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Motivation: a Long-Standing Goal of AI...
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...with Potential Applications in Real-World Environments
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Learning in Two-Player Zero-Sum Games Regret Minimization and Nash Equilibria

Normal Form Games

The game
I Set of players N = {1, . . . , n}

I Action sets Ai , joint action set A = A1 × · · · × An

I Joint action a ∈ A, player i ’s action ai , all other players a−i

I Utility (payoff/reward) function u : A→ Rn, player i ’s utility ui : A→ R

Mixed strategies
I Joint strategy σ ∈ D(A) such that σ(a) =

∏n
i=1 σi(ai)

I Utility of a strategy ui(σ) =
∑

ai
∑

a−i
σi(ai)σ−i(a−i)ui(ai , a−i)
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Learning in Two-Player Zero-Sum Games Regret Minimization and Nash Equilibria

Two-Player Zero-Sum Games
The game

I Set of players N = {1, 2} = {i , j}

I Action sets Ai , joint action set A = A1 × A2

I Joint action a ∈ A, player i ’s action ai , other player’s aj

I Utility (payoff/reward) function u : A→ Rn, player i ’s utility ui : A→ R

∀a ∈ A, u1(a) = −u2(a)

Solution concept
I Nash equilibrium (σ∗1 , σ

∗
2 ) = argmax

σ1
min
σ2

u1(σ1, σ2)

I Value of the game V = max
σ1

min
σ2

u1(σ1, σ2)
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Learning in Two-Player Zero-Sum Games Regret Minimization and Nash Equilibria

Rock-Paper-Scissors – The Game

Action set A1 = A2 = {(R)ock, (P)aper, (S)cissor}

R P S
R 0 , 0 -1 , 1 1 , -1
P 1 , -1 0 , 0 -1 , 1
S -1 , 1 1 , -1 0 , 0
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Learning in Two-Player Zero-Sum Games Regret Minimization and Nash Equilibria

Rock-Paper-Scissors – The Solution (sketch)

R P S
R 0 , 0 -1 , 1 1 , -1
P 1 , -1 0 , 0 -1 , 1
S -1 , 1 1 , -1 0 , 0

I If (σ∗1 , σ∗2 ) is a Nash equilibrium, then
σ∗1 = BR(σ∗2 ) = argmax

σ1
u1(σ1, σ∗2 ) = argmax

σ1

∑
a1∈A1

σ1(a1)u1(a1, σ∗2 )

⇒ ∀a1 ∈ A, u1 = u1(a1, σ∗2 )
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Learning in Two-Player Zero-Sum Games Regret Minimization and Nash Equilibria

Rock-Paper-Scissors – The Solution (sketch)
R P S

R 0 , 0 -1 , 1 1 , -1
P 1 , -1 0 , 0 -1 , 1
S -1 , 1 1 , -1 0 , 0

I Let σ2 =
(
σ2(R), σ2(P), σ2(S)

)
the strategy of player column then

u1 = u1(R, σ2) = 0σ2(R)− 1σ2(P) + 1σ2(S)
u1 = u1(P, σ2) = 1σ2(R) + 0σ2(P)− 1σ2(S)
u1 = u1(S, σ2) = −1σ2(R) + 1σ2(P) + 0σ2(S)

1 = σ2(R) + σ2(P) + σ2(S)

I Solving for all variables gives σ∗2 = (1/3, 1/3, 1/3) and u1 = 0
I Repeating for player row gives σ∗1 = (1/3, 1/3, 1/3) and u2 = 0
I (σ∗1 , σ

∗
2 ) is a Nash equilibrium and the value of the game is V = 0
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Learning in Two-Player Zero-Sum Games Regret Minimization and Nash Equilibria

A Single-Player Perspective
Sequential game

I For t = 1, . . . , n
I Player 1 chooses σ1,t
I Player 2 chooses σ2,t
I Players play actions a1,t ∼ σ1,t and a2,t ∼ σ2,t
I Players receive payoffs u1(a1,t , a2,t) and u2(a1,t , a2,t)

Solution: Nash equilibrium

(σ∗1 , σ
∗
2 ) = argmax

σ1
min
σ2

u1(σ1, σ2)

(a∗1,1, . . . , a∗1,n) = arg max
(a1,1,...,a1,n)

1
n

n∑
t=1

u1(a1,t , a2,t)

= arg max
(a1,1,...,a1,n)

1
n

n∑
t=1

u1,t(a1,t)
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A Single-Player Perspective
Sequential game ⇒ Single-player game
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Learning in Two-Player Zero-Sum Games Regret Minimization and Nash Equilibria

The (Multi-Armed Bandit) Problem

A learning problem
I For t = 1, . . . , n

I Player 1 chooses σ1,t
I Player 1 plays action a1,t ∼ σ1,t
I Player 1 receives payoff u1,t(a1,t)

Remarks
I No information about a2,t and utility u2
I Utility function u1,t is only observed for a1,t (i.e., u1,t(a1,t))
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Learning in Two-Player Zero-Sum Games Regret Minimization and Nash Equilibria

The (Multi-Armed Bandit) Problem

I Regret in hindisight w.r.t. any fixed action a1

Rn(a1) =
1
n

n∑
t=1

u1,t(a1)−
1
n

n∑
t=1

u1,t(a1,t)

I Objective: find actions (a1,1, . . . , a1,n) that maximize average utility
≈ minimize the regret w.r.t. the best action a1

Utility: 1
n

n∑
t=1

u1,t(a1,t)

Regret: Rn = max
a1

1
n

n∑
t=1

u1,t(a1)−
1
n

n∑
t=1

u1,t(a1,t)
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Learning in Two-Player Zero-Sum Games Regret Minimization and Nash Equilibria

Regret Minimization and Nash Equilibria

Theorem
A learning algorithm is Hannan’s consistent if

lim
n→∞

Rn = 0 a.s.

Given a two-player zero-sum game with value V , if players choose strategies σ1,t and
σ2,t using a Hannan’s consistent algorithm, then

lim
n→∞

1
n

n∑
t=1

u1(a1,t , a2,t) = V

Furthermore, let empirical frequency strategies be

σ̂1,n(a1) =
1
n
∑
t=1

I{a1,t = a1} and σ̂2,n(a2) =
1
n
∑
t=1

I{a2,t = a2}

then the joint empirical strategy

σ̂1,n × σ̂2,n
n→∞−→

{
(σ∗1 , σ

∗
2 )
}
Nash
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Learning in Two-Player Zero-Sum Games Regret Minimization and Nash Equilibria

Regret Minimization and Nash Equilibria [proof]
I [Hannan’s consistency]

lim
n→∞

Rn = 0 ⇐⇒ lim
n→∞

(
max
a1

1
n

n∑
t=1

u1,t(a1)−
1
n

n∑
t=1

u1,t(a1,t)
)
= 0

I [linearity of utility function]

max
σ1

1
n

n∑
t=1

u1,t(σ1) = max
σ1

1
n

n∑
t=1

∑
a1∈A1

σ1(a1)u1,t(a1) = max
a1

1
n

n∑
t=1

u1,t(a1)

I [definition] u1,t(σ1) = u1(σ1, a2,t)

⇒
1
n

n∑
t=1

u1,t(σ1) =
1
n

n∑
t=1

∑
a2∈A2

I{a2,t = a2}u1(σ1, a2) =
∑
a2∈A2

u1(σ1, a2)
1
n

n∑
t=1

I{a2,t = a2}︸ ︷︷ ︸
σ̂2,n(a2)

I [one-side of the result]

max
σ1

1
n

n∑
t=1

u1,t(σ1) = max
σ1

1
n

n∑
t=1

u1(σ1, σ̂2,n) ≥ max
σ1

min
σ2

1
n

n∑
t=1

u1(σ1, σ2) = V

I [same for player 2] ⇒ desired result.
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Learning in Two-Player Zero-Sum Games Regret Minimization and Nash Equilibria

Regret Minimization and Nash Equilibria

Corollary
If

Rn ≤ ε

then the joint empirical strategy is ε-Nash, i.e.,

u1(σ̂1,n × σ̂2,n) ≥ V − ε
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Learning in Two-Player Zero-Sum Games The Exp3 Algorithm

Hannan’s Consistent Algorithms
A learning problem

I For t = 1, . . . , n
I Player 1 chooses σ1,t
I Player 1 plays action a1,t ∼ σ1,t
I Player 1 receives payoff u1,t(a1,t)

Objective
I Regret

Rn = max
a1

1
n

n∑
t=1

u1,t(a1)−
1
n

n∑
t=1

u1,t(a1,t)

I Hannan’s consistent algorithm

lim
n→∞

Rn = 0 a.s.
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Learning in Two-Player Zero-Sum Games The Exp3 Algorithm

Learning the Nash Equilibrium
Version 1: fictitious play full information (aka follow-the-leader)

I For t = 1, . . . , n
I Compute greedy action

a∗t = argmax
a∈A1

t−1∑
s=1

u1,t(a)

I Player chooses σ1,t = δ(a∗t )
I Player plays action a1,t ∼ σ1,t
I Player receives payoff u1,t(a1,t)

Remarks
I This strategy is easily exploitable Rn = O(1)
I Self play does not converge in general
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Learning in Two-Player Zero-Sum Games The Exp3 Algorithm

Learning the Nash Equilibrium

Version 2: exponentially weighted forcaster (EWF)
I Initialize weights w0(a) = 0 for all a ∈ A1

I For t = 1, . . . , n
I Player chooses

σ1,t(a) =
wt−1(a)∑

b∈A1
wt−1(b)

I Player plays action a1,t ∼ σ1,t
I Player receives payoff u1,t(a1,t) and u1,t(a) for all a
I Update weights

wt(a) = wt−1(a)exp
(
ηtu1,t(a)

)
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Learning in Two-Player Zero-Sum Games The Exp3 Algorithm

Learning the Nash Equilibrium

Version 2: exponentially weighted forcaster (EWF)
I Initialize weights w0(a) = 0 for all a ∈ A1

I For t = 1, . . . , n
I Player chooses

σ1,t(a) =
wt−1(a)∑
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I Player receives payoff u1,t(a1,t) and u1,t(a) for all a [full info]
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(
ηtu1,t(a)

)
[exponentiated utility]
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Learning in Two-Player Zero-Sum Games The Exp3 Algorithm

Learning the Nash Equilibrium
Theorem
If EWF is run over n steps with ηt = η, then with probability 1− δ

Rn = max
a1

1
n

n∑
t=1

u1,t(a1)−
1
n

n∑
t=1

u1,t(a1,t) ≤
log(A1)

nη +
η

8 +
√

1
2n log(1/δ)

Setting η =
√

8 log(A1)/n we obtain

Rn ≤
√

log(A1)

2n +

√
1
2n log(1/δ)

Remarks
I limn→∞ Rn ≤ 0 ⇒ Hannan’s consistency
I Rate of convergence O(1/

√
n)

I In self-play EWF “converges” to the Nash equilibrium
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Learning in Two-Player Zero-Sum Games The Exp3 Algorithm

Rock-Paper-Scissors – The Simulation

Action set A1 = A2 = {(R)ock, (P)aper, (S)cissor}

R P S
R 0 , 0 -1 , 1 1 , -1
P 1 , -1 0 , 0 -1 , 1
S -1 , 1 1 , -1 0 , 0

I Equilibrium σ∗1 = σ∗2 = (1/3, 1/3, 1/3)
I Value of the game V = 0.0
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Learning in Two-Player Zero-Sum Games The Exp3 Algorithm

Rock-Paper-Scissors – The Simulation Mod

Action set A1 = A2 = {(R)ock, (P)aper, (S)cissor}

R P S
R 0 , 0 -1 , 1 2 , -2
P 1 , -1 0 , 0 -1 , 1
S -1 , 1 1 , -1 0 , 0

I Equilibrium σ∗1 = (1/4, 5/12, 1/3)
I Value of the game V = 1/12(≈ 0.833)
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Learning in Two-Player Zero-Sum Games The Exp3 Algorithm

Learning the Nash Equilibrium

Version 2: exponentially weighted forcaster (EWF)
I Initialize weights w0(a) = 0 for all a ∈ A1

I For t = 1, . . . , n
I Player chooses

σ1,t(a) =
wt−1(a)∑

b∈A1
wt−1(b)

[prop. to weights]

I Player plays action a1,t ∼ σ1,t
I Player receives payoff u1,t(a1,t) and u1,t(a) for all a [full info]
I Update weights

wt(a) = wt−1(a)exp
(
ηtu1,t(a)

)
[exponentiated utility]
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Learning in Two-Player Zero-Sum Games The Exp3 Algorithm

Learning the Nash Equilibrium
Problem:

I Player plays action a1,t ∼ σ1,t
I Player receives payoff u1,t(a1,t)
I Update weights

wt(a) = wt−1(a)exp
(
ηtu1,t(a)

)
[exponentiated utility]

Solution:
I Importance sampling

ũ1,t(a) =


u1,t(a1,t)
σ1,t(a1,t)

if a = a1,t

0 otherwise

I Unbiased estimator

∀a ∈ A1 Ea∼σ1,t
[
ũ1,t(a)

]
= σ1,t(a)

u1,t(a)
σ1,t

+(1−σ1,t(a))×0 = u1,t(a)
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Learning in Two-Player Zero-Sum Games The Exp3 Algorithm

Learning the Nash Equilibrium
Version 3: EWF for Exploration-Exploitation (EXP3)

I Initialize weights w0(a) = 0 for all a ∈ A1

I For t = 1, . . . , n
I Player chooses

σ1,t(a) =
wt−1(a)∑

b∈A1
wt−1(b)

[prop. to weights]

I Player plays action a1,t ∼ σ1,t
I Player receives payoff u1,t(a1,t)
I Compute pseudo-payoffs

ũ1,t(a) =


u1,t(a1,t)
σ1,t(a1,t)

if a = a1,t

0 otherwise
I Update weights

wt(a) = wt−1(a)exp
(
ηt ũ1,t(a)

)
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Learning in Two-Player Zero-Sum Games The Exp3 Algorithm

Learning the Nash Equilibrium

Theorem
If EXP3 is run over n steps with ηt =

√
2 log(A1)/(nA1), then its

psuedo-regret is bounded as

Rn = max
a1

1
n

n∑
t=1

E
[
u1,t(a1)

]
− 1

n

n∑
t=1

E
[
u1,t(a1,t)

]
≤
√

2A1 log(A1)

n

Remarks
I limn→∞ Rn ≤ 0 ⇒ Hannan’s consistency?
I Rate of convergence O(1/

√
n)

I Regret larger by a factor
√
A1 (observing 1 vs A1 payoffs)
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Learning in Two-Player Zero-Sum Games The Exp3 Algorithm

Rock-Paper-Scissors – The Simulation Mod2

Action set A1 = A2 = {(R)ock, (P)aper, (S)cissor}

R P S
R 0 , 0 -1 , 1 5 , -5
P 1 , -1 0 , 0 -1 , 1
S -1 , 1 1 , -1 0 , 0

I Equilibrium σ∗1 = (1/7, 11/21, 1/3)
I Value of the game V = 4/21(≈ 0.1904)
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Learning in Two-Player Zero-Sum Games The Exp3 Algorithm

Learning the Nash Equilibrium
Problem:

I Importance sampling is unbiased

ũ1,t(a) =


u1,t(a1,t)
σ1,t(a1,t)

if a = a1,t

0 otherwise
; Ea∼σ1,t

[
ũ1,t(a)

]
= u1,t(a)

I Variance
Va∼σ1,t

[
ũ1,t(a)

] σ1,t(a)→0−−−−−−→∞

Solution:
I Bias both pseudo-payoff

ũ1,t(a) =
u1,t(a1,t)I{a = a1,t}+ βt

σ1,t(a1,t)
I Mix strategy with uniform exploration

σ1,t(a) = (1− γt)
w1,t(a)∑

b ∈ A1w1,t(b)
+
γt
A1
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Learning in Two-Player Zero-Sum Games The Exp3 Algorithm

Learning the Nash Equilibrium
Version 3: EWF for Exploration-Exploitation w.h.p. (EXP3.P)

I Initialize weights w0(a) = 0 for all a ∈ A1

I For t = 1, . . . , n
I Player chooses

σ1,t(a) = (1− γt)
w1,t(a)∑

b ∈ A1w1,t(b)
+
γt
A1

I Player plays action a1,t ∼ σ1,t
I Player receives payoff u1,t(a1,t)
I Compute pseudo-payoffs

ũ1,t(a) =
u1,t(a1,t)I{a = a1,t}+ βt

σ1,t(a1,t)
I Update weights

wt(a) = wt−1(a)exp
(
ηt ũ1,t(a)

)
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Learning in Two-Player Zero-Sum Games The Exp3 Algorithm

Learning the Nash Equilibrium

Theorem
If EXP3.P is run over n steps with βt ≈ ηt =

√
2 log(A1)/(nA1),

γt =
√

A1 log(A1)/n, then with probability 1− δ its regret is bounded as

Rn = max
a1

1
n

n∑
t=1

u1,t(a1)−
1
n

n∑
t=1

u1,t(a1,t) ≤ 6
√

A1 log(A1/δ)

n

Remarks
I limn→∞ Rn ≤ 0 ⇒ Hannan’s consistency!
I EXP3.P in self-play converges to Nash equilibrium

A. LAZARIC – Learning in Zero-Sum Games Nov 2, 2017 - 33/65



Learning in Two-Player Zero-Sum Games The Exp3 Algorithm

Learning the Nash Equilibrium

Theorem
If EXP3.P is run over n steps with βt ≈ ηt =

√
2 log(A1)/(nA1),

γt =
√

A1 log(A1)/n, then with probability 1− δ its regret is bounded as

Rn = max
a1

1
n

n∑
t=1

u1,t(a1)−
1
n

n∑
t=1

u1,t(a1,t) ≤ 6
√

A1 log(A1/δ)

n

Remarks
I limn→∞ Rn ≤ 0 ⇒ Hannan’s consistency!
I EXP3.P in self-play converges to Nash equilibrium

A. LAZARIC – Learning in Zero-Sum Games Nov 2, 2017 - 33/65



Learning in Two-Player Zero-Sum Games The Exp3 Algorithm

Rock-Paper-Scissors – The Simulation Mod2

Action set A1 = A2 = {(R)ock, (P)aper, (S)cissor}

R P S
R 0 , 0 -1 , 1 5 , -5
P 1 , -1 0 , 0 -1 , 1
S -1 , 1 1 , -1 0 , 0

I Equilibrium σ∗1 = (1/7, 11/21, 1/3)
I Value of the game V = 4/21(≈ 0.1904)
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Learning in Two-Player Zero-Sum Games The Exp3 Algorithm

Summary

+ EXP3.P minimizes regret in adversarial environments
+ EXP3.P converges to Nash equilibria in self-play
+ No need to know

I Utility function (i.e., the rules of the game)
I Actions performed by the adversary

≈ Some of this can be extended to learn correlated equilibria

− Exponential may be tricky to manage
− Convergence is only in the empirical frequency
− Convergence is relatively slow
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From Normal Form to Extensive Form Imperfect Information
Games

Outline

Learning in Two-Player Zero-Sum Games

From Normal Form to Extensive Form Imperfect Information
Games

Regret Minimization and Nash Equilibria
Counterfactual Regret Minimization
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From Normal Form to Extensive Form Imperfect Information
Games Regret Minimization and Nash Equilibria

Kuhn Poker – The Game
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From Normal Form to Extensive Form Imperfect Information
Games Regret Minimization and Nash Equilibria

Imperfect Information Extensive Form Games
The game

I Set of players N = {1, . . . , n} and c chance player (e.g., deck)
I Set of possible sequences of actions H, Z ⊆ H set of terminal histories
I Player function P : H → N ∪ {c}
I Set of information sets I = {I} (i.e., I is a subset of histories that are not

“distinguishable”)
I Utility of a terminal history ui : Z → R
I Strategy σi : I → D(A) (in all h ∈ I such that P(h) = i)

Two-Player Zero-Sum Extensive Form Game
I N = {1, 2}
I u1 = −u2
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From Normal Form to Extensive Form Imperfect Information
Games Regret Minimization and Nash Equilibria

Extensive Form Games
Histories

I Prob. of reaching history h ∈ H following joint strategy σ, πσ(h)
I Prob. of reaching information set I ∈ I following joint strategy σ,
πσ(I) =

∑
h∈I π

σ(h)
I Prob. of reaching history h ∈ H following joint strategy σ−i , except player

i following actions in h w.p. 1, πσ−i(h)
I Prob. of reaching history h ∈ H following player i ’s actions, except others,
πσi (h)

I Replacement of σ(I) to δ(a), σI→a

Solution concept
I Nash equilibrium (σ∗1 , σ

∗
2 ) = argmax

σ1
min
σ2

u1(σ1, σ2)

I Value of the game V = max
σ1

min
σ2

u1(σ1, σ2)

I Remark: other concepts exist in this case, NE
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From Normal Form to Extensive Form Imperfect Information
Games Regret Minimization and Nash Equilibria

The Regret View

I Regret in hindsight w.r.t. any fixed strategy σ1

Rn(σ1) =
1
n

n∑
t=1

u1(σ1, σ2,t)−
1
n

n∑
t=1

u1(σ1,t , σ2,t)

I Regret against the best strategy in hindsight

Rn = max
σ1

Rn(σ1)

I Empirical strategy:

σ̂1,n(I, a) =
∑n

t=1 π
σt
i (I)σt(I, a)∑n

t=1 π
σt
i (I)
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From Normal Form to Extensive Form Imperfect Information
Games Regret Minimization and Nash Equilibria

Regret Minimization and Nash Equilibria

Theorem
A learning algorithm is Hannan’s consistent if

lim
n→∞

Rn = 0 a.s.

Given a two-player zero-sum extensive-form game with value V , if players
choose strategies σ1,t and σ2,t using a Hannan’s consistent algorithm,
then

lim
n→∞

1
n

n∑
t=1

u1(σ1,t , σ2,t) = V

Furthermore, the joint empirical strategy
σ̂1,n × σ̂2,n

n→∞−→
{
(σ∗1 , σ

∗
2 )
}
Nash
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From Normal Form to Extensive Form Imperfect Information
Games Counterfactual Regret Minimization

Outline

Learning in Two-Player Zero-Sum Games

From Normal Form to Extensive Form Imperfect Information
Games

Regret Minimization and Nash Equilibria
Counterfactual Regret Minimization
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From Normal Form to Extensive Form Imperfect Information
Games Counterfactual Regret Minimization

Regret Matching Algorithm

I Back to Rock-Paper-Scissors
I Let a1 = rock and a2 = paper
I Then the counterfactual regret

r(a1 → rock) = u1(rock, a2,t)− u1(a1,t , a2,t) = −1− (−1) = 0
r(a1 → paper) = u1(paper , a2,t)− u1(a1,t , a2,t) = 0− (−1) = 1

r(a1 → scissors) = u1(scissors, a2,t)− u1(a1,t , a2,t) = 1− (−1) = 2

I Regret matching idea

σ(a) = r(a1 → a)∑
b∈A1

r(a1 → b)
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From Normal Form to Extensive Form Imperfect Information
Games Counterfactual Regret Minimization

Sequential Problem

A learning problem
I For t = 1, . . . , n

I Player 1 chooses σ1,t
I Player 1 executes actions prescribed by σ1,t through a full

game
I Player 1 receives payoff u1,t
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From Normal Form to Extensive Form Imperfect Information
Games Counterfactual Regret Minimization

Counterfactual Regret
I Counterfactual value of a history

vi(σ, h) =
∑

z∈Z ,h@z
πσ−i(h)πσ(h, z)ui(z)

I Counterfactual regret of not taking a in h

rσi (h, a) = vi(σI→a, h)− vi(σ, h), I 3 h

I Counterfactual regret of not taking a in an information set I

rσi (I, a) =
∑
h∈I

rσi (h, a)

I Cumulative counterfactual regret

Ri ,t(I, a) =
t∑

s=1
rσti (I, a)
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From Normal Form to Extensive Form Imperfect Information
Games Counterfactual Regret Minimization

Learning the Nash Equilibrium

Version 1: Counterfactual Regret Minimization (CFR)
I For t = 1, . . . , n

I Player 1 chooses strategy

σ1,t(I, a) =


R+
1,t(I,a)∑

b∈A1
R+
1,t(I,b)

if
∑

b∈A1
R+
1,t(I, b) > 0

1
A1

otherwise

I Player 1 executes actions prescribed by σ1,t through a full game
I Player 1 receives payoff u1,t
I Player 1 computes instantaneous regret rσti over information sets

observed over the game

R+ = max{0,R}
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From Normal Form to Extensive Form Imperfect Information
Games Counterfactual Regret Minimization

Learning the Nash Equilibrium

Theorem
If CFR is run over n steps, then the regret is bounded as

Rn = max
σ1

1
n

n∑
t=1

u1(σ1, σ2,t)−
1
n

n∑
t=1

u1(σ1,t , σ2,t) ≤ |Ii |
√

A1
n

Remarks
I limn→∞ Rn ≤ 0 ⇒ Hannan’s consistency
I Rate of convergence O(1/

√
n)

I Linear dependence on the number of information sets
I In self-play EWF “converges” to the Nash equilibrium
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From Normal Form to Extensive Form Imperfect Information
Games Counterfactual Regret Minimization

Learning the Nash Equilibrium
Version 2: Counterfactual Regret Minimization+ (CFR+)

I For t = 1, . . . , n
I At t even player 1 chooses strategy

σ1,t(I, a) =
{ Q1,t(I,a)∑

b∈A1
Q1,t(I,b) if

∑
b∈A1

Q1,t(I, b) > 0
1
A1

otherwise

I At t odd player 1 chooses strategy σ1,t = σ1,t−1
I Player 1 executes actions prescribed by σ1,t through a full game
I Player 1 receives payoff u1,t
I Player 1 computes instantaneous regret rσti over information sets

observed over the game
I Return

σ̂1,n =
n∑

t=1

2t
n2 + nσ1,t

Q1,t = (Q1,t−1 + rσt−1
i )+ instead of R+

1,t = (
∑t−1

s=1 r
σs
i )+
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Learning the Nash Equilibrium

Theorem
If CFR+ is run over n steps, then the regret is bounded as

Rn = max
σ1

1
n

n∑
t=1

u1(σ1, σ2,t)−
1
n

n∑
t=1

u1(σ1,t , σ2,t) ≤ |Ii |
√

A1
n

Remarks
I Same performance as CFR
I Empirically is more “reactive”
I Empirically σ̂1,t tends to converge

A. LAZARIC – Learning in Zero-Sum Games Nov 2, 2017 - 50/65



From Normal Form to Extensive Form Imperfect Information
Games Counterfactual Regret Minimization

Learning the Nash Equilibrium

Theorem
If CFR+ is run over n steps, then the regret is bounded as

Rn = max
σ1

1
n

n∑
t=1

u1(σ1, σ2,t)−
1
n

n∑
t=1

u1(σ1,t , σ2,t) ≤ |Ii |
√

A1
n

Remarks
I Same performance as CFR
I Empirically is more “reactive”
I Empirically σ̂1,t tends to converge

A. LAZARIC – Learning in Zero-Sum Games Nov 2, 2017 - 50/65



From Normal Form to Extensive Form Imperfect Information
Games Counterfactual Regret Minimization

CFR in Large Problems: Heads-up Limit Texas Hold’em

The problem
I Four rounds of cards, four rounds of betting, discrete bets
I About 1018 states, 3.2× 1014 information sets

Abstraction: cluster together “similar” histories
I Symmetries (reducing to 1013 information sets)
I Clustering

I Buckets based on (roll-out) hand strength
I “Hierarchical” buckets (e.g., second hand is indexed by the first

bucket as well)
I About 1.65× 1012 states, 5.73× 107 information sets

Engineering :
I Rounding: σ(a) = 0.0 if smaller than threshold, fixed-point arithmetic
I Dynamic compression regret and strategy (from 262 TiB to 10.9 TiB)
I Distribute recursive computation of regret and strategy over rounds
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CFR in Large Problems: Heads-up Limit Texas Hold’em
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Heads-up No-Limit Texas Hold’em

The problem
I In no-limit bets are arbitrary
I With standard discretized bets (1$ up to 20,000$) 10160 decision points!

The Learning problem
I “Simple” abstraction techniques no longer work
I Safe subgame solving
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Subgame Solving in Imperfect Information Games

P1(head, sell) = 0.5$, P1(tail, sell) = −0.5$
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Subgame Solving in Imperfect Information Games

P1(head, sell) = 0.5$, P1(tail, sell) = −0.5$

I σ2 = head ⇒ σ1(head) = “Sell”, σ1(tail) = “Play”
⇒ u1 = 0.5× 0.5+ 0.5× 1 = 0.75

I σ2 = tail ⇒ σ1(head) = “Play”, σ1(tail) = “Sell”
⇒ u1 = 0.5× 1+ 0.5× (−0.5) = 0.25

I Optimal strategy σ2 = (0.25, 0.75)
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Subgame Solving in Imperfect Information Games

P1(head, sell) = −0.5$, P1(tail, sell) = 0.5$

I Optimal strategy σ2 = (0.25, 0.75)

⇒ the optimal solution of the subgame depends on “things” outside the
subgame itself!
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Subgame Solving in Imperfect Information Games

Version 1: unsafe subgame solving

1. Start with a pre-computed solution (e.g., through abstraction)

A. LAZARIC – Learning in Zero-Sum Games Nov 2, 2017 - 57/65



From Normal Form to Extensive Form Imperfect Information
Games Counterfactual Regret Minimization

Subgame Solving in Imperfect Information Games
Version 1: unsafe subgame solving

1. Start with a pre-computed solution (e.g., through abstraction) called trunk
2. Solve the subgame as-if everything else was as in the trunk

⇒ subgame strategy can be arbitrarily bad
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Subgame Solving in Imperfect Information Games

Version 2: subgame re-solving
1. Start with a pre-computed solution (e.g., through abstraction) called trunk
2. Construct an augmented subgame giving P1 the chance to opt-out from

the subgame and play in the trunk
3. Solve the augmented subgame with maxmargin

⇒ subgame strategy better but potentially far from optimal
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Subgame Solving in Imperfect Information Games

Version 3: reach subgame solving
1. Start with a pre-computed solution (e.g., through abstraction) called trunk
2. Construct an augmented subgame considering the gift given to P2 (i.e.,

consider any possible action not leading to the subgame)
3. Solve the augmented subgame

⇒ provably reduce exploitability
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Brains vs. AI
Libratus

I Monte-Carlo CFR + abstraction to compute the trunk
I Reach subgame solving with no abstraction (using CFR+ to solve

subgames) in-game

Comptetition
I January 2017, over 20 days
I About 120,000 hands
I 4 top human players
I $200,000 prize

Results
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Summary

+ CFR+ converges to Nash equilibria in self-play in
imperfect-information extensive-form games

+ ReachSubgame provides a tool for safely decomposing the
game

+ Efficient and (somehow) general purpose implementation
+ Beyond games: risk-averse planning

? Do we really care about (normal form) Nash?
? Beyond two-player games
? Opponent modeling
? Stochastic games (SG) / partially observable stochastic games

(POSG)
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