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From Exact to Approximate RL

> Dynamic programming algorithms require an explicit
definition of
> transition probabilities p(|x, a)
» reward function r(x, a)
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From Exact to Approximate RL

> Dynamic programming algorithms require an explicit
definition of
> transition probabilities p(|x, a)
» reward function r(x, a)

» This knowledge is often unavailable (i.e., wind intensity,
human-computer-interaction).
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From Exact to Approximate RL

> Dynamic programming algorithms require an explicit
definition of
> transition probabilities p(|x, a)
» reward function r(x, a)

» This knowledge is often unavailable (i.e., wind intensity,
human-computer-interaction).

» Can we rely on samples? (partially addressed by RL)
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From Exact to Approximate RL

» Dynamic programming algorithms require an exact
representation of value functions and policies
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From Exact to Approximate RL

» Dynamic programming algorithms require an exact
representation of value functions and policies

» This is often impossible since their shape is too “complicated”
(e.g., large or continuous state space).
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From Exact to Approximate RL

» Dynamic programming algorithms require an exact
representation of value functions and policies

» This is often impossible since their shape is too “complicated”
(e.g., large or continuous state space).

» Can we use approximations?
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From Exact to Approximate RL
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From Exact to Approximate RL

70

607

50

407

307

207

Approximated by a Fourier basis expansion
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The Objective

Find a policy 7 such that

the performance loss ||V* — V7|| is as small as possible
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Approximate Reinforcement
Learning

Approximate Value Iteration
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From Approximation Error to Performance Loss

Question: if V is an approximation of the optimal value function
V* with an error
error = ||V — V7|
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From Approximation Error to Performance Loss

Question: if V is an approximation of the optimal value function

V* with an error
error = ||V — V7|

how does it translate to the (loss of ) performance of the greedy
policy

m(x) € argmax > p(ylx, a)[r(x, 2, y) +1V(y)]
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From Approximation Error to Performance Loss

Question: if V is an approximation of the optimal value function
V* with an error

error = ||V — V7|
how does it translate to the (loss of ) performance of the greedy
policy
e ) ) ) V
m(x) € arg Teagiy:p(y\x 3)[r(x, a,y) +7V(y)]
i.e.

performance loss = ||V* — V7|
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From Approximation Error to Performance Loss

Let V € RN be an approximation of V* and 7 its corresponding
greedy policy, then

2
IV = Voo < —— [V* = V]| .
I e 1—’}/%,_/

performance loss approx. error

Furthermore, there exists € > 0 such that if ||V — V*||« <€, then
7 is optimal.
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From Approximation Error to Performance Loss

Proof.

V¥ = VT < ITV* =TV +[|[TTV = T" V7"l
STV =TV +AV = VT
< VHV* — Voo +([[V = Voo + [[V* = VT||)
< —Hv* Voo-
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From Approximation Error to Performance Loss

Question: how do we compute a good V7
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From Approximation Error to Performance Loss

Question: how do we compute a good V7

Problem: unlike in standard approximation scenarios (see
supervised learning), we have a limited access to the target
function, i.e. V*.
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From Approximation Error to Performance Loss

Question: how do we compute a good V7

Problem: unlike in standard approximation scenarios (see
supervised learning), we have a limited access to the target
function, i.e. V*.

Solution: value iteration tends to learn functions which are close
to the optimal value function V*.
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Value lteration: the ldea

1. Let Qg be any action-value function
2. At each iteration k=1,2,... K

» Compute

Qur1(x, ) = TQu(x, a) = r(x,a)+)_ p(ylx, a)y max Qk(y, b)

3. Return the greedy policy 4

Tk (x) € arg max Qk(x, a).
acA
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Value lteration: the ldea

[y

Let Qo be any action-value function

N

. At each iteration k=1,2,... K

» Compute

Qur1(x, ) = TQu(x, a) = r(x,a)+)_ p(ylx, a)y max Qk(y, b)

y

@

Return the greedy policy

Tk (x) € arg max Qk(x, a).
acA

v

Problem: how can we approximate T Qx?

v

Problem: if Qxy1 # T Qx, does (approx.) value iteration still work?
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Linear Fitted Q-iteration: the Approximation Space

Linear space to approximate action—value functions

F = {f(x, a) = zd:aﬂpj(xa a), a€ Rd}

Jj=1
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Linear Fitted Q-iteration: the Approximation Space

Linear space to approximate action—value functions
d
F = {f(x7 a) = Zajcpj(x, a), a € Rd}
Jj=1

with features (alternative for discrete actions: duplicate state
features)

i X x A= [0, L] o(x,a) = [p1(x, a) ... oq4(x, a)]T
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Linear Fitted Q-iteration: the Samples

Assumption: access to a generative model, that is a black-box
simulator sim() of the environment is available.
Given (x, a),

Sim(Xva):{y7r}v withywp(-|x,a),r:r(x,a)
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Linear Fitted Q-iteration

Input: space F, iterations K, sampling distribution p, num of samples n
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Linear Fitted Q-iteration

Input: space F, iterations K, sampling distribution p, num of samples n

Initial function CA,?O e F
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Linear Fitted Q-iteration

Input: space F, iterations K, sampling distribution p, num of samples n

Initial function CA,?O e F
Fork=1,...,K
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Linear Fitted Q-iteration

Input: space F, iterations K, sampling distribution p, num of samples n

Initial function CA,?O e F
For k=1,...,K N
1. Draw n samples (x;,2;) % p
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Linear Fitted Q-iteration

Input: space F, iterations K, sampling distribution p, num of samples n

Initial function CA,?O e F
For k=1,...,K N
1. Draw n samples (x;,2;) % p

2. Sample x/ ~ p(-|x;, a;) and r; = r(x;, a;)
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Linear Fitted Q-iteration

Input: space F, iterations K, sampling distribution p, num of samples n

Initial function CA,?O e F
For k=1,...,K N
1. Draw n samples (x;,2;) % p

2. Sample x/ ~ p(-|x;, a;) and r; = r(x;, a;)

3. Compute y; = r; + vy max, (A?k—l(X;/, a)
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Linear Fitted Q-iteration

Input: space F, iterations K, sampling distribution p, num of samples n

Initial function CA,?O e F
For k=1,...,K N
1. Draw n samples (x;,2;) % p

2. Sample x/ ~ p(-|x;, a;) and r; = r(x;, a;)
3. Compute y; = r; + -y max, ak_l(x,f, a)
4. Build training set {((X,-, a;),y;)};’:l
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Linear Fitted Q-iteration

Input: space F, iterations K, sampling distribution p, num of samples n

Initial function CA,?O e F
For k=1,...,K N
1. Draw n samples (x;,2;) % p

. Sample x! ~ p(-|x;, a;) and r; = r(x;, a;)

. Build training set {((X,-, a;),y;)};’:l

2
3. Compute y; = r; + vy max, ak_l(x,f, a)
4
5. Solve the least squares problem

n

1

fa, = arg min_— > (falxiya) — vi)’

. Crzia—~

A. LAZARIC — Approximate Reinforcement Learning Dec 2nd, 2014 - 15/66



Linear Fitted Q-iteration

Input: space F, iterations K, sampling distribution p, num of samples n

Initial function CA,?O e F
For k=1,...,K N
1. Draw n samples (x;,2;) % p

2. Sample x/ ~ p(-|x;, a;) and r; = r(x;, a;)
3. Compute y; = r; + -y max, ak_l(x,f, a)

4. Build training set {((X,-, a;),y;)};’:l
5

. Solve the least squares problem
n

1

fa, = arg min_— > (falxiya) — vi)’

i=1

6. Return Qx = fs, (truncation may be needed)
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Linear Fitted Q-iteration

Input: space F, iterations K, sampling distribution p, num of samples n
Initial function CA,?O eF
Fork=1,...,K N

1. Draw n samples (x;, a;) £S p

2. Sample x/ ~ p(-|x;, a;) and r; = r(x;, a;)

3. Compute y; = r; + vy max, ak_l(x,f, a)

4. Build training set {((X,-, a;),y;)};’:l

5. Solve the least squares problem

1L 2
fa, = arg min — Z (fa(x,-, a;) —y,-)

fa€F N

i=

6. Return Qx = fs, (truncation may be needed)

Return 7 (-) = arg max, (AQK(~, a) (greedy policy)
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Linear Fitted Q-iteration: Sampling

1. Draw n samples (x;, a;) i p

2. Sample x! ~ p(:|x;, a;) and r; = r(x;, a;)
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Linear Fitted Q-iteration: Sampling

1. Draw n samples (x;, a;) i p

2. Sample x! ~ p(:|x;, a;) and r; = r(x;, a;)

» In practice it can be done once before running the algorithm

» The sampling distribution p should cover the state-action space in
all relevant regions

» If not possible to choose p, a database of samples can be used
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Linear Fitted Q-iteration: The Training Set

4. Compute y; = r; + ymax, (A?kfl(X;'y a)

5. Build training set {((x;, a,-),y,-)};;l

. lrezia~

A. LAZARIC — Approximate Reinforcement Learning Dec 2nd, 2014 - 17/66



Linear Fitted Q-iteration: The Training Set

4. Compute y; = r; + ymax, (A?kfl(X;/y a)

5. Build training set {((x;, a,-),y,-)};’:1

» Each sample y; is an unbiased sample, since
E[)/,'|X,'7 ai] = E[ri + mgx ak—l(xila a)] = I’(X,', ai) + ’YE[maaX ak—l(xilv a)]
= r(x;, ai) + 7/ maax CA?H(X’, a)p(dy|x,a) = Tf?kfl(x,-, a;)
X

» The problem “reduces” to standard regression
» It should be recomputed at each iteration

. Crzia—~

A. LAZARIC — Approximate Reinforcement Learning Dec 2nd, 2014 - 17/66



Linear Fitted Q-iteration: The Regression Problem

6. Solve the least squares problem

1
fa = arg min_— > (falxir @) —y)?

7. Return Qx = fs, (truncation may be needed)
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Linear Fitted Q-iteration: The Regression Problem

6. Solve the least squares problem

1
fa = arg min_— > (falxir @) —y)?

7. Return Qx = fs, (truncation may be needed)

» Thanks to the linear space we can solve it as

> Build matrix ® = [¢(xq, a1)" ... ¢(xn, an) "]

» Compute &% = (T )1 Ty (least-squares solution)

> Truncation to [— Vinax; Vinax] (With Vinax = Rmax/(1 — 7))
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Sketch of the Analysis

€3

greedy Ty

final error
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Summary
Qi — Qi

Propagation

Approximation i .
algorithm Dynamic programming
algorithm
Samples Performance
(sampling strategy, number) Markov decision
process
number n, sampling dist. p

Concentrability C), ,
Range Viax

Approximation
space

d(F, TF)
size d, features w
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The Final Bound

Theorem (see e.g., Munos,'03)

LinearFQI with a space F of d features, with n samples at each iteration
returns a policy mwk after K iterations such that

2
10" — @™l <——L5/Cp <4d(fv TF)

(1-9)?
+o<vmax(1+$)\/‘“oi”/5>>
N
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Other implementations

Replace the regression step with

» K-nearest neighbour

v

Regularized linear regression with L; or L, regularisation

Neural network

v

v

Support vector regression

> Trees
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Other implementations

Replace the regression step with

» K-nearest neighbour

v

Regularized linear regression with L; or L, regularisation

v

Neural network

v

Support vector regression

> Trees

Remark: we need to solve the approximation problem efficiently
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Approximate Reinforcement
Learning

Approximate Policy lteration
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Policy lteration: the Idea

1. Let my be any stationary policy
2. At each iteration k=1,2,... K
» Policy evaluation given m, compute V, = V™,

» Policy improvement: compute the greedy policy

Tes1(x) € arg maxaea[r(x, a) + 73 p(ylx, )V (y)].
y
3. Return the last policy g

. Cbreia—
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Policy lteration: the Idea

1. Let my be any stationary policy
2. At each iteration k=1,2,... K
» Policy evaluation given m, compute V, = V™,

» Policy improvement: compute the greedy policy

Tes1(x) € arg maxaea[r(x, a) + 73 p(ylx, )V (y)].
y
3. Return the last policy g

» Problem: how can we approximate V7?7

> Problem: if V| # V™, does (approx.) policy iteration still work?
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Approximate Policy lteration: performance loss

Problem: the algorithm is no longer guaranteed to converge.
Vv
} Asymptotic Error

‘ k

The asymptotic performance of the policies 7w, generated by the API
algorithm is related to the approximation error as:

2 .
limsup || V* — V™| < —72 limsup || Vik = V™ 0o
k00 e " (1 =) ko0 ———
performance loss approximation error

. lrezia~
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Least-Squares Policy Iteration (LSPI)

LSPI uses

» Linear space to approximate value functions*

F = {f(x) = i%‘%‘(X% e Rd}
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Least-Squares Policy Iteration (LSPI)

LSPI uses

» Linear space to approximate value functions*

F = {f(x) = i%‘%‘(X% e Rd}

» Least-Squares Temporal Difference (LSTD) algorithm for
policy evaluation.

*In practice we use approximations of action-value functions.
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Least-Squares Temporal-Difference Learning (LSTD)

» V™ may not belong to F VT ¢ F

> Best approximation of V7 in F is

nv"™ =arg jr(ni]n:||V7T —f] (M is the projection onto F)
€
Ty
VT

|
i

Iy

ia IV
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Least-Squares Temporal-Difference Learning (LSTD)
» V7 is the fixed-point of 7™
VT = TV = " PV
» LSTD searches for the fixed-point of Iy , 7™

My, g =arg r;g;\lg = fll2,p

> When the fixed-point of 1,77 exists, we call it the LSTD solution
Vo =M, T™ Vo
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Least-Squares Temporal-Difference Learning (LSTD)

Vo = M,77 Vo

U
d
<r7r790i>p Z /_ ’Y'D 90J7§01>p05TD,J =0
—— =
b Ai,j
J
AO(TD =b
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Least-Squares Policy Iteration (LSPI)

Input: space F, iterations K, sampling distribution p, num of samples n

. brezia~
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Least-Squares Policy Iteration (LSPI)

Input: space F, iterations K, sampling distribution p, num of samples n

Initial policy mg
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Least-Squares Policy Iteration (LSPI)

Input: space F, iterations K, sampling distribution p, num of samples n

Initial policy mg
Fork=1,....K
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Least-Squares Policy Iteration (LSPI)

Input: space F, iterations K, sampling distribution p, num of samples n

Initial policy mg
Fork=1,....K
1. Generate a trajectory of length n from the stationary dist. p™*

(X]_77Tk(X1)7 rl)X277Tk(X2)a r27 e ,anl, ﬂ-k(anl)a rnf].)Xn)

. Cbreia—
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Least-Squares Policy Iteration (LSPI)

Input: space F, iterations K, sampling distribution p, num of samples n

Initial policy mg
Fork=1,....K
1. Generate a trajectory of length n from the stationary dist. p™*

(X]_77Tk(X1)7 rl)X277Tk(X2)a r27 e ,anl, ﬂ-k(anl)a rn,]_,Xn)

2. Compute the empirical matrix Zk and the vector Bk

iy = - D (e30x0) s diiloee) = (1= 7P o)
t=1

~ 1<
[bi]i = - Z‘Pi(Xt)ft ~ <rﬂ790i>ﬁ"k
t=1

3. Solve the linear system «y = Z;lEk

. Crzia—~
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Least-Squares Policy Iteration (LSPI)

Input: space F, iterations K, sampling distribution p, num of samples n
Initial policy mg

Fork=1,....K
1. Generate a trajectory of length n from the stationary dist. p™*

(X]_77Tk(X1)7 r15X277Tk(X2)a r27 e ,anl, ﬂ-k(anl)a rn,]_,Xn)

2. Compute the empirical matrix Zk and the vector Bk

iy = - D (e30x0) s diiloee) = (1= 7P o)
t=1

~ 1<
[bi]i = - Z‘Pi(Xt)ft ~ <rﬂ790i>ﬁ"k
t=1

3. Solve the linear system «y = Z;lEk
4. Compute the greedy policy w41 w.r.t. Vi =1,

. Cbreia—
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Least-Squares Policy Iteration (LSPI)

Input: space F, iterations K, sampling distribution p, num of samples n

Initial policy mg
Fork=1,....K
1. Generate a trajectory of length n from the stationary dist. p™*

(X]_77Tk(X1)7 r15X277Tk(X2)a r27 e ,anl, ﬂ-k(anl)a rn,]_,Xn)

2. Compute the empirical matrix Zk and the vector Bk

iy = - D (e30x0) s diiloee) = (1= 7P o)
t=1

~ 1<
[bi]i = - Z‘Pi(Xt)ft ~ <rﬂ790i>ﬁ"k
t=1

3. Solve the linear system «y = Z;lEk
4. Compute the greedy policy w41 w.r.t. Vi =1,

Return the last policy 7k

. Cbreia—
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Least-Squares Policy Iteration (LSPI)

1. Generate a trajectory of length n from the stationary dist. p™*

(x1, mi(x1), 1y X0, Th(X2), 2y - oy Xn—1, Th(Xn—1) Fn—1, Xn)

> The first few samples may be discarded because not actually drawn
from the stationary distribution p™*

> Off-policy samples could be used with importance weighting

> In practice i.i.d. states drawn from an arbitrary distribution (but
with actions 7x) may be used

. Cbreia—
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Least-Squares Policy Iteration (LSPI)

4. Compute the greedy policy my41 w.r.t. Vk = fu,

» Computing the greedy policy from Vk is difficult, so move to
LSTD-Q and compute

Tr+1(x) = arg maaxak(x, a)

. brezia~
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Least-Squares Policy Iteration (LSPI)

For k=1,....K
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Least-Squares Policy Iteration (LSPI)

For k=1,....K
1. Generate a trajectory of length n from the stationary dist. p™

(xt, Tr(x1), ry 22, Th(X2), 12, Xo— 15 Tk(Xn—1)5 Fa—15 Xn)
4. Compute the greedy policy g1 w.r.t. Vk = fu,

Problem: This process may be unstable because 7, does not cover the
state space properly

. lrezia~
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LSTD Algorithm

When n — oo then A — A and b — b, and thus,
aTD — OTD and VTD — VTD

Proposition (LSTD Performance)

If LSTD is used to estimate the value of 7 with an infinite number
of samples drawn from the stationary distribution p™ then

IV™ — Vrol |- < inf_[|V™ — V]|

1
1/]_—/'}/2 VeF

. Clreia—
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LSTD Algorithm

When n — oo then A — A and b — b, and thus,
aTD — OTD and VTD — VTD

Proposition (LSTD Performance)

If LSTD is used to estimate the value of 7 with an infinite number
of samples drawn from the stationary distribution p™ then

IV™ — Vrol |- < inf_[|V™ — V]|

1
1/]_—/'}/2 VeF

Problem: we don’t have an infinite number of samples...

. brezia~
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LSTD Algorithm

When n — oo then A — A and b — b, and thus,
aTD — OTD and VTD — VTD

Proposition (LSTD Performance)

If LSTD is used to estimate the value of 7 with an infinite number
of samples drawn from the stationary distribution p™ then

IV™ — Vrol |- < inf_[|V™ — V]|

1
A /]_ — /')/2 VeF
Problem: we don’t have an infinite number of samples...

Problem 2: V4p is a fixed point solution and not a standard
machine learning problem...

. brezia~
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LSPI Error Bound

Theorem (LSPI Error Bound)

If LSPI is run over K iterations, then the performance loss policy 7k is

IV = vl < {wccw [Eo(]:)'f‘ 0 ( "”g‘M)

T~ (1-9) Vp

aF ’YK Rmax }

with probability 1 — 4.
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Approximate Reinforcement
Learning

Approximate Temporal Difference / Q-Learning
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TD as a Gradient Algorithm

> Ideal regression problem: given functions Vjy and distribution D

min L(0) = minEp [ (V7(x) = Vy(x))’]
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TD as a Gradient Algorithm

> Ideal regression problem: given functions Vjy and distribution D

min L(0) = minEp [ (V7(x) = Vy(x))’]

» Gradient descent

NG = —%ang(e) = —aEp|(V7(x) ~ Vo(x)) Vo Vo(x)]
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TD as a Gradient Algorithm

> Ideal regression problem: given functions Vjy and distribution D

min L(0) = meinIEp[(V”(x) - Vg(X))Z]
» Gradient descent

NG = —%ang(a) = —aEp|(V7(x) ~ Vo(x)) Vo Vo(x)]

» Gradient descent (sample x from distribution D)

A = —a(V™(x) — Viy(x)) Ve Va(x)

. Crzia—~
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TD as a Gradient Algorithm

» Replace unknown V™ by its one-step estimate
A = —a(V™(x) — Vy(x)) Ve Va(x)

= Aet = —a(rt + ’ng(Xt+1) - Vg(Xt))VQ V@(Xt)
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TD as a Gradient Algorithm

» Replace unknown V™ by its one-step estimate
A = —a(V™(x) — Vy(x)) Ve Va(x)
= Af; = —a(rt + ’ng(Xt+1) - VQ(Xt))V@ Vg(Xt)
» Converges if samples are obtained on-policy and linear
approximation (may diverge with off-policy samples)

> Improved convergence guarantees obtained with Bellman residual
variants (GTD2, TDC)

. Crzia—~
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Q-learning as a Gradient Algorithm

» Regression problem (ideal): given functions Vp(x)

min L(0) = meinJEp[(Q*(x, a) — Qo(x, a)ﬂ

A. LAZARIC — Approximate Reinforcement Learning Dec 2nd, 2014 - 39/66



Q-learning as a Gradient Algorithm

» Regression problem (ideal): given functions Vp(x)

min L(0) = meinJEp[(Q*(x, a) — Qo(x, a)ﬂ

» Gradient descent

NG = —%anLW) = —aED[(Q*(X, a) = Qu(x, 2)) VoQu(x, a)}
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Q-learning as a Gradient Algorithm

» Regression problem (ideal): given functions Vp(x)

min L(0) = meinEp[(Q*(x, a) — Qo(x, a)ﬂ

» Gradient descent

NG = —%anLW) = —aJED[(Q*(X, a) = Qu(x, 2)) VoQu(x, a)}

» Gradient descent (sample x from distribution D)

A = —a(Q*(x,a) — Qa(x, a)) Vo Qy(x, a)

. Crzia—~
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Q-learning as a Gradient Algorithm

» Replace unknown Q* by its one-step estimate
A = —a(Q*(x,a) — Qa(x,a)) Vo Qy(x, a)

= A = —a(ft + 7y mEX Qo(xt 41, b) — Qo(xt, at))VGQO(Xh ar)
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Q-learning as a Gradient Algorithm

» Replace unknown Q* by its one-step estimate
A = —a(Q*(x,a) — Qa(x,a)) Vo Qy(x, a)

= A = —a(ft + 7y mEX Qo(xt 41, b) — Qo(xt, at))VGQO(Xh ar)

» May diverge even with a linear approximator
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Deep Q-Network (DQN)

aka Semi-batch Q-learning / semi-online fitted value iteration

v

Construct a memory D = {(x;, a;, x/, ri)}7_4

v

Sample a mini-batch Dp,n; at random from D

v

Compute the desired output (for all i in Dyini)
yi = ri+7max Q(xj, b)
» Minimize (e.g., with SGD) (as in FVI+approxQL)

Linini(0) = Einppi [(yi — Qo(xi, af))z]
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Deep Q-Network (DQN)

aka Semi-batch Q-learning / semi-online fitted value iteration
» Construct a memory D = {(x;, a;j, x/, ri)}1;
» Sample a mini-batch Dy at random from D

» Compute the desired output (for all i in Dmini)
yi = ri+7max Q(xj, b)
» Minimize (e.g., with SGD) (as in FVI+approxQL)
Linini(0) = Einppi [(Yi — Qo(xi, af))z]

No proof of convergence but mini-batch training (and other “tricks”)
improve stability

. brezia~
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Extensions

Alternative algorithms
> TD(\) (better sample efficiency)

» GTD, GTD2, GQ (stronger convergence guarantees with linear
approximators)

> Use “stable” function approximators (e.g., averagers)

> Use off-policy data

Improvements: if TD/QL are gradient descent algorithms we can apply all the
machinery from gradient descent literature (e.g., variance reduction)

. Cbreia—
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Approximate Reinforcement
Learning

Policy Gradient Methods
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The Objective Function

> Define a parameterized (and differentiable) policy mg (stochastic in
general)

> Define a desired distribution p over X

> Objective function

J(0) = Exnp [V (x)]

. brezia~
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The Objective Function

> Define a parameterized (and differentiable) policy mg (stochastic in
general)

> Define a desired distribution p over X
> Objective function
J(0) = B [V (x)]

Ideal: use global optimizers or gradient by finite-difference methods
= Policy search / Black-box policy optimization

. Cbreia—
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The Objective Function

> Define a parameterized (and differentiable) policy mg (stochastic in
general)

> Define a desired distribution p over X

> Objective function

J(0) = Exnp [V (x)]

Ideal: use global optimizers or gradient by finite-difference methods
= Policy search / Black-box policy optimization

Idea2: compute the gradient VyJ(6) and follow gradient ascent on
policies
= (white-box) policy gradient

. Crzia—~
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From Policy Iteration to Policy Search

Approximate policy iteration Policy gradient

Mopy = arg max Q%% (x, mo(x)) Or1 = Ok + Vo J(0))

. brezia~
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From Policy Iteration to Policy Search

Approximate policy iteration Policy gradient
Toea = arg max Q% (x, mo(x)) Or1 = Ok + Vo J(01)
Big jumps — fast but unstable Small shift — slow but stable

. brezia~
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From Policy Iteration to Policy Search

Approximate policy iteration Policy gradient
Toea = arg max Q% (x, mo(x)) Or1 = Ok + Vo J(01)
Big jumps — fast but unstable Small shift — slow but stable

How do we compute VyJ?

. brezia~
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Policy Gradient Theorem

For any differentiable policy mg(a|s) and objective function J, the policy
gradient is

VoJ(0) =E., [vg log (m(alx)) @™ (x, a)]

. Cbreia—
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Policy Gradient Theorem

Theorem

For any differentiable policy mg(a|s) and objective function J, the policy
gradient is

VoJ(0) =E., [vg log (m(alx)) @™ (x, a)]

Expectation w.r.t. policy (states from stationary distribution)

VoJ(8) = > ™ ()| Vo log (mo(alx)) @™ (x, 2)]

xeX

. Crzia—~
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Policy Gradient Theorem: Rough ldea

Let 7 = (x4, a1, 11,...,x7) a trajectory and R(7) its return (i.e., sum of rewards)

= XT:P(TIM)R(T)
Gradient of J
VQ(ZP T|m)R ) ZWP 7|m)R(7)
=" P(r|m) Vo log (P(r|mg)) R(7)

=E,r, [V@ log (P(7|m)) R(T)}
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Policy Gradient Theorem: Rough ldea
Likelihood of a trajectory

-
P(r[mg) = p(x1) H p(Xe |Xe, at)mo(ae|x:)
t=1

log P(7|mp) = Iog (x1) —|—Z|og 0 at|xt +Z|og th\xt,at))

.,

Vo log P(7|mg) W vag mo(a:lx)) 3 Vo log (phxifxe, ac))
t=1

Gradient of J

VI(6) = B[V log (B(r|m))R(r)]

.
= Erir, [ S Vilog (mo(axe) R(7)]

t=1
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REINFORCE

Policy gradient theorem

VoJ(0) =E,, [ve log (ma(alx)) Q" (x, a)}

REINFORCE algorithm

> For each trajectory 74 = (x1, a1, 11, X2, - - -, XT—1, 371, T) ~ Ty
» Fort=1,..., T
» Compute Monte-Carlo estimate

T

R(xt, a:) = Z I

s=t

» Update policy

0 =0+ aVylog (7T9(at|Xt)) R(xt, at)

. Cbreia—
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REINFORCE

Issues
> R(x,a)is a MC (unbiased) estimation of Q™ (x, a)
> R(x, a) has possibly a very large variance

» = REINFORCE needs many samples to converge
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REINFORCE

Issues
> R(x,a)is a MC (unbiased) estimation of Q™ (x, a)
> R(x, a) has possibly a very large variance

» = REINFORCE needs many samples to converge

Possible solutions
> Define an alternative estimator for Q™ (x, a) = actor-critic

> Subtract a baseline function to R(x, a) = advantage function

. Cbreia—
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AcTOR-CRITIC

Use TD(0) to estimate Q™ using functions Q

AcTOR-CRITIC algorithm

> For each trajectory 74 = (x1, a1, 1, X0, - - ., XT—1, 371, T) ~ Ty
» Fort=1,..., T
» Compute temporal difference

O¢ = re + v Qu(Xeq1, ae41)
» Update @ estimate

w=w+ 86:VQu(xt, ar)

» Update policy

0 =0+ aVylog (wa(at|xt)) Qw(Xh at)

. Cbreia—
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AcTOR-CRITIC

Issues
> Qu(x,a) is a biased estimator of Q™ (x, a)

> The update of # may not follow the gradient VyJ anymore
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AcTOR-CRITIC

Issues
> Qu(x,a) is a biased estimator of Q™ (x, a)

> The update of # may not follow the gradient VyJ anymore

Possible solutions

» Choose the approximation space Q,, “carefully” = compatibility between
Q. and mg
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ACTOR-CRITIC: compatible function approximation

Theorem

An action value function space Q,, is “compatible” with a policy space
Ty if

Qu(x,a) = w' Vg log (779(3|x)).
If w is minimizing the squared Bellman residual

w = arg mmi/n E., [(Q”e (x,a) — Qu(x, a))z}.

Then
VeJ(6) = En, [ve log (7(alx)) Qu (x, a)]

. brezia~
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ACTOR-CRITIC: compatible function approximation

Theorem

An action value function space Q,, is “compatible” with a policy space
Ty if
Qu(x,a) = w 'V log (mp(alx)).

If w is minimizing the squared Bellman residual

w = arg mmi/n E., [(Q”e (x,a) — Qu(x, a))z}.

Then
VoJ(6) = Er, [Vo log (mo(a]x)) Qu(x, )]
=60=0+aVylog (7r9(at|xt)) Qu(xt, ar)
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AcCTOR-CRITIC with a baseline

Let b(x) an arbitrary baseline function, then
VeJ(0) = E,, [Ve log (a(a|x)) (Q™ (x, a) — b(x))]

= use b(s) to reduce the variance of the estimates
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AcCTOR-CRITIC with a baseline

Theorem

Let b(x) an arbitrary baseline function, then
VeJ(0) = E,, [Ve log (a(a|x)) (Q™ (x, a) — b(x))]

= use b(s) to reduce the variance of the estimates

= the choice that minimize the variance is V™1
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AcCTOR-CRITIC with a baseline

Theorem

Let b(x) an arbitrary baseline function, then
VeJ(0) = E,, [Ve log (a(a|x)) (Q™ (x, a) — b(x))]

= use b(s) to reduce the variance of the estimates
= the choice that minimize the variance is V"¢

= AT (x,a) = Q™ (x,a) — V™ (x, a) is the advantage function

. Crzia—~
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AcCTOR-CRITIC with Advantage Function

Use TD(0) to estimate Q™ using functions Q,, and V™t"€%2 ysing functions V,

AcTOR-CRITIC algorithm

> For each trajectory 74 = (x1, a1, 1, X0, - - ., XT 1,371, IT) ~ Tg
» Fort=1,..., T
» Compute temporal differences

68 = re+7Qulxesr, aen1)i 87 = re +Vilxern)
» Update @ and V estimates

w=w+ B68VQu(xt,ar); v=v+n5/VV,(x)
» Update policy

0 =60+ aVylog (mg(acxe)) (Qu(xe, ac) — Vi(xe))

. Cbreia—
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AcCTOR-CRITIC with advantage function

Issues
> Qu(x,a) — V,(x) is a very biased and unstable estimator of A™(x, a)

» The update of & may be too fast w.r.t. w and v

. lrezia~
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AcCTOR-CRITIC with advantage function

Issues
> Qu(x,a) — V,(x) is a very biased and unstable estimator of A™(x, a)

» The update of & may be too fast w.r.t. w and v

Possible solutions
> Consider the “exact” temporal difference in x, a

™ =r+yV™(x') — V™ (x)
» 7 is an unbiased estimator of the advantage

E[67| =E[r+9V™(x)

X, a} — V™(x) = Q™ (x,a) — V™ (x)

> = use only the TD(0) estimator

. Crzia—~
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AcCTOR-CRITIC with Advantage Function and TD(0)

AcTOR-CRITIC algorithm

> For each trajectory 74 = (X1, 81,11, %2, ..., XT—1,3T—1,IT) ~ Tg
» Fort=1,...,T
» Compute temporal difference

O0r = re + ’YVv(Xt+1)

» Update V estimate
v=v+nsYVV,(x)

» Update policy

0 =0+ aVylog (7T0(3t|Xt)) (5t - Vv(Xt))
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AcCTOR-CRITIC with Advantage Function and TD(0)

Issues
> Properly setting the learning rates 1 and « is difficult

> All samples need to be generated by the current policy (on-policy learning)
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AcCTOR-CRITIC with Advantage Function and TD(0)

Issues
> Properly setting the learning rates 1 and « is difficult

> All samples need to be generated by the current policy (on-policy learning)

Possible solutions
> Consider a “conservative” optimization algorithm

» Use importance weighting

. Cbreia—
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Conservative Policy Iteration Algorithms

Relationship between current policy m and candidate policy ©

J(7) = J(7) + Z p7 Z (a]x)A™(x, a)

xeX

with pZ(x) = Y72 7P [x: = x| (discounted stationary distribution)
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Conservative Policy Iteration Algorithms

Relationship between current policy m and candidate policy ©

J(7) = J(7) + Z p7 Z (a]x)A™(x, a)

xeX

with p7(x) = Y72 7" Px [xe = x] (discounted stationary distribution)

Issue: pf(x) is difficult to compute/estimate for any possible 7

. Cbreia—
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Conservative Policy Iteration Algorithms

Surrogate function

)+ Zp,y Z (a|x)A™(x, a)

xeX

L( )+ Z P (x Z (a|x)A™(x, a)

xeX
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Conservative Policy Iteration Algorithms

Surrogate function

)+ Zp,y Z (a|x)A™(x, a)

xeX

L( )+ Z P (x Z (a|x)A™(x, a)

xeX

Properties

> L(m) = J(r)

> If parametrized policy m = 7y then VgL, (m9) = VoJ(mp)
= In an interval close to m, L, is a good surrogate for J

. Cbreia—
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Conservative Policy Iteration Algorithms

Let measure the “distance” between two policies as

DR (. %) = max Dry (x(})]|7(]s))

Then for any two policies 7, 7, such tat D\J*(7, %) = « and
€ = maxy , |[A™(x, a)|
- ~ dey 2
J(7) > Ly(7F) — ——=«
() > L) - s
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Conservative Policy Iteration Algorithms

Let measure the “distance” between two policies as

DR (. %) = max Dry (x(})]|7(]s))

Then for any two policies 7, 7, such tat D\J*(7, %) = « and
€ = maxy , |[A™(x, a)|

JF) > La(#) — — 2

(1—=9)
New policy improvement scheme = conservative policy iteration

max L (7) — CDT* (7, 7)

. Cbreia—

A. LAZARIC — Approximate Reinforcement Learning Dec 2nd, 2014 - 61/66



Conservative Policy Iteration Algorithms

Let measure the “distance” between two policies as

DR (. %) = max Dry (x(})]|7(]s))

Then for any two policies 7, 7, such tat D\J*(7, %) = « and
€ = maxy , |[A™(x, a)|

J(7) > La(7) — (14_671)2&

New policy improvement scheme = conservative policy iteration

max L (7) — CDT* (7, 7)

= difficult to optimize...

-
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Conservative Policy Iteration Algorithms

Alternative measure of distance
Dig (7, 7) = Exwp [ D (7 (- [X)[17(:5)) ]
Alternative policy improvement scheme (regularized version)

max L. (%) — CD:Z:L (m,7)

Alternative policy improvement scheme (constrained version)
max L ()
s

st. DL (m,7) <6

. Cbreia—
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Conservative Policy Iteration Algorithms

Towards an actual algorithm (1)
> Importance weighting with a sampling distribution g(a|x)

Z (a|x)A™(x, a :>Z (alx Wgz:X;A (x,a) = Eq(.|x) [MA”(X, a)

> Replace A™ with Q@™ and remove J(7) (constant shifts)

a

(a|x)

q(alx)

max B pr Banq(-1x) [ Q" (x, a)]

st. DL (m,7) <6

Towards an actual algorithm (2)

> Estimate E by executing 7 and g
» Estimate Q™ by rollouts

= Trust region policy optimization (TRPO)

. Crzia—~
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Summary

Policy gradient methods are successful because

> Easy to integrate a NN architecture into the scheme
> Effective in simulation environments (large amount of rollouts can be

generated)
> A lot of “tricks” from optimization can be integrated

Policy gradient methods are difficult because

» Stochastic policies may not be desirable
» No convergence guarantees
> A zoo of more or less explicit / heuristic variants

-
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