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Notice

From now on we often work on the
episodic discounted setting.

Most results smoothly extend to other settings.

The value functions can be represented exactly (no
approximation error).
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In This Lecture

I Dynamic programming algorithms require an explicit
definition of

I transition probabilities p(·|x , a)
I reward function r(x , a)

I This knowledge is often unavailable (i.e., wind intensity,
human-computer-interaction).

I Can we relax this assumption?
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In This Lecture

I Learning with generative model. A black-box simulator f of
the environment is available. Given (x , a),

f (x , a) = {y , r} with y ∼ p(·|x , a), r = r(x , a).

I Episodic learning. Multiple trajectories can be repeatedly
generated from the same state x and terminating when a
reset condition is achieved:

(x i
0 = x , x i

1, . . . , x i
Ti )

n
i=1.

I Online learning. At each time t the agent is at state xt , it
takes action at , it observes a transition to state xt+1, and it
receives a reward rt . We assume that xt+1 ∼ p(·|xt , at) and
rt = r(xt , at) (i.e., MDP assumption).
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Mathematical Tools

Concentration Inequalities
Let X be a random variable and {Xn}n∈N a sequence of r.v.

I {Xn} converges to X almost surely , Xn
a.s.−→ X , if

P( lim
n→∞

Xn = X ) = 1,

I {Xn} converges to X in probability , Xn
P−→ X , if for any ε > 0,

lim
n→∞

P[|Xn − X | > ε] = 0,

I {Xn} converges to X in law (or in distribution), Xn
D−→ X , if for any

bounded continuous function f

lim
n→∞

E[f (Xn)] = E[f (X )].

Remark: Xn
a.s.−→ X =⇒ Xn

P−→ X =⇒ Xn
D−→ X .
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Mathematical Tools

Concentration Inequalities

Proposition (Markov Inequality)
Let X be a positive random variable. Then for any a > 0,

P(X ≥ a) ≤ EX
a .

Proof.

P(X ≥ a) = E[I{X ≥ a}] = E[I{X/a ≥ 1}] ≤ E[X/a]

�
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Mathematical Tools

Concentration Inequalities

Proposition (Hoeffding Inequality)
Let X be a centered random variable bounded in [a, b]. Then for
any s ∈ R,

E[esX ] ≤ es2(b−a)2/8.
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Mathematical Tools

Concentration Inequalities
Proof.
From convexity of the exponential function, for any a ≤ x ≤ b,

esx ≤ x − a
b − a esb +

b − x
b − a esa.

Let p = −a/(b − a) then (recall that E[X ] = 0)

E[esx ] ≤ b
b − a esa − a

b − a esb

= (1− p + pes(b−a))e−ps(b−a) = eφ(u)

with u = s(b− a) and φ(u) = −pu + log(1− p + peu) whose derivative is

φ′(u) = −p +
p

p + (1− p)e−u ,

and φ(0) = φ′(0) = 0 and φ′′(u) = p(1−p)e−u

(p+(1−p)e−u)2 ≤ 1/4.
Thus from Taylor’s theorem, the exists a θ ∈ [0, u] such that

φ(θ) = φ(0) + θφ′(0) + u2

2 φ
′′(θ) ≤ u2

8 =
s2(b − a)2

8 .
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Mathematical Tools

Concentration Inequalities

Proposition (Chernoff-Hoeffding Inequality)

Let Xi ∈ [ai , bi ] be n independent r.v. with mean µi = EXi . Then

P
[∣∣∣ n∑

i=1

(
Xi − µi

)∣∣∣ ≥ ε] ≤ 2 exp
(
− 2ε2∑n

i=1(bi − ai)2

)
.
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Mathematical Tools

Concentration Inequalities

Proof.

P
( n∑

i=1
Xi − µi ≥ ε

)
= P(es

∑n
i=1 Xi−µi ≥ esε)

≤ e−sεE[es
∑n

i=1 Xi−µi ], Markov inequality

= e−sε
n∏

i=1
E[es(Xi−µi )], independent random variables

≤ e−sε
n∏

i=1
es2(bi−ai )

2/8, Hoeffding inequality

= e−sε+s2 ∑n
i=1(bi−ai )

2/8

If we choose s = 4ε/
∑n

i=1(bi − ai)
2, the result follows.

Similar arguments hold for P
(∑n

i=1 Xi − µi ≤ −ε
)
.
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Mathematical Tools

Monte-Carlo Approximation of a Mean

Definition

Let X be a random variable with mean µ = E[X ] and variance
σ2 = V[X ] and xn ∼ X be n i.i.d. realizations of X. The
Monte-Carlo approximation of the mean (i.e., the empirical mean)
built on n i.i.d. realizations is defined as

µn =
1
n

n∑
i=1

xi .
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Mathematical Tools

Monte-Carlo Approximation of a Mean

I Unbiased estimator : Then E[µn] = µ (and V[µn] =
V[X ]

n )

I Weak law of large numbers: µn
P−→ µ.

I Strong law of large numbers: µn
a.s.−→ µ.

I Central limit theorem (CLT):
√

n(µn − µ)
D−→ N (0,V[X ]).

I Finite sample guarantee:

P

[ ∣∣∣1n
n∑

t=1
Xt − E[X1]

∣∣∣︸ ︷︷ ︸
deviation

> ε︸︷︷︸
accuracy

]
≤ 2 exp

(
− 2nε2

(b − a)2

)
︸ ︷︷ ︸

confidence
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Mathematical Tools

Monte-Carlo Approximation of a Mean

I Unbiased estimator : Then E[µn] = µ (and V[µn] =
V[X ]

n )

I Weak law of large numbers: µn
P−→ µ.

I Strong law of large numbers: µn
a.s.−→ µ.

I Central limit theorem (CLT):
√

n(µn − µ)
D−→ N (0,V[X ]).

I Finite sample guarantee:

P

[∣∣∣1n
n∑

t=1
Xt − E[X1]

∣∣∣ > (b − a)
√

log 2/δ
2n

]
≤ δ
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Mathematical Tools

Monte-Carlo Approximation of a Mean

I Unbiased estimator : Then E[µn] = µ (and V[µn] =
V[X ]

n )

I Weak law of large numbers: µn
P−→ µ.

I Strong law of large numbers: µn
a.s.−→ µ.

I Central limit theorem (CLT):
√

n(µn − µ)
D−→ N (0,V[X ]).

I Finite sample guarantee:

P

[∣∣∣1n
n∑

t=1
Xt − E[X1]

∣∣∣ > ε

]
≤ δ

if n ≥ (b−a)2 log 2/δ
2ε2 .
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Mathematical Tools

Exercise

Simulate n Bernoulli of probability p and verify the correctness and
the accuracy of the C-H bounds.

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 17/83



Mathematical Tools

Stochastic Approximation of a Mean

Definition

Let X a random variable bounded in [0, 1] with mean µ = E[X ]
and xn ∼ X be n i.i.d. realizations of X. The stochastic
approximation of the mean is,

µn = (1− ηn)µn−1 + ηnxn

with µ1 = x1 and where (ηn) is a sequence of learning steps.

Remark: When ηn = 1
n this is the recursive definition of empirical

mean.
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Mathematical Tools

Stochastic Approximation of a Mean

Proposition (Borel-Cantelli)

Let (En)n≥1 be a sequence of events such that
∑

n≥1 P(En) <∞,
then the probability of the intersection of an infinite subset is 0.
More formally,

P
(

lim sup
n→∞

En
)
= P

( ∞⋂
n=1

∞⋃
k=n

Ek

)
= 0.
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Mathematical Tools

Stochastic Approximation of a Mean

Proposition

If for any n, ηn ≥ 0 and are such that∑
n≥0

ηn =∞;
∑
n≥0

η2
n <∞,

then
µn

a.s.−→ µ,

and we say that µn is a consistent estimator.
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Mathematical Tools

Stochastic Approximation of a Mean

Proof. We focus on the case ηn = n−α.
In order to satisfy the two conditions we need 1/2 < α ≤ 1. In fact, for
instance

α = 2⇒
∑
n≥0

1
n2 =

π2

6 <∞ (see the Basel problem)

α = 1/2⇒
∑
n≥0

( 1√
n

)2
=
∑
n≥0

1
n =∞ (harmonic series).
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Mathematical Tools

Stochastic Approximation of a Mean
Proof (cont’d).
Case α = 1
Let (εk)k a sequence such that εk → 0, almost sure convergence
corresponds to

P
(

lim
n→∞

µn = µ
)
= P(∀k,∃nk ,∀n ≥ nk ,

∣∣µn − µ
∣∣ ≤ εk) = 1.

From Chernoff-Hoeffding inequality for any fixed n

P
(∣∣µn − µ

∣∣ ≥ ε) ≤ 2e−2nε2
. (1)

Let {En} be a sequence of events En = {
∣∣µn − µ

∣∣ ≥ ε}. From C-H∑
n≥1

P(En) <∞,

and from Borel-Cantelli lemma we obtain that with probability 1 there
exist only a finite number of n values such that

∣∣µn − µ
∣∣ ≥ ε.
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Mathematical Tools

Stochastic Approximation of a Mean

Proof (cont’d).
Case α = 1
Then for any εk there exist only a finite number of instants were∣∣µn − µ

∣∣ ≥ εk , which corresponds to have ∃nk such that

P(∀n ≥ nk ,
∣∣µn − µ

∣∣ ≤ εk) = 1

Repeating for all εk in the sequence leads to the statement.

Remark: when α = 1, µn is the Monte-Carlo estimate and this corresponds to
the strong law of large numbers. A more precise and accurate proof is here:
http://terrytao.wordpress.com/2008/06/18/the-strong-law-of-large-numbers/
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Mathematical Tools

Stochastic Approximation of a Mean
Proof (cont’d).
Case 1/2 < α < 1. The stochastic approximation µn is

µ1 = x1

µ2 = (1− η2)µ1 + η2x2 = (1− η2)x1 + η2x2

µ3 = (1− η3)µ2 + η3x3 = (1− η2)(1− η3)x1 + η2(1− η3)x2 + η3x3

. . .

µn =
n∑

i=1
λi xi ,

with λi = ηi
∏n

j=i+1(1− ηj) such that
∑n

i=1 λi = 1.
By C-H inequality

P
(∣∣ n∑

i=1
λi xi −

n∑
i=1

λiE[xi ]
∣∣ ≥ ε) = P

(∣∣µn − µ
∣∣ ≥ ε) ≤ e

− 2ε2∑n
i=1 λ

2
i .
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Mathematical Tools

Stochastic Approximation of a Mean
Proof (cont’d).
Case 1/2 < α < 1.
From the definition of λi

log λi = log ηi +
n∑

j=i+1
log(1− ηj) ≤ log ηi −

n∑
j=i+1

ηj

since log(1− x) < −x . Thus λi ≤ ηi e−
∑n

j=i+1 ηj and for any 1 ≤ m ≤ n,
n∑

i=1
λ2

i ≤
n∑

i=1
η2

i e−2
∑n

j=i+1 ηj

(a)
≤

m∑
i=1

e−2
∑n

j=i+1 ηj +
n∑

i=m+1
η2

i

(b)
≤ me−2(n−m)ηn + (n −m)η2

m
(c)
= me−2(n−m)n−α + (n −m)m−2α.
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Mathematical Tools

Stochastic Approximation of a Mean

Proof (cont’d).
Case 1/2 < α < 1.
Let m = nβ with β = (1 + α/2)/2 (i.e. 1− 2αβ = 1/2− α):

n∑
i=1

λ2
i ≤ ne−2(1−n−1/4)n1−α

+ n1/2−α ≤ 2n1/2−α

for n big enough, which leads to

P
(∣∣µn − µ

∣∣ ≥ ε) ≤ e−
ε2

n1/2−α .

From this point we follow the same steps as for α = 1 (application of the
Borel-Cantelli lemma) and obtain the convergence result for µn.
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Mathematical Tools

Stochastic Approximation of a Fixed Point

Definition

Let T : RN → RN be a contraction in some norm || · || with fixed
point V . For any function W and state x, a noisy observation
T̂W (x) = TW (x) + b(x) is available.
For any x ∈ X = {1, . . . ,N}, we defined the stochastic
approximation

Vn+1(x) = (1− ηn(x))Vn(x) + ηn(x)(T̂ Vn(x))
= (1− ηn(x))Vn(x) + ηn(x)(T Vn(x) + bn),

where ηn is a sequence of learning steps.
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Mathematical Tools

Stochastic Approximation of a Fixed Point

Proposition

Let Fn = {V0, . . . ,Vn, b0, . . . , bn−1, η0, . . . , ηn} the filtration of the
algorithm and assume that

E[bn(x)|Fn] = 0 and E[b2
n(x)|Fn] ≤ c(1 + ||Vn||2)

for a constant c.
If the learning rates ηn(x) are positive and satisfy the stochastic
approximation conditions∑

n≥0
ηn =∞,

∑
n≥0

η2
n <∞,

then for any x ∈ X
Vn(x)

a.s.−→ V (x).
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Mathematical Tools

Stochastic Approximation of a Zero

Robbins-Monro (1951) algorithm. Given a noisy function f , find x∗
such that f (x∗) = 0.
In each xn, observe yn = f (xn) + bn (with bn a zero-mean
independent noise) and compute

xn+1 = xn − ηnyn.

If f is an increasing function, then under the same assumptions on
the learning step

xn
a.s.−→ x∗
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Mathematical Tools

Stochastic Approximation of a Minimum

Kiefer-Wolfowitz (1952) algorithm. Given a function f and noisy
observations of its gradient, find x∗ = arg min f (x).
In each xn, observe gn = ∇f (xn) + bn (with bn a zero-mean
independent noise) and compute

xn+1 = xn − ηngn.

If the Hessian ∇2f is positive, then under the same assumptions
on the learning step

xn
a.s.−→ x∗

Remark: this is often referred to as the stochastic gradient algorithm.
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The Monte-Carlo Algorithm

How to solve incrementally an RL problem

Reinforcement Learning
Algorithms

Tools

Policy Evaluation

Policy Learning
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The Monte-Carlo Algorithm

The RL Interaction Protocol

For i = 1, . . . , n
1. Set t = 0
2. Set initial state x0 [possibly random]

[execute one trajectory]
3. While (xt not terminal)

3.1 Take action at
3.2 Observe next state xt+1 and reward rt
3.3 Set t = t + 1

EndWhile
EndFor
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The Monte-Carlo Algorithm

The RL Interaction Protocol
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The Monte-Carlo Algorithm

Policy Evaluation

Objective: given a policy π evaluate its quality at the (fixed)
initial state x0

For i = 1, . . . , n
1. Set t = 0
2. Set initial state x0 [possibly random]

[execute one trajectory]
3. While (xt not terminal)

3.1 Take action at = π(xt)
3.2 Observe next state xt+1 and reward rt = rπ(xt)
3.3 Set t = t + 1

EndWhile
EndFor
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The Monte-Carlo Algorithm

The RL Interaction Protocol
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The Monte-Carlo Algorithm

State Value Function

I Infinite time horizon with terminal state: the problem never
terminates but the agent will eventually reach a termination
state.

V π(x) = E
[ T∑

t=0
γtr(xt , π(xt))|x0 = x ;π

]
,

where T is the first (random) time when the termination
state is achieved.
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The Monte-Carlo Algorithm

Monte-Carlo Approximation

Idea: we can approximate an expectation by an average!
I Return of trajectory i

R̂i(x0) =
T (i)∑
t=0

γtrπ(x (i)
t )

I Estimated value function

V̂ π
n (x0) =

1
n

n∑
i=1

R̂i(x0)
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The Monte-Carlo Algorithm

Monte-Carlo Approximation

For i = 1, . . . , n
1. Set t = 0
2. Set initial state x0 [possibly random]

[execute one trajectory]
3. While (xt not terminal)

3.1 Take action at = π(xt)
3.2 Observe next state xt+1 and reward rt = rπ(xt)
3.3 Set t = t + 1

EndWhile
EndFor
Collect trajectories and compute V̂ π

n (x0) using MC approximation
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The Monte-Carlo Algorithm

Monte-Carlo Approximation: Properties

I All returns are unbiased estimators of V π(x)

E[R̂(i)(x0)] = E
[
rπ(x (i)

0 ) + γrπ(x (i)
1 ) + · · ·+ γT (i)rπ(x (i)

T (i))
]
= V π(x)

I Thus
V̂ π

n (x0)
a.s.−→ V π(x0).

I Finite-sample guarantees are also possible
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The Monte-Carlo Algorithm

Monte-Carlo Approximation: Extensions

Non-episodic problems
I Interrupt trajectories after H steps

R̂i(x0) =
H∑

t=0
γtrπ(x (i)

t )

I Loss in accuracy limited to γH rmax
1−γ
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The Monte-Carlo Algorithm

Monte-Carlo Approximation: Extensions

Multiple subtrajectories
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All subtrajectories starting with x can be used to estimate V π(x)
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The Monte-Carlo Algorithm

First-visit and Every-Visit Monte-Carlo

Remark: any trajectory (x0, x1, x2, . . . , xT ) contains also the
sub-trajectory (xt , xt+1, . . . , xT ) whose return
R̂(xt) = rπ(xt) + · · ·+ rπ(xT−1) could be used to build an
estimator of V π(xt).

I First-visit MC. For each state x we only consider the
sub-trajectory when x is first achieved. Unbiased estimator ,
only one sample per trajectory .

I Every-visit MC. Given a trajectory (x0 = x , x1, x2, . . . , xT ), we
list all the m sub-trajectories starting from x up to xT and we
average them all to obtain an estimate. More than one
sample per trajectory , biased estimator .
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The Monte-Carlo Algorithm

Question

More samples or no bias?

⇒ Sometimes a biased estimator is preferable if consistent!
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The Monte-Carlo Algorithm

First-visit vs Every-Visit Monte-Carlo

Example: 2-state Markov Chain

1−p

p

1

1 0

The reward is 1 while in state 1 (while is 0 in the terminal state). All
trajectories are (x0 = 1, x1 = 1, . . . , xT = 0). By Bellman equations

V (1) = 1 + (1− p)V (1) + 0 · p =
1
p ,

since V (0) = 0.
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The Monte-Carlo Algorithm

First-visit vs Every-Visit Monte-Carlo

We measure the mean squared error (MSE) of V̂ w.r.t. V

E
[
(V̂ − V )2] = (E[V̂ ]− V

)2︸ ︷︷ ︸
Bias2

+E
[(

V̂ − E[V̂ ]
)2]︸ ︷︷ ︸

Variance
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The Monte-Carlo Algorithm

First-visit vs Every-Visit Monte-Carlo

First-visit Monte-Carlo. All the trajectories start from state 1, then
the return over one single trajectory is exactly T , i.e., V̂ = T .
The time-to-end T is a geometric r.v. with expectation

E[V̂ ] = E[T ] =
1
p = V π(1)⇒ unbiased estimator.

Thus the MSE of V̂ coincides with the variance of T , which is

E
[(

T − 1
p
)2
]
=

1
p2 −

1
p .
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The Monte-Carlo Algorithm

First-visit vs Every-Visit Monte-Carlo

Every-visit Monte-Carlo. Given one trajectory, we can construct
T − 1 sub-trajectories (number of times state 1 is visited), where
the t-th trajectory has a return T − t.

V̂ =
1
T

T−1∑
t=0

(T − t) = 1
T

T∑
t′=1

t ′ = T + 1
2 .

The corresponding expectation is

E
[T + 1

2

]
=

1 + p
2p 6=V π(1)⇒ biased estimator .
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The Monte-Carlo Algorithm

First-visit vs Every-Visit Monte-Carlo

Let’s consider n independent trajectories, each of length Ti .
Total number of samples

∑n
i=1 Ti and the estimator V̂n is

V̂n =

∑n
i=1
∑Ti−1

t=0 (Ti − t)∑n
i=1 Ti

=

∑n
i=1 Ti(Ti + 1)
2
∑n

i=1 Ti

=
1/n

∑n
i=1 Ti(Ti + 1)

2/n
∑n

i=1 Ti

a.s.−→ E[T 2] + E[T ]

2E[T ]
=

1
p = V π(1)⇒ consistent estimator .

The MSE of the estimator

E
[(T + 1

2 − 1
p
)2
]
=

1
2p2 −

3
4p +

1
4≤

1
p2 −

1
p .
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The Monte-Carlo Algorithm

First-visit vs Every-Visit Monte-Carlo

In general
I Every-visit MC : biased but consistent estimator.
I First-visit MC : unbiased estimator with potentially bigger

MSE .

Remark: when the state space is large the probability of visiting multiple
times the same state is low, then the performance of the two methods
tends to be the same.
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The Monte-Carlo Algorithm

Monte-Carlo Approximation: Extensions

Full estimate of V π over any x ∈ X
I Use subtrajectories
I Restart from random states over X
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The Monte-Carlo Algorithm

Monte-Carlo Approximation: Limitations

I The estimate V̂ π(x0) is computed when all trajectories are
terminated
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The Monte-Carlo Algorithm

Temporal Difference TD(1)

Idea: we can approximate an expectation by an incremental
average!
I Return of trajectory i

R̂i(x0) =
T (i)∑
t=0

γtrπ(x (i)
t )

I Estimated value function after trajectory i

V̂ π
i (x0) = (1− αi)V̂ π

i−1(x0) + αi R̂i(x0)
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The Monte-Carlo Algorithm

Temporal Difference TD(1)

For i = 1, . . . , n
1. Set t = 0
2. Set initial state x0 [possibly random]

[execute one trajectory]
3. While (xt not terminal)

3.1 Take action at = π(xt)
3.2 Observe next state xt+1 and reward rt = rπ(xt)
3.3 Set t = t + 1

EndWhile
4. Update V̂ π

i (x0) using TD(1) approximation
EndFor
Collect trajectories and compute V̂ π

n (x0) using MC approximation
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The Monte-Carlo Algorithm

Temporal Difference TD(1): Properties

I If αi = 1/i , then TD(1) is just the incremental version of the
empirical mean

V̂ π
i (x0) =

n − 1
n V̂ π

i−1(x0) +
1
n R̂i(x0)

I Using a generic step-size (learning rate) αi gives flexibility to
the algorithm
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The Monte-Carlo Algorithm

Temporal Difference TD(1): Properties

Proposition
If the learning rate satisfies the Robbins-Monro conditions

∞∑
i=0

αi =∞,
∞∑

i=0
α2

i <∞,

then
V̂ π

n (x0)
a.s.−→ V π(x0)
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The Monte-Carlo Algorithm

Temporal Difference TD(1): Extensions

I Non-episodic problems: Truncated trajectories

I Multiple sub-trajectories
I Updates of all the states using sub-trajectories

I state-dependent learning rate αi(x)

I i is the index of the number of updates in that specific state
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The Monte-Carlo Algorithm

Temporal Difference TD(1): Limitations

I The estimate V̂ π(x0) is updated when the trajectory is
completely terminated
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The Monte-Carlo Algorithm

The Bellman Equation

Proposition
For any stationary policy π = (π, π, . . . ), the state value function
at a state x ∈ X satisfies the Bellman equation:

V π(x) = r(x , π(x)) + γ
∑

y
p(y |x , π(x))V π(y).
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The Monte-Carlo Algorithm

Temporal Difference TD(0)
Idea: we can approximate V π by estimating the Bellman error

I Bellman error of a function V in a state x

Bπ(V ; x) = rπ(x) + γ
∑

y
p(y |x , π(x))V (y)− V (x).

I Temporal difference of a function V̂ π for a transition
〈xt , rt , xt+1〉

δt = rt + γV̂ π(xt+1)− V̂ π(xt)

I Estimated value function after transition 〈xt , rt , xt+1〉

V̂ π(xt) =
(
1− αi(xt)

)
V̂ π(xt) + αi(xt)

(
rt + γV̂ π(xt+1)

)
= V̂ π(xt) + αi(xt)δt
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The Monte-Carlo Algorithm

Temporal Difference TD(0)

For i = 1, . . . , n
1. Set t = 0
2. Set initial state x0 [possibly random]

[execute one trajectory]
3. While (xt not terminal)

3.1 Take action at = π(xt)
3.2 Observe next state xt+1 and reward rt = rπ(xt)
3.3 Set t = t + 1
3.4 Update V̂ π(xt) using TD(0) approximation

EndWhile
4. Update V̂ π

i (x0) using TD(1) approximation
EndFor
Collect trajectories and compute V̂ π

n (x0) using MC approximation
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The Monte-Carlo Algorithm

Temporal Difference TD(0): Properties

I The update rule

V̂ π(xt) =
(
1− αi(xt)

)
V̂ π(xt) + αi(xt)

(
rt + γV̂ π(xt+1)

)
is bootstrapping the current estimate of V̂ π in other state.

I The temporal difference is an unbiased sample of the Bellman
error

E[δt ] = E[rt + γV̂ π(xt+1)− V̂ π(xt)] = T πV̂ π(xt)− V̂ π(xt)
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The Monte-Carlo Algorithm

Temporal Difference TD(0): Properties

Proposition
If the learning rate satisfies the Robbins-Monro conditions in all
states x ∈ X

∞∑
i=0

αi(x) =∞,
∞∑

i=0
α2

i (x) <∞,

and all states are visited infinitely often, then for all x ∈ X

V̂ π(x) a.s.−→ V π(x)
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The Monte-Carlo Algorithm

Temporal Difference TD(0)
For i = 1, . . . , n

1. Set t = 0
2. Set V̂ π(x) = 0, ∀x ∈ X
3. Set initial state x0

4. While (xt not terminal)
4.1 Take action at = π(xt)
4.2 Observe next state xt+1 and reward rt = rπ(xt)
4.3 Set t = t + 1
4.4 Compute the TD δt = rt + γV̂ π(xt+1)− V̂ π(xt)
4.5 Update the value function estimate in xt as

V̂ π(xt) = V̂ π(xt) + αi(xt)δt

4.6 Update the learning rate, e.g.,

α(xt) =
1

# visits(xt)

EndWhile
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The Monte-Carlo Algorithm

Comparison between TD(1) and TD(0)

TD(1)
I Update rule

V̂ π(xt) = V̂ π(xt) + α(xt)[δt + γδt+1 + · · ·+ γT−1δT ].

I No bias, large variance

TD(0)
I Update rule

V̂ π(xt) = V̂ π(xt) + α(xt)δt .

I Potential bias, small variance

⇒ TD(λ) perform intermediate updates!
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The Monte-Carlo Algorithm

The T πλ Bellman operator

Definition
Given λ < 1, then the Bellman operator T πλ is

T πλ = (1− λ)
∑
m≥0

λm(T π)m+1.

Remark: convex combination of the m-step Bellman operators (T π)m

weighted by a sequences of coefficients defined as a function of a λ.
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The Monte-Carlo Algorithm

Temporal Difference TD(λ)

Idea: use the whole series of temporal differences to update V̂ π

I Temporal difference of a function V̂ π for a transition
〈xt , rt , xt+1〉

δt = rt + γV̂ π(xt+1)− V̂ π(xt)

I Estimated value function

V̂ π(xt) = V̂ π(xt) + αi(xt)
T∑

s=t
(γλ)s−tδs

⇒ Still requires the whole trajectory before updating...
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The Monte-Carlo Algorithm

Temporal Difference TD(λ): Eligibility Traces

I Eligibility traces z ∈ RN

I For every transition xt → xt+1

1. Compute the temporal difference

dt = rπ(xt) + γV̂ π(xt+1)− V̂ π(xt)

2. Update the eligibility traces

z(x) =

 λz(x) if x 6= xt
1 + λz(x) if x = xt
0 if xt = x0 (reset the traces)

3. For all state x ∈ X

V̂ π(x)← V̂ π(x) + α(x)z(x)δt .
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The Monte-Carlo Algorithm

Sensitivity to λ

I λ < 1: smaller variance w.r.t. λ = 1 (MC/TD(1)).
I λ > 0: faster propagation of rewards w.r.t. λ = 0.
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The Monte-Carlo Algorithm

Example: Sensitivity to λ

Linear chain example

0 1 3 4

−1

2

0 0 0

05

1

The MSE of Vn w.r.t. V π after n = 100 trajectories:

��

��

��
��

��

��

��

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

������������������������������������������ �� �� �� ��
0.2 0.4 0.6 0.8 1 λ0

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 69/83



The Q-learning Algorithm

How to solve incrementally an RL problem

Reinforcement Learning
Algorithms

Tools

Policy Evaluation

Policy Learning
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The Q-learning Algorithm

Question

How do we compute the optimal policy online?

⇒ Q-learning!
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The Q-learning Algorithm

Learning the Optimal Policy

Objective: learn the optimal policy π∗ with direct interaction with
the environment

For i = 1, . . . , n
1. Set t = 0
2. Set initial state x0
3. While (xt not terminal)

3.1 Take action at
3.2 Observe next state xt+1 and reward rt
3.3 Set t = t + 1

EndWhile
EndFor

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 72/83



The Q-learning Algorithm

Learning the Optimal Policy

Objective: learn the optimal policy π∗ with direct interaction with
the environment
For i = 1, . . . , n

1. Set t = 0
2. Set initial state x0
3. While (xt not terminal)

3.1 Take action at
3.2 Observe next state xt+1 and reward rt
3.3 Set t = t + 1

EndWhile
EndFor

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 72/83



The Q-learning Algorithm

Policy Iteration

1. Let π0 be any stationary policy
2. At each iteration k = 1, 2, . . . ,K

I Policy evaluation given πk , compute Qπk .
I Policy improvement: compute the greedy policy

πk+1(x) ∈ arg maxa∈AQπ
k (x)

3. Return the last policy πK
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The Q-learning Algorithm

SARSA
Idea: alternate policy evaluation and policy improvement

I Define a greedy exploratory policy with temperature τ

πQ(a|x) =
exp(Q(x , a)/τ)∑
a′ exp(Q(x , a′)/τ)

The higher Q(x , a), the more probability to take action a in state x
I Compute the temporal difference on the trajectory
〈xt , at , rt , xt+1, at+1〉 (with actions chosen according to πQ(a|x))

δt = rt + γQ̂(xt+1, at+1)− Q̂(xt , at)

I Update the estimate of Q as

Q̂(xt , at) = Q̂(xt , at) + α(xt , at)δt
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The Q-learning Algorithm

SARSA: Properties

I The TD updates make Q̂ converge to Qπ

I The update of πQ allows to improve the policy

I A decreasing temperature allows to become more and more
greedy

⇒ If τ → 0 with a proper rate, then Q̂ → Q∗ and πQ → π∗

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 75/83



The Q-learning Algorithm

SARSA: Limitations

The actions at need to be selected according to the current Q

⇒ On-policy learning
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The Q-learning Algorithm

The Optimal Bellman Equation

Proposition

The optimal value function V ∗ (i.e., V ∗ = maxπ V π) is the
solution to the optimal Bellman equation:

V ∗(x) = maxa∈A
[
r(x , a) + γ

∑
y

p(y |x , a)V ∗(y)
]
.
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The Q-learning Algorithm

Q-Learning

Idea: use TD for the optimal Bellman operator

I Compute the (optimal) temporal difference on the trajectory
〈xt , at , rt , xt+1〉 (with actions chosen arbitrarily!)

δt = rt + γmax
a′

Q̂(xt+1, a′)− Q̂(xt , at)

I Update the estimate of Q as

Q̂(xt , at) = Q̂(xt , at) + α(xt , at)δt
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The Q-learning Algorithm

Q-Learning: Properties

Proposition
If the learning rate satisfies the Robbins-Monro conditions in all
states x ∈ X

∞∑
i=0

αi(x) =∞,
∞∑

i=0
α2

i (x) <∞,

and all states are visited infinitely often, then for all x ∈ X

Q̂(x) a.s.−→ Q∗(x)

Remark: “infinitely often” requires a steady exploration policy
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The Q-learning Algorithm

Learning the Optimal Policy
For i = 1, . . . , n

1. Set t = 0
2. Set initial state x0

3. While (xt not terminal)

3.1 Take action at according to a suitable exploration policy
3.2 Observe next state xt+1 and reward rt
3.3 Compute the temporal difference

δt = rt + γQ̂(xt+1, at+1)− Q̂(xt , at) (SARSA)

δt = rt + γmax
a′

Q̂(xt+1, a′)− Q̂(xt , at) (Q-learning)

3.4 Update the Q-function

Q̂(xt , at) = Q̂(xt , at) + α(xt , at)δt

3.5 Set t = t + 1
EndWhile

EndFor
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The Q-learning Algorithm

The Grid-World Problem

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 81/83



The Q-learning Algorithm

Bibliography I
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The Q-learning Algorithm
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