
MVA-RL Course

Approximate Reinforcement Learning

Alessandro LAZARIC (Facebook AI Research / on leave Inria Lille)

ENS Cachan - Master 2 MVA

FAIR / Inria

Approximate Reinforcement
Learning

Approximate Value Iteration

Approximate Policy Iteration

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 2/66

Approximate Reinforcement
Learning

Approximate Value Iteration

Approximate Policy Iteration

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 2/66

From Exact to Approximate RL

I Dynamic programming algorithms require an explicit
definition of

I transition probabilities p(·|x , a)
I reward function r(x , a)

I This knowledge is often unavailable (i.e., wind intensity,
human-computer-interaction).

I Can we rely on samples? (partially addressed by RL)

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 3/66

From Exact to Approximate RL

I Dynamic programming algorithms require an explicit
definition of

I transition probabilities p(·|x , a)
I reward function r(x , a)

I This knowledge is often unavailable (i.e., wind intensity,
human-computer-interaction).

I Can we rely on samples? (partially addressed by RL)

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 3/66

From Exact to Approximate RL

I Dynamic programming algorithms require an explicit
definition of

I transition probabilities p(·|x , a)
I reward function r(x , a)

I This knowledge is often unavailable (i.e., wind intensity,
human-computer-interaction).

I Can we rely on samples? (partially addressed by RL)

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 3/66

From Exact to Approximate RL

I Dynamic programming algorithms require an exact
representation of value functions and policies

I This is often impossible since their shape is too “complicated”
(e.g., large or continuous state space).

I Can we use approximations?

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 4/66

From Exact to Approximate RL

I Dynamic programming algorithms require an exact
representation of value functions and policies

I This is often impossible since their shape is too “complicated”
(e.g., large or continuous state space).

I Can we use approximations?

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 4/66

From Exact to Approximate RL

I Dynamic programming algorithms require an exact
representation of value functions and policies

I This is often impossible since their shape is too “complicated”
(e.g., large or continuous state space).

I Can we use approximations?

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 4/66

From Exact to Approximate RL

0 1 2 3 4 5 6 7 8 9 10

10

20

30

40

50

60

70

Value function

R RR KKK

Approximated by a Fourier basis expansion

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 5/66

From Exact to Approximate RL

0 1 2 3 4 5 6 7 8 9 10

10

20

30

40

50

60

70

0 1 2 3 4 5 6 7 8 9 10

10

20

30

40

50

60

70

Approximated by a Fourier basis expansion

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 5/66

The Objective

Find a policy π such that

the performance loss ‖V ∗ − V π‖ is as small as possible

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 6/66

Approximate Reinforcement
Learning

Approximate Value Iteration

Approximate Policy Iteration

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 7/66

From Approximation Error to Performance Loss

Question: if V is an approximation of the optimal value function
V ∗ with an error

error = ‖V − V ∗‖

how does it translate to the (loss of) performance of the greedy
policy

π(x) ∈ arg max
a∈A

∑

y
p(y |x , a)

[
r(x , a, y) + γV (y)

]

i.e.
performance loss = ‖V ∗ − V π‖

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 8/66

From Approximation Error to Performance Loss

Question: if V is an approximation of the optimal value function
V ∗ with an error

error = ‖V − V ∗‖
how does it translate to the (loss of) performance of the greedy
policy

π(x) ∈ arg max
a∈A

∑

y
p(y |x , a)

[
r(x , a, y) + γV (y)

]

i.e.
performance loss = ‖V ∗ − V π‖

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 8/66

From Approximation Error to Performance Loss

Question: if V is an approximation of the optimal value function
V ∗ with an error

error = ‖V − V ∗‖
how does it translate to the (loss of) performance of the greedy
policy

π(x) ∈ arg max
a∈A

∑

y
p(y |x , a)

[
r(x , a, y) + γV (y)

]

i.e.
performance loss = ‖V ∗ − V π‖

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 8/66

From Approximation Error to Performance Loss

Proposition

Let V ∈ RN be an approximation of V ∗ and π its corresponding
greedy policy, then

‖V ∗ − V π‖∞︸ ︷︷ ︸
performance loss

≤ 2γ
1− γ ‖V

∗ − V ‖∞︸ ︷︷ ︸
approx. error

.

Furthermore, there exists ε > 0 such that if ‖V − V ∗‖∞ ≤ ε, then
π is optimal .

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 9/66

From Approximation Error to Performance Loss

Proof.

‖V ∗ − V π‖∞ ≤ ‖T V ∗ − T πV ‖∞ + ‖T πV − T πV π‖∞
≤ ‖T V ∗ − T V ‖∞ + γ‖V − V π‖∞
≤ γ‖V ∗ − V ‖∞ + γ(‖V − V ∗‖∞ + ‖V ∗ − V π‖∞)

≤ 2γ
1− γ ‖V

∗ − V ‖∞.

�

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 10/66

From Approximation Error to Performance Loss

Question: how do we compute a good V ?

Problem: unlike in standard approximation scenarios (see
supervised learning), we have a limited access to the target
function, i.e. V ∗.

Solution: value iteration tends to learn functions which are close
to the optimal value function V ∗.

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 11/66

From Approximation Error to Performance Loss

Question: how do we compute a good V ?

Problem: unlike in standard approximation scenarios (see
supervised learning), we have a limited access to the target
function, i.e. V ∗.

Solution: value iteration tends to learn functions which are close
to the optimal value function V ∗.

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 11/66

From Approximation Error to Performance Loss

Question: how do we compute a good V ?

Problem: unlike in standard approximation scenarios (see
supervised learning), we have a limited access to the target
function, i.e. V ∗.

Solution: value iteration tends to learn functions which are close
to the optimal value function V ∗.

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 11/66

Value Iteration: the Idea

1. Let Q0 be any action-value function

2. At each iteration k = 1, 2, . . . ,K
I Compute

Qk+1(x , a) = T Qk(x , a) = r(x , a)+
∑

y
p(y |x , a)γmax

b
Qk(y , b)

3. Return the greedy policy

πK (x) ∈ arg max
a∈A

QK (x , a).

I Problem: how can we approximate T Qk?
I Problem: if Qk+1 6= T Qk , does (approx.) value iteration still work?

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 12/66

Value Iteration: the Idea

1. Let Q0 be any action-value function

2. At each iteration k = 1, 2, . . . ,K
I Compute

Qk+1(x , a) = T Qk(x , a) = r(x , a)+
∑

y
p(y |x , a)γmax

b
Qk(y , b)

3. Return the greedy policy

πK (x) ∈ arg max
a∈A

QK (x , a).

I Problem: how can we approximate T Qk?
I Problem: if Qk+1 6= T Qk , does (approx.) value iteration still work?

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 12/66

Linear Fitted Q-iteration: the Approximation Space

Linear space to approximate action–value functions

F =
{

f (x , a) =
d∑

j=1
αjϕj(x , a), α ∈ Rd

}

with features (alternative for discrete actions: duplicate state
features)

ϕj : X × A→ [0, L] φ(x , a) = [ϕ1(x , a) . . . ϕd (x , a)]>

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 13/66

Linear Fitted Q-iteration: the Approximation Space

Linear space to approximate action–value functions

F =
{

f (x , a) =
d∑

j=1
αjϕj(x , a), α ∈ Rd

}

with features (alternative for discrete actions: duplicate state
features)

ϕj : X × A→ [0, L] φ(x , a) = [ϕ1(x , a) . . . ϕd (x , a)]>

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 13/66

Linear Fitted Q-iteration: the Samples

Assumption: access to a generative model , that is a black-box
simulator sim() of the environment is available.
Given (x , a),

sim(x , a) = {y , r}, with y ∼ p(·|x , a), r = r(x , a)

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 14/66

Linear Fitted Q-iteration

Input: space F , iterations K , sampling distribution ρ, num of samples n

Initial function Q̂0 ∈ F
For k = 1, . . . ,K

1. Draw n samples (xi , ai)
i.i.d∼ ρ

2. Sample x ′i ∼ p(·|xi , ai) and ri = r(xi , ai)

3. Compute yi = ri + γmaxa Q̂k−1(x ′i , a)

4. Build training set
{(

(xi , ai), yi
)}n

i=1

5. Solve the least squares problem

fα̂k = arg min
fα∈F

1
n

n∑

i=1

(
fα(xi , ai)− yi

)2

6. Return Q̂k = fα̂k (truncation may be needed)

Return πK (·) = arg maxa Q̂K (·, a) (greedy policy)

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 15/66

Linear Fitted Q-iteration

Input: space F , iterations K , sampling distribution ρ, num of samples n

Initial function Q̂0 ∈ F

For k = 1, . . . ,K
1. Draw n samples (xi , ai)

i.i.d∼ ρ

2. Sample x ′i ∼ p(·|xi , ai) and ri = r(xi , ai)

3. Compute yi = ri + γmaxa Q̂k−1(x ′i , a)

4. Build training set
{(

(xi , ai), yi
)}n

i=1

5. Solve the least squares problem

fα̂k = arg min
fα∈F

1
n

n∑

i=1

(
fα(xi , ai)− yi

)2

6. Return Q̂k = fα̂k (truncation may be needed)

Return πK (·) = arg maxa Q̂K (·, a) (greedy policy)

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 15/66

Linear Fitted Q-iteration

Input: space F , iterations K , sampling distribution ρ, num of samples n

Initial function Q̂0 ∈ F
For k = 1, . . . ,K

1. Draw n samples (xi , ai)
i.i.d∼ ρ

2. Sample x ′i ∼ p(·|xi , ai) and ri = r(xi , ai)

3. Compute yi = ri + γmaxa Q̂k−1(x ′i , a)

4. Build training set
{(

(xi , ai), yi
)}n

i=1

5. Solve the least squares problem

fα̂k = arg min
fα∈F

1
n

n∑

i=1

(
fα(xi , ai)− yi

)2

6. Return Q̂k = fα̂k (truncation may be needed)

Return πK (·) = arg maxa Q̂K (·, a) (greedy policy)

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 15/66

Linear Fitted Q-iteration

Input: space F , iterations K , sampling distribution ρ, num of samples n

Initial function Q̂0 ∈ F
For k = 1, . . . ,K

1. Draw n samples (xi , ai)
i.i.d∼ ρ

2. Sample x ′i ∼ p(·|xi , ai) and ri = r(xi , ai)

3. Compute yi = ri + γmaxa Q̂k−1(x ′i , a)

4. Build training set
{(

(xi , ai), yi
)}n

i=1

5. Solve the least squares problem

fα̂k = arg min
fα∈F

1
n

n∑

i=1

(
fα(xi , ai)− yi

)2

6. Return Q̂k = fα̂k (truncation may be needed)

Return πK (·) = arg maxa Q̂K (·, a) (greedy policy)

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 15/66

Linear Fitted Q-iteration

Input: space F , iterations K , sampling distribution ρ, num of samples n

Initial function Q̂0 ∈ F
For k = 1, . . . ,K

1. Draw n samples (xi , ai)
i.i.d∼ ρ

2. Sample x ′i ∼ p(·|xi , ai) and ri = r(xi , ai)

3. Compute yi = ri + γmaxa Q̂k−1(x ′i , a)

4. Build training set
{(

(xi , ai), yi
)}n

i=1

5. Solve the least squares problem

fα̂k = arg min
fα∈F

1
n

n∑

i=1

(
fα(xi , ai)− yi

)2

6. Return Q̂k = fα̂k (truncation may be needed)

Return πK (·) = arg maxa Q̂K (·, a) (greedy policy)

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 15/66

Linear Fitted Q-iteration

Input: space F , iterations K , sampling distribution ρ, num of samples n

Initial function Q̂0 ∈ F
For k = 1, . . . ,K

1. Draw n samples (xi , ai)
i.i.d∼ ρ

2. Sample x ′i ∼ p(·|xi , ai) and ri = r(xi , ai)

3. Compute yi = ri + γmaxa Q̂k−1(x ′i , a)

4. Build training set
{(

(xi , ai), yi
)}n

i=1

5. Solve the least squares problem

fα̂k = arg min
fα∈F

1
n

n∑

i=1

(
fα(xi , ai)− yi

)2

6. Return Q̂k = fα̂k (truncation may be needed)

Return πK (·) = arg maxa Q̂K (·, a) (greedy policy)

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 15/66

Linear Fitted Q-iteration

Input: space F , iterations K , sampling distribution ρ, num of samples n

Initial function Q̂0 ∈ F
For k = 1, . . . ,K

1. Draw n samples (xi , ai)
i.i.d∼ ρ

2. Sample x ′i ∼ p(·|xi , ai) and ri = r(xi , ai)

3. Compute yi = ri + γmaxa Q̂k−1(x ′i , a)

4. Build training set
{(

(xi , ai), yi
)}n

i=1

5. Solve the least squares problem

fα̂k = arg min
fα∈F

1
n

n∑

i=1

(
fα(xi , ai)− yi

)2

6. Return Q̂k = fα̂k (truncation may be needed)

Return πK (·) = arg maxa Q̂K (·, a) (greedy policy)

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 15/66

Linear Fitted Q-iteration

Input: space F , iterations K , sampling distribution ρ, num of samples n

Initial function Q̂0 ∈ F
For k = 1, . . . ,K

1. Draw n samples (xi , ai)
i.i.d∼ ρ

2. Sample x ′i ∼ p(·|xi , ai) and ri = r(xi , ai)

3. Compute yi = ri + γmaxa Q̂k−1(x ′i , a)

4. Build training set
{(

(xi , ai), yi
)}n

i=1

5. Solve the least squares problem

fα̂k = arg min
fα∈F

1
n

n∑

i=1

(
fα(xi , ai)− yi

)2

6. Return Q̂k = fα̂k (truncation may be needed)

Return πK (·) = arg maxa Q̂K (·, a) (greedy policy)

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 15/66

Linear Fitted Q-iteration

Input: space F , iterations K , sampling distribution ρ, num of samples n

Initial function Q̂0 ∈ F
For k = 1, . . . ,K

1. Draw n samples (xi , ai)
i.i.d∼ ρ

2. Sample x ′i ∼ p(·|xi , ai) and ri = r(xi , ai)

3. Compute yi = ri + γmaxa Q̂k−1(x ′i , a)

4. Build training set
{(

(xi , ai), yi
)}n

i=1

5. Solve the least squares problem

fα̂k = arg min
fα∈F

1
n

n∑

i=1

(
fα(xi , ai)− yi

)2

6. Return Q̂k = fα̂k (truncation may be needed)

Return πK (·) = arg maxa Q̂K (·, a) (greedy policy)

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 15/66

Linear Fitted Q-iteration

Input: space F , iterations K , sampling distribution ρ, num of samples n

Initial function Q̂0 ∈ F
For k = 1, . . . ,K

1. Draw n samples (xi , ai)
i.i.d∼ ρ

2. Sample x ′i ∼ p(·|xi , ai) and ri = r(xi , ai)

3. Compute yi = ri + γmaxa Q̂k−1(x ′i , a)

4. Build training set
{(

(xi , ai), yi
)}n

i=1

5. Solve the least squares problem

fα̂k = arg min
fα∈F

1
n

n∑

i=1

(
fα(xi , ai)− yi

)2

6. Return Q̂k = fα̂k (truncation may be needed)

Return πK (·) = arg maxa Q̂K (·, a) (greedy policy)

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 15/66

Linear Fitted Q-iteration: Sampling

1. Draw n samples (xi , ai)
i.i.d∼ ρ

2. Sample x ′i ∼ p(·|xi , ai) and ri = r(xi , ai)

I In practice it can be done once before running the algorithm
I The sampling distribution ρ should cover the state-action space in

all relevant regions
I If not possible to choose ρ, a database of samples can be used

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 16/66

Linear Fitted Q-iteration: Sampling

1. Draw n samples (xi , ai)
i.i.d∼ ρ

2. Sample x ′i ∼ p(·|xi , ai) and ri = r(xi , ai)

I In practice it can be done once before running the algorithm
I The sampling distribution ρ should cover the state-action space in

all relevant regions
I If not possible to choose ρ, a database of samples can be used

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 16/66

Linear Fitted Q-iteration: The Training Set

4. Compute yi = ri + γmaxa Q̂k−1(x ′i , a)
5. Build training set

{(
(xi , ai), yi

)}n
i=1

I Each sample yi is an unbiased sample, since

E[yi |xi , ai] = E[ri + γmax
a

Q̂k−1(x ′i , a)] = r(xi , ai) + γE[max
a

Q̂k−1(x ′i , a)]

= r(xi , ai) + γ

∫

X
max

a
Q̂k−1(x ′, a)p(dy |x , a) = T Q̂k−1(xi , ai)

I The problem “reduces” to standard regression
I It should be recomputed at each iteration

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 17/66

Linear Fitted Q-iteration: The Training Set

4. Compute yi = ri + γmaxa Q̂k−1(x ′i , a)
5. Build training set

{(
(xi , ai), yi

)}n
i=1

I Each sample yi is an unbiased sample, since

E[yi |xi , ai] = E[ri + γmax
a

Q̂k−1(x ′i , a)] = r(xi , ai) + γE[max
a

Q̂k−1(x ′i , a)]

= r(xi , ai) + γ

∫

X
max

a
Q̂k−1(x ′, a)p(dy |x , a) = T Q̂k−1(xi , ai)

I The problem “reduces” to standard regression
I It should be recomputed at each iteration

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 17/66

Linear Fitted Q-iteration: The Regression Problem

6. Solve the least squares problem

fα̂k = arg min
fα∈F

1
n

n∑

i=1

(
fα(xi , ai)− yi

)2

7. Return Q̂k = fα̂k (truncation may be needed)

I Thanks to the linear space we can solve it as
I Build matrix Φ =

[
φ(x1, a1)> . . . φ(xn, an)>

]

I Compute α̂k = (Φ>Φ)−1Φ>y (least–squares solution)
I Truncation to [−Vmax; Vmax] (with Vmax = Rmax/(1− γ))

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 18/66

Linear Fitted Q-iteration: The Regression Problem

6. Solve the least squares problem

fα̂k = arg min
fα∈F

1
n

n∑

i=1

(
fα(xi , ai)− yi

)2

7. Return Q̂k = fα̂k (truncation may be needed)

I Thanks to the linear space we can solve it as
I Build matrix Φ =

[
φ(x1, a1)> . . . φ(xn, an)>

]

I Compute α̂k = (Φ>Φ)−1Φ>y (least–squares solution)
I Truncation to [−Vmax; Vmax] (with Vmax = Rmax/(1− γ))

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 18/66

Sketch of the Analysis

Q3

greedy πK

· · ·

Q2

Q0

Q1

T

T

T Q̂2

Q̂2
ǫ2

Q̂3
ǫ3

T Q̂3

ǫ1
Q̂1

T Q̂1

T

T

Q4

· · ·

final error
Q∗

T

Q̂K

QπK

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 19/66

Summary

Approximation

space

Samples

algorithm

process

Performance
Markov decision

Dynamic programming
Approximation

algorithm

(sampling strategy, number)

Range Vmax

Concentrability Cµ,ρ

d(F , T F)
size d, features ω

number n, sampling dist. ρ

Qk − Q̂k
Propagation

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 20/66

The Final Bound

Theorem (see e.g., Munos,’03)
LinearFQI with a space F of d features, with n samples at each iteration
returns a policy πK after K iterations such that

‖Q∗ − QπK ‖µ ≤
2γ

(1− γ)2

√
Cµ,ρ

(
4d(F , T F)

+ O
(

Vmax

(
1 +

L√
ω

)
√

d log n/δ
n

))

+ O
(

γK

(1− γ)3 Vmax
2
)

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 21/66

Other implementations

Replace the regression step with
I K -nearest neighbour
I Regularized linear regression with L1 or L2 regularisation
I Neural network
I Support vector regression
I Trees

Remark: we need to solve the approximation problem efficiently

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 22/66

Other implementations

Replace the regression step with
I K -nearest neighbour
I Regularized linear regression with L1 or L2 regularisation
I Neural network
I Support vector regression
I Trees

Remark: we need to solve the approximation problem efficiently

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 22/66

Approximate Reinforcement
Learning

Approximate Value Iteration

Approximate Policy Iteration

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 23/66

Policy Iteration: the Idea

1. Let π0 be any stationary policy

2. At each iteration k = 1, 2, . . . ,K
I Policy evaluation given πk , compute Vk = V πk .
I Policy improvement: compute the greedy policy

πk+1(x) ∈ arg maxa∈A
[
r(x , a) + γ

∑

y
p(y |x , a)V πk (y)

]
.

3. Return the last policy πK

I Problem: how can we approximate V πk ?
I Problem: if Vk 6= V πk , does (approx.) policy iteration still work?

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 24/66

Policy Iteration: the Idea

1. Let π0 be any stationary policy

2. At each iteration k = 1, 2, . . . ,K
I Policy evaluation given πk , compute Vk = V πk .
I Policy improvement: compute the greedy policy

πk+1(x) ∈ arg maxa∈A
[
r(x , a) + γ

∑

y
p(y |x , a)V πk (y)

]
.

3. Return the last policy πK

I Problem: how can we approximate V πk ?
I Problem: if Vk 6= V πk , does (approx.) policy iteration still work?

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 24/66

Approximate Policy Iteration: performance loss
Problem: the algorithm is no longer guaranteed to converge.

V *−V
π

k

k

Asymptotic Error

Proposition

The asymptotic performance of the policies πk generated by the API
algorithm is related to the approximation error as:

lim sup
k→∞

‖V ∗ − V πk‖∞︸ ︷︷ ︸
performance loss

≤ 2γ
(1− γ)2 lim sup

k→∞
‖Vk − V πk‖∞︸ ︷︷ ︸
approximation error

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 25/66

Least-Squares Policy Iteration (LSPI)

LSPI uses
I Linear space to approximate value functions*

F =
{

f (x) =
d∑

j=1
αjϕj(x), α ∈ Rd

}

I Least-Squares Temporal Difference (LSTD) algorithm for
policy evaluation.

*In practice we use approximations of action-value functions.

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 26/66

Least-Squares Policy Iteration (LSPI)

LSPI uses
I Linear space to approximate value functions*

F =
{

f (x) =
d∑

j=1
αjϕj(x), α ∈ Rd

}

I Least-Squares Temporal Difference (LSTD) algorithm for
policy evaluation.

*In practice we use approximations of action-value functions.

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 26/66

Least-Squares Temporal-Difference Learning (LSTD)

I V π may not belong to F V π /∈ F
I Best approximation of V π in F is

ΠV π = arg min
f∈F
||V π − f || (Π is the projection onto F)

F

V π
T π

ΠV π

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 27/66

Least-Squares Temporal-Difference Learning (LSTD)
I V π is the fixed-point of T π

V π = T πV π = rπ + γPπV π

I LSTD searches for the fixed-point of Π2,ρT π

Π2,ρ g = arg min
f∈F
||g − f ||2,ρ

I When the fixed-point of ΠρT π exists, we call it the LSTD solution
VTD = ΠρT πVTD

F

V π

T πVTDT π

T π

ΠρV
π VTD = ΠρT πVTD

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 28/66

Least-Squares Temporal-Difference Learning (LSTD)

VTD = ΠρT πVTD

⇓

〈rπ, ϕi〉ρ︸ ︷︷ ︸
bi

−
d∑

j=1
〈(I − γPπ)ϕj , ϕi〉ρ︸ ︷︷ ︸

Ai,j

αTD,j = 0

⇓

AαTD = b

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 29/66

Least-Squares Policy Iteration (LSPI)
Input: space F , iterations K , sampling distribution ρ, num of samples n

Initial policy π0
For k = 1, . . . ,K

1. Generate a trajectory of length n from the stationary dist. ρπk

(x1, πk(x1), r1, x2, πk(x2), r2, . . . , xn−1, πk(xn−1), rn−1, xn)

2. Compute the empirical matrix Âk and the vector b̂k

[Âk]i,j =
1
n

n∑

t=1
(ϕj(xt)− γϕj(xt+1)ϕi (xt) ≈ 〈(I − γPπ)ϕj , ϕi〉ρπk

[b̂k]i =
1
n

n∑

t=1
ϕi (xt)rt ≈ 〈rπ, ϕi〉ρπk

3. Solve the linear system αk = Â−1
k b̂k

4. Compute the greedy policy πk+1 w.r.t. V̂k = fαk

Return the last policy πK

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 30/66

Least-Squares Policy Iteration (LSPI)
Input: space F , iterations K , sampling distribution ρ, num of samples n

Initial policy π0

For k = 1, . . . ,K
1. Generate a trajectory of length n from the stationary dist. ρπk

(x1, πk(x1), r1, x2, πk(x2), r2, . . . , xn−1, πk(xn−1), rn−1, xn)

2. Compute the empirical matrix Âk and the vector b̂k

[Âk]i,j =
1
n

n∑

t=1
(ϕj(xt)− γϕj(xt+1)ϕi (xt) ≈ 〈(I − γPπ)ϕj , ϕi〉ρπk

[b̂k]i =
1
n

n∑

t=1
ϕi (xt)rt ≈ 〈rπ, ϕi〉ρπk

3. Solve the linear system αk = Â−1
k b̂k

4. Compute the greedy policy πk+1 w.r.t. V̂k = fαk

Return the last policy πK

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 30/66

Least-Squares Policy Iteration (LSPI)
Input: space F , iterations K , sampling distribution ρ, num of samples n

Initial policy π0
For k = 1, . . . ,K

1. Generate a trajectory of length n from the stationary dist. ρπk

(x1, πk(x1), r1, x2, πk(x2), r2, . . . , xn−1, πk(xn−1), rn−1, xn)

2. Compute the empirical matrix Âk and the vector b̂k

[Âk]i,j =
1
n

n∑

t=1
(ϕj(xt)− γϕj(xt+1)ϕi (xt) ≈ 〈(I − γPπ)ϕj , ϕi〉ρπk

[b̂k]i =
1
n

n∑

t=1
ϕi (xt)rt ≈ 〈rπ, ϕi〉ρπk

3. Solve the linear system αk = Â−1
k b̂k

4. Compute the greedy policy πk+1 w.r.t. V̂k = fαk

Return the last policy πK

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 30/66

Least-Squares Policy Iteration (LSPI)
Input: space F , iterations K , sampling distribution ρ, num of samples n

Initial policy π0
For k = 1, . . . ,K

1. Generate a trajectory of length n from the stationary dist. ρπk

(x1, πk(x1), r1, x2, πk(x2), r2, . . . , xn−1, πk(xn−1), rn−1, xn)

2. Compute the empirical matrix Âk and the vector b̂k

[Âk]i,j =
1
n

n∑

t=1
(ϕj(xt)− γϕj(xt+1)ϕi (xt) ≈ 〈(I − γPπ)ϕj , ϕi〉ρπk

[b̂k]i =
1
n

n∑

t=1
ϕi (xt)rt ≈ 〈rπ, ϕi〉ρπk

3. Solve the linear system αk = Â−1
k b̂k

4. Compute the greedy policy πk+1 w.r.t. V̂k = fαk

Return the last policy πK

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 30/66

Least-Squares Policy Iteration (LSPI)
Input: space F , iterations K , sampling distribution ρ, num of samples n

Initial policy π0
For k = 1, . . . ,K

1. Generate a trajectory of length n from the stationary dist. ρπk

(x1, πk(x1), r1, x2, πk(x2), r2, . . . , xn−1, πk(xn−1), rn−1, xn)

2. Compute the empirical matrix Âk and the vector b̂k

[Âk]i,j =
1
n

n∑

t=1
(ϕj(xt)− γϕj(xt+1)ϕi (xt) ≈ 〈(I − γPπ)ϕj , ϕi〉ρπk

[b̂k]i =
1
n

n∑

t=1
ϕi (xt)rt ≈ 〈rπ, ϕi〉ρπk

3. Solve the linear system αk = Â−1
k b̂k

4. Compute the greedy policy πk+1 w.r.t. V̂k = fαk

Return the last policy πK

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 30/66

Least-Squares Policy Iteration (LSPI)
Input: space F , iterations K , sampling distribution ρ, num of samples n

Initial policy π0
For k = 1, . . . ,K

1. Generate a trajectory of length n from the stationary dist. ρπk

(x1, πk(x1), r1, x2, πk(x2), r2, . . . , xn−1, πk(xn−1), rn−1, xn)

2. Compute the empirical matrix Âk and the vector b̂k

[Âk]i,j =
1
n

n∑

t=1
(ϕj(xt)− γϕj(xt+1)ϕi (xt) ≈ 〈(I − γPπ)ϕj , ϕi〉ρπk

[b̂k]i =
1
n

n∑

t=1
ϕi (xt)rt ≈ 〈rπ, ϕi〉ρπk

3. Solve the linear system αk = Â−1
k b̂k

4. Compute the greedy policy πk+1 w.r.t. V̂k = fαk

Return the last policy πK

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 30/66

Least-Squares Policy Iteration (LSPI)
Input: space F , iterations K , sampling distribution ρ, num of samples n

Initial policy π0
For k = 1, . . . ,K

1. Generate a trajectory of length n from the stationary dist. ρπk

(x1, πk(x1), r1, x2, πk(x2), r2, . . . , xn−1, πk(xn−1), rn−1, xn)

2. Compute the empirical matrix Âk and the vector b̂k

[Âk]i,j =
1
n

n∑

t=1
(ϕj(xt)− γϕj(xt+1)ϕi (xt) ≈ 〈(I − γPπ)ϕj , ϕi〉ρπk

[b̂k]i =
1
n

n∑

t=1
ϕi (xt)rt ≈ 〈rπ, ϕi〉ρπk

3. Solve the linear system αk = Â−1
k b̂k

4. Compute the greedy policy πk+1 w.r.t. V̂k = fαk

Return the last policy πK

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 30/66

Least-Squares Policy Iteration (LSPI)

1. Generate a trajectory of length n from the stationary dist. ρπk

(x1, πk(x1), r1, x2, πk(x2), r2, . . . , xn−1, πk(xn−1), rn−1, xn)

I The first few samples may be discarded because not actually drawn
from the stationary distribution ρπk

I Off-policy samples could be used with importance weighting
I In practice i.i.d. states drawn from an arbitrary distribution (but

with actions πk) may be used

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 31/66

Least-Squares Policy Iteration (LSPI)

4. Compute the greedy policy πk+1 w.r.t. V̂k = fαk

I Computing the greedy policy from V̂k is difficult, so move to
LSTD-Q and compute

πk+1(x) = arg max
a

Q̂k(x , a)

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 32/66

Least-Squares Policy Iteration (LSPI)

For k = 1, . . . ,K

1. Generate a trajectory of length n from the stationary dist. ρπk

(x1, πk(x1), r1, x2, πk(x2), r2, . . . , xn−1, πk(xn−1), rn−1, xn)

...

4. Compute the greedy policy πk+1 w.r.t. V̂k = fαk

Problem: This process may be unstable because πk does not cover the
state space properly

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 33/66

Least-Squares Policy Iteration (LSPI)

For k = 1, . . . ,K
1. Generate a trajectory of length n from the stationary dist. ρπk

(x1, πk(x1), r1, x2, πk(x2), r2, . . . , xn−1, πk(xn−1), rn−1, xn)

...

4. Compute the greedy policy πk+1 w.r.t. V̂k = fαk

Problem: This process may be unstable because πk does not cover the
state space properly

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 33/66

LSTD Algorithm

When n→∞ then Â→ A and b̂ → b, and thus,

α̂TD → αTD and V̂TD → VTD

Proposition (LSTD Performance)

If LSTD is used to estimate the value of π with an infinite number
of samples drawn from the stationary distribution ρπ then

||V π − VTD||ρπ ≤
1√

1− γ2
inf

V∈F
||V π − V ||ρπ

Problem: we don’t have an infinite number of samples...
Problem 2: VTD is a fixed point solution and not a standard
machine learning problem...

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 34/66

LSTD Algorithm

When n→∞ then Â→ A and b̂ → b, and thus,

α̂TD → αTD and V̂TD → VTD

Proposition (LSTD Performance)

If LSTD is used to estimate the value of π with an infinite number
of samples drawn from the stationary distribution ρπ then

||V π − VTD||ρπ ≤
1√

1− γ2
inf

V∈F
||V π − V ||ρπ

Problem: we don’t have an infinite number of samples...

Problem 2: VTD is a fixed point solution and not a standard
machine learning problem...

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 34/66

LSTD Algorithm

When n→∞ then Â→ A and b̂ → b, and thus,

α̂TD → αTD and V̂TD → VTD

Proposition (LSTD Performance)

If LSTD is used to estimate the value of π with an infinite number
of samples drawn from the stationary distribution ρπ then

||V π − VTD||ρπ ≤
1√

1− γ2
inf

V∈F
||V π − V ||ρπ

Problem: we don’t have an infinite number of samples...
Problem 2: VTD is a fixed point solution and not a standard
machine learning problem...

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 34/66

LSPI Error Bound

Theorem (LSPI Error Bound)
If LSPI is run over K iterations, then the performance loss policy πK is

||V ∗ − VπK ||µ ≤
4γ

(1− γ)2

{√
CCµ,ρ

[
E0(F) + O

(√
d log(dK/δ)

n νρ

)]
+ γK Rmax

}

with probability 1 − δ.

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 35/66

Approximate Reinforcement
Learning

Approximate Temporal Difference / Q-Learning

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 36/66

TD as a Gradient Algorithm

I Ideal regression problem: given functions Vθ and distribution D

min
θ

L(θ) = min
θ

ED
[(

V π(x)− Vθ(x)
)2
]

I Gradient descent

∆θ = −1
2α∇θL(θ) = −αED

[(
V π(x)− Vθ(x)

)
∇θVθ(x)

]

I Gradient descent (sample x from distribution D)

∆θ = −α
(
V π(x)− Vθ(x)

)
∇θVθ(x)

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 37/66

TD as a Gradient Algorithm

I Ideal regression problem: given functions Vθ and distribution D

min
θ

L(θ) = min
θ

ED
[(

V π(x)− Vθ(x)
)2
]

I Gradient descent

∆θ = −1
2α∇θL(θ) = −αED

[(
V π(x)− Vθ(x)

)
∇θVθ(x)

]

I Gradient descent (sample x from distribution D)

∆θ = −α
(
V π(x)− Vθ(x)

)
∇θVθ(x)

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 37/66

TD as a Gradient Algorithm

I Ideal regression problem: given functions Vθ and distribution D

min
θ

L(θ) = min
θ

ED
[(

V π(x)− Vθ(x)
)2
]

I Gradient descent

∆θ = −1
2α∇θL(θ) = −αED

[(
V π(x)− Vθ(x)

)
∇θVθ(x)

]

I Gradient descent (sample x from distribution D)

∆θ = −α
(
V π(x)− Vθ(x)

)
∇θVθ(x)

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 37/66

TD as a Gradient Algorithm

I Replace unknown V π by its one-step estimate

∆θ = −α
(
V π(x)− Vθ(x)

)
∇θVθ(x)

⇒ ∆θt = −α
(
rt + γVθ(xt+1)− Vθ(xt)

)
∇θVθ(xt)

I Converges if samples are obtained on-policy and linear
approximation (may diverge with off-policy samples)

I Improved convergence guarantees obtained with Bellman residual
variants (GTD2, TDC)

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 38/66

TD as a Gradient Algorithm

I Replace unknown V π by its one-step estimate

∆θ = −α
(
V π(x)− Vθ(x)

)
∇θVθ(x)

⇒ ∆θt = −α
(
rt + γVθ(xt+1)− Vθ(xt)

)
∇θVθ(xt)

I Converges if samples are obtained on-policy and linear
approximation (may diverge with off-policy samples)

I Improved convergence guarantees obtained with Bellman residual
variants (GTD2, TDC)

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 38/66

Q-learning as a Gradient Algorithm

I Regression problem (ideal): given functions Vθ(x)

min
θ

L(θ) = min
θ

ED
[(

Q∗(x , a)− Qθ(x , a)
)2
]

I Gradient descent

∆θ = −1
2α∇θL(θ) = −αED

[(
Q∗(x , a)− Qθ(x , a)

)
∇θQθ(x , a)

]

I Gradient descent (sample x from distribution D)

∆θ = −α
(
Q∗(x , a)− Qθ(x , a)

)
∇θQθ(x , a)

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 39/66

Q-learning as a Gradient Algorithm

I Regression problem (ideal): given functions Vθ(x)

min
θ

L(θ) = min
θ

ED
[(

Q∗(x , a)− Qθ(x , a)
)2
]

I Gradient descent

∆θ = −1
2α∇θL(θ) = −αED

[(
Q∗(x , a)− Qθ(x , a)

)
∇θQθ(x , a)

]

I Gradient descent (sample x from distribution D)

∆θ = −α
(
Q∗(x , a)− Qθ(x , a)

)
∇θQθ(x , a)

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 39/66

Q-learning as a Gradient Algorithm

I Regression problem (ideal): given functions Vθ(x)

min
θ

L(θ) = min
θ

ED
[(

Q∗(x , a)− Qθ(x , a)
)2
]

I Gradient descent

∆θ = −1
2α∇θL(θ) = −αED

[(
Q∗(x , a)− Qθ(x , a)

)
∇θQθ(x , a)

]

I Gradient descent (sample x from distribution D)

∆θ = −α
(
Q∗(x , a)− Qθ(x , a)

)
∇θQθ(x , a)

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 39/66

Q-learning as a Gradient Algorithm

I Replace unknown Q∗ by its one-step estimate

∆θ = −α
(
Q∗(x , a)− Qθ(x , a)

)
∇θQθ(x , a)

⇒ ∆θt = −α
(
rt + γmax

b
Qθ(xt+1, b)− Qθ(xt , at)

)
∇θQθ(xt , at)

I May diverge even with a linear approximator

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 40/66

Q-learning as a Gradient Algorithm

I Replace unknown Q∗ by its one-step estimate

∆θ = −α
(
Q∗(x , a)− Qθ(x , a)

)
∇θQθ(x , a)

⇒ ∆θt = −α
(
rt + γmax

b
Qθ(xt+1, b)− Qθ(xt , at)

)
∇θQθ(xt , at)

I May diverge even with a linear approximator

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 40/66

Deep Q-Network (DQN)

aka Semi-batch Q-learning / semi-online fitted value iteration
I Construct a memory D = {(xi , ai , x ′i , ri)}ni=1

I Sample a mini-batch Dmini at random from D
I Compute the desired output (for all i in Dmini)

yi = ri + γmax
b

Q(x ′i , b)

I Minimize (e.g., with SGD) (as in FVI+approxQL)

Lmini(θ) = Ei∼Dmini

[(
yi − Qθ(xi , ai)

)2
]

No proof of convergence but mini-batch training (and other “tricks”)
improve stability

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 41/66

Deep Q-Network (DQN)

aka Semi-batch Q-learning / semi-online fitted value iteration
I Construct a memory D = {(xi , ai , x ′i , ri)}ni=1

I Sample a mini-batch Dmini at random from D
I Compute the desired output (for all i in Dmini)

yi = ri + γmax
b

Q(x ′i , b)

I Minimize (e.g., with SGD) (as in FVI+approxQL)

Lmini(θ) = Ei∼Dmini

[(
yi − Qθ(xi , ai)

)2
]

No proof of convergence but mini-batch training (and other “tricks”)
improve stability

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 41/66

Extensions

Alternative algorithms
I TD(λ) (better sample efficiency)
I GTD, GTD2, GQ (stronger convergence guarantees with linear

approximators)
I Use “stable” function approximators (e.g., averagers)
I Use off-policy data

Improvements: if TD/QL are gradient descent algorithms we can apply all the
machinery from gradient descent literature (e.g., variance reduction)

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 42/66

Approximate Reinforcement
Learning

Policy Gradient Methods

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 43/66

The Objective Function

I Define a parameterized (and differentiable) policy πθ (stochastic in
general)

I Define a desired distribution ρ over X
I Objective function

J(θ) = Ex∼ρ
[
V πθ (x)

]

Idea1 : use global optimizers or gradient by finite-difference methods
⇒ Policy search / Black-box policy optimization
Idea2 : compute the gradient ∇θJ(θ) and follow gradient ascent on
policies
⇒ (white-box) policy gradient

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 44/66

The Objective Function

I Define a parameterized (and differentiable) policy πθ (stochastic in
general)

I Define a desired distribution ρ over X
I Objective function

J(θ) = Ex∼ρ
[
V πθ (x)

]

Idea1 : use global optimizers or gradient by finite-difference methods
⇒ Policy search / Black-box policy optimization

Idea2 : compute the gradient ∇θJ(θ) and follow gradient ascent on
policies
⇒ (white-box) policy gradient

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 44/66

The Objective Function

I Define a parameterized (and differentiable) policy πθ (stochastic in
general)

I Define a desired distribution ρ over X
I Objective function

J(θ) = Ex∼ρ
[
V πθ (x)

]

Idea1 : use global optimizers or gradient by finite-difference methods
⇒ Policy search / Black-box policy optimization
Idea2 : compute the gradient ∇θJ(θ) and follow gradient ascent on
policies
⇒ (white-box) policy gradient

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 44/66

From Policy Iteration to Policy Search

Approximate policy iteration

πθk+1 = arg max
πθ

Qπθk (x , πθ(x))

Big jumps → fast but unstable

Policy gradient

θk+1 = θk + α∇θJ(θk)

Small shift → slow but stable

How do we compute ∇θJ?

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 45/66

From Policy Iteration to Policy Search

Approximate policy iteration

πθk+1 = arg max
πθ

Qπθk (x , πθ(x))

Big jumps → fast but unstable

Policy gradient

θk+1 = θk + α∇θJ(θk)

Small shift → slow but stable

How do we compute ∇θJ?

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 45/66

From Policy Iteration to Policy Search

Approximate policy iteration

πθk+1 = arg max
πθ

Qπθk (x , πθ(x))

Big jumps → fast but unstable

Policy gradient

θk+1 = θk + α∇θJ(θk)

Small shift → slow but stable

How do we compute ∇θJ?

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 45/66

Policy Gradient Theorem

Theorem
For any differentiable policy πθ(a|s) and objective function J, the policy
gradient is

∇θJ(θ) = Eπθ

[
∇θ log

(
πθ(a|x)

)
Qπθ (x , a)

]

Expectation w.r.t. policy (states from stationary distribution)

∇θJ(θ) =
∑

x∈X
ρπθ (x)

[
∇θ log

(
πθ(a|x)

)
Qπθ (x , a)

]

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 46/66

Policy Gradient Theorem

Theorem
For any differentiable policy πθ(a|s) and objective function J, the policy
gradient is

∇θJ(θ) = Eπθ

[
∇θ log

(
πθ(a|x)

)
Qπθ (x , a)

]

Expectation w.r.t. policy (states from stationary distribution)

∇θJ(θ) =
∑

x∈X
ρπθ (x)

[
∇θ log

(
πθ(a|x)

)
Qπθ (x , a)

]

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 46/66

Policy Gradient Theorem: Rough Idea

Let τ = (x1, a1, r1, . . . , xT) a trajectory and R(τ) its return (i.e., sum of rewards)

J(θ) =
∑

τ

P(τ |πθ)R(τ)

Gradient of J

∇J(θ) = ∇θ
(∑

τ

P(τ |πθ)R(τ)

)
=
∑

τ

∇θP(τ |πθ)R(τ)

=
∑

τ

P(τ |πθ)∇θ log
(
P(τ |πθ)

)
R(τ)

= Eτ |πθ

[
∇θ log

(
P(τ |πθ)

)
R(τ)

]

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 47/66

Policy Gradient Theorem: Rough Idea
Likelihood of a trajectory

P(τ |πθ) = ρ(x1)
T∏

t=1
p(xt1 |xt , at)πθ(at |xt)

logP(τ |πθ) = log
(
ρ(x1)) +

T∑

t=1
log
(
πθ(at |xt)

)
+

T∑

t=1
log
(
p(xt1 |xt , at)

)

∇θ logP(τ |πθ) =
���

���
�:0

∇θ log
(
ρ(x1)

)
+

T∑

t=1
∇θ log

(
πθ(at |xt)

) T∑

t=1�
���

���
���:

0
∇θ log

(
p(xt1 |xt , at)

)

Gradient of J

∇J(θ) = E
[
∇θ log

(
P(τ |πθ)

)
R(τ)

]

= Eτ |πθ

[T∑

t=1
∇θ log

(
πθ(at |xt)

)
R(τ)

]

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 48/66

Reinforce

Policy gradient theorem

∇θJ(θ) = Eπθ

[
∇θ log

(
πθ(a|x)

)
Qπθ (x , a)

]

Reinforce algorithm
I For each trajectory τk = (x1, a1, r1, x2, . . . , xT−1, aT−1, rT) ∼ πθ
I For t = 1, . . . ,T

I Compute Monte-Carlo estimate

R(xt , at) =
T∑

s=t
rt

I Update policy

θ = θ + α∇θ log
(
πθ(at |xt)

)
R(xt , at)

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 49/66

Reinforce

Issues
I R(x , a) is a MC (unbiased) estimation of Qπθ (x , a)

I R(x , a) has possibly a very large variance
I ⇒ Reinforce needs many samples to converge

Possible solutions
I Define an alternative estimator for Qπθ (x , a) ⇒ actor-critic
I Subtract a baseline function to R(x , a) ⇒ advantage function

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 50/66

Reinforce

Issues
I R(x , a) is a MC (unbiased) estimation of Qπθ (x , a)

I R(x , a) has possibly a very large variance
I ⇒ Reinforce needs many samples to converge

Possible solutions
I Define an alternative estimator for Qπθ (x , a) ⇒ actor-critic
I Subtract a baseline function to R(x , a) ⇒ advantage function

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 50/66

Actor-Critic

Use TD(0) to estimate Qπθ using functions Qw

Actor-Critic algorithm
I For each trajectory τk = (x1, a1, r1, x2, . . . , xT−1, aT−1, rT) ∼ πθ
I For t = 1, . . . ,T

I Compute temporal difference

δt = rt + γQw (xt+1, at+1)

I Update Q estimate

w = w + βδt∇Qw (xt , at)

I Update policy

θ = θ + α∇θ log
(
πθ(at |xt)

)
Qw (xt , at)

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 51/66

Actor-Critic

Issues
I Qw (x , a) is a biased estimator of Qπθ (x , a)

I The update of θ may not follow the gradient ∇θJ anymore

Possible solutions
I Choose the approximation space Qw “carefully” ⇒ compatibility between

Qw and πθ

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 52/66

Actor-Critic

Issues
I Qw (x , a) is a biased estimator of Qπθ (x , a)

I The update of θ may not follow the gradient ∇θJ anymore

Possible solutions
I Choose the approximation space Qw “carefully” ⇒ compatibility between

Qw and πθ

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 52/66

Actor-Critic: compatible function approximation

Theorem
An action value function space Qw is “compatible” with a policy space
πθ if

Qw (x , a) = w>∇θ log
(
πθ(a|x)

)
.

If w is minimizing the squared Bellman residual

w = arg min
w

Eπθ

[(
Qπθ (x , a)− Qw (x , a)

)2
]
.

Then
∇θJ(θ) = Eπθ

[
∇θ log

(
πθ(a|x)

)
Qw (x , a)

]

⇒ θ = θ + α∇θ log
(
πθ(at |xt)

)
Qw (xt , at)

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 53/66

Actor-Critic: compatible function approximation

Theorem
An action value function space Qw is “compatible” with a policy space
πθ if

Qw (x , a) = w>∇θ log
(
πθ(a|x)

)
.

If w is minimizing the squared Bellman residual

w = arg min
w

Eπθ

[(
Qπθ (x , a)− Qw (x , a)

)2
]
.

Then
∇θJ(θ) = Eπθ

[
∇θ log

(
πθ(a|x)

)
Qw (x , a)

]

⇒ θ = θ + α∇θ log
(
πθ(at |xt)

)
Qw (xt , at)

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 53/66

Actor-Critic with a baseline

Theorem
Let b(x) an arbitrary baseline function, then

∇θJ(θ) = Eπθ

[
∇θ log

(
πθ(a|x)

)(
Qπθ (x , a)− b(x)

)]

⇒ use b(s) to reduce the variance of the estimates

⇒ the choice that minimize the variance is V πθ !

⇒ Aπθ (x , a) = Qπθ (x , a)− V πθ (x , a) is the advantage function

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 54/66

Actor-Critic with a baseline

Theorem
Let b(x) an arbitrary baseline function, then

∇θJ(θ) = Eπθ

[
∇θ log

(
πθ(a|x)

)(
Qπθ (x , a)− b(x)

)]

⇒ use b(s) to reduce the variance of the estimates

⇒ the choice that minimize the variance is V πθ !

⇒ Aπθ (x , a) = Qπθ (x , a)− V πθ (x , a) is the advantage function

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 54/66

Actor-Critic with a baseline

Theorem
Let b(x) an arbitrary baseline function, then

∇θJ(θ) = Eπθ

[
∇θ log

(
πθ(a|x)

)(
Qπθ (x , a)− b(x)

)]

⇒ use b(s) to reduce the variance of the estimates

⇒ the choice that minimize the variance is V πθ !

⇒ Aπθ (x , a) = Qπθ (x , a)− V πθ (x , a) is the advantage function

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 54/66

Actor-Critic with Advantage Function

Use TD(0) to estimate Qπθ using functions Qw and V πt heta using functions Vv

Actor-Critic algorithm
I For each trajectory τk = (x1, a1, r1, x2, . . . , xT−1, aT−1, rT) ∼ πθ
I For t = 1, . . . ,T

I Compute temporal differences

δQ
t = rt + γQw (xt+1, at+1); δV

t = rt + γVv (xt+1)

I Update Q and V estimates

w = w + βδQ
t ∇Qw (xt , at); v = v + ηδV

t ∇Vv (xt)

I Update policy

θ = θ + α∇θ log
(
πθ(at |xt)

)(
Qw (xt , at)− Vv (xt)

)

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 55/66

Actor-Critic with advantage function

Issues
I Qw (x , a)− Vv (x) is a very biased and unstable estimator of Aπθ (x , a)

I The update of θ may be too fast w.r.t. w and v

Possible solutions
I Consider the “exact” temporal difference in x , a

δπθ = r + γV πθ (x ′)− V πθ (x)

I δπθ is an unbiased estimator of the advantage

E
[
δπθ

]
= E

[
r + γV πθ (x ′)

∣∣x , a
]
− V πθ (x) = Qπθ (x , a)− V πθ (x)

I ⇒ use only the TD(0) estimator

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 56/66

Actor-Critic with advantage function

Issues
I Qw (x , a)− Vv (x) is a very biased and unstable estimator of Aπθ (x , a)

I The update of θ may be too fast w.r.t. w and v

Possible solutions
I Consider the “exact” temporal difference in x , a

δπθ = r + γV πθ (x ′)− V πθ (x)

I δπθ is an unbiased estimator of the advantage

E
[
δπθ

]
= E

[
r + γV πθ (x ′)

∣∣x , a
]
− V πθ (x) = Qπθ (x , a)− V πθ (x)

I ⇒ use only the TD(0) estimator

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 56/66

Actor-Critic with Advantage Function and TD(0)

Actor-Critic algorithm
I For each trajectory τk = (x1, a1, r1, x2, . . . , xT−1, aT−1, rT) ∼ πθ
I For t = 1, . . . ,T

I Compute temporal difference

δt = rt + γVv (xt+1)

I Update V estimate
v = v + ηδV

t ∇Vv (xt)

I Update policy

θ = θ + α∇θ log
(
πθ(at |xt)

)(
δt − Vv (xt)

)

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 57/66

Actor-Critic with Advantage Function and TD(0)

Issues
I Properly setting the learning rates η and α is difficult
I All samples need to be generated by the current policy (on-policy learning)

Possible solutions
I Consider a “conservative” optimization algorithm
I Use importance weighting

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 58/66

Actor-Critic with Advantage Function and TD(0)

Issues
I Properly setting the learning rates η and α is difficult
I All samples need to be generated by the current policy (on-policy learning)

Possible solutions
I Consider a “conservative” optimization algorithm
I Use importance weighting

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 58/66

Conservative Policy Iteration Algorithms

Relationship between current policy π and candidate policy π̃

J(π̃) = J(π) +
∑

x∈X
ρπ̃γ (x)

∑

a
π̃(a|x)Aπ(x , a)

with ρπ̃γ (x) =
∑∞

t=0 γ
tPπ̃
[
xt = x

]
(discounted stationary distribution)

Issue: ρπ̃γ (x) is difficult to compute/estimate for any possible π̃

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 59/66

Conservative Policy Iteration Algorithms

Relationship between current policy π and candidate policy π̃

J(π̃) = J(π) +
∑

x∈X
ρπ̃γ (x)

∑

a
π̃(a|x)Aπ(x , a)

with ρπ̃γ (x) =
∑∞

t=0 γ
tPπ̃
[
xt = x

]
(discounted stationary distribution)

Issue: ρπ̃γ (x) is difficult to compute/estimate for any possible π̃

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 59/66

Conservative Policy Iteration Algorithms

Surrogate function

J(π̃) = J(π) +
∑

x∈X
ρπ̃γ (x)

∑

a
π̃(a|x)Aπ(x , a)

Lπ(π̃) = J(π) +
∑

x∈X
ρπγ (x)

∑

a
π̃(a|x)Aπ(x , a)

Properties
I Lπ(π) = J(π)
I If parametrized policy π = πθ then ∇θLπθ

(πθ) = ∇θJ(πθ)

⇒ In an interval close to π, Lπ is a good surrogate for J

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 60/66

Conservative Policy Iteration Algorithms

Surrogate function

J(π̃) = J(π) +
∑

x∈X
ρπ̃γ (x)

∑

a
π̃(a|x)Aπ(x , a)

Lπ(π̃) = J(π) +
∑

x∈X
ρπγ (x)

∑

a
π̃(a|x)Aπ(x , a)

Properties
I Lπ(π) = J(π)
I If parametrized policy π = πθ then ∇θLπθ

(πθ) = ∇θJ(πθ)

⇒ In an interval close to π, Lπ is a good surrogate for J

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 60/66

Conservative Policy Iteration Algorithms

Let measure the “distance” between two policies as

Dmax
TV (π, π̃) = max

x
DTV

(
π(·|x)‖π̃(·|s)

)

Then for any two policies π, π̃, such tat Dmax
TV (π, π̃) = α and

ε = maxx ,a |Aπ(x , a)|
J(π̃) ≥ Lπ(π̃)− 4εγ

(1− γ)2α
2

New policy improvement scheme = conservative policy iteration

max
π̃

Lπ(π̃)− CDmax
TV (π, π̃)

⇒ difficult to optimize...

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 61/66

Conservative Policy Iteration Algorithms

Let measure the “distance” between two policies as

Dmax
TV (π, π̃) = max

x
DTV

(
π(·|x)‖π̃(·|s)

)

Then for any two policies π, π̃, such tat Dmax
TV (π, π̃) = α and

ε = maxx ,a |Aπ(x , a)|
J(π̃) ≥ Lπ(π̃)− 4εγ

(1− γ)2α
2

New policy improvement scheme = conservative policy iteration

max
π̃

Lπ(π̃)− CDmax
TV (π, π̃)

⇒ difficult to optimize...

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 61/66

Conservative Policy Iteration Algorithms

Let measure the “distance” between two policies as

Dmax
TV (π, π̃) = max

x
DTV

(
π(·|x)‖π̃(·|s)

)

Then for any two policies π, π̃, such tat Dmax
TV (π, π̃) = α and

ε = maxx ,a |Aπ(x , a)|
J(π̃) ≥ Lπ(π̃)− 4εγ

(1− γ)2α
2

New policy improvement scheme = conservative policy iteration

max
π̃

Lπ(π̃)− CDmax
TV (π, π̃)

⇒ difficult to optimize...

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 61/66

Conservative Policy Iteration Algorithms

Alternative measure of distance

Dρ
KL(π, π̃) = Ex∼ρ

[
DKL

(
π(·|x)‖π̃(·|s)

)]

Alternative policy improvement scheme (regularized version)

max
π̃

Lπ(π̃)− CDρπγ
KL(π, π̃)

Alternative policy improvement scheme (constrained version)

max
π̃

Lπ(π̃)

s.t. Dρπγ
KL(π, π̃) ≤ δ

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 62/66

Conservative Policy Iteration Algorithms

Towards an actual algorithm (1)
I Importance weighting with a sampling distribution q(a|x)

∑

a
π̃(a|x)Aπ(x , a)⇒

∑

a
q(a|x)

π̃(a|x)

q(a|x)
Aπ(x , a) = Eq(·|x)

[π̃(a|x)

q(a|x)
Aπ(x , a)

]

I Replace Aπ with Qπ and remove J(π) (constant shifts)

max
π̃

Ex∼ρπγEa∼q(·|x)

[π̃(a|x)

q(a|x)
Qπ(x , a)

]

s.t. Dρπγ
KL(π, π̃) ≤ δ

Towards an actual algorithm (2)
I Estimate E by executing π and q
I Estimate Qπ by rollouts

⇒ Trust region policy optimization (TRPO)

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 63/66

Summary

Policy gradient methods are successful because
I Easy to integrate a NN architecture into the scheme
I Effective in simulation environments (large amount of rollouts can be

generated)
I A lot of “tricks” from optimization can be integrated

Policy gradient methods are difficult because
I Stochastic policies may not be desirable
I No convergence guarantees
I A zoo of more or less explicit / heuristic variants

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 64/66

Bibliography I

A. LAZARIC – Approximate Reinforcement Learning Dec 2nd, 2014 - 65/66

Reinforcement Learning

Alessandro Lazaric
alessandro.lazaric@inria.fr

sequel.lille.inria.fr

