

Learning in Zero-Sum Games

Alessandro LAZARIC (Facebook Al Research / on leave Inria Lille) Institut d'Automne en Intelligence Artificielle, Lyon

Motivation: a Long-Standing Goal of Al...

...with Potential Applications in Real-World Environments

Ínría 🗧

Learning in Two-Player Zero-Sum Games Regret Minimization and Nash Equilibria The Exp3 Algorithm

From Normal Form to Extensive Form Imperfect Information Games

Regret Minimization and Nash Equilibria Counterfactual Regret Minimization

Learning in Two-Player Zero-Sum Games

Outline

Learning in Two-Player Zero-Sum Games Regret Minimization and Nash Equilibria The Exp3 Algorithm

From Normal Form to Extensive Form Imperfect Information Games

Outline

Learning in Two-Player Zero-Sum Games Regret Minimization and Nash Equilibria

The Exp3 Algorithm

From Normal Form to Extensive Form Imperfect Information Games

Normal Form Games

The game

- Set of players $N = \{1, \ldots, n\}$
- Action sets A_i , joint action set $A = A_1 \times \cdots \times A_n$
- ▶ Joint action $a \in A$, player *i*'s action a_i , all other players a_{-i}
- Utility (payoff/reward) function $u : A \to \mathbb{R}^n$, player *i*'s utility $u_i : A \to \mathbb{R}$

Mixed strategies

- Joint strategy $\sigma \in \mathcal{D}(A)$ such that $\sigma(a) = \prod_{i=1}^{n} \sigma_i(a_i)$
- Utility of a strategy $u_i(\sigma) = \sum_{a_i} \sum_{a_{-i}} \sigma_i(a_i) \sigma_{-i}(a_{-i}) u_i(a_i, a_{-i})$

Two-Player Zero-Sum Games

The game

- Set of players $N = \{1, 2\} = \{i, j\}$
- Action sets A_i , joint action set $A = A_1 \times A_2$
- ▶ Joint action $a \in A$, player *i*'s action a_i , other player's a_j
- Utility (payoff/reward) function $u : A \to \mathbb{R}^n$, player *i*'s utility $u_i : A \to \mathbb{R}$

$$\forall a \in A, \quad u_1(a) = -u_2(a)$$

Solution concept

• Nash equilibrium $(\sigma_1^*, \sigma_2^*) = \arg \max_{\sigma_1} \min_{\sigma_2} u_1(\sigma_1, \sigma_2)$

Value of the game
$$V = \max_{\sigma_1} \min_{\sigma_2} u_1(\sigma_1, \sigma_2)$$

Rock-Paper-Scissors – The Game

Action set $A_1 = A_2 = \{(\mathsf{R})\mathsf{ock}, (\mathsf{P})\mathsf{aper}, (\mathsf{S})\mathsf{cissor}\}$

	R	Р	S
R	<i>0</i> , <i>0</i>	- 1 , 1	1 , - 1
Р	1 , - 1	<mark>0</mark> , 0	- 1 , 1
S	- 1 , 1	1 , -1	<mark>0</mark> , 0

	R	Р	S
R	<i>0</i> , <i>0</i>	-1 , 1	<u>1, -1</u>
Р	1 , - 1	<mark>0</mark> , 0	-1 , 1
S	- 1 , 1	1 , -1	<mark>0</mark> , 0

• If (σ_1^*, σ_2^*) is a Nash equilibrium, then

$$\sigma_1^* = \mathsf{BR}(\sigma_2^*) = \arg\max_{\sigma_1} u_1(\sigma_1, \sigma_2^*) = \arg\max_{\sigma_1} \sum_{a_1 \in A_1} \sigma_1(a_1) u_1(a_1, \sigma_2^*)$$

	R	Р	S
R	<i>0</i> , <i>0</i>	-1 , 1	<u>1, -1</u>
Р	1 , - 1	<mark>0</mark> , 0	-1 , 1
S	- 1 , 1	1 , -1	<mark>0</mark> , 0

• If (σ_1^*, σ_2^*) is a Nash equilibrium, then

$$\sigma_1^* = \mathsf{BR}(\sigma_2^*) = \arg\max_{\sigma_1} u_1(\sigma_1, \sigma_2^*) = \arg\max_{\sigma_1} \sum_{a_1 \in A_1} \sigma_1(a_1) u_1(a_1, \sigma_2^*)$$

$$\Rightarrow \forall a_1 \in A, \quad u_1 = u_1(a_1, \sigma_2^*)$$

	R	P	S
R	0, 0	-1 , 1	1 , - 1
Ρ	1 , -1	<mark>0</mark> , 0	-1 , 1
S	-1 , 1	1 , -1	<mark>0</mark> , 0

• Let $\sigma_2 = (\sigma_2(R), \sigma_2(P), \sigma_2(S))$ the strategy of player *column* then

$$u_{1} = u_{1}(R, \sigma_{2}) = 0\sigma_{2}(R) - 1\sigma_{2}(P) + 1\sigma_{2}(S)$$

$$u_{1} = u_{1}(P, \sigma_{2}) = 1\sigma_{2}(R) + 0\sigma_{2}(P) - 1\sigma_{2}(S)$$

$$u_{1} = u_{1}(S, \sigma_{2}) = -1\sigma_{2}(R) + 1\sigma_{2}(P) + 0\sigma_{2}(S)$$

$$1 = \sigma_{2}(R) + \sigma_{2}(P) + \sigma_{2}(S)$$

	R	P	S
R	0, 0	-1 , 1	1 , - 1
Ρ	1 , -1	<mark>0</mark> , 0	-1 , 1
S	-1 , 1	1 , -1	<mark>0</mark> , 0

• Let $\sigma_2 = (\sigma_2(R), \sigma_2(P), \sigma_2(S))$ the strategy of player *column* then

$$u_{1} = u_{1}(R, \sigma_{2}) = 0\sigma_{2}(R) - 1\sigma_{2}(P) + 1\sigma_{2}(S)$$

$$u_{1} = u_{1}(P, \sigma_{2}) = 1\sigma_{2}(R) + 0\sigma_{2}(P) - 1\sigma_{2}(S)$$

$$u_{1} = u_{1}(S, \sigma_{2}) = -1\sigma_{2}(R) + 1\sigma_{2}(P) + 0\sigma_{2}(S)$$

$$1 = \sigma_{2}(R) + \sigma_{2}(P) + \sigma_{2}(S)$$

• Solving for all variables gives $\sigma_2^* = (1/3, 1/3, 1/3)$ and $u_1 = 0$

	R	P	S
R	0, 0	-1 , 1	1 , - 1
Ρ	1 , -1	<mark>0</mark> , 0	-1 , 1
S	-1 , 1	1 , -1	<mark>0</mark> , 0

• Let $\sigma_2 = (\sigma_2(R), \sigma_2(P), \sigma_2(S))$ the strategy of player *column* then

$$u_{1} = u_{1}(R, \sigma_{2}) = 0\sigma_{2}(R) - 1\sigma_{2}(P) + 1\sigma_{2}(S)$$

$$u_{1} = u_{1}(P, \sigma_{2}) = 1\sigma_{2}(R) + 0\sigma_{2}(P) - 1\sigma_{2}(S)$$

$$u_{1} = u_{1}(S, \sigma_{2}) = -1\sigma_{2}(R) + 1\sigma_{2}(P) + 0\sigma_{2}(S)$$

$$1 = \sigma_{2}(R) + \sigma_{2}(P) + \sigma_{2}(S)$$

▶ Solving for all variables gives $\sigma_2^* = (1/3, 1/3, 1/3)$ and $u_1 = 0$

• Repeating for player *row* gives $\sigma_1^* = (1/3, 1/3, 1/3)$ and $u_2 = 0$

nín.

	R	P	S
R	0, 0	-1 , 1	1 , - 1
Ρ	1 , -1	<mark>0</mark> , 0	-1 , 1
S	-1 , 1	1 , -1	<mark>0</mark> , 0

• Let $\sigma_2 = (\sigma_2(R), \sigma_2(P), \sigma_2(S))$ the strategy of player *column* then

$$u_{1} = u_{1}(R, \sigma_{2}) = 0\sigma_{2}(R) - 1\sigma_{2}(P) + 1\sigma_{2}(S)$$

$$u_{1} = u_{1}(P, \sigma_{2}) = 1\sigma_{2}(R) + 0\sigma_{2}(P) - 1\sigma_{2}(S)$$

$$u_{1} = u_{1}(S, \sigma_{2}) = -1\sigma_{2}(R) + 1\sigma_{2}(P) + 0\sigma_{2}(S)$$

$$1 = \sigma_{2}(R) + \sigma_{2}(P) + \sigma_{2}(S)$$

- ▶ Solving for all variables gives $\sigma_2^* = (1/3, 1/3, 1/3)$ and $u_1 = 0$
- Repeating for player *row* gives $\sigma_1^* = (1/3, 1/3, 1/3)$ and $u_2 = 0$
- (σ_1^*, σ_2^*) is a Nash equilibrium and the value of the game is V = 0

rín

A Single-Player Perspective

Sequential game

- For $t = 1, \ldots, n$
 - Player 1 chooses σ_{1,t}
 - Player 2 chooses \u03c62,t
 - Players play actions $a_{1,t} \sim \sigma_{1,t}$ and $a_{2,t} \sim \sigma_{2,t}$
 - ▶ Players receive payoffs $u_1(a_{1,t}, a_{2,t})$ and $u_2(a_{1,t}, a_{2,t})$

Solution: Nash equilibrium

$$(\sigma_1^*, \sigma_2^*) = rg\max_{\sigma_1} \min_{\sigma_2} u_1(\sigma_1, \sigma_2)$$

A Single-Player Perspective

Sequential game \Rightarrow Single-player game

- For $t = 1, \ldots, n$
 - Player 1 chooses $\sigma_{1,t}$
 - Player 2 chooses σ_{2,t}
 - Players play actions $a_{1,t} \sim \sigma_{1,t}$ and $\frac{a_{2,t} \sim \sigma_{2,t}}{a_{2,t} \sim \sigma_{2,t}}$
 - Players receive payoffs $u_1(a_{1,t}, a_{2,t})$ and $\frac{u_2(a_{1,t}, a_{2,t})}{u_1(a_{1,t}, a_{2,t})}$

Solution: Nash equilibrium \Rightarrow Maximize the (average) utility

$$(\sigma_1^*, \sigma_2^*) = \arg\max_{\sigma_1} \min_{\sigma_2} u_1(\sigma_1, \sigma_2)$$

$$(a_{1,1}^*, \dots, a_{1,n}^*) = \arg \max_{(a_{1,1}, \dots, a_{1,n})} \frac{1}{n} \sum_{t=1}^n u_1(a_{1,t}, a_{2,t})$$
$$= \arg \max_{(a_{1,1}, \dots, a_{1,n})} \frac{1}{n} \sum_{t=1}^n \frac{u_{1,t}(a_{1,t})}{u_{1,t}(a_{1,t})}$$

The (Multi-Armed Bandit) Problem

A learning problem

- For $t = 1, \ldots, n$
 - Player 1 chooses o_{1,t}
 - Player 1 plays action $a_{1,t} \sim \sigma_{1,t}$
 - Player 1 receives payoff $u_{1,t}(a_{1,t})$

Remarks

- No information about $a_{2,t}$ and utility u_2
- Utility function $u_{1,t}$ is only observed for $a_{1,t}$ (i.e., $u_{1,t}(a_{1,t})$)

The (Multi-Armed Bandit) Problem

• Regret in hindisight w.r.t. any fixed action a_1

$$R_n(\mathbf{a_1}) = \frac{1}{n} \sum_{t=1}^n u_{1,t}(\mathbf{a_1}) - \frac{1}{n} \sum_{t=1}^n u_{1,t}(\mathbf{a_1},t)$$

The (Multi-Armed Bandit) Problem

Regret in hindisight w.r.t. any fixed action a₁

$$R_n(\mathbf{a_1}) = \frac{1}{n} \sum_{t=1}^n u_{1,t}(\mathbf{a_1}) - \frac{1}{n} \sum_{t=1}^n u_{1,t}(\mathbf{a_{1,t}})$$

• Objective: find actions $(a_{1,1}, \ldots, a_{1,n})$ that maximize average utility \approx *minimize the regret* w.r.t. the best action a_1

Utility:
$$\frac{1}{n} \sum_{t=1}^{n} u_{1,t}(a_{1,t})$$

Regret: $R_n = \max_{a_1} \frac{1}{n} \sum_{t=1}^{n} u_{1,t}(a_1) - \frac{1}{n} \sum_{t=1}^{n} u_{1,t}(a_{1,t})$

Theorem

A learning algorithm is Hannan's consistent if

$$\lim_{n\to\infty}R_n=0\quad a.s.$$

Given a two-player zero-sum game with value V, if players choose strategies $\sigma_{1,t}$ and $\sigma_{2,t}$ using a Hannan's consistent algorithm, then

$$\lim_{n\to\infty}\frac{1}{n}\sum_{t=1}^n u_1(\mathbf{a}_{1,t},\mathbf{a}_{2,t}) = \mathbf{V}$$

Furthermore, let empirical frequency strategies be

$$\widehat{\sigma}_{1,n}(a_1) = \frac{1}{n} \sum_{t=1}^{n} \mathbb{I}\{a_{1,t} = a_1\} \text{ and } \widehat{\sigma}_{2,n}(a_2) = \frac{1}{n} \sum_{t=1}^{n} \mathbb{I}\{a_{2,t} = a_2\}$$

then the joint empirical strategy

$$\widehat{\sigma}_{1,n} imes \widehat{\sigma}_{2,n} \stackrel{n o \infty}{\longrightarrow} \left\{ (\sigma_1^*, \sigma_2^*) \right\}_{Nash}$$

[Hannan's consistency]

$$\lim_{n\to\infty} R_n = 0 \quad \Longleftrightarrow \quad \lim_{n\to\infty} \left(\max_{a_1} \frac{1}{n} \sum_{t=1}^n u_{1,t}(a_1) - \frac{1}{n} \sum_{t=1}^n u_{1,t}(a_{1,t}) \right) = 0$$

[Hannan's consistency]

$$\lim_{n\to\infty} R_n = 0 \quad \Longleftrightarrow \quad \lim_{n\to\infty} \left(\max_{\mathbf{a}_1} \frac{1}{n} \sum_{t=1}^n u_{1,t}(\mathbf{a}_1) - \frac{1}{n} \sum_{t=1}^n u_{1,t}(\mathbf{a}_{1,t}) \right) = 0$$

[linearity of utility function]

$$\max_{\sigma_1} \frac{1}{n} \sum_{t=1}^n u_{1,t}(\sigma_1) = \max_{\sigma_1} \frac{1}{n} \sum_{t=1}^n \sum_{a_1 \in A_1} \sigma_1(a_1) u_{1,t}(a_1) = \max_{a_1} \frac{1}{n} \sum_{t=1}^n u_{1,t}(a_1)$$

[Hannan's consistency]

$$\lim_{n\to\infty} R_n = 0 \quad \Longleftrightarrow \quad \lim_{n\to\infty} \left(\max_{\mathbf{a}_1} \frac{1}{n} \sum_{t=1}^n u_{1,t}(\mathbf{a}_1) - \frac{1}{n} \sum_{t=1}^n u_{1,t}(\mathbf{a}_{1,t}) \right) = 0$$

[linearity of utility function]

$$\max_{\sigma_1} \frac{1}{n} \sum_{t=1}^n u_{1,t}(\sigma_1) = \max_{\sigma_1} \frac{1}{n} \sum_{t=1}^n \sum_{a_1 \in A_1} \sigma_1(a_1) u_{1,t}(a_1) = \max_{a_1} \frac{1}{n} \sum_{t=1}^n u_{1,t}(a_1)$$

• [definition]
$$u_{1,t}(\sigma_1) = u_1(\sigma_1, a_{2,t})$$

$$\Rightarrow \frac{1}{n} \sum_{t=1}^{n} u_{1,t}(\sigma_1) = \frac{1}{n} \sum_{t=1}^{n} \sum_{a_2 \in A_2} \mathbb{I}\{a_{2,t} = a_2\} u_1(\sigma_1, a_2) = \sum_{a_2 \in A_2} u_1(\sigma_1, a_2) \underbrace{\frac{1}{n} \sum_{t=1}^{n} \mathbb{I}\{a_{2,t} = a_2\}}_{\widehat{\sigma}_{2,n}(a_2)}$$

[Hannan's consistency]

$$\lim_{n\to\infty} R_n = 0 \quad \Longleftrightarrow \quad \lim_{n\to\infty} \left(\max_{a_1} \frac{1}{n} \sum_{t=1}^n u_{1,t}(a_1) - \frac{1}{n} \sum_{t=1}^n u_{1,t}(a_{1,t}) \right) = 0$$

[linearity of utility function]

$$\max_{\sigma_1} \frac{1}{n} \sum_{t=1}^n u_{1,t}(\sigma_1) = \max_{\sigma_1} \frac{1}{n} \sum_{t=1}^n \sum_{a_1 \in A_1} \sigma_1(a_1) u_{1,t}(a_1) = \max_{a_1} \frac{1}{n} \sum_{t=1}^n u_{1,t}(a_1)$$

• [definition]
$$u_{1,t}(\sigma_1) = u_1(\sigma_1, a_{2,t})$$

$$\Rightarrow \frac{1}{n} \sum_{t=1}^{n} u_{1,t}(\sigma_1) = \frac{1}{n} \sum_{t=1}^{n} \sum_{a_2 \in A_2} \mathbb{I}\{a_{2,t} = a_2\} u_1(\sigma_1, a_2) = \sum_{a_2 \in A_2} u_1(\sigma_1, a_2) \underbrace{\frac{1}{n} \sum_{t=1}^{n} \mathbb{I}\{a_{2,t} = a_2\}}_{\widehat{\sigma}_{2,n}(a_2)}$$

[one-side of the result]

$$\max_{\sigma_1} \frac{1}{n} \sum_{t=1}^n u_{1,t}(\sigma_1) = \max_{\sigma_1} \frac{1}{n} \sum_{t=1}^n u_1(\sigma_1, \widehat{\sigma}_{2,n}) \ge \max_{\sigma_1} \min_{\sigma_2} \frac{1}{n} \sum_{t=1}^n u_1(\sigma_1, \sigma_2) = V$$

or player 2] \Rightarrow desired result. Inría

Corollary

lf

$$R_n \leq \epsilon$$

then the joint empirical strategy is ϵ -Nash, i.e.,

 $u_1(\widehat{\sigma}_{1,n} \times \widehat{\sigma}_{2,n}) \geq V - \epsilon$

Outline

Learning in Two-Player Zero-Sum Games Regret Minimization and Nash Equilibria The Exp3 Algorithm

From Normal Form to Extensive Form Imperfect Information Games

Hannan's Consistent Algorithms

A learning problem

• For
$$t = 1, \ldots, n$$

- ▶ Player 1 chooses $\sigma_{1,t}$
- Player 1 plays action $a_{1,t} \sim \sigma_{1,t}$
- Player 1 receives payoff $u_{1,t}(a_{1,t})$

Objective

Regret

$$R_n = \max_{a_1} \frac{1}{n} \sum_{t=1}^n u_{1,t}(a_1) - \frac{1}{n} \sum_{t=1}^n u_{1,t}(a_{1,t})$$

Hannan's consistent algorithm

$$\lim_{n\to\infty}R_n=0 \quad \text{a.s.}$$

Version 1: fictitious play full information (aka follow-the-leader)

• For
$$t = 1, \ldots, n$$

Compute greedy action

$$a_t^* = \arg \max_{a \in A_1} \sum_{s=1}^{t-1} u_{1,t}(a)$$

- Player chooses $\sigma_{1,t} = \delta(a_t^*)$
- Player plays action $a_{1,t} \sim \sigma_{1,t}$
- Player receives payoff $u_{1,t}(a_{1,t})$

Remarks

- This strategy is easily exploitable $R_n = O(1)$
- Self play does not converge in general

Version 2: exponentially weighted forcaster (EWF)

- Initialize weights $w_0(a) = 0$ for all $a \in A_1$
- For $t = 1, \ldots, n$
 - Player chooses

$$\sigma_{1,t}(a) = \frac{w_{t-1}(a)}{\sum_{b \in A_1} w_{t-1}(b)}$$

- Player plays action $a_{1,t} \sim \sigma_{1,t}$
- ▶ Player receives payoff $u_{1,t}(a_{1,t})$ and $u_{1,t}(a)$ for all a
- Update weights

$$w_t(a) = w_{t-1}(a) \exp(\eta_t u_{1,t}(a))$$

Version 2: exponentially weighted forcaster (EWF)

- Initialize weights $w_0(a) = 0$ for all $a \in A_1$
- For $t = 1, \ldots, n$
 - Player chooses

$$\sigma_{1,t}(a) = rac{w_{t-1}(a)}{\sum_{b \in \mathcal{A}_1} w_{t-1}(b)}$$
 [prop. to weights]

- Player plays action $a_{1,t} \sim \sigma_{1,t}$
- ▶ Player receives payoff $u_{1,t}(a_{1,t})$ and $u_{1,t}(a)$ for all a
- Update weights

$$w_t(a) = w_{t-1}(a) \exp(\eta_t u_{1,t}(a))$$

Version 2: exponentially weighted forcaster (EWF)

- Initialize weights $w_0(a) = 0$ for all $a \in A_1$
- For $t = 1, \ldots, n$
 - Player chooses

$$\sigma_{1,t}(a) = rac{w_{t-1}(a)}{\sum_{b \in \mathcal{A}_1} w_{t-1}(b)}$$
 [prop. to weights]

- Player plays action $a_{1,t} \sim \sigma_{1,t}$
- ▶ Player receives payoff $u_{1,t}(a_{1,t})$ and $u_{1,t}(a)$ for all a [full info]
- Update weights

$$w_t(a) = w_{t-1}(a) \exp(\eta_t u_{1,t}(a))$$

Version 2: exponentially weighted forcaster (EWF)

- Initialize weights $w_0(a) = 0$ for all $a \in A_1$
- For $t = 1, \ldots, n$
 - Player chooses

$$\sigma_{1,t}(a) = rac{w_{t-1}(a)}{\sum_{b \in \mathcal{A}_1} w_{t-1}(b)}$$
 [prop. to weights]

- Player plays action $a_{1,t} \sim \sigma_{1,t}$
- ▶ Player receives payoff $u_{1,t}(a_{1,t})$ and $u_{1,t}(a)$ for all a [full info]
- Update weights

 $w_t(a) = w_{t-1}(a) \exp(\eta_t u_{1,t}(a))$ [exponentiated utility]

Theorem

If EWF is run over n steps with $\eta_t = \eta$, then with probability $1 - \delta$

$$R_{n} = \max_{a_{1}} \frac{1}{n} \sum_{t=1}^{n} u_{1,t}(a_{1}) - \frac{1}{n} \sum_{t=1}^{n} u_{1,t}(a_{1,t}) \le \frac{\log(A_{1})}{n\eta} + \frac{\eta}{8} + \sqrt{\frac{1}{2n} \log(1/\delta)}$$

Setting $\eta = \sqrt{8 \log(A_{1})/n}$ we obtain
$$R_{n} \le \sqrt{\frac{\log(A_{1})}{2n}} + \sqrt{\frac{1}{2n} \log(1/\delta)}$$

Theorem

If EWF is run over n steps with $\eta_t = \eta$, then with probability $1 - \delta$

$$R_{n} = \max_{a_{1}} \frac{1}{n} \sum_{t=1}^{n} u_{1,t}(a_{1}) - \frac{1}{n} \sum_{t=1}^{n} u_{1,t}(a_{1,t}) \le \frac{\log(A_{1})}{n\eta} + \frac{\eta}{8} + \sqrt{\frac{1}{2n} \log(1/\delta)}$$

Setting $\eta = \sqrt{8 \log(A_{1})/n}$ we obtain
$$R_{n} \le \sqrt{\frac{\log(A_{1})}{2n}} + \sqrt{\frac{1}{2n} \log(1/\delta)}$$

Remarks

- ▶ $\lim_{n\to\infty} R_n \le 0 \Rightarrow Hannan's consistency$
- Rate of convergence $O(1/\sqrt{n})$
- \blacktriangleright In self-play $\rm EWF$ "converges" to the Nash equilibrium

Rock-Paper-Scissors – The Simulation

Action set $A_1 = A_2 = \{(R)ock, (P)aper, (S)cissor\}$

	R	Р	S
R	0, 0	-1 , 1	1 , - 1
Ρ	1 , - 1	<mark>0</mark> , 0	- 1 , 1
S	- 1 , 1	1 , -1	<mark>0</mark> , 0

- Equilibrium $\sigma_1^* = \sigma_2^* = (1/3, 1/3, 1/3)$
- Value of the game V = 0.0

Rock-Paper-Scissors – The Simulation

Rock-Paper-Scissors – The Simulation Mod

Action set $A_1 = A_2 = \{(\mathsf{R})\mathsf{ock}, (\mathsf{P})\mathsf{aper}, (\mathsf{S})\mathsf{cissor}\}$

	R	Р	S
R	0, 0	-1 , 1	2 , - 2
Р	1 , - 1	<mark>0</mark> , 0	- 1 , 1
S	- 1 , 1	1 , -1	<mark>0</mark> , 0

- Equilibrium $\sigma_1^* = (1/4, 5/12, 1/3)$
- Value of the game $V = 1/12 (\approx 0.833)$

Version 2: exponentially weighted forcaster (EWF)

- Initialize weights $w_0(a) = 0$ for all $a \in A_1$
- For $t = 1, \ldots, n$
 - Player chooses

$$\sigma_{1,t}(a) = rac{w_{t-1}(a)}{\sum_{b \in \mathcal{A}_1} w_{t-1}(b)}$$
 [prop. to weights]

- Player plays action $a_{1,t} \sim \sigma_{1,t}$
- ▶ Player receives payoff $u_{1,t}(a_{1,t})$ and $u_{1,t}(a)$ for all a [full info]
- Update weights

 $w_t(a) = w_{t-1}(a) \exp(\eta_t u_{1,t}(a))$ [exponentiated utility]

Version 2: exponentially weighted forcaster (EWF)

- Initialize weights $w_0(a) = 0$ for all $a \in A_1$
- For $t = 1, \ldots, n$
 - Player chooses

$$\sigma_{1,t}(a) = rac{w_{t-1}(a)}{\sum_{b \in \mathcal{A}_1} w_{t-1}(b)}$$
 [prop. to weights]

- Player plays action $a_{1,t} \sim \sigma_{1,t}$
- ▶ Player receives payoff $u_{1,t}(a_{1,t})$ and $u_{1,t}(a)$ for all a [full info]
- Update weights

 $w_t(a) = w_{t-1}(a) \exp(\eta_t u_{1,t}(a))$ [exponentiated utility]

Problem:

- Player plays action $a_{1,t} \sim \sigma_{1,t}$
- Player receives payoff u_{1,t}(a_{1,t})
- Update weights

 $w_t(a) = w_{t-1}(a)\exp(\eta_t u_{1,t}(a))$ [exponentiated utility]

Problem:

- Player plays action $a_{1,t} \sim \sigma_{1,t}$
- Player receives payoff u_{1,t}(a_{1,t})
- Update weights

 $w_t(a) = w_{t-1}(a) \exp(\eta_t u_{1,t}(a))$ [exponentiated utility]

Solution:

nía

Importance sampling

$$\widetilde{u}_{1,t}(a) = egin{cases} rac{u_{1,t}(a_{1,t})}{\sigma_{1,t}(a_{1,t})} & ext{if } a = a_{1,t} \\ 0 & ext{otherwise} \end{cases}$$

Unbiased estimator

$$\forall \mathbf{a} \in A_1 \quad \mathbb{E}_{\mathbf{a} \sim \sigma_{1,t}} \big[\widetilde{\mathbf{u}}_{1,t}(\mathbf{a}) \big] = \sigma_{1,t}(\mathbf{a}) \frac{u_{1,t}(\mathbf{a})}{\sigma_{1,t}} + (1 - \sigma_{1,t}(\mathbf{a})) \times 0 = u_{1,t}(\mathbf{a})$$

Version 3: EWF for Exploration-Exploitation (EXP3)

• Initialize weights $w_0(a) = 0$ for all $a \in A_1$

• For
$$t = 1, \ldots, n$$

Player chooses

$$\sigma_{1,t}(a) = rac{w_{t-1}(a)}{\sum_{b \in \mathcal{A}_1} w_{t-1}(b)}$$
 [prop. to weights]

- Player plays action $a_{1,t} \sim \sigma_{1,t}$
- Player receives payoff $u_{1,t}(a_{1,t})$
- Compute *pseudo-payoffs*

$$\widetilde{u}_{1,t}(a) = \begin{cases} \frac{u_{1,t}(a_{1,t})}{\sigma_{1,t}(a_{1,t})} & \text{ if } a = a_{1,t} \\ 0 & \text{ otherwise} \end{cases}$$

Update weights

$$w_t(a) = w_{t-1}(a) \exp(\eta_t \tilde{u}_{1,t}(a))$$

Theorem

If EXP3 is run over n steps with $\eta_t = \sqrt{2 \log(A_1)/(nA_1)}$, then its psuedo-regret is bounded as

$$\overline{R}_n = \max_{\mathbf{a}_1} \frac{1}{n} \sum_{t=1}^n \mathbb{E} \big[u_{1,t}(\mathbf{a}_1) \big] - \frac{1}{n} \sum_{t=1}^n \mathbb{E} \big[u_{1,t}(\mathbf{a}_{1,t}) \big] \le \sqrt{\frac{2A_1 \log(A_1)}{n}}$$

Theorem

If EXP3 is run over n steps with $\eta_t = \sqrt{2 \log(A_1)/(nA_1)}$, then its psuedo-regret is bounded as

$$\overline{R}_n = \max_{\mathbf{a}_1} \frac{1}{n} \sum_{t=1}^n \mathbb{E}\left[u_{1,t}(\mathbf{a}_1)\right] - \frac{1}{n} \sum_{t=1}^n \mathbb{E}\left[u_{1,t}(\mathbf{a}_{1,t})\right] \le \sqrt{\frac{2A_1 \log(A_1)}{n}}$$

Remarks

- ▶ $\lim_{n\to\infty} \overline{R}_n \leq 0 \Rightarrow Hannan's consistency?$
- Rate of convergence $O(1/\sqrt{n})$
- Regret larger by a factor $\sqrt{A_1}$ (observing 1 vs A_1 payoffs)

Rock-Paper-Scissors – The Simulation *Mod2*

Action set $A_1 = A_2 = \{(\mathsf{R})\mathsf{ock}, (\mathsf{P})\mathsf{aper}, (\mathsf{S})\mathsf{cissor}\}$

	R	Р	S
R	0, 0	-1 , 1	5 , - 5
Р	1 , - 1	<mark>0</mark> , 0	- 1 , 1
S	- 1 , 1	1 , -1	<mark>0</mark> , 0

- Equilibrium $\sigma_1^* = (1/7, 11/21, 1/3)$
- Value of the game $V = 4/21 (\approx 0.1904)$

Learning the Nash Equilibrium Problem:

Importance sampling is unbiased

$$\widetilde{u}_{1,t}(a) = \begin{cases} \frac{u_{1,t}(a_{1,t})}{\sigma_{1,t}(a_{1,t})} & \text{if } a = a_{1,t} \\ 0 & \text{otherwise} \end{cases}; \quad \mathbb{E}_{a \sim \sigma_{1,t}} [\widetilde{u}_{1,t}(a)] = u_{1,t}(a)$$

Variance

$$\mathbb{V}_{\boldsymbol{a}\sim\sigma_{1,t}}\left[\widetilde{\boldsymbol{u}}_{1,t}(\boldsymbol{a})\right]\xrightarrow{\sigma_{1,t}(\boldsymbol{a})\to \mathbf{0}}\infty$$

Importance sampling is unbiased

$$\widetilde{u}_{1,t}(a) = \begin{cases} \frac{u_{1,t}(a_{1,t})}{\sigma_{1,t}(a_{1,t})} & \text{if } a = a_{1,t} \\ 0 & \text{otherwise} \end{cases}; \quad \mathbb{E}_{a \sim \sigma_{1,t}} [\widetilde{u}_{1,t}(a)] = u_{1,t}(a)$$

Variance

$$\mathbb{V}_{a \sim \sigma_{1,t}} \left[\widetilde{\boldsymbol{u}}_{1,t}(\boldsymbol{a}) \right] \xrightarrow{\sigma_{1,t}(\boldsymbol{a}) \to 0} \infty$$

Solution:

Bias both pseudo-payoff

$$\widetilde{u}_{1,t}(a) = \frac{u_{1,t}(a_{1,t})\mathbb{I}\{a = a_{1,t}\} + \beta_t}{\sigma_{1,t}(a_{1,t})}$$

Mix strategy with *uniform* exploration

$$\sigma_{1,t}(a) = (1 - \gamma_t) \frac{w_{1,t}(a)}{\sum b \in A_1 w_{1,t}(b)} + \frac{\gamma_t}{A_1}$$

1
Inches
inna_

Version 3: EWF for Exploration-Exploitation w.h.p. (EXP3.P)

• Initialize weights $w_0(a) = 0$ for all $a \in A_1$

• For
$$t = 1, ..., n$$

Player chooses

$$\sigma_{1,t}(a) = \frac{(1-\gamma_t)}{\sum b \in A_1 w_{1,t}(b)} + \frac{\gamma_t}{A_1}$$

- Player plays action $a_{1,t} \sim \sigma_{1,t}$
- Player receives payoff $u_{1,t}(a_{1,t})$
- Compute *pseudo-payoffs*

$$\widetilde{u}_{1,t}(a) = \frac{u_{1,t}(a_{1,t})\mathbb{I}\{a = a_{1,t}\} + \beta_t}{\sigma_{1,t}(a_{1,t})}$$

Update weights

$$w_t(a) = w_{t-1}(a) \exp(\eta_t \widetilde{u}_{1,t}(a))$$

Theorem

If EXP3.P is run over n steps with $\beta_t \approx \eta_t = \sqrt{2\log(A_1)/(nA_1)}$,

 $\gamma_t = \sqrt{A_1 \log(A_1)/n}$, then with probability $1 - \delta$ its regret is bounded as

$$R_n = \max_{a_1} \frac{1}{n} \sum_{t=1}^n u_{1,t}(a_1) - \frac{1}{n} \sum_{t=1}^n u_{1,t}(a_{1,t}) \le 6\sqrt{\frac{A_1 \log(A_1/\delta)}{n}}$$

Theorem

If EXP3.P is run over n steps with $\beta_t \approx \eta_t = \sqrt{2 \log(A_1)/(nA_1)}$,

 $\gamma_t = \sqrt{A_1 \log(A_1)/n}$, then with probability $1 - \delta$ its regret is bounded as

$$R_n = \max_{a_1} \frac{1}{n} \sum_{t=1}^n u_{1,t}(a_1) - \frac{1}{n} \sum_{t=1}^n u_{1,t}(a_{1,t}) \le 6\sqrt{\frac{A_1 \log(A_1/\delta)}{n}}$$

Remarks

- $\lim_{n\to\infty} R_n \leq 0 \Rightarrow Hannan's consistency!$
- ▶ EXP3.P in self-play converges to Nash equilibrium

Rock-Paper-Scissors – The Simulation *Mod2*

Action set $A_1 = A_2 = \{(\mathsf{R})\mathsf{ock}, (\mathsf{P})\mathsf{aper}, (\mathsf{S})\mathsf{cissor}\}$

	R	Р	S
R	0, 0	-1 , 1	5 , - 5
Р	1 , - 1	<mark>0</mark> , 0	- 1 , 1
S	- 1 , 1	1 , -1	<mark>0</mark> , 0

- Equilibrium $\sigma_1^* = (1/7, 11/21, 1/3)$
- Value of the game $V = 4/21 (\approx 0.1904)$

Summary

- + EXP3.P minimizes regret in adversarial environments
- + EXP3.P converges to Nash equilibria in self-play
- + No need to know
 - Utility function (i.e., the rules of the game)
 - Actions performed by the adversary

Summary

- + $\rm EXP3.P$ minimizes regret in adversarial environments
- + EXP3.P converges to Nash equilibria in self-play
- + No need to know
 - Utility function (i.e., the rules of the game)
 - Actions performed by the adversary
- pprox Some of this can be extended to learn correlated equilibria

Summary

- + $\rm EXP3.P$ minimizes regret in adversarial environments
- + EXP3.P converges to Nash equilibria in self-play
- + No need to know
 - Utility function (i.e., the rules of the game)
 - Actions performed by the adversary
- pprox Some of this can be extended to learn correlated equilibria
- Exponential may be tricky to manage
- Convergence is only in the empirical frequency
- Convergence is relatively slow

Games

Outline

Learning in Two-Player Zero-Sum Games

From Normal Form to Extensive Form Imperfect Information Games

Regret Minimization and Nash Equilibria Counterfactual Regret Minimization

Outline

Learning in Two-Player Zero-Sum Games

From Normal Form to Extensive Form Imperfect Information Games

Regret Minimization and Nash Equilibria

Counterfactual Regret Minimization

Games

Regret Minimization and Nash Equilibria

Imperfect Information Extensive Form Games

The game

- Set of players $N = \{1, ..., n\}$ and c chance player (e.g., deck)
- ▶ Set of possible sequences of actions *H*, $Z \subseteq H$ set of terminal histories
- Player function $P: H \rightarrow N \cup \{c\}$
- Set of information sets *I* = {*I*} (i.e., *I* is a subset of histories that are not "distinguishable")
- Utility of a terminal history $u_i: Z \to \mathbb{R}$
- ▶ Strategy $\sigma_i : \mathcal{I} \to \mathcal{D}(A)$ (in all $h \in I$ such that P(h) = i)

Imperfect Information Extensive Form Games

The game

- Set of players $N = \{1, ..., n\}$ and c chance player (e.g., deck)
- ▶ Set of possible sequences of actions H, $Z \subseteq H$ set of terminal histories
- Player function $P: H \rightarrow N \cup \{c\}$
- Set of information sets *I* = {*I*} (i.e., *I* is a subset of histories that are not "distinguishable")
- Utility of a terminal history $u_i: Z \to \mathbb{R}$
- ▶ Strategy $\sigma_i : \mathcal{I} \to \mathcal{D}(A)$ (in all $h \in I$ such that P(h) = i)

Two-Player Zero-Sum Extensive Form Game

- $N = \{1, 2\}$
- ▶ $u_1 = -u_2$

Extensive Form Games

Histories

- Prob. of reaching history $h \in H$ following joint strategy σ , $\pi^{\sigma}(h)$
- ▶ Prob. of reaching information set $I \in \mathcal{I}$ following joint strategy σ , $\pi^{\sigma}(I) = \sum_{h \in I} \pi^{\sigma}(h)$
- Prob. of reaching history h ∈ H following joint strategy σ_{-i}, except player i following actions in h w.p. 1, π^σ_{-i}(h)
- ▶ Prob. of reaching history $h \in H$ following player *i*'s actions, except others, $\pi_i^{\sigma}(h)$
- Replacement of $\sigma(I)$ to $\delta(a)$, $\sigma_{I \rightarrow a}$

Solution concept

- ► Nash equilibrium $(\sigma_1^*, \sigma_2^*) = \arg \max_{\sigma_1} \min_{\sigma_2} u_1(\sigma_1, \sigma_2)$
- Value of the game $V = \max_{\sigma_1} \min_{\sigma_2} u_1(\sigma_1, \sigma_2)$
- Remark: other concepts exist in this case, NE

The Regret View

• Regret in hindsight w.r.t. any fixed strategy σ_1

$$R_n(\sigma_1) = \frac{1}{n} \sum_{t=1}^n u_1(\sigma_1, \sigma_{2,t}) - \frac{1}{n} \sum_{t=1}^n u_1(\sigma_{1,t}, \sigma_{2,t})$$

Regret against the best strategy in hindsight

$$R_n = \max_{\sigma_1} R_n(\sigma_1)$$

The Regret View

• Regret in hindsight w.r.t. any fixed strategy σ_1

$$R_n(\sigma_1) = \frac{1}{n} \sum_{t=1}^n u_1(\sigma_1, \sigma_{2,t}) - \frac{1}{n} \sum_{t=1}^n u_1(\sigma_{1,t}, \sigma_{2,t})$$

Regret against the best strategy in hindsight

$$R_n = \max_{\sigma_1} R_n(\sigma_1)$$

• Empirical strategy:

$$\widehat{\sigma}_{1,n}(I,a) = \frac{\sum_{t=1}^{n} \pi_i^{\sigma_t}(I) \sigma_t(I,a)}{\sum_{t=1}^{n} \pi_i^{\sigma_t}(I)}$$

Regret Minimization and Nash Equilibria

Theorem

A learning algorithm is Hannan's consistent if

 $\lim_{n\to\infty}R_n=0\quad a.s.$

Given a two-player zero-sum extensive-form game with value V, if players choose strategies $\sigma_{1,t}$ and $\sigma_{2,t}$ using a Hannan's consistent algorithm, then

$$\lim_{n\to\infty}\frac{1}{n}\sum_{t=1}^n u_1(\sigma_{1,t},\sigma_{2,t})=V$$

Furthermore, the joint empirical strategy

$$\widehat{\sigma}_{1,n} \times \widehat{\sigma}_{2,n} \stackrel{n \to \infty}{\longrightarrow} \left\{ \left(\sigma_1^*, \sigma_2^* \right) \right\}_{\textit{Nash}}$$

Outline

Learning in Two-Player Zero-Sum Games

From Normal Form to Extensive Form Imperfect Information Games Regret Minimization and Nash Equilibria

Counterfactual Regret Minimization

Regret Matching Algorithm

- Back to Rock-Paper-Scissors
- Let $a_1 = rock$ and $a_2 = paper$
- Then the *counterfactual* regret

$$\begin{aligned} r(a_1 \to rock) &= u_1(rock, a_{2,t}) - u_1(a_{1,t}, a_{2,t}) = -1 - (-1) = 0\\ r(a_1 \to paper) &= u_1(paper, a_{2,t}) - u_1(a_{1,t}, a_{2,t}) = 0 - (-1) = 1\\ r(a_1 \to scissors) &= u_1(scissors, a_{2,t}) - u_1(a_{1,t}, a_{2,t}) = 1 - (-1) = 2 \end{aligned}$$

Regret matching idea

$$\sigma(a) = \frac{r(a_1 \rightarrow a)}{\sum_{b \in A_1} r(a_1 \rightarrow b)}$$

Sequential Problem

A learning problem

- For $t = 1, \ldots, n$
 - Player 1 chooses $\sigma_{1,t}$
 - Player 1 executes actions prescribed by σ_{1,t} through a full game
 - Player 1 receives payoff u_{1,t}

Counterfactual Regret

Counterfactual value of a history

$$v_i(\sigma,h) = \sum_{z \in Z, h \sqsubset z} \pi^{\sigma}_{-i}(h) \pi^{\sigma}(h,z) u_i(z)$$

Counterfactual regret of not taking a in h

$$r_i^{\sigma}(h,a) = v_i(\sigma_{I \rightarrow a},h) - v_i(\sigma,h), \quad I \ni h$$

Counterfactual regret of not taking a in an information set I

$$r_i^{\sigma}(I,a) = \sum_{h \in I} r_i^{\sigma}(h,a)$$

$$R_{i,t}(I,a) = \sum_{s=1}^{t} r_i^{\sigma_t}(I,a)$$

Version 1: Counterfactual Regret Minimization (CFR)

- For $t = 1, \ldots, n$
 - Player 1 chooses strategy

$$\sigma_{1,t}(I,a) = \begin{cases} \frac{R_{1,t}^+(I,a)}{\sum_{b \in A_1} R_{1,t}^+(I,b)} & \text{if } \sum_{b \in A_1} R_{1,t}^+(I,b) > 0\\ \frac{1}{A_1} & \text{otherwise} \end{cases}$$

- ▶ Player 1 executes actions prescribed by $\sigma_{1,t}$ through a *full game*
- Player 1 receives payoff u_{1,t}
- Player 1 computes instantaneous regret r_i^{σt} over information sets observed over the game

 $R^+ = \max\{0, R\}$

Theorem

If CFR is run over n steps, then the regret is bounded as

$$R_{n} = \max_{\sigma_{1}} \frac{1}{n} \sum_{t=1}^{n} u_{1}(\sigma_{1}, \sigma_{2,t}) - \frac{1}{n} \sum_{t=1}^{n} u_{1}(\sigma_{1,t}, \sigma_{2,t}) \leq |\mathcal{I}_{i}| \sqrt{\frac{A_{1}}{n}}$$

Theorem

If CFR is run over n steps, then the regret is bounded as

$$R_n = \max_{\sigma_1} \frac{1}{n} \sum_{t=1}^n u_1(\sigma_1, \sigma_{2,t}) - \frac{1}{n} \sum_{t=1}^n u_1(\sigma_{1,t}, \sigma_{2,t}) \le |\mathcal{I}_i| \sqrt{\frac{A_1}{n}}$$

Remarks

- $\lim_{n\to\infty} R_n \leq 0 \Rightarrow$ Hannan's consistency
- Rate of convergence $O(1/\sqrt{n})$
- Linear dependence on the number of information sets
- ▶ In self-play EWF "converges" to the Nash equilibrium

Version 2: Counterfactual Regret Minimization+ (CFR⁺)

- For $t = 1, \ldots, n$
 - At t even player 1 chooses strategy

$$\sigma_{1,t}(I,a) = \begin{cases} \frac{Q_{1,t}(I,a)}{\sum_{b \in A_1} Q_{1,t}(I,b)} & \text{ if } \sum_{b \in A_1} Q_{1,t}(I,b) > 0\\ \frac{1}{A_1} & \text{ otherwise} \end{cases}$$

- At t odd player 1 chooses strategy $\sigma_{1,t} = \sigma_{1,t-1}$
- Player 1 executes actions prescribed by $\sigma_{1,t}$ through a full game
- Player 1 receives payoff u_{1,t}
- Player 1 computes instantaneous regret r^σ_i over information sets observed over the game

Return

$$\widehat{\sigma}_{1,n} = \sum_{t=1}^{n} \frac{2t}{n^2 + n} \sigma_{1,t}$$

$$Q_{1,t} = (Q_{1,t-1} + r_i^{\sigma_{t-1}})^+$$
 instead of $R_{1,t}^+ = (\sum_{s=1}^{t-1} r_i^{\sigma_s})^+$
Learning the Nash Equilibrium

Theorem

If CFR^+ is run over n steps, then the regret is bounded as

$$R_n = \max_{\sigma_1} \frac{1}{n} \sum_{t=1}^n u_1(\sigma_1, \sigma_{2,t}) - \frac{1}{n} \sum_{t=1}^n u_1(\sigma_{1,t}, \sigma_{2,t}) \le |\mathcal{I}_i| \sqrt{\frac{A_1}{n}}$$

Learning the Nash Equilibrium

Theorem

If CFR^+ is run over n steps, then the regret is bounded as

$$R_n = \max_{\sigma_1} \frac{1}{n} \sum_{t=1}^n u_1(\sigma_1, \sigma_{2,t}) - \frac{1}{n} \sum_{t=1}^n u_1(\sigma_{1,t}, \sigma_{2,t}) \le |\mathcal{I}_i| \sqrt{\frac{A_1}{n}}$$

Remarks

- Same performance as CFR
- Empirically is more "reactive"
- Empirically $\hat{\sigma}_{1,t}$ tends to converge

${\rm CFR}$ in Large Problems: Heads-up Limit Texas Hold'em

The problem

- ► Four rounds of cards, four rounds of betting, *discrete bets*
- About 10^{18} states, 3.2×10^{14} information sets

${\rm CFR}$ in Large Problems: Heads-up Limit Texas Hold'em

The problem

- ► Four rounds of cards, four rounds of betting, *discrete bets*
- About 10^{18} states, 3.2×10^{14} information sets

Abstraction: cluster together "similar" histories

- Symmetries (reducing to 10¹³ information sets)
- Clustering
 - Buckets based on (roll-out) hand strength
 - "Hierarchical" buckets (e.g., second hand is indexed by the first bucket as well)
 - About 1.65×10^{12} states, 5.73×10^7 information sets

$\rm CFR$ in Large Problems: Heads-up Limit Texas Hold'em

The problem

- ► Four rounds of cards, four rounds of betting, *discrete bets*
- About 10^{18} states, 3.2×10^{14} information sets

Abstraction: cluster together "similar" histories

- Symmetries (reducing to 10¹³ information sets)
- Clustering
 - Buckets based on (roll-out) hand strength
 - "Hierarchical" buckets (e.g., second hand is indexed by the first bucket as well)
 - \blacktriangleright About 1.65 \times 10^{12} states, 5.73×10^7 information sets

Engineering:

- Rounding: $\sigma(a) = 0.0$ if smaller than threshold, fixed-point arithmetic
- Dynamic compression regret and strategy (from 262 TiB to 10.9 TiB)
- Distribute recursive computation of regret and strategy over rounds

${\rm CFR}$ in Large Problems: Heads-up Limit Texas Hold'em

Heads-up No-Limit Texas Hold'em

The problem

- In no-limit bets are arbitrary
- ▶ With standard discretized bets (1\$ up to 20,000\$) 10¹⁶⁰ decision points!

The Learning problem

- "Simple" abstraction techniques no longer work
- Safe subgame solving

P1(head, sell) = 0.5, P1(tail, sell) = -0.5

►
$$\sigma_2 = \text{head} \Rightarrow \sigma_1(\text{head}) = \text{"Sell"}, \sigma_1(\text{tail}) = \text{"Play"}$$

 $\Rightarrow u_1 = 0.5 \times 0.5 + 0.5 \times 1 = 0.75$

•
$$\sigma_2 = \text{tail} \Rightarrow \sigma_1(\text{head}) = \text{"Play"}, \sigma_1(\text{tail}) = \text{"Sell"}$$

 $\Rightarrow u_1 = 0.5 \times 1 + 0.5 \times (-0.5) = 0.25$

• Optimal strategy $\sigma_2 = (0.25, 0.75)$

nía

• Optimal strategy $\sigma_2 = (0.25, 0.75)$

• Optimal strategy $\sigma_2 = (0.75, 0.25)$

• Optimal strategy $\sigma_2 = (0.75, 0.25)$

 \Rightarrow the optimal solution of the subgame depends on "things" outside the subgame itself!

Version 1: unsafe subgame solving

1. Start with a pre-computed solution (e.g., through abstraction)

Version 1: unsafe subgame solving

- 1. Start with a pre-computed solution (e.g., through abstraction) called *trunk*
- 2. Solve the subgame *as-if* everything else was as in the *trunk*

Version 1: unsafe subgame solving

- 1. Start with a pre-computed solution (e.g., through abstraction) called *trunk*
- 2. Solve the subgame *as-if* everything else was as in the *trunk*

 \Rightarrow subgame strategy can be *arbitrarily bad*

Version 2: subgame re-solving

- 1. Start with a pre-computed solution (e.g., through abstraction) called *trunk*
- 2. Construct an augmented subgame giving *P*1 the chance to *opt-out* from the subgame and play in the trunk
- 3. Solve the augmented subgame with maxmargin

Version 2: subgame re-solving

- 1. Start with a pre-computed solution (e.g., through abstraction) called *trunk*
- 2. Construct an augmented subgame giving *P*1 the chance to *opt-out* from the subgame and play in the trunk
- 3. Solve the augmented subgame with maxmargin

 \Rightarrow subgame strategy better but potentially far from optimal

Version 3: reach subgame solving

- 1. Start with a pre-computed solution (e.g., through abstraction) called *trunk*
- 2. Construct an augmented subgame considering the *gift* given to P2 (i.e., consider *any* possible action *not leading* to the subgame)
- 3. Solve the augmented subgame

Version 3: reach subgame solving

- 1. Start with a pre-computed solution (e.g., through abstraction) called *trunk*
- 2. Construct an augmented subgame considering the *gift* given to P2 (i.e., consider *any* possible action *not leading* to the subgame)
- 3. Solve the augmented subgame

 \Rightarrow provably reduce exploitability

Brains vs. Al

Libratus

- \blacktriangleright Monte-Carlo ${\rm CFR}$ + abstraction to compute the trunk
- Reach subgame solving with no abstraction (using CFR⁺ to solve subgames) in-game

Brains vs. Al

Libratus

- \blacktriangleright Monte-Carlo ${\rm CFR}$ + abstraction to compute the trunk
- Reach subgame solving with no abstraction (using CFR⁺ to solve subgames) in-game

Comptetition

- January 2017, over 20 days
- About 120,000 hands
- 4 top human players
- \$200,000 prize

Brains vs. Al

Libratus

- \blacktriangleright Monte-Carlo ${\rm CFR}$ + abstraction to compute the trunk
- Reach subgame solving with no abstraction (using CFR⁺ to solve subgames) in-game

Comptetition

- January 2017, over 20 days
- About 120,000 hands
- 4 top human players
- \$200,000 prize

Results

Summary

- + $\rm CFR^+$ converges to Nash equilibria in self-play in imperfect-information extensive-form games
- + $\operatorname{REACHSUBGAME}$ provides a tool for safely decomposing the game
- + Efficient and (somehow) general purpose implementation
- + Beyond games: risk-averse planning

Summary

- + $\rm CFR^+$ converges to Nash equilibria in self-play in imperfect-information extensive-form games
- + $\operatorname{REACHSUBGAME}$ provides a tool for safely decomposing the game
- + Efficient and (somehow) general purpose implementation
- + Beyond games: risk-averse planning
 - ? Do we really care about (normal form) Nash?
 - ? Beyond two-player games
 - ? Opponent modeling
 - ? Stochastic games (SG) / partially observable stochastic games (POSG)

Bibliography I

Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. The nonstochastic multiarmed bandit problem. *SIAM J. Comput.*, 32(1):48–77, January 2003.

Michael Bowling, Neil Burch, Michael Johanson, and Oskari Tammelin. Heads-up limit hold'em poker is solved. *Science*, 2015.

Noam Brown and Tuomas Sandholm. Safe and nested subgame solving for imperfect-information games. *CoRR*, abs/1705.02955, 2017.

Sébastien Bubeck and Nicolò Cesa-Bianchi. Regret analysis of stochastic and nonstochastic multi-armed bandit problems. Foundations and Trends in Machine Learning, 5(1):1–122, 2012.

Nicolo Cesa-Bianchi and Gabor Lugosi. *Prediction, Learning, and Games.* Cambridge University Press, New York, NY, USA, 2006.

Bibliography II

Gergely Neu.

 $\ensuremath{\mathsf{Explore}}$ no more: Improved high-probability regret bounds for non-stochastic bandits.

In NIPS, pages 3168-3176, 2015.

Wesley Tansey.

Counterfactual regret minimization for po. https://github.com/tansey/pycfr, 2017.

Martin Zinkevich, Michael Johanson, Michael Bowling, and Carmelo Piccione. Regret minimization in games with incomplete information.

In J. C. Platt, D. Koller, Y. Singer, and S. T. Roweis, editors, *Advances in Neural Information Processing Systems 20*, pages 1729–1736. Curran Associates, Inc., 2008.

Games C

Counterfactual Regret Minimization

Learning in Zero-Sum Games

Alessandro Lazaric lazaric@fb.com