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Mathematical Tools

Probability Theory

Definition (Conditional probability)
Given two events A and B with P(B) > 0, the conditional
probability of A given B is

P(A|B) =
P(A ∩ B)

P(B)
.

Similarly, if X and Y are non-degenerate and jointly continuous
random variables with density fX ,Y (x , y) then if B has positive
measure then the conditional probability is

P(X ∈ A|Y ∈ B) =

∫
y∈B

∫
x∈A fX ,Y (x , y)dxdy∫

y∈B
∫

x fX ,Y (x , y)dxdy
.
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Mathematical Tools

Probability Theory

Definition (Law of total expectation)
Given a function f and two random variables X ,Y we have that

EX ,Y
[
f (X ,Y )

]
= EX

[
EY
[
f (x ,Y )|X = x

]]
.
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Mathematical Tools

Norms and Contractions

Definition

Given a vector space V ⊆ Rd a function f : V → R+
0 is a norm if

an only if
I If f (v) = 0 for some v ∈ V, then v = 0.
I For any λ ∈ R, v ∈ V, f (λv) = |λ|f (v).
I Triangle inequality: For any v , u ∈ V, f (v + u) ≤ f (v) + f (u).
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Mathematical Tools

Norms and Contractions
I Lp-norm

||v ||p =

( d∑
i=1
|vi |p

)1/p
.

I L∞-norm
||v ||∞ = max1≤i≤d |vi |.

I Lµ,p-norm

||v ||µ,p =

( d∑
i=1

|vi |p

µi

)1/p
.

I Lµ,∞-norm

||v ||µ,∞ = max
1≤i≤d

|vi |
µi
.

I L2,P -matrix norm (P is a positive definite matrix)

||v ||2P = v>Pv .
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Mathematical Tools

Norms and Contractions

Definition

A sequence of vectors vn ∈ V (with n ∈ N) is said to converge in norm
|| · || to v ∈ V if

lim
n→∞

||vn − v || = 0.

Definition

A sequence of vectors vn ∈ V (with n ∈ N) is a Cauchy sequence if

lim
n→∞

supm≥n||vn − vm|| = 0.

Definition

A vector space V equipped with a norm || · || is complete if every Cauchy
sequence in V is convergent in the norm of the space.
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Mathematical Tools

Norms and Contractions

Definition

An operator T : V → V is L-Lipschitz if for any v , u ∈ V

||T v − T u|| ≤ L||u − v ||.

If L ≤ 1 then T is a non-expansion, while if L < 1 then T is a
L-contraction.
If T is Lipschitz then it is also continuous, that is

if vn→||·||v then T vn→||·||T v .

Definition

A vector v ∈ V is a fixed point of the operator T : V → V if T v = v.
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Mathematical Tools

Norms and Contractions

Proposition (Banach Fixed Point Theorem)
Let V be a complete vector space equipped with the norm || · || and
T : V → V be a γ-contraction mapping. Then

1. T admits a unique fixed point v .

2. For any v0 ∈ V, if vn+1 = T vn then vn →||·|| v with a geometric
convergence rate:

||vn − v || ≤ γn||v0 − v ||.
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Mathematical Tools

Linear Algebra

Given a square matrix A ∈ RN×N :
I Eigenvalues of a matrix (1). v ∈ RN and λ ∈ R are

eigenvector and eigenvalue of A if

Av = λv .

I Eigenvalues of a matrix (2). If A has eigenvalues {λi}Ni=1,
then B = (I − αA) has eigenvalues {µi}

µi = 1− αλi .

I Matrix inversion. A can be inverted if and only if ∀i , λi 6= 0.
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Mathematical Tools

Linear Algebra

I Stochastic matrix. A square matrix P ∈ RN×N is a stochastic
matrix if

1. all non-zero entries, ∀i , j , [P]i,j ≥ 0
2. all the rows sum to one, ∀i ,

∑N
j=1[P]i,j = 1.

All the eigenvalues of a stochastic matrix are bounded by 1,
i.e., ∀i , λi ≤ 1.
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The Markov Decision Process
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The Markov Decision Process

The Reinforcement Learning Model

The environment
I Controllability : fully (e.g., chess) or partially (e.g., portfolio optimization)
I Uncertainty : deterministic (e.g., chess) or stochastic (e.g., backgammon)
I Reactive: adversarial (e.g., chess) or fixed (e.g., tetris)
I Observability : full (e.g., chess) or partial (e.g., robotics)
I Availability : known (e.g., chess) or unknown (e.g., robotics)

The critic
I Sparse (e.g., win or loose) vs informative (e.g., closer or further)
I Preference reward
I Frequent or sporadic
I Known or unknown

The agent
I Open loop control
I Close loop control (i.e., adaptive)
I Non-stationary close loop control (i.e., learning)
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The Markov Decision Process

Markov Chains

Definition (Markov chain)
Let the state space X be a bounded compact subset of the
Euclidean space, the discrete-time dynamic system (xt)t∈N ∈ X is
a Markov chain if it satisfies the Markov property

P(xt+1 = x | xt , xt−1, . . . , x0) = P(xt+1 = x | xt),

Given an initial state x0 ∈ X, a Markov chain is defined by the
transition probability p

p(y |x) = P(xt+1 = y |xt = x).
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The Markov Decision Process

Markov Decision Process

Definition (Markov decision process [1, 4, 3, 5, 2])
A Markov decision process is defined as a tuple M = (X ,A, p, r)
where

I X is the state space,
I A is the action space,
I p(y |x , a) is the transition probability with

p(y |x , a) = P(xt+1 = y |xt = x , at = a),

I r(x , a, y) is the reward of transition (x , a, y).

A. LAZARIC – Markov Decision Process and Dynamic Programming Sept 29th, 2015 - 17/103



The Markov Decision Process

Markov Decision Process

Definition (Markov decision process [1, 4, 3, 5, 2])
A Markov decision process is defined as a tuple M = (X ,A, p, r)
where
I X is the state space,

I A is the action space,
I p(y |x , a) is the transition probability with

p(y |x , a) = P(xt+1 = y |xt = x , at = a),

I r(x , a, y) is the reward of transition (x , a, y).

A. LAZARIC – Markov Decision Process and Dynamic Programming Sept 29th, 2015 - 17/103



The Markov Decision Process

Markov Decision Process

Definition (Markov decision process [1, 4, 3, 5, 2])
A Markov decision process is defined as a tuple M = (X ,A, p, r)
where
I X is the state space,
I A is the action space,

I p(y |x , a) is the transition probability with

p(y |x , a) = P(xt+1 = y |xt = x , at = a),

I r(x , a, y) is the reward of transition (x , a, y).

A. LAZARIC – Markov Decision Process and Dynamic Programming Sept 29th, 2015 - 17/103



The Markov Decision Process

Markov Decision Process

Definition (Markov decision process [1, 4, 3, 5, 2])
A Markov decision process is defined as a tuple M = (X ,A, p, r)
where
I X is the state space,
I A is the action space,
I p(y |x , a) is the transition probability with

p(y |x , a) = P(xt+1 = y |xt = x , at = a),

I r(x , a, y) is the reward of transition (x , a, y).

A. LAZARIC – Markov Decision Process and Dynamic Programming Sept 29th, 2015 - 17/103



The Markov Decision Process

Markov Decision Process

Definition (Markov decision process [1, 4, 3, 5, 2])
A Markov decision process is defined as a tuple M = (X ,A, p, r)
where
I X is the state space,
I A is the action space,
I p(y |x , a) is the transition probability with

p(y |x , a) = P(xt+1 = y |xt = x , at = a),

I r(x , a, y) is the reward of transition (x , a, y).

A. LAZARIC – Markov Decision Process and Dynamic Programming Sept 29th, 2015 - 17/103



The Markov Decision Process

Markov Decision Process: the Assumptions

Time assumption: time is discrete

t → t + 1

Possible relaxations
I Identify the proper time granularity
I Most of MDP literature extends to continuous time
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The Markov Decision Process

Markov Decision Process: the Assumptions

Markov assumption: the current state x and action a are a
sufficient statistics for the next state y

p(y |x , a) = P(xt+1 = y |xt = x , at = a)

Possible relaxations
I Define a new state ht = (xt , xt−1, xt−2, . . .)

I Move to partially observable MDP (PO-MDP)
I Move to predictive state representation (PSR) model
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The Markov Decision Process

Markov Decision Process: the Assumptions

Reward assumption: the reward is uniquely defined by a transition
(or part of it)

r(x , a, y)

Possible relaxations
I Distinguish between global goal and reward function
I Move to inverse reinforcement learning (IRL) to induce the

reward function from desired behaviors
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The Markov Decision Process

Markov Decision Process: the Assumptions

Stationarity assumption: the dynamics and reward do not change
over time

p(y |x , a) = P(xt+1 = y |xt = x , at = a) r(x , a, y)

Possible relaxations
I Identify and remove the non-stationary components (e.g.,

cyclo-stationary dynamics)
I Identify the time-scale of the changes
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The Markov Decision Process

Question

Is the MDP formalism powerful enough?

⇒ Let’s try!
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The Markov Decision Process

Example: the Retail Store Management Problem

Description. At each month t, a store contains xt items of a specific
goods and the demand for that goods is Dt . At the end of each month
the manager of the store can order at more items from his supplier.
Furthermore we know that
I The cost of maintaining an inventory of x is h(x).
I The cost to order a items is C(a).
I The income for selling q items is f (q).
I If the demand D is bigger than the available inventory x , customers

that cannot be served leave.
I The value of the remaining inventory at the end of the year is g(x).
I Constraint: the store has a maximum capacity M.
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The Markov Decision Process

Example: the Retail Store Management Problem

I State space: x ∈ X = {0, 1, . . . ,M}.

I Action space: it is not possible to order more items that the
capacity of the store, then the action space should depend on the
current state. Formally, at statex , a ∈ A(x) = {0, 1, . . . ,M − x}.

I Dynamics: xt+1 = [xt + at − Dt ]+.
Problem: the dynamics should be Markov and stationary!

I The demand Dt is stochastic and time-independent. Formally,
Dt

i.i.d.∼ D.
I Reward : rt = −C(at)− h(xt + at) + f ([xt + at − xt+1]+).
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The Markov Decision Process

Exercise: the Parking Problem
A driver wants to park his car as close as possible to the restaurant.

T21

Reward t

p(t)

Reward 0

Restaurant

I The driver cannot see whether a place is available unless he is in
front of it.

I There are P places.
I At each place i the driver can either move to the next place or park

(if the place is available).
I The closer to the restaurant the parking, the higher the satisfaction.
I If the driver doesn’t park anywhere, then he/she leaves the

restaurant and has to find another one.
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The Markov Decision Process

Policy

Definition (Policy)
A decision rule πt can be
I Deterministic: πt : X → A,
I Stochastic: πt : X → ∆(A),

A policy (strategy, plan) can be
I Non-stationary: π = (π0, π1, π2, . . . ),
I Stationary (Markovian): π = (π, π, π, . . . ).

Remark: MDP M + stationary policy π ⇒ Markov chain of state
X and transition probability p(y |x) = p(y |x , π(x)).
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X and transition probability p(y |x) = p(y |x , π(x)).
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The Markov Decision Process

Example: the Retail Store Management Problem

I Stationary policy 1

π(x) =

{
M − x if x < M/4
0 otherwise

I Stationary policy 2

π(x) = max{(M − x)/2− x ; 0}

I Non-stationary policy

πt(x) =

{
M − x if t < 6
b(M − x)/5c otherwise
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The Markov Decision Process

How to model an RL problem

The Markov Decision Process

The Model

Value Functions
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The Markov Decision Process

Question

How do we evaluate a policy and compare two policies?

⇒ Value function!
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The Markov Decision Process

Optimization over Time Horizon

I Finite time horizon T : deadline at time T , the agent focuses
on the sum of the rewards up to T .

I Infinite time horizon with discount: the problem never
terminates but rewards which are closer in time receive a
higher importance.

I Infinite time horizon with terminal state: the problem never
terminates but the agent will eventually reach a termination
state.

I Infinite time horizon with average reward : the problem never
terminates but the agent only focuses on the (expected)
average of the rewards.
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The Markov Decision Process

State Value Function

I Finite time horizon T : deadline at time T , the agent focuses
on the sum of the rewards up to T .

V π(t, x) = E
[ T−1∑

s=t
r(xs , πs(xs)) + R(xT )| xt = x ;π

]
,

where R is a value function for the final state.

I Used when: there is an intrinsic deadline to meet.

A. LAZARIC – Markov Decision Process and Dynamic Programming Sept 29th, 2015 - 31/103



The Markov Decision Process

State Value Function

I Finite time horizon T : deadline at time T , the agent focuses
on the sum of the rewards up to T .

V π(t, x) = E
[ T−1∑

s=t
r(xs , πs(xs)) + R(xT )| xt = x ;π

]
,

where R is a value function for the final state.
I Used when: there is an intrinsic deadline to meet.

A. LAZARIC – Markov Decision Process and Dynamic Programming Sept 29th, 2015 - 31/103



The Markov Decision Process

State Value Function

I Infinite time horizon with discount: the problem never
terminates but rewards which are closer in time receive a
higher importance.

V π(x) = E
[ ∞∑

t=0
γtr(xt , π(xt)) | x0 = x ;π

]
,

with discount factor 0 ≤ γ < 1:
I small = short-term rewards, big = long-term rewards
I for any γ ∈ [0, 1) the series always converge (for bounded

rewards)

I Used when: there is uncertainty about the deadline and/or an
intrinsic definition of discount.
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The Markov Decision Process

State Value Function

I Infinite time horizon with terminal state: the problem never
terminates but the agent will eventually reach a termination
state.

V π(x) = E
[ T∑

t=0
r(xt , π(xt))|x0 = x ;π

]
,

where T is the first (random) time when the termination
state is achieved.

I Used when: there is a known goal or a failure condition.
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The Markov Decision Process

State Value Function

I Infinite time horizon with average reward : the problem never
terminates but the agent only focuses on the (expected)
average of the rewards.

V π(x) = lim
T→∞

E
[

1
T

T−1∑
t=0

r(xt , π(xt)) | x0 = x ;π

]
.

I Used when: the system should be constantly controlled over
time.
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The Markov Decision Process

State Value Function

Technical note: the expectations refer to all possible stochastic
trajectories.

A non-stationary policy π applied from state x0 returns

(x0, r0, x1, r1, x2, r2, . . .)

where rt = r(xt , πt(xt)) and xt ∼ p(·|xt−1, at = π(xt)) are random
realizations.

The value function (discounted infinite horizon) is

V π(x) = E(x1,x2,...)

[ ∞∑
t=0

γtr(xt , π(xt)) | x0 = x ;π

]
,
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The Markov Decision Process

Example: the Retail Store Management Problem

Simulation
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The Markov Decision Process

Optimal Value Function

Definition (Optimal policy and optimal value function)

The solution to an MDP is an optimal policy π∗ satisfying

π∗ ∈ arg max
π∈Π

V π

in all the states x ∈ X, where Π is some policy set of interest.

The corresponding value function is the optimal value function

V ∗ = V π∗
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The Markov Decision Process

Optimal Value Function

Remarks
1. π∗ ∈ arg max(·) and not π∗ = arg max(·) because an MDP

may admit more than one optimal policy

2. π∗ achieves the largest possible value function in every state

3. there always exists an optimal deterministic policy

4. expect for problems with a finite horizon, there always exists
an optimal stationary policy
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The Markov Decision Process

Summary

1. MDP is a powerful model for interaction between an agent
and a stochastic environment

2. The value function defines the objective to optimize
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The Markov Decision Process

Limitations

1. All the previous value functions define an objective in
expectation

2. Other utility functions may be used

3. Risk measures could be integrated but they may induce
“weird” problems and make the solution more difficult
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The Markov Decision Process

How to solve exactly an MDP

Dynamic Programming

Bellman Equations

Value Iteration

Policy Iteration
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The Markov Decision Process

Notice

From now on we mostly work on the
discounted infinite horizon setting.

Most results smoothly extend to other settings.
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The Markov Decision Process

The Optimization Problem

max
π

V π(x0) =

max
π

E
[
r(x0, π(x0)) + γr(x1, π(x1)) + γ2r(x2, π(x2)) + . . .

]
⇓

very challenging (we should try as many as |A||S| policies!)

⇓

we need to leverage the structure of the MDP
to simplify the optimization problem

A. LAZARIC – Markov Decision Process and Dynamic Programming Sept 29th, 2015 - 43/103



The Markov Decision Process

The Optimization Problem

max
π

V π(x0) =

max
π

E
[
r(x0, π(x0)) + γr(x1, π(x1)) + γ2r(x2, π(x2)) + . . .

]
⇓

very challenging (we should try as many as |A||S| policies!)
⇓

we need to leverage the structure of the MDP
to simplify the optimization problem

A. LAZARIC – Markov Decision Process and Dynamic Programming Sept 29th, 2015 - 43/103



The Markov Decision Process

How to solve exactly an MDP

Dynamic Programming

Bellman Equations

Value Iteration

Policy Iteration
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The Markov Decision Process

The Bellman Equation

Proposition
For any stationary policy π = (π, π, . . . ), the state value function
at a state x ∈ X satisfies the Bellman equation:

V π(x) = r(x , π(x)) + γ
∑

y
p(y |x , π(x))V π(y).
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The Markov Decision Process

The Bellman Equation

Proof.
For any policy π,

V π(x) = E
[∑

t≥0
γtr(xt , π(xt)) | x0 = x ;π

]
= r(x , π(x)) + E

[∑
t≥1

γtr(xt , π(xt)) | x0 = x ;π
]

= r(x , π(x))

+ γ
∑

y
P(x1 = y | x0 = x ;π(x0))E

[∑
t≥1

γt−1r(xt , π(xt)) | x1 = y ;π
]

= r(x , π(x)) + γ
∑

y
p(y |x , π(x))V π(y).

�
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The Markov Decision Process

Example: the student dilemma
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The Markov Decision Process

Example: the student dilemma

I Model : all the transitions are Markov, states x5, x6, x7 are
terminal.

I Setting : infinite horizon with terminal states.
I Objective: find the policy that maximizes the expected sum of

rewards before achieving a terminal state.

Notice: not a discounted infinite horizon setting! But the Bellman
equations hold unchanged.
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The Markov Decision Process

Example: the student dilemma
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The Markov Decision Process

Example: the student dilemma

Computing V4:

V6 = 100
V4 = −10 + (0.9V6 + 0.1V4)

⇒ V4 =
−10 + 0.9V6

0.9 = 88.8
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The Markov Decision Process

Example: the student dilemma

Computing V3: no need to consider all possible trajectories

V4 = 88.8
V3 = −1 + (0.5V4 + 0.5V3)

⇒ V3 =
−1 + 0.5V4

0.5 = 86.8

and so on for the rest...
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The Markov Decision Process

The Optimal Bellman Equation

Bellman’s Principle of Optimality [1]:
“An optimal policy has the property that, whatever the
initial state and the initial decision are, the remaining
decisions must constitute an optimal policy with regard
to the state resulting from the first decision.”
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The Markov Decision Process

The Optimal Bellman Equation

Proposition

The optimal value function V ∗ (i.e., V ∗ = maxπ V π) is the
solution to the optimal Bellman equation:

V ∗(x) = maxa∈A
[
r(x , a) + γ

∑
y

p(y |x , a)V ∗(y)
]
.

and the optimal policy is

π∗(x) = arg max
a∈A

[
r(x , a) + γ

∑
y

p(y |x , a)V ∗(y)
]
.
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The Markov Decision Process

The Optimal Bellman Equation

Proof.
For any policy π = (a, π′) (possibly non-stationary),

V ∗(x)
(a)
= max

π
E
[∑

t≥0
γtr(xt , π(xt)) | x0 = x ;π

]
(b)
= max

(a,π′)

[
r(x , a) + γ

∑
y

p(y |x , a)V π′
(y)
]

(c)
= max

a

[
r(x , a) + γ

∑
y

p(y |x , a) max
π′

V π′
(y)
]

(d)
= max

a

[
r(x , a) + γ

∑
y

p(y |x , a)V ∗(y)
]
.

�
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The Markov Decision Process

System of Equations

The Bellman equation

V π(x) = r(x , π(x)) + γ
∑

y
p(y |x , π(x))V π(y).

is a linear system of equations with N unknowns and N linear
constraints.
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The Markov Decision Process

Example: the student dilemma
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The Markov Decision Process

Example: the student dilemma

V π(x) = r(x , π(x))+γ
∑

y p(y |x , π(x))V π(y)
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System of equations

V1 = 0 + 0.5V1 + 0.5V2

V2 = 1 + 0.3V1 + 0.7V3

V3 = −1 + 0.5V4 + 0.5V3

V4 = −10 + 0.9V6 + 0.1V4

V5 = −10
V6 = 100
V7 = −1000

⇒

(V ,R ∈ R7, P ∈ R7×7)

V = R + PV

⇓

V = (I − P)−1R
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The Markov Decision Process

System of Equations

The optimal Bellman equation

V ∗(x) = maxa∈A
[
r(x , a) + γ

∑
y

p(y |x , a)V ∗(y)
]
.

is a (highly) non-linear system of equations with N unknowns and
N non-linear constraints (i.e., the max operator).
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The Markov Decision Process

Example: the student dilemma
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The Markov Decision Process

Example: the student dilemma

V ∗(x) = max
a∈A

[
r(x , a) + γ

∑
y p(y |x , a)V ∗(y)

]
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7System of equations

V1 = max
{

0 + 0.5V1 + 0.5V2; 0 + 0.5V1 + 0.5V3
}

V2 = max
{

1 + 0.4V5 + 0.6V2; 1 + 0.3V1 + 0.7V3
}

V3 = max
{
− 1 + 0.4V2 + 0.6V3; −1 + 0.5V4 + 0.5V3

}
V4 = max

{
− 10 + 0.9V6 + 0.1V4; −10 + V7

}
V5 = −10
V6 = 100
V7 = −1000

⇒ too complicated, we need to find an alternative solution.
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The Markov Decision Process

The Bellman Operators

Notation. w.l.o.g. a discrete state space |X | = N and V π ∈ RN .

Definition

For any W ∈ RN , the Bellman operator T π : RN → RN is

T πW (x) = r(x , π(x)) + γ
∑

y
p(y |x , π(x))W (y),

and the optimal Bellman operator (or dynamic programming
operator) is

TW (x) = maxa∈A
[
r(x , a) + γ

∑
y

p(y |x , a)W (y)
]
.
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The Markov Decision Process

The Bellman Operators

Proposition
Properties of the Bellman operators

1. Monotonicity : for any W1,W2 ∈ RN , if W1≤W2
component-wise, then

T πW1 ≤ T πW2,

TW1 ≤ TW2.

2. Offset: for any scalar c ∈ R,

T π(W + cIN) = T πW + γcIN ,
T (W + cIN) = TW + γcIN ,
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The Markov Decision Process

The Bellman Operators
Proposition

3. Contraction in L∞-norm: for any W1,W2 ∈ RN

||T πW1 − T πW2||∞ ≤ γ||W1 −W2||∞,
||TW1 − TW2||∞ ≤ γ||W1 −W2||∞.

4. Fixed point: For any policy π

V π is the unique fixed point of T π,
V ∗ is the unique fixed point of T .

Furthermore for any W ∈ RN and any stationary policy π

lim
k→∞

(T π)kW = V π,

lim
k→∞

(T )kW = V ∗.
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The Markov Decision Process

The Bellman Equation

Proof.
The contraction property (3) holds since for any x ∈ X we have

|TW1(x)− TW2(x)|

=
∣∣∣max

a

[
r(x , a) + γ

∑
y

p(y |x , a)W1(y)
]
−max

a′

[
r(x , a′) + γ

∑
y

p(y |x , a′)W2(y)
]∣∣∣

(a)

≤ max
a

∣∣∣[r(x , a) + γ
∑

y
p(y |x , a)W1(y)

]
−
[
r(x , a) + γ

∑
y

p(y |x , a)W2(y)
]∣∣∣

= γmax
a

∑
y

p(y |x , a)|W1(y)−W2(y)|

≤ γ||W1 −W2||∞max
a

∑
y

p(y |x , a) = γ||W1 −W2||∞,

where in (a) we used maxa f (a)−maxa′ g(a′) ≤ maxa(f (a)− g(a)). �
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The Markov Decision Process

Exercise: Fixed Point

Revise the Banach fixed point theorem and prove the fixed point
property of the Bellman operator.
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Dynamic Programming

How to solve exactly an MDP

Dynamic Programming

Bellman Equations

Value Iteration

Policy Iteration
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Dynamic Programming

Question

How do we compute the value functions / solve an MDP?

⇒ Value/Policy Iteration algorithms!
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Dynamic Programming

System of Equations

The Bellman equation

V π(x) = r(x , π(x)) + γ
∑

y
p(y |x , π(x))V π(y).

is a linear system of equations with N unknowns and N linear
constraints.

The optimal Bellman equation

V ∗(x) = maxa∈A
[
r(x , a) + γ

∑
y

p(y |x , a)V ∗(y)
]
.

is a (highly) non-linear system of equations with N unknowns and
N non-linear constraints (i.e., the max operator).
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Dynamic Programming

Value Iteration: the Idea

1. Let V0 be any vector in RN

2. At each iteration k = 1, 2, . . . ,K
I Compute Vk+1 = T Vk

3. Return the greedy policy

πK (x) ∈ arg max
a∈A

[
r(x , a) + γ

∑
y

p(y |x , a)VK (y)
]
.
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Dynamic Programming

Value Iteration: the Guarantees

I From the fixed point property of T :

lim
k→∞

Vk = V ∗

I From the contraction property of T

||Vk+1−V ∗||∞ = ||T Vk−T V ∗||∞ ≤ γ||Vk−V ∗||∞ ≤ γk+1||V0−V ∗||∞ → 0

I Convergence rate. Let ε > 0 and ||r ||∞ ≤ rmax, then after at most

K =
log(rmax/ε)

log(1/γ)

iterations ||VK − V ∗||∞ ≤ ε.

A. LAZARIC – Markov Decision Process and Dynamic Programming Sept 29th, 2015 - 70/103



Dynamic Programming

Value Iteration: the Guarantees

I From the fixed point property of T :

lim
k→∞

Vk = V ∗

I From the contraction property of T

||Vk+1−V ∗||∞ = ||T Vk−T V ∗||∞ ≤ γ||Vk−V ∗||∞ ≤ γk+1||V0−V ∗||∞ → 0

I Convergence rate. Let ε > 0 and ||r ||∞ ≤ rmax, then after at most

K =
log(rmax/ε)

log(1/γ)

iterations ||VK − V ∗||∞ ≤ ε.

A. LAZARIC – Markov Decision Process and Dynamic Programming Sept 29th, 2015 - 70/103



Dynamic Programming

Value Iteration: the Guarantees

I From the fixed point property of T :

lim
k→∞

Vk = V ∗

I From the contraction property of T

||Vk+1−V ∗||∞ = ||T Vk−T V ∗||∞ ≤ γ||Vk−V ∗||∞ ≤ γk+1||V0−V ∗||∞ → 0

I Convergence rate. Let ε > 0 and ||r ||∞ ≤ rmax, then after at most

K =
log(rmax/ε)

log(1/γ)

iterations ||VK − V ∗||∞ ≤ ε.

A. LAZARIC – Markov Decision Process and Dynamic Programming Sept 29th, 2015 - 70/103



Dynamic Programming

Value Iteration: the Complexity

Time complexity
I Each iteration and the computation of the greedy policy take

O(N2|A|) operations.

Vk+1(x) = T Vk(x) = maxa∈A
[
r(x , a) + γ

∑
y

p(y |x , a)Vk(y)
]

πK (x) ∈ arg max
a∈A

[
r(x , a) + γ

∑
y

p(y |x , a)VK (y)
]

I Total time complexity O(KN2|A|)

Space complexity
I Storing the MDP: dynamics O(N2|A|) and reward O(N|A|).
I Storing the value function and the optimal policy O(N).
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Dynamic Programming

State-Action Value Function

Definition
In discounted infinite horizon problems, for any policy π, the
state-action value function (or Q-function) Qπ : X × A 7→ R is

Qπ(x , a) = E
[∑

t≥0
γtr(xt , at)|x0 = x , a0 = a, at = π(xt), ∀t ≥ 1

]
,

and the corresponding optimal Q-function is

Q∗(x , a) = max
π

Qπ(x , a).
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Dynamic Programming

State-Action Value Function

The relationships between the V-function and the Q-function are:

Qπ(x , a) = r(x , a) + γ
∑
y∈X

p(y |x , a)V π(y)

V π(x) = Qπ(x , π(x))

Q∗(x , a) = r(x , a) + γ
∑
y∈X

p(y |x , a)V ∗(y)

V ∗(x) = Q∗(x , π∗(x)) = maxa∈AQ∗(x , a).
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Dynamic Programming

Value Iteration: Extensions and Implementations

Q-iteration.

1. Let Q0 be any Q-function

2. At each iteration k = 1, 2, . . . ,K
I Compute Qk+1 = T Qk

3. Return the greedy policy

πK (x) ∈ arg max
a∈A

Q(x,a)

Comparison
I Increased space and time complexity to O(N|A|) and O(N2|A|2)

I Computing the greedy policy is cheaper O(N|A|)
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Dynamic Programming

Value Iteration: Extensions and Implementations
Asynchronous VI.

1. Let V0 be any vector in RN

2. At each iteration k = 1, 2, . . . ,K
I Choose a state xk
I Compute Vk+1(xk) = T Vk(xk)

3. Return the greedy policy

πK (x) ∈ arg max
a∈A

[
r(x , a) + γ

∑
y

p(y |x , a)VK (y)
]
.

Comparison
I Reduced time complexity to O(N|A|)
I Increased number of iterations to at most O(KN) but much smaller

in practice if states are properly prioritized
I Convergence guarantees
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Dynamic Programming

How to solve exactly an MDP

Dynamic Programming

Bellman Equations

Value Iteration

Policy Iteration
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Dynamic Programming

Policy Iteration: the Idea

1. Let π0 be any stationary policy

2. At each iteration k = 1, 2, . . . ,K
I Policy evaluation given πk , compute V πk .
I Policy improvement: compute the greedy policy

πk+1(x) ∈ arg maxa∈A
[
r(x , a) + γ

∑
y

p(y |x , a)V πk (y)
]
.

3. Return the last policy πK

Remark: usually K is the smallest k such that V πk = V πk+1 .
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Dynamic Programming

Policy Iteration: the Guarantees

Proposition

The policy iteration algorithm generates a sequences of policies
with non-decreasing performance

V πk+1≥V πk ,

and it converges to π∗ in a finite number of iterations.
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Dynamic Programming

Policy Iteration: the Guarantees
Proof.
From the definition of the Bellman operators and the greedy policy πk+1

V πk = T πk V πk ≤ T V πk = T πk+1 V πk , (1)

and from the monotonicity property of T πk+1 , it follows that
V πk ≤ T πk+1 V πk ,

T πk+1 V πk ≤ (T πk+1 )2V πk ,

. . .

(T πk+1 )n−1V πk ≤ (T πk+1 )nV πk ,

. . .

Joining all the inequalities in the chain we obtain
V πk ≤ lim

n→∞
(T πk+1 )nV πk = V πk+1 .

Then (V πk )k is a non-decreasing sequence.
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Dynamic Programming

Policy Iteration: the Guarantees

Proof (cont’d).
Since a finite MDP admits a finite number of policies, then the
termination condition is eventually met for a specific k.
Thus eq. 2 holds with an equality and we obtain

V πk = T V πk

and V πk = V ∗ which implies that πk is an optimal policy. �
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Dynamic Programming

Policy Iteration

Notation. For any policy π the reward vector is rπ(x) = r(x , π(x))
and the transition matrix is [Pπ]x ,y = p(y |x , π(x))
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Dynamic Programming

Policy Iteration: the Policy Evaluation Step
I Direct computation. For any policy π compute

V π = (I − γPπ)−1rπ.

Complexity: O(N3) (improvable to O(N2.807)).

I Iterative policy evaluation. For any policy π

lim
n→∞

T πV0 = V π.

Complexity: An ε-approximation of V π requires O(N2 log 1/ε
log 1/γ ) steps.

I Monte-Carlo simulation. In each state x , simulate n trajectories
((x i

t )t≥0,)1≤i≤n following policy π and compute

V̂ π(x) ' 1
n

n∑
i=1

∑
t≥0

γtr(x i
t , π(x i

t )).

Complexity: In each state, the approximation error is O(1/
√

n).
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Dynamic Programming

Policy Iteration: the Policy Improvement Step

I If the policy is evaluated with V , then the policy improvement
has complexity O(N|A|) (computation of an expectation).

I If the policy is evaluated with Q, then the policy improvement
has complexity O(|A|) corresponding to

πk+1(x) ∈ arg max
a∈A

Q(x , a),
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Dynamic Programming

Policy Iteration: Number of Iterations

I At most O
(N|A|

1−γ log( 1
1−γ )

)

A. LAZARIC – Markov Decision Process and Dynamic Programming Sept 29th, 2015 - 84/103



Dynamic Programming

Comparison between Value and Policy Iteration

Value Iteration
I Pros: each iteration is very computationally efficient.
I Cons: convergence is only asymptotic.

Policy Iteration
I Pros: converge in a finite number of iterations (often small in

practice).
I Cons: each iteration requires a full policy evaluation and it

might be expensive.
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Dynamic Programming

The Grid-World Problem
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How to solve exactly an MDP

Dynamic Programming

Bellman Equations

Value Iteration

Policy Iteration
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Dynamic Programming

Other Algorithms

I Modified Policy Iteration
I λ-Policy Iteration
I Linear programming
I Policy search
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Dynamic Programming

Summary

I Bellman equations provide a compact formulation of value
functions

I DP provide a general tool to solve MDPs

A. LAZARIC – Markov Decision Process and Dynamic Programming Sept 29th, 2015 - 89/103



Dynamic Programming

Bibliography I

R. E. Bellman.
Dynamic Programming.
Princeton University Press, Princeton, N.J., 1957.

D.P. Bertsekas and J. Tsitsiklis.
Neuro-Dynamic Programming.
Athena Scientific, Belmont, MA, 1996.

W. Fleming and R. Rishel.
Deterministic and stochastic optimal control.
Applications of Mathematics, 1, Springer-Verlag, Berlin New York, 1975.

R. A. Howard.
Dynamic Programming and Markov Processes.
MIT Press, Cambridge, MA, 1960.

M.L. Puterman.
Markov Decision Processes: Discrete Stochastic Dynamic Programming.
John Wiley & Sons, Inc., New York, Etats-Unis, 1994.

A. LAZARIC – Markov Decision Process and Dynamic Programming Sept 29th, 2015 - 90/103



Dynamic Programming

Reinforcement Learning

Alessandro Lazaric
alessandro.lazaric@inria.fr

sequel.lille.inria.fr


	Mathematical Tools
	The Markov Decision Process
	Dynamic Programming
	Conclusions

