
MVA-RL Course

Reinforcement Learning Algorithms

A. LAZARIC (SequeL Team @INRIA-Lille)
ENS Cachan - Master 2 MVA

SequeL – INRIA Lille

How to solve incrementally an RL problem

Reinforcement Learning
Algorithms

Tools

Policy Evaluation

Policy Learning

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 2/83

How to solve incrementally an RL problem

Reinforcement Learning
Algorithms

Tools

Policy Evaluation

Policy Learning

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 2/83

Notice

From now on we often work on the
episodic discounted setting.

Most results smoothly extend to other settings.

The value functions can be represented exactly (no
approximation error).

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 3/83

Notice

From now on we often work on the
episodic discounted setting.

Most results smoothly extend to other settings.

The value functions can be represented exactly (no
approximation error).

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 3/83

In This Lecture

I Dynamic programming algorithms require an explicit
definition of

I transition probabilities p(·|x , a)
I reward function r(x , a)

I This knowledge is often unavailable (i.e., wind intensity,
human-computer-interaction).

I Can we relax this assumption?

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 4/83

In This Lecture

I Dynamic programming algorithms require an explicit
definition of

I transition probabilities p(·|x , a)
I reward function r(x , a)

I This knowledge is often unavailable (i.e., wind intensity,
human-computer-interaction).

I Can we relax this assumption?

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 4/83

In This Lecture

I Dynamic programming algorithms require an explicit
definition of

I transition probabilities p(·|x , a)
I reward function r(x , a)

I This knowledge is often unavailable (i.e., wind intensity,
human-computer-interaction).

I Can we relax this assumption?

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 4/83

In This Lecture

I Learning with generative model. A black-box simulator f of
the environment is available. Given (x , a),

f (x , a) = {y , r} with y ∼ p(·|x , a), r = r(x , a).

I Episodic learning. Multiple trajectories can be repeatedly
generated from the same state x and terminating when a
reset condition is achieved:

(x i
0 = x , x i

1, . . . , x i
Ti)

n
i=1.

I Online learning. At each time t the agent is at state xt , it
takes action at , it observes a transition to state xt+1, and it
receives a reward rt . We assume that xt+1 ∼ p(·|xt , at) and
rt = r(xt , at) (i.e., MDP assumption).

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 5/83

In This Lecture

I Learning with generative model. A black-box simulator f of
the environment is available. Given (x , a),

f (x , a) = {y , r} with y ∼ p(·|x , a), r = r(x , a).

I Episodic learning. Multiple trajectories can be repeatedly
generated from the same state x and terminating when a
reset condition is achieved:

(x i
0 = x , x i

1, . . . , x i
Ti)

n
i=1.

I Online learning. At each time t the agent is at state xt , it
takes action at , it observes a transition to state xt+1, and it
receives a reward rt . We assume that xt+1 ∼ p(·|xt , at) and
rt = r(xt , at) (i.e., MDP assumption).

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 5/83

In This Lecture

I Learning with generative model. A black-box simulator f of
the environment is available. Given (x , a),

f (x , a) = {y , r} with y ∼ p(·|x , a), r = r(x , a).

I Episodic learning. Multiple trajectories can be repeatedly
generated from the same state x and terminating when a
reset condition is achieved:

(x i
0 = x , x i

1, . . . , x i
Ti)

n
i=1.

I Online learning. At each time t the agent is at state xt , it
takes action at , it observes a transition to state xt+1, and it
receives a reward rt . We assume that xt+1 ∼ p(·|xt , at) and
rt = r(xt , at) (i.e., MDP assumption).

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 5/83

Mathematical Tools

How to solve incrementally an RL problem

Reinforcement Learning
Algorithms

Tools

Policy Evaluation

Policy Learning

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 6/83

Mathematical Tools

How to solve incrementally an RL problem

Reinforcement Learning
Algorithms

Tools

Policy Evaluation

Policy Learning

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 6/83

Mathematical Tools

Concentration Inequalities
Let X be a random variable and {Xn}n∈N a sequence of r.v.

I {Xn} converges to X almost surely , Xn
a.s.−→ X , if

P(lim
n→∞

Xn = X) = 1,

I {Xn} converges to X in probability , Xn
P−→ X , if for any ε > 0,

lim
n→∞

P[|Xn − X | > ε] = 0,

I {Xn} converges to X in law (or in distribution), Xn
D−→ X , if for any

bounded continuous function f

lim
n→∞

E[f (Xn)] = E[f (X)].

Remark: Xn
a.s.−→ X =⇒ Xn

P−→ X =⇒ Xn
D−→ X .

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 7/83

Mathematical Tools

Concentration Inequalities
Let X be a random variable and {Xn}n∈N a sequence of r.v.

I {Xn} converges to X almost surely , Xn
a.s.−→ X , if

P(lim
n→∞

Xn = X) = 1,

I {Xn} converges to X in probability , Xn
P−→ X , if for any ε > 0,

lim
n→∞

P[|Xn − X | > ε] = 0,

I {Xn} converges to X in law (or in distribution), Xn
D−→ X , if for any

bounded continuous function f

lim
n→∞

E[f (Xn)] = E[f (X)].

Remark: Xn
a.s.−→ X =⇒ Xn

P−→ X =⇒ Xn
D−→ X .

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 7/83

Mathematical Tools

Concentration Inequalities
Let X be a random variable and {Xn}n∈N a sequence of r.v.

I {Xn} converges to X almost surely , Xn
a.s.−→ X , if

P(lim
n→∞

Xn = X) = 1,

I {Xn} converges to X in probability , Xn
P−→ X , if for any ε > 0,

lim
n→∞

P[|Xn − X | > ε] = 0,

I {Xn} converges to X in law (or in distribution), Xn
D−→ X , if for any

bounded continuous function f

lim
n→∞

E[f (Xn)] = E[f (X)].

Remark: Xn
a.s.−→ X =⇒ Xn

P−→ X =⇒ Xn
D−→ X .

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 7/83

Mathematical Tools

Concentration Inequalities
Let X be a random variable and {Xn}n∈N a sequence of r.v.

I {Xn} converges to X almost surely , Xn
a.s.−→ X , if

P(lim
n→∞

Xn = X) = 1,

I {Xn} converges to X in probability , Xn
P−→ X , if for any ε > 0,

lim
n→∞

P[|Xn − X | > ε] = 0,

I {Xn} converges to X in law (or in distribution), Xn
D−→ X , if for any

bounded continuous function f

lim
n→∞

E[f (Xn)] = E[f (X)].

Remark: Xn
a.s.−→ X =⇒ Xn

P−→ X =⇒ Xn
D−→ X .

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 7/83

Mathematical Tools

Concentration Inequalities
Let X be a random variable and {Xn}n∈N a sequence of r.v.

I {Xn} converges to X almost surely , Xn
a.s.−→ X , if

P(lim
n→∞

Xn = X) = 1,

I {Xn} converges to X in probability , Xn
P−→ X , if for any ε > 0,

lim
n→∞

P[|Xn − X | > ε] = 0,

I {Xn} converges to X in law (or in distribution), Xn
D−→ X , if for any

bounded continuous function f

lim
n→∞

E[f (Xn)] = E[f (X)].

Remark: Xn
a.s.−→ X =⇒ Xn

P−→ X =⇒ Xn
D−→ X .

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 7/83

Mathematical Tools

Concentration Inequalities

Proposition (Markov Inequality)
Let X be a positive random variable. Then for any a > 0,

P(X ≥ a) ≤ EX
a .

Proof.

P(X ≥ a) = E[I{X ≥ a}] = E[I{X/a ≥ 1}] ≤ E[X/a]

�

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 8/83

Mathematical Tools

Concentration Inequalities

Proposition (Markov Inequality)
Let X be a positive random variable. Then for any a > 0,

P(X ≥ a) ≤ EX
a .

Proof.

P(X ≥ a) = E[I{X ≥ a}] = E[I{X/a ≥ 1}] ≤ E[X/a]

�

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 8/83

Mathematical Tools

Concentration Inequalities

Proposition (Hoeffding Inequality)
Let X be a centered random variable bounded in [a, b]. Then for
any s ∈ R,

E[esX] ≤ es2(b−a)2/8.

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 9/83

Mathematical Tools

Concentration Inequalities
Proof.
From convexity of the exponential function, for any a ≤ x ≤ b,

esx ≤ x − a
b − a esb +

b − x
b − a esa.

Let p = −a/(b − a) then (recall that E[X] = 0)

E[esx] ≤ b
b − a esa − a

b − a esb

= (1− p + pes(b−a))e−ps(b−a) = eφ(u)

with u = s(b− a) and φ(u) = −pu + log(1− p + peu) whose derivative is

φ′(u) = −p +
p

p + (1− p)e−u ,

and φ(0) = φ′(0) = 0 and φ′′(u) = p(1−p)e−u

(p+(1−p)e−u)2 ≤ 1/4.
Thus from Taylor’s theorem, the exists a θ ∈ [0, u] such that

φ(θ) = φ(0) + θφ′(0) + u2

2 φ
′′(θ) ≤ u2

8 =
s2(b − a)2

8 .

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 10/83

Mathematical Tools

Concentration Inequalities

Proposition (Chernoff-Hoeffding Inequality)

Let Xi ∈ [ai , bi] be n independent r.v. with mean µi = EXi . Then

P
[∣∣∣ n∑

i=1

(
Xi − µi

)∣∣∣ ≥ ε] ≤ 2 exp
(
− 2ε2∑n

i=1(bi − ai)2

)
.

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 11/83

Mathematical Tools

Concentration Inequalities

Proof.

P
(n∑

i=1
Xi − µi ≥ ε

)
= P(es

∑n
i=1 Xi−µi ≥ esε)

≤ e−sεE[es
∑n

i=1 Xi−µi], Markov inequality

= e−sε
n∏

i=1
E[es(Xi−µi)], independent random variables

≤ e−sε
n∏

i=1
es2(bi−ai)

2/8, Hoeffding inequality

= e−sε+s2 ∑n
i=1(bi−ai)

2/8

If we choose s = 4ε/
∑n

i=1(bi − ai)
2, the result follows.

Similar arguments hold for P
(∑n

i=1 Xi − µi ≤ −ε
)
.

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 12/83

Mathematical Tools

Monte-Carlo Approximation of a Mean

Definition

Let X be a random variable with mean µ = E[X] and variance
σ2 = V[X] and xn ∼ X be n i.i.d. realizations of X. The
Monte-Carlo approximation of the mean (i.e., the empirical mean)
built on n i.i.d. realizations is defined as

µn =
1
n

n∑
i=1

xi .

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 13/83

Mathematical Tools

Monte-Carlo Approximation of a Mean

I Unbiased estimator : Then E[µn] = µ (and V[µn] =
V[X]

n)

I Weak law of large numbers: µn
P−→ µ.

I Strong law of large numbers: µn
a.s.−→ µ.

I Central limit theorem (CLT):
√

n(µn − µ)
D−→ N (0,V[X]).

I Finite sample guarantee:

P

[∣∣∣1n
n∑

t=1
Xt − E[X1]

∣∣∣︸ ︷︷ ︸
deviation

> ε︸︷︷︸
accuracy

]
≤ 2 exp

(
− 2nε2

(b − a)2

)
︸ ︷︷ ︸

confidence

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 14/83

Mathematical Tools

Monte-Carlo Approximation of a Mean

I Unbiased estimator : Then E[µn] = µ (and V[µn] =
V[X]

n)

I Weak law of large numbers: µn
P−→ µ.

I Strong law of large numbers: µn
a.s.−→ µ.

I Central limit theorem (CLT):
√

n(µn − µ)
D−→ N (0,V[X]).

I Finite sample guarantee:

P

[∣∣∣1n
n∑

t=1
Xt − E[X1]

∣∣∣︸ ︷︷ ︸
deviation

> ε︸︷︷︸
accuracy

]
≤ 2 exp

(
− 2nε2

(b − a)2

)
︸ ︷︷ ︸

confidence

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 14/83

Mathematical Tools

Monte-Carlo Approximation of a Mean

I Unbiased estimator : Then E[µn] = µ (and V[µn] =
V[X]

n)

I Weak law of large numbers: µn
P−→ µ.

I Strong law of large numbers: µn
a.s.−→ µ.

I Central limit theorem (CLT):
√

n(µn − µ)
D−→ N (0,V[X]).

I Finite sample guarantee:

P

[∣∣∣1n
n∑

t=1
Xt − E[X1]

∣∣∣︸ ︷︷ ︸
deviation

> ε︸︷︷︸
accuracy

]
≤ 2 exp

(
− 2nε2

(b − a)2

)
︸ ︷︷ ︸

confidence

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 14/83

Mathematical Tools

Monte-Carlo Approximation of a Mean

I Unbiased estimator : Then E[µn] = µ (and V[µn] =
V[X]

n)

I Weak law of large numbers: µn
P−→ µ.

I Strong law of large numbers: µn
a.s.−→ µ.

I Central limit theorem (CLT):
√

n(µn − µ)
D−→ N (0,V[X]).

I Finite sample guarantee:

P

[∣∣∣1n
n∑

t=1
Xt − E[X1]

∣∣∣︸ ︷︷ ︸
deviation

> ε︸︷︷︸
accuracy

]
≤ 2 exp

(
− 2nε2

(b − a)2

)
︸ ︷︷ ︸

confidence

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 14/83

Mathematical Tools

Monte-Carlo Approximation of a Mean

I Unbiased estimator : Then E[µn] = µ (and V[µn] =
V[X]

n)

I Weak law of large numbers: µn
P−→ µ.

I Strong law of large numbers: µn
a.s.−→ µ.

I Central limit theorem (CLT):
√

n(µn − µ)
D−→ N (0,V[X]).

I Finite sample guarantee:

P

[∣∣∣1n
n∑

t=1
Xt − E[X1]

∣∣∣︸ ︷︷ ︸
deviation

> ε︸︷︷︸
accuracy

]
≤ 2 exp

(
− 2nε2

(b − a)2

)
︸ ︷︷ ︸

confidence

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 14/83

Mathematical Tools

Monte-Carlo Approximation of a Mean

I Unbiased estimator : Then E[µn] = µ (and V[µn] =
V[X]

n)

I Weak law of large numbers: µn
P−→ µ.

I Strong law of large numbers: µn
a.s.−→ µ.

I Central limit theorem (CLT):
√

n(µn − µ)
D−→ N (0,V[X]).

I Finite sample guarantee:

P

[∣∣∣1n
n∑

t=1
Xt − E[X1]

∣∣∣ > (b − a)
√

log 2/δ
2n

]
≤ δ

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 15/83

Mathematical Tools

Monte-Carlo Approximation of a Mean

I Unbiased estimator : Then E[µn] = µ (and V[µn] =
V[X]

n)

I Weak law of large numbers: µn
P−→ µ.

I Strong law of large numbers: µn
a.s.−→ µ.

I Central limit theorem (CLT):
√

n(µn − µ)
D−→ N (0,V[X]).

I Finite sample guarantee:

P

[∣∣∣1n
n∑

t=1
Xt − E[X1]

∣∣∣ > ε

]
≤ δ

if n ≥ (b−a)2 log 2/δ
2ε2 .

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 16/83

Mathematical Tools

Exercise

Simulate n Bernoulli of probability p and verify the correctness and
the accuracy of the C-H bounds.

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 17/83

Mathematical Tools

Stochastic Approximation of a Mean

Definition

Let X a random variable bounded in [0, 1] with mean µ = E[X]
and xn ∼ X be n i.i.d. realizations of X. The stochastic
approximation of the mean is,

µn = (1− ηn)µn−1 + ηnxn

with µ1 = x1 and where (ηn) is a sequence of learning steps.

Remark: When ηn = 1
n this is the recursive definition of empirical

mean.

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 18/83

Mathematical Tools

Stochastic Approximation of a Mean

Definition

Let X a random variable bounded in [0, 1] with mean µ = E[X]
and xn ∼ X be n i.i.d. realizations of X. The stochastic
approximation of the mean is,

µn = (1− ηn)µn−1 + ηnxn

with µ1 = x1 and where (ηn) is a sequence of learning steps.

Remark: When ηn = 1
n this is the recursive definition of empirical

mean.

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 18/83

Mathematical Tools

Stochastic Approximation of a Mean

Proposition (Borel-Cantelli)

Let (En)n≥1 be a sequence of events such that
∑

n≥1 P(En) <∞,
then the probability of the intersection of an infinite subset is 0.
More formally,

P
(

lim sup
n→∞

En
)
= P

(∞⋂
n=1

∞⋃
k=n

Ek

)
= 0.

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 19/83

Mathematical Tools

Stochastic Approximation of a Mean

Proposition

If for any n, ηn ≥ 0 and are such that∑
n≥0

ηn =∞;
∑
n≥0

η2
n <∞,

then
µn

a.s.−→ µ,

and we say that µn is a consistent estimator.

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 20/83

Mathematical Tools

Stochastic Approximation of a Mean

Proof. We focus on the case ηn = n−α.
In order to satisfy the two conditions we need 1/2 < α ≤ 1. In fact, for
instance

α = 2⇒
∑
n≥0

1
n2 =

π2

6 <∞ (see the Basel problem)

α = 1/2⇒
∑
n≥0

(1√
n

)2
=
∑
n≥0

1
n =∞ (harmonic series).

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 21/83

Mathematical Tools

Stochastic Approximation of a Mean
Proof (cont’d).
Case α = 1
Let (εk)k a sequence such that εk → 0, almost sure convergence
corresponds to

P
(

lim
n→∞

µn = µ
)
= P(∀k,∃nk ,∀n ≥ nk ,

∣∣µn − µ
∣∣ ≤ εk) = 1.

From Chernoff-Hoeffding inequality for any fixed n

P
(∣∣µn − µ

∣∣ ≥ ε) ≤ 2e−2nε2
. (1)

Let {En} be a sequence of events En = {
∣∣µn − µ

∣∣ ≥ ε}. From C-H∑
n≥1

P(En) <∞,

and from Borel-Cantelli lemma we obtain that with probability 1 there
exist only a finite number of n values such that

∣∣µn − µ
∣∣ ≥ ε.

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 22/83

Mathematical Tools

Stochastic Approximation of a Mean

Proof (cont’d).
Case α = 1
Then for any εk there exist only a finite number of instants were∣∣µn − µ

∣∣ ≥ εk , which corresponds to have ∃nk such that

P(∀n ≥ nk ,
∣∣µn − µ

∣∣ ≤ εk) = 1

Repeating for all εk in the sequence leads to the statement.

Remark: when α = 1, µn is the Monte-Carlo estimate and this corresponds to
the strong law of large numbers. A more precise and accurate proof is here:
http://terrytao.wordpress.com/2008/06/18/the-strong-law-of-large-numbers/

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 23/83

Mathematical Tools

Stochastic Approximation of a Mean

Proof (cont’d).
Case α = 1
Then for any εk there exist only a finite number of instants were∣∣µn − µ

∣∣ ≥ εk , which corresponds to have ∃nk such that

P(∀n ≥ nk ,
∣∣µn − µ

∣∣ ≤ εk) = 1

Repeating for all εk in the sequence leads to the statement.

Remark: when α = 1, µn is the Monte-Carlo estimate and this corresponds to
the strong law of large numbers. A more precise and accurate proof is here:
http://terrytao.wordpress.com/2008/06/18/the-strong-law-of-large-numbers/

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 23/83

Mathematical Tools

Stochastic Approximation of a Mean
Proof (cont’d).
Case 1/2 < α < 1. The stochastic approximation µn is

µ1 = x1

µ2 = (1− η2)µ1 + η2x2 = (1− η2)x1 + η2x2

µ3 = (1− η3)µ2 + η3x3 = (1− η2)(1− η3)x1 + η2(1− η3)x2 + η3x3

. . .

µn =
n∑

i=1
λi xi ,

with λi = ηi
∏n

j=i+1(1− ηj) such that
∑n

i=1 λi = 1.
By C-H inequality

P
(∣∣ n∑

i=1
λi xi −

n∑
i=1

λiE[xi]
∣∣ ≥ ε) = P

(∣∣µn − µ
∣∣ ≥ ε) ≤ e

− 2ε2∑n
i=1 λ

2
i .

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 24/83

Mathematical Tools

Stochastic Approximation of a Mean
Proof (cont’d).
Case 1/2 < α < 1.
From the definition of λi

log λi = log ηi +
n∑

j=i+1
log(1− ηj) ≤ log ηi −

n∑
j=i+1

ηj

since log(1− x) < −x . Thus λi ≤ ηi e−
∑n

j=i+1 ηj and for any 1 ≤ m ≤ n,
n∑

i=1
λ2

i ≤
n∑

i=1
η2

i e−2
∑n

j=i+1 ηj

(a)
≤

m∑
i=1

e−2
∑n

j=i+1 ηj +
n∑

i=m+1
η2

i

(b)
≤ me−2(n−m)ηn + (n −m)η2

m
(c)
= me−2(n−m)n−α + (n −m)m−2α.

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 25/83

Mathematical Tools

Stochastic Approximation of a Mean

Proof (cont’d).
Case 1/2 < α < 1.
Let m = nβ with β = (1 + α/2)/2 (i.e. 1− 2αβ = 1/2− α):

n∑
i=1

λ2
i ≤ ne−2(1−n−1/4)n1−α

+ n1/2−α ≤ 2n1/2−α

for n big enough, which leads to

P
(∣∣µn − µ

∣∣ ≥ ε) ≤ e−
ε2

n1/2−α .

From this point we follow the same steps as for α = 1 (application of the
Borel-Cantelli lemma) and obtain the convergence result for µn.

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 26/83

Mathematical Tools

Stochastic Approximation of a Fixed Point

Definition

Let T : RN → RN be a contraction in some norm || · || with fixed
point V . For any function W and state x, a noisy observation
T̂W (x) = TW (x) + b(x) is available.
For any x ∈ X = {1, . . . ,N}, we defined the stochastic
approximation

Vn+1(x) = (1− ηn(x))Vn(x) + ηn(x)(T̂ Vn(x))
= (1− ηn(x))Vn(x) + ηn(x)(T Vn(x) + bn),

where ηn is a sequence of learning steps.

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 27/83

Mathematical Tools

Stochastic Approximation of a Fixed Point

Proposition

Let Fn = {V0, . . . ,Vn, b0, . . . , bn−1, η0, . . . , ηn} the filtration of the
algorithm and assume that

E[bn(x)|Fn] = 0 and E[b2
n(x)|Fn] ≤ c(1 + ||Vn||2)

for a constant c.
If the learning rates ηn(x) are positive and satisfy the stochastic
approximation conditions∑

n≥0
ηn =∞,

∑
n≥0

η2
n <∞,

then for any x ∈ X
Vn(x)

a.s.−→ V (x).

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 28/83

Mathematical Tools

Stochastic Approximation of a Zero

Robbins-Monro (1951) algorithm. Given a noisy function f , find x∗
such that f (x∗) = 0.
In each xn, observe yn = f (xn) + bn (with bn a zero-mean
independent noise) and compute

xn+1 = xn − ηnyn.

If f is an increasing function, then under the same assumptions on
the learning step

xn
a.s.−→ x∗

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 29/83

Mathematical Tools

Stochastic Approximation of a Zero

Robbins-Monro (1951) algorithm. Given a noisy function f , find x∗
such that f (x∗) = 0.
In each xn, observe yn = f (xn) + bn (with bn a zero-mean
independent noise) and compute

xn+1 = xn − ηnyn.

If f is an increasing function, then under the same assumptions on
the learning step

xn
a.s.−→ x∗

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 29/83

Mathematical Tools

Stochastic Approximation of a Minimum

Kiefer-Wolfowitz (1952) algorithm. Given a function f and noisy
observations of its gradient, find x∗ = arg min f (x).
In each xn, observe gn = ∇f (xn) + bn (with bn a zero-mean
independent noise) and compute

xn+1 = xn − ηngn.

If the Hessian ∇2f is positive, then under the same assumptions
on the learning step

xn
a.s.−→ x∗

Remark: this is often referred to as the stochastic gradient algorithm.

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 30/83

Mathematical Tools

Stochastic Approximation of a Minimum

Kiefer-Wolfowitz (1952) algorithm. Given a function f and noisy
observations of its gradient, find x∗ = arg min f (x).
In each xn, observe gn = ∇f (xn) + bn (with bn a zero-mean
independent noise) and compute

xn+1 = xn − ηngn.

If the Hessian ∇2f is positive, then under the same assumptions
on the learning step

xn
a.s.−→ x∗

Remark: this is often referred to as the stochastic gradient algorithm.

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 30/83

The Monte-Carlo Algorithm

How to solve incrementally an RL problem

Reinforcement Learning
Algorithms

Tools

Policy Evaluation

Policy Learning

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 31/83

The Monte-Carlo Algorithm

The RL Interaction Protocol

For i = 1, . . . , n
1. Set t = 0
2. Set initial state x0 [possibly random]

[execute one trajectory]
3. While (xt not terminal)

3.1 Take action at
3.2 Observe next state xt+1 and reward rt
3.3 Set t = t + 1

EndWhile
EndFor

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 32/83

The Monte-Carlo Algorithm

The RL Interaction Protocol

. . .

x0

x
(1)
1

x
(i)
1 x

(i)
2

. . .

x
(i)

T (i)

x
(n)
2x

(n)
1

x
(1)
2

x
(1)

T (1)

. . .

x
(n)

T (n)

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 33/83

The Monte-Carlo Algorithm

Policy Evaluation

Objective: given a policy π evaluate its quality at the (fixed)
initial state x0

For i = 1, . . . , n
1. Set t = 0
2. Set initial state x0 [possibly random]

[execute one trajectory]
3. While (xt not terminal)

3.1 Take action at = π(xt)
3.2 Observe next state xt+1 and reward rt = rπ(xt)
3.3 Set t = t + 1

EndWhile
EndFor

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 34/83

The Monte-Carlo Algorithm

Policy Evaluation

Objective: given a policy π evaluate its quality at the (fixed)
initial state x0
For i = 1, . . . , n

1. Set t = 0
2. Set initial state x0 [possibly random]

[execute one trajectory]
3. While (xt not terminal)

3.1 Take action at = π(xt)
3.2 Observe next state xt+1 and reward rt = rπ(xt)
3.3 Set t = t + 1

EndWhile
EndFor

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 34/83

The Monte-Carlo Algorithm

The RL Interaction Protocol

rπ(x
(n)
1)

x0 x
(i)
1 x

(i)
2

. . .

x
(i)

T (i)

x
(n)
2x

(n)
1

x
(1)
2

x
(1)

T (1)

. . .

x
(n)

T (n)

. . .

x
(1)
1

rπ(x
(1)
1)

rπ(x
(1)

T (i))

rπ(x
(1)
2)

rπ(x
(2)
1) rπ(x

(2)

T (2))

rπ(x
(n)

T (n))

rπ(x
(2)
2)

rπ(x
(n)
2)

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 35/83

The Monte-Carlo Algorithm

State Value Function

I Infinite time horizon with terminal state: the problem never
terminates but the agent will eventually reach a termination
state.

V π(x) = E
[T∑

t=0
γtr(xt , π(xt))|x0 = x ;π

]
,

where T is the first (random) time when the termination
state is achieved.

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 36/83

The Monte-Carlo Algorithm

Monte-Carlo Approximation

Idea: we can approximate an expectation by an average!
I Return of trajectory i

R̂i(x0) =
T (i)∑
t=0

γtrπ(x (i)
t)

I Estimated value function

V̂ π
n (x0) =

1
n

n∑
i=1

R̂i(x0)

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 37/83

The Monte-Carlo Algorithm

Monte-Carlo Approximation

For i = 1, . . . , n
1. Set t = 0
2. Set initial state x0 [possibly random]

[execute one trajectory]
3. While (xt not terminal)

3.1 Take action at = π(xt)
3.2 Observe next state xt+1 and reward rt = rπ(xt)
3.3 Set t = t + 1

EndWhile
EndFor
Collect trajectories and compute V̂ π

n (x0) using MC approximation

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 38/83

The Monte-Carlo Algorithm

Monte-Carlo Approximation: Properties

I All returns are unbiased estimators of V π(x)

E[R̂(i)(x0)] = E
[
rπ(x (i)

0) + γrπ(x (i)
1) + · · ·+ γT (i)rπ(x (i)

T (i))
]
= V π(x)

I Thus
V̂ π

n (x0)
a.s.−→ V π(x0).

I Finite-sample guarantees are also possible

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 39/83

The Monte-Carlo Algorithm

Monte-Carlo Approximation: Extensions

Non-episodic problems
I Interrupt trajectories after H steps

R̂i(x0) =
H∑

t=0
γtrπ(x (i)

t)

I Loss in accuracy limited to γH rmax
1−γ

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 40/83

The Monte-Carlo Algorithm

Monte-Carlo Approximation: Extensions

Multiple subtrajectories

x
(i)

T (i)x0

x
(n)
1

x
(1)

T (1)

. . .

x
(n)

T (n)

. . .

x
(1)
1

rπ(x
(1)
1)

rπ(x
(1)

T (i))

rπ(x
(1)
2)

rπ(x
(2)
1) rπ(x

(2)

T (2))

rπ(x
(n)

T (n))

rπ(x
(2)
2)

rπ(x
(n)
2)rπ(x

(n)
1)

x
(i)
1 = x

x
(n)
2 = x

x
(1)
2

x
(i)
2

. . .

All subtrajectories starting with x can be used to estimate V π(x)

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 41/83

The Monte-Carlo Algorithm

First-visit and Every-Visit Monte-Carlo

Remark: any trajectory (x0, x1, x2, . . . , xT) contains also the
sub-trajectory (xt , xt+1, . . . , xT) whose return
R̂(xt) = rπ(xt) + · · ·+ rπ(xT−1) could be used to build an
estimator of V π(xt).

I First-visit MC. For each state x we only consider the
sub-trajectory when x is first achieved. Unbiased estimator ,
only one sample per trajectory .

I Every-visit MC. Given a trajectory (x0 = x , x1, x2, . . . , xT), we
list all the m sub-trajectories starting from x up to xT and we
average them all to obtain an estimate. More than one
sample per trajectory , biased estimator .

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 42/83

The Monte-Carlo Algorithm

First-visit and Every-Visit Monte-Carlo

Remark: any trajectory (x0, x1, x2, . . . , xT) contains also the
sub-trajectory (xt , xt+1, . . . , xT) whose return
R̂(xt) = rπ(xt) + · · ·+ rπ(xT−1) could be used to build an
estimator of V π(xt).
I First-visit MC. For each state x we only consider the

sub-trajectory when x is first achieved. Unbiased estimator ,
only one sample per trajectory .

I Every-visit MC. Given a trajectory (x0 = x , x1, x2, . . . , xT), we
list all the m sub-trajectories starting from x up to xT and we
average them all to obtain an estimate. More than one
sample per trajectory , biased estimator .

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 42/83

The Monte-Carlo Algorithm

First-visit and Every-Visit Monte-Carlo

Remark: any trajectory (x0, x1, x2, . . . , xT) contains also the
sub-trajectory (xt , xt+1, . . . , xT) whose return
R̂(xt) = rπ(xt) + · · ·+ rπ(xT−1) could be used to build an
estimator of V π(xt).
I First-visit MC. For each state x we only consider the

sub-trajectory when x is first achieved. Unbiased estimator ,
only one sample per trajectory .

I Every-visit MC. Given a trajectory (x0 = x , x1, x2, . . . , xT), we
list all the m sub-trajectories starting from x up to xT and we
average them all to obtain an estimate. More than one
sample per trajectory , biased estimator .

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 42/83

The Monte-Carlo Algorithm

Question

More samples or no bias?

⇒ Sometimes a biased estimator is preferable if consistent!

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 43/83

The Monte-Carlo Algorithm

First-visit vs Every-Visit Monte-Carlo

Example: 2-state Markov Chain

1−p

p

1

1 0

The reward is 1 while in state 1 (while is 0 in the terminal state). All
trajectories are (x0 = 1, x1 = 1, . . . , xT = 0). By Bellman equations

V (1) = 1 + (1− p)V (1) + 0 · p =
1
p ,

since V (0) = 0.

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 44/83

The Monte-Carlo Algorithm

First-visit vs Every-Visit Monte-Carlo

We measure the mean squared error (MSE) of V̂ w.r.t. V

E
[
(V̂ − V)2] = (E[V̂]− V

)2︸ ︷︷ ︸
Bias2

+E
[(

V̂ − E[V̂]
)2]︸ ︷︷ ︸

Variance

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 45/83

The Monte-Carlo Algorithm

First-visit vs Every-Visit Monte-Carlo

First-visit Monte-Carlo. All the trajectories start from state 1, then
the return over one single trajectory is exactly T , i.e., V̂ = T .
The time-to-end T is a geometric r.v. with expectation

E[V̂] = E[T] =
1
p = V π(1)⇒ unbiased estimator.

Thus the MSE of V̂ coincides with the variance of T , which is

E
[(

T − 1
p
)2
]
=

1
p2 −

1
p .

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 46/83

The Monte-Carlo Algorithm

First-visit vs Every-Visit Monte-Carlo

Every-visit Monte-Carlo. Given one trajectory, we can construct
T − 1 sub-trajectories (number of times state 1 is visited), where
the t-th trajectory has a return T − t.

V̂ =
1
T

T−1∑
t=0

(T − t) = 1
T

T∑
t′=1

t ′ = T + 1
2 .

The corresponding expectation is

E
[T + 1

2

]
=

1 + p
2p 6=V π(1)⇒ biased estimator .

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 47/83

The Monte-Carlo Algorithm

First-visit vs Every-Visit Monte-Carlo

Let’s consider n independent trajectories, each of length Ti .
Total number of samples

∑n
i=1 Ti and the estimator V̂n is

V̂n =

∑n
i=1
∑Ti−1

t=0 (Ti − t)∑n
i=1 Ti

=

∑n
i=1 Ti(Ti + 1)
2
∑n

i=1 Ti

=
1/n

∑n
i=1 Ti(Ti + 1)

2/n
∑n

i=1 Ti

a.s.−→ E[T 2] + E[T]

2E[T]
=

1
p = V π(1)⇒ consistent estimator .

The MSE of the estimator

E
[(T + 1

2 − 1
p
)2
]
=

1
2p2 −

3
4p +

1
4≤

1
p2 −

1
p .

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 48/83

The Monte-Carlo Algorithm

First-visit vs Every-Visit Monte-Carlo

In general
I Every-visit MC : biased but consistent estimator.
I First-visit MC : unbiased estimator with potentially bigger

MSE .

Remark: when the state space is large the probability of visiting multiple
times the same state is low, then the performance of the two methods
tends to be the same.

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 49/83

The Monte-Carlo Algorithm

First-visit vs Every-Visit Monte-Carlo

In general
I Every-visit MC : biased but consistent estimator.
I First-visit MC : unbiased estimator with potentially bigger

MSE .

Remark: when the state space is large the probability of visiting multiple
times the same state is low, then the performance of the two methods
tends to be the same.

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 49/83

The Monte-Carlo Algorithm

Monte-Carlo Approximation: Extensions

Full estimate of V π over any x ∈ X
I Use subtrajectories
I Restart from random states over X

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 50/83

The Monte-Carlo Algorithm

Monte-Carlo Approximation: Limitations

I The estimate V̂ π(x0) is computed when all trajectories are
terminated

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 51/83

The Monte-Carlo Algorithm

Temporal Difference TD(1)

Idea: we can approximate an expectation by an incremental
average!
I Return of trajectory i

R̂i(x0) =
T (i)∑
t=0

γtrπ(x (i)
t)

I Estimated value function after trajectory i

V̂ π
i (x0) = (1− αi)V̂ π

i−1(x0) + αi R̂i(x0)

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 52/83

The Monte-Carlo Algorithm

Temporal Difference TD(1)

For i = 1, . . . , n
1. Set t = 0
2. Set initial state x0 [possibly random]

[execute one trajectory]
3. While (xt not terminal)

3.1 Take action at = π(xt)
3.2 Observe next state xt+1 and reward rt = rπ(xt)
3.3 Set t = t + 1

EndWhile
4. Update V̂ π

i (x0) using TD(1) approximation
EndFor
Collect trajectories and compute V̂ π

n (x0) using MC approximation

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 53/83

The Monte-Carlo Algorithm

Temporal Difference TD(1): Properties

I If αi = 1/i , then TD(1) is just the incremental version of the
empirical mean

V̂ π
i (x0) =

n − 1
n V̂ π

i−1(x0) +
1
n R̂i(x0)

I Using a generic step-size (learning rate) αi gives flexibility to
the algorithm

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 54/83

The Monte-Carlo Algorithm

Temporal Difference TD(1): Properties

Proposition
If the learning rate satisfies the Robbins-Monro conditions

∞∑
i=0

αi =∞,
∞∑

i=0
α2

i <∞,

then
V̂ π

n (x0)
a.s.−→ V π(x0)

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 55/83

The Monte-Carlo Algorithm

Temporal Difference TD(1): Extensions

I Non-episodic problems: Truncated trajectories

I Multiple sub-trajectories
I Updates of all the states using sub-trajectories

I state-dependent learning rate αi(x)

I i is the index of the number of updates in that specific state

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 56/83

The Monte-Carlo Algorithm

Temporal Difference TD(1): Limitations

I The estimate V̂ π(x0) is updated when the trajectory is
completely terminated

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 57/83

The Monte-Carlo Algorithm

The Bellman Equation

Proposition
For any stationary policy π = (π, π, . . .), the state value function
at a state x ∈ X satisfies the Bellman equation:

V π(x) = r(x , π(x)) + γ
∑

y
p(y |x , π(x))V π(y).

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 58/83

The Monte-Carlo Algorithm

Temporal Difference TD(0)
Idea: we can approximate V π by estimating the Bellman error

I Bellman error of a function V in a state x

Bπ(V ; x) = rπ(x) + γ
∑

y
p(y |x , π(x))V (y)− V (x).

I Temporal difference of a function V̂ π for a transition
〈xt , rt , xt+1〉

δt = rt + γV̂ π(xt+1)− V̂ π(xt)

I Estimated value function after transition 〈xt , rt , xt+1〉

V̂ π(xt) =
(
1− αi(xt)

)
V̂ π(xt) + αi(xt)

(
rt + γV̂ π(xt+1)

)
= V̂ π(xt) + αi(xt)δt

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 59/83

The Monte-Carlo Algorithm

Temporal Difference TD(0)
Idea: we can approximate V π by estimating the Bellman error
I Bellman error of a function V in a state x

Bπ(V ; x) = rπ(x) + γ
∑

y
p(y |x , π(x))V (y)− V (x).

I Temporal difference of a function V̂ π for a transition
〈xt , rt , xt+1〉

δt = rt + γV̂ π(xt+1)− V̂ π(xt)

I Estimated value function after transition 〈xt , rt , xt+1〉

V̂ π(xt) =
(
1− αi(xt)

)
V̂ π(xt) + αi(xt)

(
rt + γV̂ π(xt+1)

)
= V̂ π(xt) + αi(xt)δt

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 59/83

The Monte-Carlo Algorithm

Temporal Difference TD(0)
Idea: we can approximate V π by estimating the Bellman error
I Bellman error of a function V in a state x

Bπ(V ; x) = rπ(x) + γ
∑

y
p(y |x , π(x))V (y)− V (x).

I Temporal difference of a function V̂ π for a transition
〈xt , rt , xt+1〉

δt = rt + γV̂ π(xt+1)− V̂ π(xt)

I Estimated value function after transition 〈xt , rt , xt+1〉

V̂ π(xt) =
(
1− αi(xt)

)
V̂ π(xt) + αi(xt)

(
rt + γV̂ π(xt+1)

)
= V̂ π(xt) + αi(xt)δt

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 59/83

The Monte-Carlo Algorithm

Temporal Difference TD(0)
Idea: we can approximate V π by estimating the Bellman error
I Bellman error of a function V in a state x

Bπ(V ; x) = rπ(x) + γ
∑

y
p(y |x , π(x))V (y)− V (x).

I Temporal difference of a function V̂ π for a transition
〈xt , rt , xt+1〉

δt = rt + γV̂ π(xt+1)− V̂ π(xt)

I Estimated value function after transition 〈xt , rt , xt+1〉

V̂ π(xt) =
(
1− αi(xt)

)
V̂ π(xt) + αi(xt)

(
rt + γV̂ π(xt+1)

)
= V̂ π(xt) + αi(xt)δt

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 59/83

The Monte-Carlo Algorithm

Temporal Difference TD(0)

For i = 1, . . . , n
1. Set t = 0
2. Set initial state x0 [possibly random]

[execute one trajectory]
3. While (xt not terminal)

3.1 Take action at = π(xt)
3.2 Observe next state xt+1 and reward rt = rπ(xt)
3.3 Set t = t + 1
3.4 Update V̂ π(xt) using TD(0) approximation

EndWhile
4. Update V̂ π

i (x0) using TD(1) approximation
EndFor
Collect trajectories and compute V̂ π

n (x0) using MC approximation

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 60/83

The Monte-Carlo Algorithm

Temporal Difference TD(0): Properties

I The update rule

V̂ π(xt) =
(
1− αi(xt)

)
V̂ π(xt) + αi(xt)

(
rt + γV̂ π(xt+1)

)
is bootstrapping the current estimate of V̂ π in other state.

I The temporal difference is an unbiased sample of the Bellman
error

E[δt] = E[rt + γV̂ π(xt+1)− V̂ π(xt)] = T πV̂ π(xt)− V̂ π(xt)

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 61/83

The Monte-Carlo Algorithm

Temporal Difference TD(0): Properties

Proposition
If the learning rate satisfies the Robbins-Monro conditions in all
states x ∈ X

∞∑
i=0

αi(x) =∞,
∞∑

i=0
α2

i (x) <∞,

and all states are visited infinitely often, then for all x ∈ X

V̂ π(x) a.s.−→ V π(x)

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 62/83

The Monte-Carlo Algorithm

Temporal Difference TD(0)
For i = 1, . . . , n

1. Set t = 0
2. Set V̂ π(x) = 0, ∀x ∈ X
3. Set initial state x0

4. While (xt not terminal)
4.1 Take action at = π(xt)
4.2 Observe next state xt+1 and reward rt = rπ(xt)
4.3 Set t = t + 1
4.4 Compute the TD δt = rt + γV̂ π(xt+1)− V̂ π(xt)
4.5 Update the value function estimate in xt as

V̂ π(xt) = V̂ π(xt) + αi(xt)δt

4.6 Update the learning rate, e.g.,

α(xt) =
1

visits(xt)

EndWhile

EndFor A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 63/83

The Monte-Carlo Algorithm

Comparison between TD(1) and TD(0)

TD(1)
I Update rule

V̂ π(xt) = V̂ π(xt) + α(xt)[δt + γδt+1 + · · ·+ γT−1δT].

I No bias, large variance

TD(0)
I Update rule

V̂ π(xt) = V̂ π(xt) + α(xt)δt .

I Potential bias, small variance

⇒ TD(λ) perform intermediate updates!

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 64/83

The Monte-Carlo Algorithm

Comparison between TD(1) and TD(0)

TD(1)
I Update rule

V̂ π(xt) = V̂ π(xt) + α(xt)[δt + γδt+1 + · · ·+ γT−1δT].

I No bias, large variance

TD(0)
I Update rule

V̂ π(xt) = V̂ π(xt) + α(xt)δt .

I Potential bias, small variance

⇒ TD(λ) perform intermediate updates!

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 64/83

The Monte-Carlo Algorithm

The T πλ Bellman operator

Definition
Given λ < 1, then the Bellman operator T πλ is

T πλ = (1− λ)
∑
m≥0

λm(T π)m+1.

Remark: convex combination of the m-step Bellman operators (T π)m

weighted by a sequences of coefficients defined as a function of a λ.

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 65/83

The Monte-Carlo Algorithm

The T πλ Bellman operator

Definition
Given λ < 1, then the Bellman operator T πλ is

T πλ = (1− λ)
∑
m≥0

λm(T π)m+1.

Remark: convex combination of the m-step Bellman operators (T π)m

weighted by a sequences of coefficients defined as a function of a λ.

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 65/83

The Monte-Carlo Algorithm

Temporal Difference TD(λ)

Idea: use the whole series of temporal differences to update V̂ π

I Temporal difference of a function V̂ π for a transition
〈xt , rt , xt+1〉

δt = rt + γV̂ π(xt+1)− V̂ π(xt)

I Estimated value function

V̂ π(xt) = V̂ π(xt) + αi(xt)
T∑

s=t
(γλ)s−tδs

⇒ Still requires the whole trajectory before updating...

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 66/83

The Monte-Carlo Algorithm

Temporal Difference TD(λ)

Idea: use the whole series of temporal differences to update V̂ π

I Temporal difference of a function V̂ π for a transition
〈xt , rt , xt+1〉

δt = rt + γV̂ π(xt+1)− V̂ π(xt)

I Estimated value function

V̂ π(xt) = V̂ π(xt) + αi(xt)
T∑

s=t
(γλ)s−tδs

⇒ Still requires the whole trajectory before updating...

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 66/83

The Monte-Carlo Algorithm

Temporal Difference TD(λ): Eligibility Traces

I Eligibility traces z ∈ RN

I For every transition xt → xt+1

1. Compute the temporal difference

dt = rπ(xt) + γV̂ π(xt+1)− V̂ π(xt)

2. Update the eligibility traces

z(x) =

 λz(x) if x 6= xt
1 + λz(x) if x = xt
0 if xt = x0 (reset the traces)

3. For all state x ∈ X

V̂ π(x)← V̂ π(x) + α(x)z(x)δt .

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 67/83

The Monte-Carlo Algorithm

Temporal Difference TD(λ): Eligibility Traces

I Eligibility traces z ∈ RN

I For every transition xt → xt+1
1. Compute the temporal difference

dt = rπ(xt) + γV̂ π(xt+1)− V̂ π(xt)

2. Update the eligibility traces

z(x) =

 λz(x) if x 6= xt
1 + λz(x) if x = xt
0 if xt = x0 (reset the traces)

3. For all state x ∈ X

V̂ π(x)← V̂ π(x) + α(x)z(x)δt .

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 67/83

The Monte-Carlo Algorithm

Temporal Difference TD(λ): Eligibility Traces

I Eligibility traces z ∈ RN

I For every transition xt → xt+1
1. Compute the temporal difference

dt = rπ(xt) + γV̂ π(xt+1)− V̂ π(xt)

2. Update the eligibility traces

z(x) =

 λz(x) if x 6= xt
1 + λz(x) if x = xt
0 if xt = x0 (reset the traces)

3. For all state x ∈ X

V̂ π(x)← V̂ π(x) + α(x)z(x)δt .

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 67/83

The Monte-Carlo Algorithm

Temporal Difference TD(λ): Eligibility Traces

I Eligibility traces z ∈ RN

I For every transition xt → xt+1
1. Compute the temporal difference

dt = rπ(xt) + γV̂ π(xt+1)− V̂ π(xt)

2. Update the eligibility traces

z(x) =

 λz(x) if x 6= xt
1 + λz(x) if x = xt
0 if xt = x0 (reset the traces)

3. For all state x ∈ X

V̂ π(x)← V̂ π(x) + α(x)z(x)δt .

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 67/83

The Monte-Carlo Algorithm

Sensitivity to λ

I λ < 1: smaller variance w.r.t. λ = 1 (MC/TD(1)).
I λ > 0: faster propagation of rewards w.r.t. λ = 0.

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 68/83

The Monte-Carlo Algorithm

Example: Sensitivity to λ

Linear chain example

0 1 3 4

−1

2

0 0 0

05

1

The MSE of Vn w.r.t. V π after n = 100 trajectories:

��

��

��
��

��

��

��

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�� �� �� �� ��
0.2 0.4 0.6 0.8 1 λ0

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 69/83

The Q-learning Algorithm

How to solve incrementally an RL problem

Reinforcement Learning
Algorithms

Tools

Policy Evaluation

Policy Learning

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 70/83

The Q-learning Algorithm

Question

How do we compute the optimal policy online?

⇒ Q-learning!

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 71/83

The Q-learning Algorithm

Learning the Optimal Policy

Objective: learn the optimal policy π∗ with direct interaction with
the environment

For i = 1, . . . , n
1. Set t = 0
2. Set initial state x0
3. While (xt not terminal)

3.1 Take action at
3.2 Observe next state xt+1 and reward rt
3.3 Set t = t + 1

EndWhile
EndFor

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 72/83

The Q-learning Algorithm

Learning the Optimal Policy

Objective: learn the optimal policy π∗ with direct interaction with
the environment
For i = 1, . . . , n

1. Set t = 0
2. Set initial state x0
3. While (xt not terminal)

3.1 Take action at
3.2 Observe next state xt+1 and reward rt
3.3 Set t = t + 1

EndWhile
EndFor

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 72/83

The Q-learning Algorithm

Policy Iteration

1. Let π0 be any stationary policy
2. At each iteration k = 1, 2, . . . ,K

I Policy evaluation given πk , compute Qπk .
I Policy improvement: compute the greedy policy

πk+1(x) ∈ arg maxa∈AQπ
k (x)

3. Return the last policy πK

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 73/83

The Q-learning Algorithm

SARSA
Idea: alternate policy evaluation and policy improvement

I Define a greedy exploratory policy with temperature τ

πQ(a|x) =
exp(Q(x , a)/τ)∑
a′ exp(Q(x , a′)/τ)

The higher Q(x , a), the more probability to take action a in state x
I Compute the temporal difference on the trajectory
〈xt , at , rt , xt+1, at+1〉 (with actions chosen according to πQ(a|x))

δt = rt + γQ̂(xt+1, at+1)− Q̂(xt , at)

I Update the estimate of Q as

Q̂(xt , at) = Q̂(xt , at) + α(xt , at)δt

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 74/83

The Q-learning Algorithm

SARSA
Idea: alternate policy evaluation and policy improvement

I Define a greedy exploratory policy with temperature τ

πQ(a|x) =
exp(Q(x , a)/τ)∑
a′ exp(Q(x , a′)/τ)

The higher Q(x , a), the more probability to take action a in state x

I Compute the temporal difference on the trajectory
〈xt , at , rt , xt+1, at+1〉 (with actions chosen according to πQ(a|x))

δt = rt + γQ̂(xt+1, at+1)− Q̂(xt , at)

I Update the estimate of Q as

Q̂(xt , at) = Q̂(xt , at) + α(xt , at)δt

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 74/83

The Q-learning Algorithm

SARSA
Idea: alternate policy evaluation and policy improvement

I Define a greedy exploratory policy with temperature τ

πQ(a|x) =
exp(Q(x , a)/τ)∑
a′ exp(Q(x , a′)/τ)

The higher Q(x , a), the more probability to take action a in state x
I Compute the temporal difference on the trajectory
〈xt , at , rt , xt+1, at+1〉 (with actions chosen according to πQ(a|x))

δt = rt + γQ̂(xt+1, at+1)− Q̂(xt , at)

I Update the estimate of Q as

Q̂(xt , at) = Q̂(xt , at) + α(xt , at)δt

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 74/83

The Q-learning Algorithm

SARSA
Idea: alternate policy evaluation and policy improvement

I Define a greedy exploratory policy with temperature τ

πQ(a|x) =
exp(Q(x , a)/τ)∑
a′ exp(Q(x , a′)/τ)

The higher Q(x , a), the more probability to take action a in state x
I Compute the temporal difference on the trajectory
〈xt , at , rt , xt+1, at+1〉 (with actions chosen according to πQ(a|x))

δt = rt + γQ̂(xt+1, at+1)− Q̂(xt , at)

I Update the estimate of Q as

Q̂(xt , at) = Q̂(xt , at) + α(xt , at)δt

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 74/83

The Q-learning Algorithm

SARSA: Properties

I The TD updates make Q̂ converge to Qπ

I The update of πQ allows to improve the policy

I A decreasing temperature allows to become more and more
greedy

⇒ If τ → 0 with a proper rate, then Q̂ → Q∗ and πQ → π∗

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 75/83

The Q-learning Algorithm

SARSA: Limitations

The actions at need to be selected according to the current Q

⇒ On-policy learning

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 76/83

The Q-learning Algorithm

The Optimal Bellman Equation

Proposition

The optimal value function V ∗ (i.e., V ∗ = maxπ V π) is the
solution to the optimal Bellman equation:

V ∗(x) = maxa∈A
[
r(x , a) + γ

∑
y

p(y |x , a)V ∗(y)
]
.

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 77/83

The Q-learning Algorithm

Q-Learning

Idea: use TD for the optimal Bellman operator

I Compute the (optimal) temporal difference on the trajectory
〈xt , at , rt , xt+1〉 (with actions chosen arbitrarily!)

δt = rt + γmax
a′

Q̂(xt+1, a′)− Q̂(xt , at)

I Update the estimate of Q as

Q̂(xt , at) = Q̂(xt , at) + α(xt , at)δt

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 78/83

The Q-learning Algorithm

Q-Learning: Properties

Proposition
If the learning rate satisfies the Robbins-Monro conditions in all
states x ∈ X

∞∑
i=0

αi(x) =∞,
∞∑

i=0
α2

i (x) <∞,

and all states are visited infinitely often, then for all x ∈ X

Q̂(x) a.s.−→ Q∗(x)

Remark: “infinitely often” requires a steady exploration policy

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 79/83

The Q-learning Algorithm

Learning the Optimal Policy
For i = 1, . . . , n

1. Set t = 0
2. Set initial state x0

3. While (xt not terminal)

3.1 Take action at according to a suitable exploration policy
3.2 Observe next state xt+1 and reward rt
3.3 Compute the temporal difference

δt = rt + γQ̂(xt+1, at+1)− Q̂(xt , at) (SARSA)

δt = rt + γmax
a′

Q̂(xt+1, a′)− Q̂(xt , at) (Q-learning)

3.4 Update the Q-function

Q̂(xt , at) = Q̂(xt , at) + α(xt , at)δt

3.5 Set t = t + 1
EndWhile

EndFor

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 80/83

The Q-learning Algorithm

The Grid-World Problem

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 81/83

The Q-learning Algorithm

Bibliography I

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 82/83

The Q-learning Algorithm

Reinforcement Learning

Alessandro Lazaric
alessandro.lazaric@inria.fr

sequel.lille.inria.fr

	Mathematical Tools
	The Monte-Carlo Algorithm
	The Q-learning Algorithm

