

Approximate Reinforcement Learning

Alessandro LAZARIC (*Facebook AI Research /* on leave *Inria Lille*) ENS Cachan - Master 2 MVA

MVA-RL Course

Approximate Reinforcement Learning

A. LAZARIC - Approximate Reinforcement Learning

Dec 2nd, 2014 - 2/66

Approximate Reinforcement Learning

Approximate Value Iteration Approximate Policy Iteration

A. LAZARIC - Approximate Reinforcement Learning

Dec 2nd, 2014 - 2/66

- Dynamic programming algorithms require an *explicit* definition of
 - transition probabilities $p(\cdot|x, a)$
 - reward function r(x, a)

ría

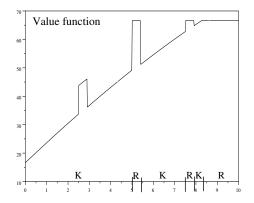
- Dynamic programming algorithms require an *explicit* definition of
 - transition probabilities $p(\cdot|x, a)$
 - reward function r(x, a)
- This knowledge is often *unavailable* (i.e., wind intensity, human-computer-interaction).

- Dynamic programming algorithms require an *explicit* definition of
 - transition probabilities $p(\cdot|x, a)$
 - reward function r(x, a)
- This knowledge is often *unavailable* (i.e., wind intensity, human-computer-interaction).
- Can we rely on samples? (partially addressed by RL)

 Dynamic programming algorithms require an *exact* representation of value functions and policies

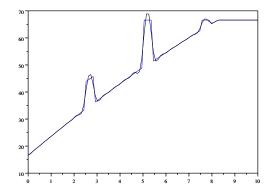
- Dynamic programming algorithms require an *exact* representation of value functions and policies
- This is often *impossible* since their shape is too "complicated" (e.g., large or continuous state space).

- Dynamic programming algorithms require an *exact* representation of value functions and policies
- This is often *impossible* since their shape is too "complicated" (e.g., large or continuous state space).
- ► Can we use approximations?



A. LAZARIC - Approximate Reinforcement Learning

Dec 2nd, 2014 - 5/66



Approximated by a Fourier basis expansion

The Objective

Find a policy π such that

the *performance loss* $\|V^* - V^{\pi}\|$ is as small as possible

A. LAZARIC - Approximate Reinforcement Learning

Approximate Reinforcement Learning

Approximate Value Iteration

Approximate Policy Iteration

A. LAZARIC - Approximate Reinforcement Learning

Question: if V is an approximation of the optimal value function V^* with an error

 $\operatorname{error} = \|V - V^*\|$

Question: if V is an approximation of the optimal value function V^* with an error

 $\operatorname{error} = \|V - V^*\|$

how does it translate to the (loss of) performance of the *greedy policy*

$$\pi(x) \in rg\max_{a \in A} \sum_{y} p(y|x, a) \big[r(x, a, y) + \gamma V(y) \big]$$

Question: if V is an approximation of the optimal value function V^* with an error

 $\operatorname{error} = \|V - V^*\|$

how does it translate to the (loss of) performance of the *greedy policy*

$$\pi(x) \in rg\max_{a \in A} \sum_{y} p(y|x, a) \big[r(x, a, y) + \gamma V(y) \big]$$

i.e.

performance loss =
$$\|V^* - V^{\pi}\|$$

Proposition

Let $V \in \mathbb{R}^N$ be an approximation of V^* and π its corresponding greedy policy, then

$$\underbrace{\|V^* - V^{\pi}\|_{\infty}}_{\text{performance loss}} \leq \frac{2\gamma}{1 - \gamma} \underbrace{\|V^* - V\|_{\infty}}_{\text{approx. error}}.$$

Furthermore, there exists $\epsilon > 0$ such that if $||V - V^*||_{\infty} \le \epsilon$, then π is *optimal*.

Proof.

$$\begin{split} \|V^* - V^{\pi}\|_{\infty} &\leq \|\mathcal{T}V^* - \mathcal{T}^{\pi}V\|_{\infty} + \|\mathcal{T}^{\pi}V - \mathcal{T}^{\pi}V^{\pi}\|_{\infty} \\ &\leq \|\mathcal{T}V^* - \mathcal{T}V\|_{\infty} + \gamma\|V - V^{\pi}\|_{\infty} \\ &\leq \gamma\|V^* - V\|_{\infty} + \gamma(\|V - V^*\|_{\infty} + \|V^* - V^{\pi}\|_{\infty}) \\ &\leq \frac{2\gamma}{1 - \gamma}\|V^* - V\|_{\infty}. \end{split}$$

A. LAZARIC - Approximate Reinforcement Learning

Question: how do we compute a *good* V?

A. LAZARIC - Approximate Reinforcement Learning

Dec 2nd, 2014 - 11/66

Question: how do we compute a *good* V?

Problem: unlike in standard approximation scenarios (see supervised learning), we have a *limited access* to the target function, i.e. V^* .

Question: how do we compute a *good V*?

Problem: unlike in standard approximation scenarios (see supervised learning), we have a *limited access* to the target function, i.e. V^* .

Solution: value iteration tends to learn functions which are *close* to the optimal value function V^* .

Value Iteration: the Idea

- 1. Let Q_0 be any action-value function
- 2. At each iteration $k = 1, 2, \ldots, K$

• Compute $Q_{k+1}(x, a) = \mathcal{T}Q_k(x, a) = r(x, a) + \sum_{y} p(y|x, a)\gamma \max_{b} Q_k(y, b)$ 3. Return the *greedy* policy

$$\pi_{\mathcal{K}}(x) \in rg\max_{a \in A} Q_{\mathcal{K}}(x, a).$$

Value Iteration: the Idea

- 1. Let Q_0 be any action-value function
- 2. At each iteration $k = 1, 2, \ldots, K$
- Compute $Q_{k+1}(x, a) = \mathcal{T}Q_k(x, a) = r(x, a) + \sum_{y} p(y|x, a)\gamma \max_{b} Q_k(y, b)$ 3. Return the *greedy* policy

$$\pi_{\mathcal{K}}(x) \in rg\max_{a \in A} Q_{\mathcal{K}}(x, a).$$

- **Problem**: how can we approximate TQ_k ?
- ▶ **Problem**: if $Q_{k+1} \neq TQ_k$, does (approx.) value iteration still work?

Linear Fitted Q-iteration: the Approximation Space

Linear space to approximate action-value functions

$$\mathcal{F} = \left\{ f(x, a) = \sum_{j=1}^{d} \alpha_j \varphi_j(x, a), \ \alpha \in \mathbb{R}^d \right\}$$

Linear Fitted Q-iteration: the Approximation Space

Linear space to approximate action-value functions

$$\mathcal{F} = \left\{ f(x, a) = \sum_{j=1}^{d} \alpha_j \varphi_j(x, a), \ \alpha \in \mathbb{R}^d \right\}$$

with features (*alternative for discrete actions*: duplicate state features)

$$\varphi_j: X \times A \to [0, L] \qquad \phi(x, a) = [\varphi_1(x, a) \dots \varphi_d(x, a)]^\top$$

Linear Fitted Q-iteration: the Samples

Assumption: access to a **generative model**, that is a black-box simulator sim() of the environment is available. Given (x, a),

$$sim(x, a) = \{y, r\},$$
 with $y \sim p(\cdot|x, a), r = r(x, a)$

Input: space \mathcal{F} , iterations K, sampling distribution ρ , num of samples n

Input: space \mathcal{F} , iterations K, sampling distribution ρ , num of samples nInitial function $\widehat{Q}_0 \in \mathcal{F}$ For $k = 1, \dots, K$ 1. Draw n samples $(x_i, a_i) \stackrel{\text{i.i.d}}{\sim} \rho$

- 1. Draw *n* samples $(x_i, a_i) \stackrel{\text{i.i.d}}{\sim} \rho$
- 2. Sample $\mathbf{x}'_i \sim p(\cdot | \mathbf{x}_i, \mathbf{a}_i)$ and $\mathbf{r}_i = r(\mathbf{x}_i, \mathbf{a}_i)$

- 1. Draw *n* samples $(x_i, a_i) \stackrel{\text{i.i.d}}{\sim} \rho$
- 2. Sample $\mathbf{x}'_i \sim p(\cdot | \mathbf{x}_i, \mathbf{a}_i)$ and $\mathbf{r}_i = r(\mathbf{x}_i, \mathbf{a}_i)$

3. Compute
$$y_i = r_i + \gamma \max_a \widehat{Q}_{k-1}(x'_i, a)$$

- 1. Draw *n* samples $(x_i, a_i) \stackrel{\text{i.i.d}}{\sim} \rho$
- 2. Sample $\mathbf{x}'_i \sim p(\cdot | \mathbf{x}_i, \mathbf{a}_i)$ and $\mathbf{r}_i = r(\mathbf{x}_i, \mathbf{a}_i)$
- 3. Compute $y_i = r_i + \gamma \max_a \widehat{Q}_{k-1}(x'_i, a)$
- 4. Build training set $\{((x_i, a_i), y_i)\}_{i=1}^n$

- 1. Draw *n* samples $(x_i, a_i) \stackrel{\text{i.i.d}}{\sim} \rho$
- 2. Sample $\mathbf{x}'_i \sim p(\cdot | \mathbf{x}_i, \mathbf{a}_i)$ and $\mathbf{r}_i = r(\mathbf{x}_i, \mathbf{a}_i)$
- 3. Compute $y_i = r_i + \gamma \max_a \widehat{Q}_{k-1}(x'_i, a)$
- 4. Build training set $\{((x_i, a_i), y_i)\}_{i=1}^n$
- 5. Solve the least squares problem

$$f_{\hat{\alpha}_{k}} = \arg \min_{f_{\alpha} \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \left(f_{\alpha}(x_{i}, a_{i}) - y_{i} \right)^{2}$$

Input: space \mathcal{F} , iterations K, sampling distribution ρ , num of samples nInitial function $\widehat{Q}_0 \in \mathcal{F}$ For $k = 1, \dots, K$

- 1. Draw *n* samples $(x_i, a_i) \stackrel{\text{i.i.d}}{\sim} \rho$
- 2. Sample $\mathbf{x}'_i \sim p(\cdot | \mathbf{x}_i, \mathbf{a}_i)$ and $\mathbf{r}_i = r(\mathbf{x}_i, \mathbf{a}_i)$
- 3. Compute $y_i = r_i + \gamma \max_a \widehat{Q}_{k-1}(x'_i, a)$
- 4. Build training set $\{((x_i, a_i), y_i)\}_{i=1}^n$
- 5. Solve the least squares problem

$$\mathbf{f}_{\hat{\boldsymbol{\alpha}}_{k}} = \arg\min_{f_{\alpha}\in\mathcal{F}}\frac{1}{n}\sum_{i=1}^{n}\left(f_{\alpha}(x_{i}, a_{i}) - y_{i}\right)^{2}$$

6. Return $\hat{Q}_k = f_{\hat{\alpha}_k}$ (truncation may be needed)

Input: space \mathcal{F} , iterations K, sampling distribution ρ , num of samples nInitial function $\widehat{Q}_0 \in \mathcal{F}$ For $k = 1, \dots, K$

- 1. Draw *n* samples $(x_i, a_i) \stackrel{\text{i.i.d}}{\sim} \rho$
- 2. Sample $\mathbf{x}'_i \sim p(\cdot | \mathbf{x}_i, \mathbf{a}_i)$ and $\mathbf{r}_i = r(\mathbf{x}_i, \mathbf{a}_i)$
- 3. Compute $y_i = r_i + \gamma \max_a \widehat{Q}_{k-1}(x'_i, a)$
- 4. Build training set $\{((x_i, a_i), y_i)\}_{i=1}^n$
- 5. Solve the least squares problem

$$f_{\hat{\alpha}_{k}} = \arg \min_{f_{\alpha} \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \left(f_{\alpha}(x_{i}, a_{i}) - y_{i} \right)^{2}$$

6. Return $\widehat{Q}_k = f_{\hat{\alpha}_k}$ (truncation may be needed)

Return $\pi_{K}(\cdot) = \arg \max_{a} \widehat{Q}_{K}(\cdot, a)$ (greedy policy)

Linear Fitted Q-iteration: Sampling

- 1. Draw *n* samples $(x_i, a_i) \stackrel{\text{i.i.d}}{\sim} \rho$
- 2. Sample $x'_i \sim p(\cdot|x_i, a_i)$ and $r_i = r(x_i, a_i)$

Linear Fitted Q-iteration: Sampling

- 1. Draw *n* samples $(x_i, a_i) \stackrel{\text{i.i.d}}{\sim} \rho$
- 2. Sample $x'_i \sim p(\cdot|x_i, a_i)$ and $r_i = r(x_i, a_i)$

- In practice it can be done once before running the algorithm
- The sampling distribution ρ should cover the state-action space in all *relevant* regions
- If not possible to choose ρ , a *database* of samples can be used

Linear Fitted Q-iteration: The Training Set

- 4. Compute $y_i = r_i + \gamma \max_a \widehat{Q}_{k-1}(x'_i, a)$ 5. Build training set $\{((x_i, a_i), y_i)\}_{i=1}^n$

Linear Fitted Q-iteration: The Training Set

4. Compute
$$\mathbf{y}_i = r_i + \gamma \max_{a} \widehat{Q}_{k-1}(\mathbf{x}'_i, a)$$

5. Build training set
$$\{((x_i, a_i), y_i)\}_{i=1}^n$$

Each sample y_i is an unbiased sample, since

$$\mathbb{E}[y_i|x_i, a_i] = \mathbb{E}[r_i + \gamma \max_a \widehat{Q}_{k-1}(x'_i, a)] = r(x_i, a_i) + \gamma \mathbb{E}[\max_a \widehat{Q}_{k-1}(x'_i, a)]$$
$$= r(x_i, a_i) + \gamma \int_X \max_a \widehat{Q}_{k-1}(x', a) p(dy|x, a) = \mathcal{T}\widehat{Q}_{k-1}(x_i, a_i)$$

- The problem "reduces" to standard regression
- It should be recomputed at each iteration

Linear Fitted Q-iteration: The Regression Problem

6. Solve the least squares problem

$$f_{\hat{\boldsymbol{\alpha}}_{k}} = \arg\min_{f_{\alpha}\in\mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \left(f_{\alpha}(x_{i}, a_{i}) - y_{i} \right)^{2}$$

7. Return $\widehat{Q}_k = f_{\hat{\alpha}_k}$ (truncation may be needed)

Linear Fitted Q-iteration: The Regression Problem

6. Solve the least squares problem

$$f_{\hat{oldsymbol{lpha}}_k} = rg\min_{f_lpha \in \mathcal{F}} rac{1}{n} \sum_{i=1}^n ig(f_lpha(x_i, a_i) - y_iig)^2$$

7. Return $\widehat{Q}_k = f_{\hat{\alpha}_k}$ (truncation may be needed)

Thanks to the linear space we can solve it as

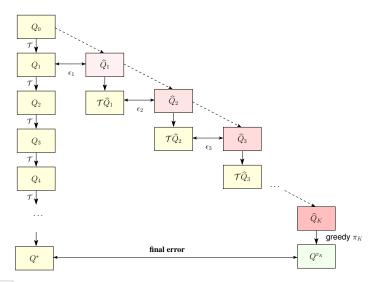
• Build matrix
$$\Phi = \left[\phi(x_1, a_1)^\top \dots \phi(x_n, a_n)^\top\right]$$

• Compute $\hat{\alpha}^k = (\Phi^{\top} \Phi)^{-1} \Phi^{\top} y$ (least-squares solution)

Funcation to
$$[-V_{\sf max}; V_{\sf max}]$$
 (with $V_{\sf max} = R_{\sf max}/(1-\gamma))$

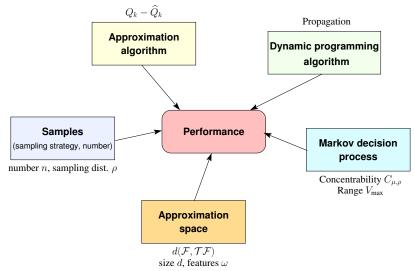
ľ

Sketch of the Analysis



A. LAZARIC - Approximate Reinforcement Learning

Summary



The Final Bound

Theorem (see e.g., Munos,'03)

LinearFQI with a space \mathcal{F} of d features, with n samples at each iteration returns a policy π_K after K iterations such that

$$\begin{split} \|Q^* - Q^{\pi_{\kappa}}\|_{\mu} &\leq \frac{2\gamma}{(1-\gamma)^2} \sqrt{C_{\mu,\rho}} \bigg(4d(\mathcal{F}, \mathcal{TF}) \\ &+ O\bigg(V_{\max} \big(1 + \frac{L}{\sqrt{\omega}} \big) \sqrt{\frac{d \log n/\delta}{n}} \bigg) \bigg) \\ &+ O\bigg(\frac{\gamma^{\kappa}}{(1-\gamma)^3} V_{\max}^2 \bigg) \end{split}$$

A. LAZARIC - Approximate Reinforcement Learning

Other implementations

Replace the *regression* step with

- K-nearest neighbour
- Regularized linear regression with L_1 or L_2 regularisation
- Neural network
- Support vector regression
- Trees

Other implementations

Replace the *regression* step with

- ► K-nearest neighbour
- Regularized linear regression with L_1 or L_2 regularisation
- Neural network
- Support vector regression
- Trees

Remark: we need to solve the approximation problem efficiently

Approximate Reinforcement Learning

Approximate Value Iteration

Approximate Policy Iteration

A. LAZARIC - Approximate Reinforcement Learning

Policy Iteration: the Idea

- 1. Let π_0 be *any* stationary policy
- 2. At each iteration $k = 1, 2, \ldots, K$
 - Policy evaluation given π_k , compute $V_k = V^{\pi_k}$.
 - Policy improvement: compute the greedy policy

$$\pi_{k+1}(x) \in \arg \max_{a \in \mathcal{A}} [r(x, a) + \gamma \sum_{y} p(y|x, a) V^{\pi_k}(y)].$$

3. Return the last policy π_K

Policy Iteration: the Idea

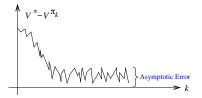
- 1. Let π_0 be *any* stationary policy
- 2. At each iteration $k = 1, 2, \ldots, K$
 - Policy evaluation given π_k , compute $V_k = V^{\pi_k}$.
 - Policy improvement: compute the greedy policy

$$\pi_{k+1}(x) \in \arg \max_{a \in A} [r(x, a) + \gamma \sum_{y} p(y|x, a) V^{\pi_k}(y)].$$

- 3. Return the last policy π_K
- **Problem**: how can we approximate V^{π_k} ?
- **Problem**: if $V_k \neq V^{\pi_k}$, does (approx.) policy iteration still work?

Approximate Policy Iteration: performance loss

Problem: the algorithm is no longer guaranteed to converge.



Proposition

The asymptotic performance of the policies π_k generated by the API algorithm is related to the approximation error as:

$$\limsup_{k \to \infty} \underbrace{\|V^* - V^{\pi_k}\|_{\infty}}_{\text{performance loss}} \leq \frac{2\gamma}{(1-\gamma)^2} \limsup_{k \to \infty} \underbrace{\|V_k - V^{\pi_k}\|_{\infty}}_{\text{approximation error}}$$

LSPI uses

Linear space to approximate value functions*

$$\mathcal{F} = \left\{ f(x) = \sum_{j=1}^{d} \alpha_j \varphi_j(x), \ \alpha \in \mathbb{R}^d \right\}$$

LSPI uses

Linear space to approximate value functions*

$$\mathcal{F} = \left\{ f(x) = \sum_{j=1}^{d} \alpha_j \varphi_j(x), \ \alpha \in \mathbb{R}^d \right\}$$

 Least-Squares Temporal Difference (LSTD) algorithm for policy evaluation.

*In practice we use approximations of action-value functions.

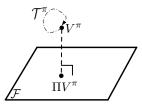
Least-Squares Temporal-Difference Learning (LSTD)

•
$$V^{\pi}$$
 may not belong to ${\cal F}$

Best approximation of
$$V^{\pi}$$
 in \mathcal{F} is

$$\Pi V^{\pi} = \arg \min_{f \in \mathcal{F}} ||V^{\pi} - f|| \qquad (\Pi \text{ is}$$

(Π is the projection onto \mathcal{F})



A. LAZARIC - Approximate Reinforcement Learning

 $V^{\pi} \notin \mathcal{F}$

Least-Squares Temporal-Difference Learning (LSTD)

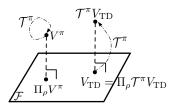
• V^{π} is the fixed-point of \mathcal{T}^{π}

$$V^{\pi} = \mathcal{T}^{\pi} V^{\pi} = r^{\pi} + \gamma P^{\pi} V^{\pi}$$

► LSTD searches for the fixed-point of Π_{2,ρ}T^π

$$\mathsf{\Pi}_{2,\rho} \ g = \arg\min_{f\in\mathcal{F}} ||g-f||_{2,\rho}$$

• When the fixed-point of $\Pi_{\rho} \mathcal{T}^{\pi}$ exists, we call it the LSTD solution $V_{\text{TD}} = \Pi_{\rho} \mathcal{T}^{\pi} V_{\text{TD}}$



Least-Squares Temporal-Difference Learning (LSTD)

 $V_{\rm TD} = \prod_{o} \mathcal{T}^{\pi} V_{\rm TD}$ 1 $\underbrace{\langle r^{\pi},\varphi_i\rangle_{\rho}}_{L} - \sum_{j=1}^{2} \underbrace{\langle (I-\gamma P^{\pi})\varphi_j,\varphi_i\rangle_{\rho}}_{L} \alpha_{TD,j} = 0$ 1 $A\alpha_{TD} = b$

A. LAZARIC - Approximate Reinforcement Learning

Dec 2nd, 2014 - 29/66

Input: space \mathcal{F} , iterations K, sampling distribution ρ , num of samples n

Input: space \mathcal{F} , iterations K, sampling distribution ρ , num of samples nInitial policy π_0

Input: space \mathcal{F} , iterations K, sampling distribution ρ , num of samples nInitial policy π_0 For $k = 1, \dots, K$

Input: space \mathcal{F} , iterations K, sampling distribution ρ , num of samples n

Initial policy π_0 For k = 1, ..., K1. Generate a trajectory of length *n* from the stationary dist. ρ^{π_k} $(x_1, \pi_k(x_1), r_1, x_2, \pi_k(x_2), r_2, ..., x_{n-1}, \pi_k(x_{n-1}), r_{n-1}, x_n)$

Input: space \mathcal{F} , iterations K, sampling distribution ρ , num of samples nInitial policy π_0 For $k = 1, \dots, K$

- 1. Generate a trajectory of length *n* from the stationary dist. ρ^{π_k} $(x_1, \pi_k(x_1), r_1, x_2, \pi_k(x_2), r_2, \dots, x_{n-1}, \pi_k(x_{n-1}), r_{n-1}, x_n)$
- 2. Compute the empirical matrix \widehat{A}_k and the vector \widehat{b}_k

$$\begin{split} & [\widehat{A}_k]_{i,j} = \frac{1}{n} \sum_{t=1}^n (\varphi_j(x_t) - \gamma \varphi_j(x_{t+1}) \varphi_i(x_t) \approx \langle (I - \gamma P^{\pi}) \varphi_j, \varphi_i \rangle_{\rho^{\pi_k}} \\ & [\widehat{b}_k]_i = \frac{1}{n} \sum_{t=1}^n \varphi_i(x_t) r_t \approx \langle r^{\pi}, \varphi_i \rangle_{\rho^{\pi_k}} \end{split}$$

3. Solve the linear system $\alpha_k = \widehat{A}_k^{-1} \widehat{b}_k$

Input: space \mathcal{F} , iterations K, sampling distribution ρ , num of samples nInitial policy π_0 For $k = 1, \dots, K$

- 1. Generate a trajectory of length *n* from the stationary dist. ρ^{π_k} $(x_1, \pi_k(x_1), r_1, x_2, \pi_k(x_2), r_2, \dots, x_{n-1}, \pi_k(x_{n-1}), r_{n-1}, x_n)$
- 2. Compute the empirical matrix \widehat{A}_k and the vector \widehat{b}_k

$$\begin{split} & [\widehat{A}_k]_{i,j} = \frac{1}{n} \sum_{t=1}^n (\varphi_j(x_t) - \gamma \varphi_j(x_{t+1}) \varphi_i(x_t) \approx \langle (I - \gamma P^{\pi}) \varphi_j, \varphi_i \rangle_{\rho^{\pi_k}} \\ & [\widehat{b}_k]_i = \frac{1}{n} \sum_{t=1}^n \varphi_i(x_t) r_t \approx \langle r^{\pi}, \varphi_i \rangle_{\rho^{\pi_k}} \end{split}$$

3. Solve the linear system $\alpha_k = \widehat{A}_k^{-1} \widehat{b}_k$ 4. Compute the greedy policy π_{k+1} w.r.t. $\widehat{V}_k = f_{\alpha_k}$

Input: space \mathcal{F} , iterations K, sampling distribution ρ , num of samples nInitial policy π_0 For $k = 1, \dots, K$

- 1. Generate a trajectory of length *n* from the stationary dist. ρ^{π_k} $(x_1, \pi_k(x_1), r_1, x_2, \pi_k(x_2), r_2, \dots, x_{n-1}, \pi_k(x_{n-1}), r_{n-1}, x_n)$
- 2. Compute the empirical matrix \widehat{A}_k and the vector \widehat{b}_k

$$\begin{split} & [\widehat{A}_k]_{i,j} = \frac{1}{n} \sum_{t=1}^n (\varphi_j(x_t) - \gamma \varphi_j(x_{t+1}) \varphi_i(x_t) \approx \langle (I - \gamma P^{\pi}) \varphi_j, \varphi_i \rangle_{\rho^{\pi_k}} \\ & [\widehat{b}_k]_i = \frac{1}{n} \sum_{t=1}^n \varphi_i(x_t) r_t \approx \langle r^{\pi}, \varphi_i \rangle_{\rho^{\pi_k}} \end{split}$$

- 3. Solve the linear system $\alpha_k = \widehat{A}_k^{-1} \widehat{b}_k$
- 4. Compute the greedy policy π_{k+1} w.r.t. $\widehat{V}_k = f_{\alpha_k}$

Return the last policy π_K

- 1. Generate a trajectory of length *n* from the stationary dist. ρ^{π_k} $(x_1, \pi_k(x_1), r_1, x_2, \pi_k(x_2), r_2, \dots, x_{n-1}, \pi_k(x_{n-1}), r_{n-1}, x_n)$
- The first few samples may be *discarded* because not actually drawn from the *stationary* distribution ρ^{πk}
- Off-policy samples could be used with importance weighting
- In practice i.i.d. states drawn from an arbitrary distribution (but with actions π_k) may be used

- 4. Compute the greedy policy π_{k+1} w.r.t. $\hat{V}_k = f_{\alpha_k}$
- Computing the greedy policy from V
 k is difficult, so move to LSTD-Q and compute

$$\pi_{k+1}(x) = \arg\max_{a} \widehat{Q}_k(x, a)$$

For $k = 1, \ldots, K$

For k = 1, ..., K1. Generate a trajectory of length *n* from the stationary dist. ρ^{π_k} $(x_1, \pi_k(x_1), r_1, x_2, \pi_k(x_2), r_2, ..., x_{n-1}, \pi_k(x_{n-1}), r_{n-1}, x_n)$

4. Compute the greedy policy π_{k+1} w.r.t. $\widehat{V}_k = f_{\alpha_k}$

Problem: This process may be unstable because π_k **does not cover** the state space *properly*

LSTD Algorithm

When $n \to \infty$ then $\widehat{A} \to A$ and $\widehat{b} \to b$, and thus,

$$\widehat{\alpha}_{\mathsf{TD}} \rightarrow \alpha_{\mathsf{TD}} \text{ and } \widehat{V}_{\mathsf{TD}} \rightarrow V_{\mathsf{TD}}$$

Proposition (LSTD Performance)

If LSTD is used to estimate the value of π with an *infinite* number of samples drawn from the stationary distribution ρ^{π} then

$$||V^{\pi}-V_{\mathsf{TD}}||_{
ho^{\pi}} \leq rac{1}{\sqrt{1-\gamma^2}}\inf_{V\in\mathcal{F}}||V^{\pi}-V||_{
ho^{\pi}}$$

A. LAZARIC - Approximate Reinforcement Learning

LSTD Algorithm

When $n \to \infty$ then $\widehat{A} \to A$ and $\widehat{b} \to b$, and thus,

$$\widehat{\alpha}_{\mathsf{TD}} \rightarrow \alpha_{\mathsf{TD}} \text{ and } \widehat{V}_{\mathsf{TD}} \rightarrow V_{\mathsf{TD}}$$

Proposition (LSTD Performance)

If LSTD is used to estimate the value of π with an *infinite* number of samples drawn from the stationary distribution ρ^{π} then

$$||V^{\pi}-V_{\mathsf{TD}}||_{
ho^{\pi}} \leq rac{1}{\sqrt{1-\gamma^2}}\inf_{V\in\mathcal{F}}||V^{\pi}-V||_{
ho^{\pi}}$$

Problem: we don't have an infinite number of samples...

LSTD Algorithm

When $n \to \infty$ then $\widehat{A} \to A$ and $\widehat{b} \to b$, and thus,

$$\widehat{\alpha}_{\mathsf{TD}} \rightarrow \alpha_{\mathsf{TD}} \text{ and } \widehat{V}_{\mathsf{TD}} \rightarrow V_{\mathsf{TD}}$$

Proposition (LSTD Performance)

If LSTD is used to estimate the value of π with an *infinite* number of samples drawn from the stationary distribution ρ^{π} then

$$||V^{\pi}-V_{\mathsf{TD}}||_{
ho^{\pi}} \leq rac{1}{\sqrt{1-\gamma^2}}\inf_{V\in\mathcal{F}}||V^{\pi}-V||_{
ho^{\pi}}$$

Problem: we don't have an infinite number of samples... **Problem 2:** V_{TD} is a fixed point solution and not a standard machine learning problem...

LSPI Error Bound

Theorem (LSPI Error Bound)

If LSPI is run over K iterations, then the performance loss policy π_K is

$$||V^* - V^{\pi_{K}}||_{\mu} \leq \frac{4\gamma}{(1-\gamma)^2} \left\{ \sqrt{CC_{\mu,\rho}} \left[E_0(\mathcal{F}) + O\left(\sqrt{\frac{d\log(dK/\delta)}{n\nu_{\rho}}}\right) \right] + \gamma^{K} R_{\max} \right\}$$

with probability $1 - \delta$.

A. LAZARIC - Approximate Reinforcement Learning

Approximate Reinforcement Learning

Approximate Temporal Difference / Q-Learning

A. LAZARIC - Approximate Reinforcement Learning

Dec 2nd, 2014 - 36/66

▶ *Ideal* regression problem: given functions V_{θ} and distribution D

$$\min_{\theta} L(\theta) = \min_{\theta} \mathbb{E}_{\mathcal{D}} \Big[\big(V^{\pi}(x) - V_{\theta}(x) \big)^2 \Big]$$

▶ *Ideal* regression problem: given functions V_{θ} and distribution D

$$\min_{\theta} L(\theta) = \min_{\theta} \mathbb{E}_{\mathcal{D}} \Big[\big(V^{\pi}(x) - V_{\theta}(x) \big)^2 \Big]$$

Gradient descent

$$\Delta \theta = -\frac{1}{2} \alpha \nabla_{\theta} \mathcal{L}(\theta) = -\alpha \mathbb{E}_{\mathcal{D}} \Big[\big(V^{\pi}(x) - V_{\theta}(x) \big) \nabla_{\theta} V_{\theta}(x) \Big]$$

A. LAZARIC - Approximate Reinforcement Learning

▶ *Ideal* regression problem: given functions V_{θ} and distribution D

$$\min_{\theta} L(\theta) = \min_{\theta} \mathbb{E}_{\mathcal{D}} \Big[\big(V^{\pi}(x) - V_{\theta}(x) \big)^2 \Big]$$

Gradient descent

$$\Delta \theta = -\frac{1}{2} \alpha \nabla_{\theta} L(\theta) = -\alpha \mathbb{E}_{\mathcal{D}} \Big[\big(V^{\pi}(x) - V_{\theta}(x) \big) \nabla_{\theta} V_{\theta}(x) \Big]$$

▶ Gradient descent (sample *x* from distribution *D*)

$$\Delta \theta = -\alpha \big(V^{\pi}(x) - V_{\theta}(x) \big) \nabla_{\theta} V_{\theta}(x)$$

• Replace *unknown* V^{π} by its one-step estimate

$$\Delta \theta = -\alpha \big(V^{\pi}(x) - V_{\theta}(x) \big) \nabla_{\theta} V_{\theta}(x)$$
$$\Rightarrow \Delta \theta_{t} = -\alpha \big(\mathbf{r}_{t} + \gamma V_{\theta}(x_{t+1}) - V_{\theta}(x_{t}) \big) \nabla_{\theta} V_{\theta}(x_{t})$$

• Replace *unknown* V^{π} by its one-step estimate

$$\Delta \theta = -\alpha \big(V^{\pi}(x) - V_{\theta}(x) \big) \nabla_{\theta} V_{\theta}(x)$$
$$\Rightarrow \Delta \theta_{t} = -\alpha \big(r_{t} + \gamma V_{\theta}(x_{t+1}) - V_{\theta}(x_{t}) \big) \nabla_{\theta} V_{\theta}(x_{t})$$

- Converges if samples are obtained *on-policy* and *linear* approximation (may *diverge* with off-policy samples)
- Improved convergence guarantees obtained with *Bellman residual* variants (GTD2, TDC)

• Regression problem *(ideal)*: given functions $V_{\theta}(x)$

$$\min_{\theta} L(\theta) = \min_{\theta} \mathbb{E}_{\mathcal{D}} \Big[\big(Q^*(x, a) - Q_{\theta}(x, a) \big)^2 \Big]$$

• Regression problem *(ideal)*: given functions $V_{\theta}(x)$

$$\min_{\theta} L(\theta) = \min_{\theta} \mathbb{E}_{\mathcal{D}} \Big[\big(Q^*(x, a) - Q_{\theta}(x, a) \big)^2 \Big]$$

Gradient descent

$$\Delta heta = -rac{1}{2} lpha
abla_ heta \mathcal{L}(heta) = -lpha \mathbb{E}_\mathcal{D} \Big[ig(\mathcal{Q}^*(x, m{a}) - \mathcal{Q}_ heta(x, m{a}) ig)
abla_ heta \mathcal{Q}_ heta(x, m{a}) \Big]$$

• Regression problem *(ideal)*: given functions $V_{\theta}(x)$

$$\min_{\theta} L(\theta) = \min_{\theta} \mathbb{E}_{\mathcal{D}} \Big[\big(Q^*(x, a) - Q_{\theta}(x, a) \big)^2 \Big]$$

Gradient descent

$$\Delta heta = -rac{1}{2} lpha
abla_ heta \mathcal{L}(heta) = -lpha \mathbb{E}_\mathcal{D} \Big[ig(\mathcal{Q}^*(x, m{a}) - \mathcal{Q}_ heta(x, m{a}) ig)
abla_ heta \mathcal{Q}_ heta(x, m{a}) \Big]$$

▶ Gradient descent (sample *x* from distribution *D*)

$$\Delta \theta = -\alpha \big(Q^*(x, a) - Q_{\theta}(x, a) \big) \nabla_{\theta} Q_{\theta}(x, a)$$

• Replace *unknown* Q^* by its one-step estimate

$$\Delta heta = -lphaig(oldsymbol{Q}^*(x, oldsymbol{a}) - oldsymbol{Q}_{ heta}(x, oldsymbol{a})ig)
abla_{ heta}oldsymbol{Q}_{ heta}(x, oldsymbol{a})ig)
abla_{ heta}oldsymbol{Q}_{ heta}(x, oldsymbol{a})$$

$$\Rightarrow \Delta \theta_t = -\alpha \big(\mathbf{r}_t + \gamma \max_{\mathbf{b}} Q_{\theta}(\mathbf{x}_{t+1}, \mathbf{b}) - Q_{\theta}(\mathbf{x}_t, \mathbf{a}_t) \big) \nabla_{\theta} Q_{\theta}(\mathbf{x}_t, \mathbf{a}_t)$$

• Replace *unknown* Q^* by its one-step estimate

$$\Delta heta = -lphaig(oldsymbol{\mathcal{Q}}^*(x, oldsymbol{a}) - oldsymbol{\mathcal{Q}}_{ heta}(x, oldsymbol{a})ig)
abla_{ heta}oldsymbol{\mathcal{Q}}_{ heta}(x, oldsymbol{a})ig)
abla_{ heta}oldsymbol{\mathcal{Q}}_{ heta}(x, oldsymbol{a})ig)$$

$$\Rightarrow \Delta \theta_t = -\alpha \big(\mathbf{r}_t + \gamma \max_{\mathbf{b}} Q_{\theta}(\mathbf{x}_{t+1}, \mathbf{b}) - Q_{\theta}(\mathbf{x}_t, \mathbf{a}_t) \big) \nabla_{\theta} Q_{\theta}(\mathbf{x}_t, \mathbf{a}_t)$$

May diverge even with a linear approximator

Deep Q-Network (DQN)

aka Semi-batch Q-learning / semi-online fitted value iteration

- Construct a memory $D = \{(x_i, a_i, x'_i, r_i)\}_{i=1}^n$
- Sample a mini-batch D_{mini} at random from D
- Compute the desired output (for all i in D_{mini})

$$y_i = r_i + \gamma \max_b Q(x'_i, b)$$

Minimize (e.g., with SGD) (as in FVI+approxQL)

$$L_{\min}(\theta) = \mathbb{E}_{i \sim \mathcal{D}_{\min}}\left[\left(y_i - Q_{\theta}(x_i, a_i)\right)^2\right]$$

Deep Q-Network (DQN)

aka Semi-batch Q-learning / semi-online fitted value iteration

- Construct a memory $D = \{(x_i, a_i, x'_i, r_i)\}_{i=1}^n$
- Sample a mini-batch D_{\min} at random from D
- Compute the desired output (for all i in D_{mini})

$$y_i = r_i + \gamma \max_b Q(x'_i, b)$$

Minimize (e.g., with SGD) (as in FVI+approxQL)

$$L_{\min}(\theta) = \mathbb{E}_{i \sim \mathcal{D}_{\min}}\left[\left(y_i - Q_{\theta}(x_i, a_i)\right)^2\right]$$

No proof of convergence but mini-batch training (and other "tricks") improve stability

Extensions

Alternative algorithms

- $TD(\lambda)$ (better sample efficiency)
- GTD, GTD2, GQ (stronger convergence guarantees with linear approximators)
- Use "stable" function approximators (e.g., averagers)
- Use off-policy data

Improvements: if TD/QL are gradient descent algorithms we can apply all the machinery from gradient descent literature (e.g., variance reduction)

Approximate Reinforcement Learning

Policy Gradient Methods

A. LAZARIC - Approximate Reinforcement Learning

Dec 2nd, 2014 - 43/66

The Objective Function

• Define a parameterized (and differentiable) policy π_{θ} (*stochastic in general*)

- Define a desired distribution ρ over \mathcal{X}
- Objective function

$$J(\theta) = \mathbb{E}_{x \sim \rho} \big[V^{\pi_{\theta}}(x) \big]$$

The Objective Function

• Define a parameterized (and differentiable) policy π_{θ} (*stochastic in general*)

- Define a desired distribution ρ over \mathcal{X}
- Objective function

$$J(\theta) = \mathbb{E}_{x \sim \rho} \big[V^{\pi_{\theta}}(x) \big]$$

Idea1: use *global optimizers* or gradient by *finite-difference* methods ⇒ *Policy search / Black-box policy optimization*

The Objective Function

• Define a parameterized (and differentiable) policy π_{θ} (*stochastic in general*)

- Objective function

$$J(\theta) = \mathbb{E}_{x \sim \rho} \big[V^{\pi_{\theta}}(x) \big]$$

Idea1: use global optimizers or gradient by finite-difference methods \Rightarrow Policy search / Black-box policy optimization Idea2: compute the gradient $\nabla_{\theta} J(\theta)$ and follow gradient ascent on policies \Rightarrow (white-box) policy gradient

From Policy Iteration to Policy Search

Approximate policy iteration

Policy gradient

 $\pi_{ heta_{k+1}} = rg\max_{\pi_{ heta}} Q^{\pi_{ heta_k}}(x,\pi_{ heta}(x))$

 $\theta_{k+1} = \theta_k + \alpha \nabla_\theta J(\theta_k)$

From Policy Iteration to Policy Search

Approximate policy iteration

 $\pi_{ heta_{k+1}} = rg\max_{\pi_{ heta}} Q^{\pi_{ heta_k}}(x,\pi_{ heta}(x))$

Big jumps \rightarrow fast but unstable

Policy gradient

$$\theta_{k+1} = \theta_k + \alpha \nabla_\theta J(\theta_k)$$

Small shift \rightarrow slow but stable

From Policy Iteration to Policy Search

Approximate policy iteration

Policy gradient

 $\pi_{ heta_{k+1}} = rg\max_{\pi_{ heta}} Q^{\pi_{ heta_k}}(x,\pi_{ heta}(x))$

Big jumps \rightarrow fast but unstable

 $\theta_{k+1} = \theta_k + \alpha \nabla_\theta J(\theta_k)$

Small shift \rightarrow slow but stable

How do we compute $\nabla_{\theta} J$?

A. LAZARIC - Approximate Reinforcement Learning

Policy Gradient Theorem

Theorem

For any differentiable policy $\pi_{\theta}(a|s)$ and objective function J, the policy gradient is

$$abla_ heta J(heta) = \mathbb{E}_{\pi_ heta} \left[
abla_ heta \log \left(\pi_ heta(extbf{a}| extbf{x})
ight) Q^{\pi_ heta}(extbf{x}, extbf{a})
ight]$$

Policy Gradient Theorem

Theorem

For any differentiable policy $\pi_{\theta}(a|s)$ and objective function J, the policy gradient is

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \log \left(\pi_{\theta}(\mathbf{a}|\mathbf{x}) \right) Q^{\pi_{\theta}}(\mathbf{x}, \mathbf{a}) \right]$$

Expectation w.r.t. policy (states from stationary distribution)

$$abla_ heta J(heta) = \sum_{\mathbf{x} \in \mathbf{X}}
ho^{\pi_ heta}(\mathbf{x}) \Big[
abla_ heta \log ig(\pi_ heta(\mathbf{a}|\mathbf{x})ig) Q^{\pi_ heta}(\mathbf{x},\mathbf{a}) \Big]$$

Policy Gradient Theorem: Rough Idea

Let $\tau = (x_1, a_1, r_1, \dots, x_T)$ a trajectory and $R(\tau)$ its return (i.e., sum of rewards)

$$J(heta) = \sum_{ au} \mathbb{P}(au | \pi_{ heta}) R(au)$$

Gradient of J

$$\begin{aligned} \nabla J(\theta) &= \nabla_{\theta} \bigg(\sum_{\tau} \mathbb{P}(\tau | \pi_{\theta}) R(\tau) \bigg) = \sum_{\tau} \nabla_{\theta} \mathbb{P}(\tau | \pi_{\theta}) R(\tau) \\ &= \sum_{\tau} \mathbb{P}(\tau | \pi_{\theta}) \nabla_{\theta} \log \big(\mathbb{P}(\tau | \pi_{\theta}) \big) R(\tau) \\ &= \mathbb{E}_{\tau | \pi_{\theta}} \Big[\nabla_{\theta} \log \big(\mathbb{P}(\tau | \pi_{\theta}) \big) R(\tau) \Big] \end{aligned}$$

Policy Gradient Theorem: Rough Idea

Likelihood of a trajectory

$$\mathbb{P}(\tau|\pi_{\theta}) = \rho(x_{1}) \prod_{t=1}^{T} p(x_{t_{1}}|x_{t}, a_{t}) \pi_{\theta}(a_{t}|x_{t})$$
$$\log \mathbb{P}(\tau|\pi_{\theta}) = \log (\rho(x_{1})) + \sum_{t=1}^{T} \log (\pi_{\theta}(a_{t}|x_{t})) + \sum_{t=1}^{T} \log (p(x_{t_{1}}|x_{t}, a_{t}))$$
$$\nabla_{\theta} \log \mathbb{P}(\tau|\pi_{\theta}) = \underbrace{\nabla_{\theta} \log (p(x_{1}))}_{\theta} + \sum_{t=1}^{T} \nabla_{\theta} \log (\pi_{\theta}(a_{t}|x_{t})) \sum_{t=1}^{T} \underbrace{\nabla_{\theta} \log (p(x_{t_{1}}|x_{t}, a_{t}))}_{\theta} + \sum_{t=1}^{T} \nabla_{\theta} \log (\pi_{\theta}(a_{t}|x_{t})) \sum_{t=1}^{T} \underbrace{\nabla_{\theta} \log (p(x_{t_{1}}|x_{t}, a_{t}))}_{\theta} + \sum_{t=1}^{T} \sum_{t=1}^{T} \nabla_{\theta} \log (\pi_{\theta}(a_{t}|x_{t})) \sum_{t=1}^{T} \underbrace{\nabla_{\theta} \log (p(x_{t_{1}}|x_{t}, a_{t}))}_{\theta} + \sum_{t=1}^{T} \sum_$$

Gradient of J

$$egin{aligned}
abla J(heta) &= \mathbb{E}\Big[
abla_ heta\logig(\mathbb{P}(au|\pi_ heta)ig)R(au)\Big] \ &= \mathbb{E}_{ au|\pi_ heta}\Big[\sum_{t=1}^T
abla_ heta\logig(\pi_ heta(a_t|x_t)ig)R(au)\Big] \end{aligned}$$

A. LAZARIC - Approximate Reinforcement Learning

Reinforce

Policy gradient theorem

$$abla_ heta J(heta) = \mathbb{E}_{\pi_ heta} \Big[
abla_ heta \log ig(\pi_ heta(a|x)ig) oldsymbol{Q}^{\pi_ heta}(x,a) \Big]$$

 $\operatorname{Reinforce}$ algorithm

- For each trajectory $\tau_k = (x_1, a_1, r_1, x_2, \dots, x_{T-1}, a_{T-1}, r_T) \sim \pi_{\theta}$
- For $t = 1, \ldots, T$
 - Compute Monte-Carlo estimate

$$R(x_t, a_t) = \sum_{s=t}^T r_t$$

Update policy

$$\theta = \theta + \alpha \nabla_{\theta} \log \left(\pi_{\theta}(\mathbf{a}_t | \mathbf{x}_t) \right) \mathbf{R}(\mathbf{x}_t, \mathbf{a}_t)$$

Reinforce

Issues

- R(x, a) is a MC (unbiased) estimation of $Q^{\pi_{\theta}}(x, a)$
- R(x, a) has possibly a very large variance
- $\blacktriangleright \Rightarrow \mathrm{Reinforce}$ needs many samples to converge

ría

Reinforce

Issues

- R(x, a) is a MC (unbiased) estimation of $Q^{\pi_{\theta}}(x, a)$
- R(x, a) has possibly a very large variance
- $\blacktriangleright \Rightarrow \mathrm{ReinfORCE}$ needs many samples to converge

Possible solutions

- Define an alternative estimator for $Q^{\pi_{\theta}}(x, a) \Rightarrow$ actor-critic
- Subtract a baseline function to $R(x, a) \Rightarrow$ advantage function

ACTOR-CRITIC

Use $\mathrm{TD}(0)$ to estimate $\mathcal{Q}^{\pi_{ heta}}$ using functions \mathcal{Q}_{w}

 $\label{eq:actor-Critic} Actor-Critic \ \text{algorithm}$

- For each trajectory $\tau_k = (x_1, a_1, r_1, x_2, \dots, x_{T-1}, a_{T-1}, r_T) \sim \pi_{\theta}$
- For $t = 1, \ldots, T$
 - Compute temporal difference

$$\delta_t = r_t + \gamma Q_w(x_{t+1}, a_{t+1})$$

Update Q estimate

$$w = w + \beta \delta_t \nabla Q_w(x_t, a_t)$$

Update policy

$$\theta = \theta + \alpha \nabla_{\theta} \log \left(\pi_{\theta}(a_t | x_t) \right) Q_{w}(x_t, a_t)$$

ACTOR-CRITIC

lssues

- $Q_w(x, a)$ is a biased estimator of $Q^{\pi_{\theta}}(x, a)$
- The update of θ may not follow the gradient $\nabla_{\theta} J$ anymore

ACTOR-CRITIC

lssues

- $Q_w(x, a)$ is a biased estimator of $Q^{\pi_{\theta}}(x, a)$
- The update of θ may not follow the gradient $\nabla_{\theta} J$ anymore

Possible solutions

 \blacktriangleright Choose the approximation space ${\cal Q}_{\rm w}$ "carefully" \Rightarrow compatibility between ${\cal Q}_{\rm w}$ and π_{θ}

$\label{eq:actor-Critic} Actor-Critic: \ \ \ compatible \ \ function \ \ approximation$

Theorem

An action value function space Q_w is "compatible" with a policy space π_{θ} if

$$Q_w(x, a) = w^\top
abla_ heta \log (\pi_ heta(a|x)).$$

If w is minimizing the squared Bellman residual

$$w = \arg\min_{w} \mathbb{E}_{\pi_{\theta}} \Big[\big(Q^{\pi_{\theta}}(x, a) - Q_w(x, a) \big)^2 \Big].$$

Then

$$abla_{ heta} J(heta) = \mathbb{E}_{\pi_{ heta}} \Big[
abla_{ heta} \log \big(\pi_{ heta}(a|x) \big) \mathcal{Q}_{\mathsf{w}}(x,a) \Big]$$

$\label{eq:actor-Critic} Actor-Critic: \ \ \ compatible \ \ function \ \ approximation$

Theorem

An action value function space Q_w is "compatible" with a policy space π_{θ} if

$$Q_w(x, a) = w^\top
abla_ heta \log (\pi_ heta(a|x)).$$

If w is minimizing the squared Bellman residual

$$w = \arg\min_{w} \mathbb{E}_{\pi_{\theta}} \Big[\big(Q^{\pi_{\theta}}(x, a) - Q_w(x, a) \big)^2 \Big].$$

Then

$$abla_{ heta} J(heta) = \mathbb{E}_{\pi_{ heta}} \Big[
abla_{ heta} \log \big(\pi_{ heta}(a|x) \big) \mathcal{Q}_{\mathsf{w}}(x,a) \Big]$$

$$\Rightarrow \theta = \theta + \alpha \nabla_{\theta} \log \left(\pi_{\theta}(\mathbf{a}_{t} | \mathbf{x}_{t}) \right) \mathbf{Q}_{\mathbf{w}}(\mathbf{x}_{t}, \mathbf{a}_{t})$$

$\operatorname{Actor-Critic}$ with a baseline

Theorem

Let b(x) an arbitrary baseline function, then

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} \Big[\nabla_{\theta} \log \big(\pi_{\theta}(\mathsf{a}|\mathsf{x}) \big) \big(Q^{\pi_{\theta}}(\mathsf{x},\mathsf{a}) - \boldsymbol{b}(\mathsf{x}) \big) \Big]$$

 \Rightarrow use b(s) to reduce the variance of the estimates

$\operatorname{Actor-Critic}$ with a baseline

Theorem

Let b(x) an arbitrary baseline function, then

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} \Big[\nabla_{\theta} \log \big(\pi_{\theta}(\mathsf{a}|\mathsf{x}) \big) \big(Q^{\pi_{\theta}}(\mathsf{x},\mathsf{a}) - \boldsymbol{b}(\mathsf{x}) \big) \Big]$$

 \Rightarrow use b(s) to reduce the variance of the estimates

 \Rightarrow the choice that minimize the variance is $V^{\pi_{\theta}}!$

$\operatorname{Actor-Critic}$ with a baseline

Theorem

Let b(x) an arbitrary baseline function, then

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} \Big[\nabla_{\theta} \log \big(\pi_{\theta}(\mathsf{a}|\mathsf{x}) \big) \big(Q^{\pi_{\theta}}(\mathsf{x},\mathsf{a}) - \boldsymbol{b}(\mathsf{x}) \big) \Big]$$

 \Rightarrow use b(s) to reduce the variance of the estimates

 \Rightarrow the choice that minimize the variance is $V^{\pi_{\theta}}!$

$$\Rightarrow A^{\pi_{ heta}}(x,a) = Q^{\pi_{ heta}}(x,a) - V^{\pi_{ heta}}(x,a)$$
 is the advantage function

$\operatorname{ACTOR-CRITIC}$ with Advantage Function

Use TD(0) to estimate $Q^{\pi_{\theta}}$ using functions Q_w and $V^{\pi_t heta}$ using functions V_v ACTOR-CRITIC algorithm

- For each trajectory $\tau_k = (x_1, a_1, r_1, x_2, \dots, x_{T-1}, a_{T-1}, r_T) \sim \pi_{\theta}$
- For $t = 1, \ldots, T$
 - Compute temporal differences

$$\delta_t^Q = r_t + \gamma Q_w(x_{t+1}, a_{t+1}); \quad \delta_t^V = r_t + \gamma V_v(x_{t+1})$$

▶ Update Q and V estimates

$$w = w + \beta \delta_t^Q \nabla Q_w(x_t, a_t); \quad v = v + \eta \delta_t^V \nabla V_v(x_t)$$

Update policy

$$\theta = \theta + \alpha \nabla_{\theta} \log \left(\pi_{\theta}(\mathbf{a}_t | \mathbf{x}_t) \right) \left(\mathbf{Q}_{\mathbf{w}}(\mathbf{x}_t, \mathbf{a}_t) - \mathbf{V}_{\mathbf{v}}(\mathbf{x}_t) \right)$$

$\operatorname{ACTOR}\text{-}\operatorname{CRITIC}$ with advantage function

Issues

• $Q_w(x, a) - V_v(x)$ is a very biased and *unstable* estimator of $A^{\pi_{\theta}}(x, a)$

• The update of θ may be too fast w.r.t. w and v

$\operatorname{ACTOR}\text{-}\operatorname{CRITIC}$ with advantage function

Issues

- $Q_w(x, a) V_v(x)$ is a very biased and *unstable* estimator of $A^{\pi_{\theta}}(x, a)$
- The update of θ may be too fast w.r.t. w and v

Possible solutions

Consider the "exact" temporal difference in x, a

$$\delta^{\pi_{\theta}} = r + \gamma V^{\pi_{\theta}}(x') - V^{\pi_{\theta}}(x)$$

• $\delta^{\pi_{\theta}}$ is an unbiased estimator of the advantage

$$\mathbb{E}\Big[\delta^{\pi_\theta}\Big] = \mathbb{E}\Big[r + \gamma V^{\pi_\theta}(x') \big| x, a\Big] - V^{\pi_\theta}(x) = Q^{\pi_\theta}(x, a) - V^{\pi_\theta}(x)$$

• \Rightarrow use only the TD(0) estimator

ACTOR-CRITIC with Advantage Function and TD(0)

 $\label{eq:actor-Critic} Actor-Critic \ \text{algorithm}$

- For each trajectory $\tau_k = (x_1, a_1, r_1, x_2, \dots, x_{T-1}, a_{T-1}, r_T) \sim \pi_{\theta}$
- For $t = 1, \ldots, T$
 - Compute temporal difference

$$\delta_t = r_t + \gamma V_{\nu}(x_{t+1})$$

Update V estimate

$$\mathbf{v} = \mathbf{v} + \eta \delta_t^V \nabla V_{\mathbf{v}}(\mathbf{x}_t)$$

Update policy

$$\theta = \theta + \alpha \nabla_{\theta} \log \left(\pi_{\theta} (\mathbf{a}_{t} | \mathbf{x}_{t}) \right) \left(\delta_{t} - \mathbf{V}_{\mathbf{v}} (\mathbf{x}_{t}) \right)$$

ACTOR-CRITIC with Advantage Function and TD(0)

lssues

- \blacktriangleright Properly setting the learning rates η and α is difficult
- All samples need to be generated by the current policy (*on-policy* learning)

ACTOR-CRITIC with Advantage Function and TD(0)

lssues

- \blacktriangleright Properly setting the learning rates η and α is difficult
- All samples need to be generated by the current policy (*on-policy* learning)

Possible solutions

- Consider a "conservative" optimization algorithm
- Use importance weighting

Relationship between *current policy* π and *candidate policy* $\widetilde{\pi}$

$$J(\widetilde{\pi}) = J(\pi) + \sum_{x \in X}
ho_{\gamma}^{\widetilde{\pi}}(x) \sum_{a} \widetilde{\pi}(a|x) A^{\pi}(x,a)$$

with $\rho^{\tilde{\pi}}_{\gamma}(x) = \sum_{t=0}^{\infty} \gamma^t \mathbb{P}_{\tilde{\pi}}[x_t = x]$ (discounted stationary distribution)

A. LAZARIC - Approximate Reinforcement Learning

Relationship between *current policy* π and *candidate policy* $\widetilde{\pi}$

$$J(\widetilde{\pi}) = J(\pi) + \sum_{x \in X}
ho_{\gamma}^{\widetilde{\pi}}(x) \sum_{a} \widetilde{\pi}(a|x) A^{\pi}(x,a)$$

with $\rho^{\tilde{\pi}}_{\gamma}(x) = \sum_{t=0}^{\infty} \gamma^t \mathbb{P}_{\tilde{\pi}}[x_t = x]$ (discounted stationary distribution)

Issue: $\rho^{\tilde{\pi}}_{\gamma}(x)$ is difficult to compute/estimate for any possible $\tilde{\pi}$

Surrogate function

$$J(\widetilde{\pi}) = J(\pi) + \sum_{x \in X} \rho_{\gamma}^{\widetilde{\pi}}(x) \sum_{a} \widetilde{\pi}(a|x) A^{\pi}(x, a)$$
$$L_{\pi}(\widetilde{\pi}) = J(\pi) + \sum_{x \in X} \rho_{\gamma}^{\pi}(x) \sum_{a} \widetilde{\pi}(a|x) A^{\pi}(x, a)$$

Surrogate function

$$J(\tilde{\pi}) = J(\pi) + \sum_{x \in X} \rho_{\gamma}^{\tilde{\pi}}(x) \sum_{a} \tilde{\pi}(a|x) A^{\pi}(x, a)$$
$$L_{\pi}(\tilde{\pi}) = J(\pi) + \sum_{x \in X} \rho_{\gamma}^{\pi}(x) \sum_{a} \tilde{\pi}(a|x) A^{\pi}(x, a)$$

Properties

nín.

L_π(π) = J(π)
 If parametrized policy π = π_θ then ∇_θL_{π_θ}(π_θ) = ∇_θJ(π_θ)
 ⇒ In an interval *close* to π, L_π is a good surrogate for J

Let measure the "distance" between two policies as

$$D_{\mathsf{TV}}^{\mathsf{max}}(\pi, \tilde{\pi}) = \max_{x} D_{\mathsf{TV}}(\pi(\cdot|x) \| \tilde{\pi}(\cdot|s))$$

Then for any two policies π , $\tilde{\pi}$, such tat $D_{\text{TV}}^{\max}(\pi, \tilde{\pi}) = \alpha$ and $\epsilon = \max_{x,a} |A^{\pi}(x, a)|$ $J(\tilde{\pi}) \ge L_{\pi}(\tilde{\pi}) - \frac{4\epsilon\gamma}{(1-\gamma)^2}\alpha^2$

Let measure the "distance" between two policies as

$$D_{\mathsf{TV}}^{\mathsf{max}}(\pi, \tilde{\pi}) = \max_{x} D_{\mathsf{TV}}(\pi(\cdot|x) \| \tilde{\pi}(\cdot|s))$$

Then for any two policies π , $\tilde{\pi}$, such tat $D_{\text{TV}}^{\max}(\pi, \tilde{\pi}) = \alpha$ and $\epsilon = \max_{x,a} |A^{\pi}(x, a)|$ $J(\tilde{\pi}) \ge L_{\pi}(\tilde{\pi}) - \frac{4\epsilon\gamma}{(1-\gamma)^2}\alpha^2$

New policy improvement scheme = conservative policy iteration

$$\max_{\tilde{\pi}} L_{\pi}(\tilde{\pi}) - \frac{CD_{\mathsf{TV}}^{\mathsf{max}}(\pi, \tilde{\pi})}{\mathsf{TV}}$$

Let measure the "distance" between two policies as

$$D_{\mathsf{TV}}^{\mathsf{max}}(\pi, \tilde{\pi}) = \max_{x} D_{\mathsf{TV}}(\pi(\cdot|x) \| \tilde{\pi}(\cdot|s))$$

Then for any two policies π , $\tilde{\pi}$, such tat $D_{\text{TV}}^{\max}(\pi, \tilde{\pi}) = \alpha$ and $\epsilon = \max_{x,a} |A^{\pi}(x, a)|$ $J(\tilde{\pi}) \ge L_{\pi}(\tilde{\pi}) - \frac{4\epsilon\gamma}{(1-\gamma)^2}\alpha^2$

New policy improvement scheme = conservative policy iteration

$$\max_{\tilde{\pi}} L_{\pi}(\tilde{\pi}) - \frac{CD_{\mathsf{TV}}^{\mathsf{max}}(\pi, \tilde{\pi})}{\mathsf{TV}}$$

 \Rightarrow difficult to optimize...

Alternative measure of distance

$$D^{
ho}_{\mathsf{KL}}(\pi, ilde{\pi}) = \mathbb{E}_{x \sim
ho} ig[egin{smallmatrix} D_{\mathsf{KL}}ig(\pi(\cdot|x) \| ilde{\pi}(\cdot|s)ig) ig] \end{cases}$$

Alternative policy improvement scheme (regularized version)

$$\max_{\tilde{\pi}} L_{\pi}(\tilde{\pi}) - \frac{\mathsf{C} D_{\mathsf{KL}}^{\rho_{\gamma}^{\pi}}(\pi,\tilde{\pi})}{}$$

Alternative policy improvement scheme (constrained version)

$$\max_{\tilde{\pi}} L_{\pi}(\tilde{\pi})$$

s.t. $D_{\mathsf{KL}}^{\rho_{\gamma}^{\pi}}(\pi, \tilde{\pi}) \leq \delta$

Towards an actual algorithm (1)

• Importance weighting with a sampling distribution q(a|x)

$$\sum_{a} \tilde{\pi}(a|x) A^{\pi}(x,a) \Rightarrow \sum_{a} q(a|x) \frac{\tilde{\pi}(a|x)}{q(a|x)} A^{\pi}(x,a) = \mathbb{E}_{q(\cdot|x)} \Big[\frac{\tilde{\pi}(a|x)}{q(a|x)} A^{\pi}(x,a) \Big]$$

• Replace A^{π} with Q^{π} and remove $J(\pi)$ (constant shifts)

$$\max_{\tilde{\pi}} \mathbb{E}_{x \sim \rho_{\gamma}^{\pi}} \mathbb{E}_{a \sim q(\cdot|x)} \Big[\frac{\tilde{\pi}(a|x)}{q(a|x)} Q^{\pi}(x, a) \Big]$$

s.t. $D_{\mathrm{KL}}^{\rho_{\gamma}^{\pi}}(\pi, \tilde{\pi}) \leq \delta$

Towards an actual algorithm (2)

- Estimate \mathbb{E} by executing π and q
- Estimate Q^{π} by rollouts

 \Rightarrow Trust region policy optimization (TRPO)

Summary

Policy gradient methods are *successful* because

- Easy to integrate a NN architecture into the scheme
- Effective in simulation environments (large amount of rollouts can be generated)
- A lot of "tricks" from optimization can be integrated

Policy gradient methods are *difficult* because

- Stochastic policies may not be desirable
- No convergence guarantees
- A zoo of more or less explicit / heuristic variants

Bibliography I

A. LAZARIC - Approximate Reinforcement Learning

Dec 2nd, 2014 - 65/66

Reinforcement Learning

Alessandro Lazaric alessandro.lazaric@inria.fr sequel.lille.inria.fr