you remember Chernoff-Hoeffding?

Theorem
Let X1, . . . ,Xn be i.i.d. samples from a distribution bounded in
[a, b], then for any δ ∈ (0, 1)

P

[∣∣∣1n
n∑

t=1
Xt − E[X1]

∣∣∣ > (b − a)

√
log 2/δ

2n

]
≤ δ

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 26/94



The Stochastic Multi-arm Bandit Problem

The Upper–Confidence Bound (UCB) Algorithm (cont’d)

After s pulls, arm i

P

[
E[Xi ] ≤

1
s

s∑
t=1

Xi ,t +

√
log 1/δ

2s

]
≥ 1− δ

P

[
µi ≤ µ̂i ,s +

√
log 1/δ

2s

]
≥ 1− δ

⇒ UCB uses an upper confidence bound on the expectation
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The Stochastic Multi-arm Bandit Problem

The Upper–Confidence Bound (UCB) Algorithm (cont’d)

Theorem
For any set of N arms with distributions bounded in [0, b], if
δ = 1/t, then UCB(ρ) with ρ > 1, achieves a regret

Rn(A) ≤
∑
i 6=i∗

[
4b2

∆i
ρ log(n) + ∆i

(
3
2 +

1
2(ρ− 1)

)]
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The Stochastic Multi-arm Bandit Problem

The Upper–Confidence Bound (UCB) Algorithm (cont’d)

Let N = 2 with i∗ = 1

Rn(A) ≤ O
(

1
∆
ρ log(n)

)
Remark 1: the cumulative regret slowly increases as log(n)
Remark 2: the smaller the gap the bigger the regret... why?
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The Stochastic Multi-arm Bandit Problem

The Upper–Confidence Bound (UCB) Algorithm (cont’d)

Show time (again)!
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The Stochastic Multi-arm Bandit Problem

The Worst–case Performance

Remark: the regret bound is distribution–dependent

Rn(A; ∆) ≤ O
(

1
∆
ρ log(n)

)
Meaning: the algorithm is able to adapt to the specific problem at
hand!
Worst–case performance: what is the distribution which leads to
the worst possible performance of UCB? what is the
distribution–free performance of UCB?

Rn(A) = sup
∆

Rn(A; ∆)
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The Stochastic Multi-arm Bandit Problem

The Worst–case Performance

Problem: it seems like if ∆→ 0 then the regret tends to infinity...
... nosense because the regret is defined as

Rn(A; ∆) = E[T2,n]∆

then if ∆i is small, the regret is also small...
In fact

Rn(A; ∆) = min
{

O
(

1
∆
ρ log(n)

)
,E[T2,n]∆

}
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The Stochastic Multi-arm Bandit Problem

The Worst–case Performance

Then

Rn(A) = sup
∆

Rn(A; ∆) = sup
∆

min
{

O
(

1
∆
ρ log(n)

)
, n∆

}
≈
√

n

for ∆ =
√

1/n
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The Stochastic Multi-arm Bandit Problem

Tuning the confidence δ of UCB

Remark: UCB is an anytime algorithm (δ = 1/t)

Bi ,s,t = µ̂i ,s + ρ

√
log t
2s

Remark: If the time horizon n is known then the optimal choice is
δ = 1/n

Bi ,s,t = µ̂i ,s + ρ

√
log n

2s
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The Stochastic Multi-arm Bandit Problem

Tuning the confidence δ of UCB (cont’d)

Intuition: UCB should pull the suboptimal arms
I Enough: so as to understand which arm is the best
I Not too much: so as to keep the regret as small as possible

The confidence 1− δ has the following impact (similar for ρ)
I Big 1− δ: high level of exploration
I Small 1− δ: high level of exploitation

Solution: depending on the time horizon, we can tune how to
trade-off between exploration and exploitation
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The Stochastic Multi-arm Bandit Problem

Tuning the confidence δ of UCB (cont’d)
Let’s dig into the (1 page and half!!) proof.

Define the (high-probability) event [statistics]

E =

{
∀i , s

∣∣∣µ̂i,s − µi

∣∣∣ ≤√ log 1/δ
2s

}
By Chernoff-Hoeffding P[E ] ≥ 1− nNδ.
At time t we pull arm i [algorithm]

Bi,Ti,t−1 ≥ Bi∗,Ti∗,t−1

µ̂i,Ti,t−1 +

√
log 1/δ
2Ti,t−1

≥ µ̂i∗,Ti∗,t−1 +

√
log 1/δ

2Ti∗,t−1

On the event E we have [math]

µi + 2

√
log 1/δ
2Ti,t−1

≥ µi∗
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The Stochastic Multi-arm Bandit Problem

Tuning the confidence δ of UCB (cont’d)
Assume t is the last time i is pulled, then Ti,n = Ti,t−1 + 1, thus

µi + 2

√
log 1/δ

2(Ti,n − 1)
≥ µi∗

Reordering [math]

Ti,n ≤
log 1/δ

2∆2
i

+ 1

under event E and thus with probability 1− nNδ.
Moving to the expectation [statistics]

E[Ti,n] = E[Ti,nIE ] + E[Ti,nIEC ]

E[Ti,n] ≤ log 1/δ
2∆2

i
+ 1 + n(nNδ)

Trading-off the two terms δ = 1/n2, we obtain

µ̂i,Ti,t−1 +

√
2 log n
2Ti,t−1

and

E[Ti,n] ≤ log n
∆2

i
+ 1 + N
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The Stochastic Multi-arm Bandit Problem

Tuning the confidence δ of UCB (cont’d)

Trading-off the two terms δ = 1/n2, we obtain

µ̂i,Ti,t−1 +

√
2 log n
2Ti,t−1

and

E[Ti,n] ≤ log n
∆2

i
+ 1 + N
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The Stochastic Multi-arm Bandit Problem

Tuning the confidence δ of UCB (cont’d)

Multi–armed Bandit: the same for δ = 1/t and δ = 1/n...
... almost (i.e., in expectation)
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The Stochastic Multi-arm Bandit Problem

Tuning the confidence δ of UCB (cont’d)
The value–at–risk of the regret for UCB-anytime
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The Stochastic Multi-arm Bandit Problem

Tuning the ρ of UCB (cont’d)
UCB values (for the δ = 1/n algorithm)

Bi,s = µ̂i,s + ρ

√
log n
2s

Theory
I ρ < 0.5, polynomial regret w.r.t. n
I ρ > 0.5, logarithmic regret w.r.t. n

Practice: ρ = 0.2 is often the best choice
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The Stochastic Multi-arm Bandit Problem

Improvements over UCB: UCB-V

Idea: use Bernstein bounds with empirical variance
Algorithm:

Bi ,s,t = µ̂i ,s +

√
log t
2s

Rn ≤ O
( 1

∆
log n

)
BV

i ,s,t = µ̂i ,s+

√
2σ̂2

i ,s log t
s +

8 log t
3s

Rn ≤ O
(σ2

∆
log n

)
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The Stochastic Multi-arm Bandit Problem

Improvements over UCB: KL-UCB

Idea: use Kullback–Leibler bounds which are tighter than other
bounds
Algorithm: the algorithm is still index–based but a bit more
complicated

Rn ≤ O
( 1

∆
log n

)
Rn ≤ O

( 1
KL(ν, νi∗)

log n
)

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 43/94



The Stochastic Multi-arm Bandit Problem

Improvements over UCB: Thompson strategy

Idea: Keep a distribution over the possible values of µi
Algorithm: Bayesian approach. Compute the posterior
distributions given the samples.
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The Stochastic Multi-arm Bandit Problem

Back to UCB: the Lower Bound

Theorem
For any stochastic bandit {νi}, any algorithm A has a regret

lim
n→∞

Rn
log n ≥

∆i
infν KL(νi , ν)

Problem: this is just asymptotic
Open Question: what is the finite-time lower bound?
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The Non-Stochastic Multi-arm Bandit Problem

The Non–Stochastic Multi–armed Bandit Problem

Definition
The environment is adversarial

I Arms have no fixed distribution
I The rewards Xi ,t are arbitrarily chosen by the environment
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The Non-Stochastic Multi-arm Bandit Problem

The Non–Stochastic Multi–armed Bandit Problem (cont’d)

The (non–stochastic bandit) regret

Rn(A) = max
i=1,...,N

E
[ n∑

t=1
Xi ,t
]
− E

[ n∑
t=1

XIt ,t

]

Rn(A) = max
i=1,...,N

n∑
t=1

Xi ,t − E
[ n∑

t=1
XIt ,t

]
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The Non-Stochastic Multi-arm Bandit Problem

The Exponentially Weighted Average Forecaster

Initialize the weights wi,0 = 1

I Compute (Wt−1 =
∑N

i=1 wi,t−1)

p̂i,t =
wi,t−1
Wt−1

I Choose the arm at random

It ∼ p̂t

I Observe the rewards {Xi,t}
I Receive a reward XIt ,t

I Update
wi,t = wi,t−1 exp

(
+ ηXit ,t

)
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The Non-Stochastic Multi-arm Bandit Problem

The Non–Stochastic Multi–armed Bandit Problem (cont’d)

Problem: we only observe the reward of the specific arm chosen at
time t!! (i.e., only XIt ,t is observed)
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The Non-Stochastic Multi-arm Bandit Problem

The Exponentially Weighted Average Forecaster

Initialize the weights wi,0 = 1

I Compute (Wt−1 =
∑N

i=1 wi,t−1)

p̂i,t =
wi,t−1
Wt−1

I Choose the arm at random

It ∼ p̂t

I Observe the rewards {Xi,t}
I Receive a reward XIt ,t

I Update

wi,t = wi,t−1 exp
(
ηXit ,t

)
⇒ this update is not possible
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The Non-Stochastic Multi-arm Bandit Problem

The Non–Stochastic Multi–armed Bandit Problem (cont’d)

We use the importance weight trick

X̂i ,t =

{Xi,t
p̂i,t

if i = It
0 otherwise

Why it is a good idea:

E
[
X̂i ,t
]

=
Xi ,t
p̂i ,t

p̂i ,t + 0(1− p̂i ,t) = Xi ,t

X̂i ,t is an unbiased estimator of Xi ,t
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The Non-Stochastic Multi-arm Bandit Problem

The Exp3 Algorithm
Exp3: Exponential-weight algorithm for Exploration and Exploitation

Initialize the weights wi,0 = 1

I Compute (Wt−1 =
∑N

i=1 wi,t−1)

p̂i,t =
wi,t−1
Wt−1

I Choose the arm at random

It ∼ p̂t

I Receive a reward XIt ,t

I Update
wi,t = wi,t−1 exp

(
ηX̂it ,t

)
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The Non-Stochastic Multi-arm Bandit Problem

The Exp3 Algorithm

Question: is this enough? is this algorithm actually exploring
enough?
Answer: more or less...

I Exp3 has a small regret in expectation
I Exp3 might have large deviations with high probability (ie,

from time to time it may concentrate p̂t on the wrong arm for
too long and then incur a large regret)
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The Non-Stochastic Multi-arm Bandit Problem

The Exp3 Algorithm
Fix: add some extra uniform exploration

Initialize the weights wi,0 = 1

I Compute (Wt−1 =
∑N

i=1 wi,t−1)

p̂i,t = (1− γ)
wi,t−1
Wt−1

+
γ

K

I Choose the arm at random

It ∼ p̂t

I Receive a reward XIt ,t

I Update
wi,t = wi,t−1 exp

(
ηX̂it ,t

)
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The Non-Stochastic Multi-arm Bandit Problem

The Exp3 Algorithm

Theorem
If Exp3 is run with γ = η, then it achieves a regret

Rn(A) = max
i=1,...,N

n∑
t=1

Xi ,t −E
[ n∑

t=1
XIt ,t

]
≤ (e − 1)γGmax +

N log N
γ

with Gmax = maxi=1,...,N
∑n

t=1 Xi ,t .
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The Non-Stochastic Multi-arm Bandit Problem

The Exp3 Algorithm

Theorem
If Exp3 is run with

γ = η =

√
N log N
(e − 1)n

then it achieves a regret

Rn(A) ≤ O(
√

nN log N)
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The Non-Stochastic Multi-arm Bandit Problem

The Exp3 Algorithm

Comparison with online learning

Rn(Exp3) ≤ O(
√

nN log N)

Rn(EWA) ≤ O(
√

n log N)

Intuition: in online learning at each round we obtain N feedbacks,
while in bandits we receive 1 feedback.
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The Non-Stochastic Multi-arm Bandit Problem

The Improved-Exp3 Algorithm

Initialize the weights wi,0 = 1

I Compute (Wt−1 =
∑N

i=1 wi,t−1)

p̂i,t = (1− γ)
wi,t−1
Wt−1

+
γ

K

I Choose the arm at random
It ∼ p̂t

I Receive a reward XIt ,t

I Compute
X̃i,t = X̂i,t +

β

p̂i,t
I Update

wi,t = wi,t−1 exp
(
ηX̃it ,t

)
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The Non-Stochastic Multi-arm Bandit Problem

The Improved-Exp3 Algorithm

Theorem
If Improved-Exp3 is run with parameters in the ranges

γ ≤ 1
2 ; 0 ≤ η ≤ γ

2N ;

√
1

nN log N
δ
≤ β ≤ 1

then it achieves a regret

RHP
n (A) ≤ n

(
γ + η(1 + β)N

)
+

log N
η

+ 2nNβ

with probability at least 1− δ.

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 60/94



The Non-Stochastic Multi-arm Bandit Problem

The Improved-Exp3 Algorithm

Theorem
If Improved-Exp3 is run with parameters in the ranges

β =

√
1

nN log N
δ

; γ =
4Nβ
3 + β

; η =
γ

2N

then it achieves a regret

RHP
n (A) ≤ 11

2
√

nN log(N/δ) +
log N

2

with probability at least 1− δ.
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Connections to Game Theory

Repeated Two–Player Zero–Sum Games

A two–player zero–sum game

A B C
1 30 , -30 -10 , 10 20 , -20
2 10 , -10 -20 , 20 -20 , 20

Nash equilibrium:
A set of strategies is a Nash equilibrium if no player can do better by
unilaterally changing his strategy.
Red: take action 1 with prob. 4/7 and action 2 with prob. 3/7
Blue: take action A with prob. 0 , action B with prob. 4/7 , and action C
with prob. 3/7
Value of the game: V = 20/7 (reward of Red at the equilibrium)

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 63/94



Connections to Game Theory

Repeated Two–Player Zero–Sum Games
At each round t

I Row player computes a mixed strategy p̂t = (p̂1,t , . . . , p̂N,t)

I Column player computes a mixed strategy q̂t = (q̂1,t , . . . , q̂M,t)

I Row player selects action It ∈ {1, . . . ,N}
I Column player selects action Jt ∈ {1, . . . ,M}
I Row player suffers `(It , Jt)

I Column player suffers −`(It , Jt)

Value of the game
V = max

q
min

p
¯̀(p,q)

with
¯̀(p,q) =

N∑
i=1

M∑
j=1

pi qj`(i , j)
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Connections to Game Theory

Repeated Two–Player Zero–Sum Games

Question: what if the two players are both bandit algorithms
(e.g., Exp3)?
Row player: a bandit algorithm is able to minimize

Rn(row) =
n∑

t=1
`It ,Jt − min

i=1,...,N

n∑
t=1

`i ,Jt

Col player: a bandit algorithm is able to minimize

Rn(col) =
n∑

t=1
`It ,Jt − min

j=1,...,M

n∑
t=1

`It ,j
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Connections to Game Theory

Repeated Two–Player Zero–Sum Games

Theorem
If both the row and column players play according to an
Hannan-consistent strategy, then

lim sup
n→∞

1
n

n∑
t=1

`(It , Jt) = V
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Connections to Game Theory

Repeated Two–Player Zero–Sum Games

Theorem
The empirical distribution of plays

p̂i ,n =
1
n

n∑
t=1

I{It = i} q̂j,n =
1
n

n∑
t=1

I{Jt = j}

induces a product distribution p̂n × q̂n which converges to the set
of Nash equilibria p× q.
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Connections to Game Theory

Repeated Two–Player Zero–Sum Games
Proof idea.
Since ¯̀(p, Jt) is linear, over the simplex, the minimum is at one of the
corners [math]

min
i=1,...,N

1
N

n∑
t=1

`(i , Jt) = min
p

1
n

n∑
t=1

¯̀(p, Jt)

We consider the empirical probability of the row player [def]

q̂j,n =
1
n

n∑
t=1

IJt = j

Elaborating on it [math]

min
p

1
n

n∑
t=1

¯̀(p, Jt) = min
p

M∑
j=1

q̂j,n ¯̀(p, j)

= min
p

¯̀(p, q̂n)

≤ max
q

min
p

¯̀(p,q) = V
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Connections to Game Theory

Repeated Two–Player Zero–Sum Games

Proof idea.
By definition of Hannan’s consistent strategy [def]

lim sup
n→∞

1
n

n∑
t=1

`(It , Jt) = min
i=1,...,N

1
n

n∑
t=1

`(i , Jt)

Then

lim sup
n→∞

1
n

n∑
t=1

`(It , Jt) ≤ V

If we do the same for the other player [zero–sum game]

lim sup
n→∞

1
n

n∑
t=1

`(It , Jt) ≥ V
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Connections to Game Theory

Repeated Two–Player Zero–Sum Games

Question: how fast do they converge to the Nash equilibrium?
Answer: it depends on the specific algorithm. For EWA(η), we
now that

n∑
t=1

`(It , Jt)− min
i=1,...,N

n∑
t=1

`(i , Jt) ≤ log N
η

+
nη
8 +

√
n
2 log 1

δ
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Connections to Game Theory

Repeated Two–Player Zero–Sum Games

Generality of the results
I Players do not know the payoff matrix
I Players do not observe the loss of the other player
I Players do not even observe the action of the other player
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Connections to Game Theory

Internal Regret and Correlated Equilibria

External (expected) regret

Rn =
n∑

t=1

¯̀(p̂t , yt)− min
i=1,...,N

n∑
t=1

`(i , yt)

= max
i=1,...,N

n∑
t=1

N∑
j=1

p̂j,t
(
`(j , yt)− `(i , yt)

)
Internal (expected) regret

R I
n = max

i ,j=1,...,N

n∑
t=1

p̂j,t
(
`(i , yt)− `(j , yt)

)
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Connections to Game Theory

Internal Regret and Correlated Equilibria

Internal (expected) regret

R I
n = max

i ,j=1,...,N

n∑
t=1

p̂j,t
(
`(i , yt)− `(j , yt)

)
Intuition: an algorithm has small internal regret if, for each pair of
experts (i , j), the learner does not regret of not having followed
expert j each time it followed expert i .
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Connections to Game Theory

Internal Regret and Correlated Equilibria

Theorem
Given a K–person game with a set of correlated equilibria C. If all
the players are internal–regret minimizers, then the distance
between the empirical distribution of plays and the set of
correlated equilibria C converges to 0.
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Connections to Game Theory

Nash Equilibria in Extensive Form Games

A powerful model for sequential games
I Checkers / Chess / Go
I Poker
I Bargaining
I Monitoring
I Patrolling
I ...
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Connections to Game Theory

Nash Equilibria in Extensive Form Games
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Connections to Game Theory

Nash Equilibria in Extensive Form Games
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Connections to Game Theory

Nash Equilibria in Extensive Form Games
No details about the algorithm... but...

Theorem
If player k selects actions according to the counterfactual regret
minimization algorithm, then it achieves a regret

Rk,T ≤ # states
√

# actions
T

Theorem
In a two–player zero–sum extensive form game, counterfactual
regret minimization algorithms achieves an 2ε-Nash equilibrium,
with

ε ≤ # states
√

# actions
T
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Other Stochastic Multi-arm Bandit Problems

The Best Arm Identification Problem

Motivating Examples
I Find the best shortest path in a limited number of days
I Maximize the confidence about the best treatment after a

finite number of patients
I Discover the best advertisements after a training phase
I ...
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Other Stochastic Multi-arm Bandit Problems

The Best Arm Identification Problem

Objective: given a fixed budget n, return the best arm
i∗ = arg maxi µi at the end of the experiment
Measure of performance: the probability of error

P[Jn 6= i∗]

P[Jn 6= i∗] ≤
N∑

i=1
exp

(
− Ti ,n∆2

i
)

Algorithm idea: mimic the behavior of the optimal strategy

Ti ,n =

1
∆2

i∑N
j=1

1
∆2

j

n
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Other Stochastic Multi-arm Bandit Problems

The Best Arm Identification Problem
The Successive Reject Algorithm

I Divide the budget in N − 1 phases. Define
(log(N) = 0.5 +

∑N
i=2 1/i)

nk =
1

logK
n − N

N + 1− k

I Set of active arms Ak at phase k (A1 = {1, . . . ,N})
I For each phase k = 1, . . . ,N − 1

I For each arm i ∈ Ak , pull arm i for nk − nk−1 rounds
I Remove the worst arm

Ak+1 = Ak\ arg min
i∈Ak

µ̂i,nk

I Return the only remaining arm Jn = AN
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Other Stochastic Multi-arm Bandit Problems

The Best Arm Identification Problem

The Successive Reject Algorithm

Theorem
The successive reject algorithm have a probability of doing a
mistake of

P[Jn 6= i∗] ≤ K (K − 1)

2 exp
(
− n − N

logNH2

)
with H2 = maxi=1,...,N i∆−2

(i) .

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 83/94



Other Stochastic Multi-arm Bandit Problems

The Best Arm Identification Problem

The UCB-E Algorithm
I Define an exploration parameter a
I Compute

Bi ,s = µ̂i ,s +

√
a
s

I Select
It = arg max

Bi,s

I At the end return

Jn = arg max
i
µ̂i ,Ti,n
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Other Stochastic Multi-arm Bandit Problems

The Best Arm Identification Problem

The UCB-E Algorithm

Theorem

The UCB-E algorithm with a = 25
36

n−N
H1

has a probability of doing a
mistake of

P[Jn 6= i∗] ≤ 2nN exp
(
− 2a

25

)
with H1 =

∑N
i=1 1/∆2

i .
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Other Stochastic Multi-arm Bandit Problems

The Best Arm Identification Problem
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Other Stochastic Multi-arm Bandit Problems

The Active Bandit Problem

Motivating Examples
I N production lines
I The test of the performance of a line is expensive
I We want an accurate estimation of the performance of each

production line
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Other Stochastic Multi-arm Bandit Problems

The Active Bandit Problem

Objective: given a fixed budget n, return the an estimate of the
means µ̂i ,t which is as accurate as possible for all the arms

Notice: Given an arm has a mean µi and a variance σ2
i , if it is

pulled Ti ,n times, then

Li ,n = E
[
(µ̂i ,Ti,n − µi )

2] =
σ2

i
Ti ,n

Ln = max
i

Li ,n
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Other Stochastic Multi-arm Bandit Problems

The Active Bandit Problem

Problem: what are the number of pulls (T1,n, . . . ,TN,n) (such
that

∑
Ti ,n = n) which minimizes the loss?

(T ∗1,n, . . . ,T ∗N,n) = arg min
(T1,n,...,TN,n)

Ln

Answer
T ∗i ,n =

σ2
i∑N

j=1 σ
2
j

n

L∗n =

∑N
i=1 σ

2
i

n =
Σ

n
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Other Stochastic Multi-arm Bandit Problems

The Active Bandit Problem

Objective: given a fixed budget n, return the an estimate of the
means µ̂i ,t which is as accurate as possible for all the arms
Measure of performance: the regret on the quadratic error

Rn(A) = max
i

Ln(A)−
∑N

i=1 σ
2
i

n

Algorithm idea: mimic the behavior of the optimal strategy

Ti ,n =
σ2

i∑N
j=1 σ

2
j

n = λi n
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Other Stochastic Multi-arm Bandit Problems

The Active Bandit Problem

An UCB–based strategy
At each time step t = 1, . . . , n

I Estimate

σ̂2
i ,Ti,t−1 =

1
Ti ,t−1

Ti,t−1∑
s=1

X 2
s,i − µ̂2

i ,Ti,t−1

I Compute

Bi ,t =
1

Ti ,t−1

(
σ̂2

i ,Ti,t−1 + 5

√
log 1/δ
2Ti ,t−1

)
I Pull arm

It = arg max Bi ,t
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Other Stochastic Multi-arm Bandit Problems

The Active Bandit Problem

Theorem
The UCB–based algorithm achieves a regret

Rn(A) ≤ 98 log(n)

n3/2λ
5/2
min

+ O
(

log n
n2

)
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Other Stochastic Multi-arm Bandit Problems
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