
Transfer of Samples in Batch Reinforcement Learning

Alessandro Lazaric lazaric@elet.polimi.it

Marcello Restelli restelli@elet.polimi.it

Andrea Bonarini bonarini@elet.polimi.it

DEI, IIT-Lab, Politecnico di Milano, P.za Leonardo da Vinci, 32, I-20133, Milan, Italy

Abstract

The main objective of transfer in reinforce-
ment learning is to reduce the complexity of
learning the solution of a target task by ef-
fectively reusing the knowledge retained from
solving a set of source tasks. In this paper,
we introduce a novel algorithm that transfers
samples (i.e., tuples 〈s, a, s′, r〉) from source
to target tasks. Under the assumption that
tasks have similar transition models and re-
ward functions, we propose a method to se-
lect samples from the source tasks that are
mostly similar to the target task, and, then,
to use them as input for batch reinforcement-
learning algorithms. As a result, the number
of samples an agent needs to collect from the
target task to learn its solution is reduced.
We empirically show that, following the pro-
posed approach, the transfer of samples is ef-
fective in reducing the learning complexity,
even when some source tasks are significantly
different from the target task.

1. Introduction

The main objective of transfer in Reinforcement
Learning (RL) is to reduce the learning time. In fact,
the solution of a set of source tasks can provide useful
information about how to solve a related target task,
thus reducing the amount of experience needed to solve
it. In order to design an effective transfer algorithm,
two aspects must be taken into account: what to trans-
fer, that is the knowledge retained from the source
tasks, and when to transfer, that is the identification
of tasks from which transfer is likely to be effective.

There exists a much empirical evidence about the ef-

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

fectiveness of techniques such as task decomposition,
options, shaping rewards, exploration strategies, in im-
proving the learning speed of RL algorithms in single-
task problems. Many studies focus on extending such
techniques to the transfer scenario. In particular, hier-
archical solutions are often used (Şimşek et al., 2005;
Mehta et al., 2005) to augment the action space with
policies suitable for the solution of a wide range of
tasks sharing the same dynamics, but with different
goals. In (Konidaris & Barto, 2007), a set of options
is learned in an agent space defined by a set of fea-
tures shared across the tasks, thus making the options
reusable even in tasks with different state spaces. The
improvement of learning speed can also be obtained
through direct transfer of solutions from source to tar-
get task. In this scenario, the main issue is to map the
solution learned in a source task to the state-action
space of the target task, thus initializing the learning
algorithm to a convenient solution. Different aspects
of a learning algorithm can be initialized, such as value
functions, policies, and approximator structure (Tay-
lor et al., 2007, and references therein).

Although these approaches study how the transfer of
different elements from source to target tasks can im-
pact on the performance of an RL algorithm, they of-
ten rely on the assumption that the tasks are strictly
related and they do not address the problem of nega-
tive transfer (Rosenstein et al., 2005). In fact, transfer
may bias the learning process towards solutions that
are completely different from the optimal one, thus
worsening the learning performance. Some works fo-
cus on the definition of measures of relatedness be-
tween tasks that can be used to select from which
source tasks transfer is actually convenient. An ex-
perimental analysis of measures that estimate the ex-
pected speed-up on the basis of information such as
policy overlapping, Q-values, and reward structure is
reported in (Carroll & Seppi, 2005). Unfortunately,
it is often difficult to compute these measures before
actually solving the target task, and, thus, they can
be used only to analyze the effectiveness of a transfer

Transfer of Samples in Batch Reinforcement Learning

method. In (Ferns et al., 2004), different metrics for
the distance between tasks are proposed and theoreti-
cal bounds on the difference between the correspond-
ing optimal value functions are derived.

In this paper, we focus on a perspective that received
little attention so far, the transfer of samples. We pro-
pose a mechanism that selectively transfers samples
from source to target tasks on the basis of the simi-
larity of source tasks with the samples collected in the
target task. We introduce a criterion to select from
which sources transfer should occur, and, within each
task, which samples are more likely to speed-up the
learning process. As a result, through selective trans-
fer of samples, it is possible to reduce the number of
samples needed to solve the target task.

The paper is organized as follows. In Section 2 we
introduce notation and we briefly review batch RL.
In Section 3 we propose a novel mechanism for trans-
fer of samples in batch RL algorithms. In Section 4
we report the experimental results of sample transfer.
In Section 5 we relate our work with other transfer-
learning approaches. Finally, in Section 6 we draw con-
clusions, and we propose directions for future works.

2. Batch Reinforcement Learning

In RL, the interaction between the agent and the
environment is modeled as a discrete-time Markov
Decision Process (MDP). An MDP is a tuple
〈S,A,P ,R, γ〉, where S is the state space, A is the ac-
tion space, P : S × A → Π(S) is the transition model
that assigns to each state-action pair a probability dis-
tribution over S, R : S×A → Π(R) is the reward func-
tion that assigns to each state-action pair a probability
distribution over R, γ ∈ [0, 1) is the discount factor.
At each time step, the agent chooses an action accord-
ing to its current policy π : S → Π(A), which maps
each state to a probability distribution over actions.
The goal of an RL agent is to maximize the expected
sum of discounted rewards, that is to learn an opti-
mal policy π∗ that leads to the maximization of the
value function in each state. The optimal action-value
function Q∗(s, a) is defined by the Bellman equations

Q∗(s, a) =
∑

s′

P(s′|s, a)
[
R(s, a) + γ max

a′
Q∗(s′, a′)

]
,

where R(s, a) = E[R(s, a)] is the expected reward.

One of the main drawbacks of online RL algorithms
(e.g., Q-learning) when applied to real-world problems
is the large amount of experience needed to solve a
task. In order to overcome this drawback, batch ap-
proaches have been proposed. The main idea is to

distinguish between the exploration strategy that col-
lects samples of the form 〈s, a, s′, r〉 (sampling phase),
and the offline learning algorithm that, on the basis
of the samples, computes the approximation of the
action-value function (learning phase). In this paper,
we focus on fitted algorithms, although the proposed
transfer mechanism can be applied to any batch RL
algorithm. The idea underlying fitted solutions (Ernst
et al., 2005, and references therein) is to reformulate
the learning of the value function as a sequence of re-
gression problems. Given a set of samples, Fitted Q-
Iteration (FQI)(Ernst et al., 2005) estimates the opti-
mal action-value function by iteratively extending the
optimization horizon. At the first iteration, the algo-
rithm defines a regression problem for a 1-step prob-
lem, in which the action-value function is equal to the
reward function. An approximation is computed run-
ning a chosen regression algorithm on the available
samples. Thereafter, at each iteration k, correspond-
ing to a k-step horizon, a new regression problem is
stated, in which the training samples are computed
exploiting the approximation of the action-value func-
tion at the previous iteration.

3. Transfer of Samples in Batch

Reinforcement Learning

We formulate the transfer problem as the problem of
solving a target task given a set of source tasks drawn
according to a given probability distribution defined
on a set of tasks which differ in either the transition
model or the reward function, or both, but share the
same state-action space.

Definition 1 A task T is an MDP defined by the tu-
ple 〈S,A,PT ,RT , γ〉, in which the transition model PT

defines the dynamics, and the reward function RT de-
fines the goal.

Definition 2 An environment E is defined by the tu-
ple 〈T , Ω〉, where T is the task space and Ω is the
task distribution that provides the probability of a task
T ∈ T to occur.

In batch RL algorithms, the element that mainly af-
fects the learning performance is the set of samples
used to feed the learning algorithm, the more infor-
mative the samples the better the approximation. We
focus on the way this set of samples can be augmented
by the inclusion of samples drawn from a set of source
tasks. The basic intuition underlying this idea is that,
since tasks are related through the task distribution Ω,
some of the source tasks are likely to contain samples
similar to those in the target task. Therefore, we ex-
pect the transfer of samples to improve performance of

Transfer of Samples in Batch Reinforcement Learning

batch RL algorithms even when a very limited number
of samples have been actually collected from the tar-
get task. This improvement is particularly important
in domains where sampling is slow and expensive (e.g.,
robotic applications).

More formally, we consider the scenario in which a set
of n source tasks {Sk}, with Sk ∈ T and k ∈ Nn, drawn
from Ω are available. From each source task m sam-
ples have been collected, while only t ≪ m samples are
available from the target task T . Let {Ŝk} and T̂ be
the sample sets for the source and target tasks respec-
tively. The transfer algorithm selects a set of samples
from the source tasks that are used to augment T̂ , thus
building a new set of samples T̃ . Finally, samples in
T̃ are used as input for the learning algorithm.

3.1. Task Compliance

The main problem of transferring samples across tasks
is to avoid negative transfer, that is the transfer of
samples from source tasks that are significantly differ-
ent from the target task. Therefore, we need to iden-
tify which source tasks are more likely to have samples
similar to those in the target task. Alternatively, this
problem can be stated as a model identification prob-
lem. Let us consider the following scenario: The task
space T contains n tasks, and m samples have been
already collected from each task. Let T be a new task
drawn according to Ω and T̂ the set of samples col-
lected from it, with |T̂ | = t ≪ m. Since the transfer
of samples from all the tasks in T may worsen the
performance in T , we need to identify which of the
previously solved tasks is actually T according to the
available samples. Starting from a uniform prior over
the tasks in T , we compute the posterior distribution
as the probability of a task to be the model from which
samples in T̂ are drawn. As the number of samples t
increases, the posterior distribution is updated accord-
ingly until the total probability mass concentrates on
the task equal to T . Then, the m samples previously
collected in the task equal to T can be added to T̂ and
used to feed the batch RL algorithm, thus improving
its learning performance.

In the general case in which T is infinite or contains
many tasks, the probability to have one source task
identical to the target task is negligible. Thus, instead
of the probability of a source task to generate all the
samples collected in the target task, we compute its
compliance with T as the average probability of gen-
erating the samples in T̂ . Then, we transfer samples
from source tasks proportionally to their compliance
with the target task.

Let us consider a source task S and the set of target

samples T̂ . Given a state-action pair 〈s, a〉, the prob-
ability of S to be the model from which the target
samples in 〈s, a〉 are extracted, that is the likelihood
of the model in 〈s, a〉, can be simply computed by ap-
plying the Bayes theorem as 1

P
“
S|bT〈s,a〉

”
∝ P

“
bT〈s,a〉|S

”
P (S)

=
Y

τi∈ bT〈s,a〉

P (τi|S) P (S)

=
Y

τi∈ bT〈s,a〉

PS(s′i|si, ai)RS(ri|si, ai)P (S) ,(1)

where T̂〈s,a〉 = {τi ∈ T̂ |si = s, ai = a}, P (S) is the

prior on the source task S, and P (S|T̂〈s,a〉) is the pos-
terior distribution over the source tasks in 〈s, a〉.

Unfortunately, the posterior probability cannot be im-
mediately computed without the exact model of S. On
the other hand, we have a set of m samples Ŝ previ-
ously collected in S, from which an approximation of
the continuous model can be computed. In the follow-
ing, with an abuse of notation, with T̂ and Ŝ we denote
both the sets of samples and the model approximations
built on them. Let τi = 〈si, ai, s

′
i, ri〉 be a sample in

T̂ , the probability of this sample to be generated by S
given the set of source samples Ŝ is

P (τi|Ŝ) = PbS(s′i|si, ai)RbS(ri|si, ai),

where PbS and RbS are the approximated transition and
reward models respectively. Since in continuous spaces
the probability to have samples in the same state-
action pair is negligible, it is necessary to use an ap-
proximation that generalizes over all the samples close
to 〈si, ai〉. In particular, we follow the kernel-based
approximation proposed in (Jong & Stone, 2007).

Let ϕ(·) be a kernel function (e.g., a Gaussian ker-
nel ϕ(x) = exp(−x2/δ) with bandwidth δ) applied to
a given distance metric d (e.g., Euclidean or Maha-
lanobis distance). First of all, we define the similarity
(compliance in the following) between the experience

tuple τi and the experience tuples σj ∈ Ŝ in terms of
dynamics and reward. We define the compliance of τi

with respect to σj for the transition model as

λPij = wij · ϕ

(
d(s′i, si + (s′j − sj))

δs′

)
,

where

wij =
ϕ
(

d(〈si,ai〉,〈sj,aj〉)
δsa

)

∑m
l=1 ϕ

(
d(〈si,ai〉,〈sl,al〉)

δsa

) .

1We assume that samples are mutually independent.

Transfer of Samples in Batch Reinforcement Learning

While the first term (wij) of λPij is a weight that
takes into consideration the relative closeness of the
two samples in the state-action space, the second term
measures the similarity of the outcome. In particu-
lar, under the assumption that the transition model is
continuous in the state-action space, it measures the
distance between s′i and the state obtained by applying
the state transition (s′j −sj) of σj to state si (see Jong
& Stone, 2007). Therefore, the dynamics of τi is highly
compliant with that of σj when they are close and their
state transitions are similar.
Similarly, the compliance of the reward in τi with re-
spect to that of σj is defined as

λRij = wijϕ

(
|ri − rj |

δr

)
.

The approximated transition and reward models are
the average of the compliance between τi and all the
samples in Ŝ

PbS(s′i|si, ai) =
1

ZP

mX

j=1

λ
P
ij ; RbS(ri|si, ai) =

1

ZR

mX

j=1

λ
R
ij ,

where ZP and ZR are normalization terms. Finally,
we define the compliance of τi to S approximated using
samples in Ŝ as

λi = P (τi|Ŝ) =
1

ZPZR

m∑

j=1

λPij

m∑

j=1

λRij

 .

Recalling Equation 1, given the compliance of samples
in 〈s, a〉, the probability of the model in 〈s, a〉 becomes

P
(
S|T̂〈s,a〉

)
∝

∏

τi∈bT〈s,a〉

λiP (S) . (2)

Starting from the probability in each state-action pair,
we compute a global measure of the probability for the
task to contain samples similar to target samples. We
define the compliance of a task S as the average likeli-
hood computed over each state-action pair experienced
in the target task.

Definition 3 Given the target samples T̂ and the
source samples Ŝ, the task compliance of S is

Λ =
1

|Û |

∑

〈s,a〉∈bU

P
(
S|T̂〈s,a〉

)
, (3)

where Û contains all the distinct state-action pairs in
the samples of T̂ .

Since the probability to have two samples in the very
same state-action pair is negligible, it follows that

|Û | = |T̂ | = t and the previous definition reduces to

Λ =
1

t

t∑

i=1

λiP (S), (4)

where P (S) is a prior on the source task. When n
source tasks with m samples each are available, and t
samples are collected from T , the computation of the
task compliance has a time complexity of Θ(nmt).

3.2. Sample Relevance

Although the measure of compliance is effective in
identifying which sources, in average, are more con-
venient to transfer samples from, it does not provide
any suggestion about which samples in Ŝ are actually
better to transfer. In the following, we introduce the
concept of relevance of each sample σj ∈ Ŝ. The idea
is to use the compliance of σj with the target task.
Unfortunately, in this case, the measure of compliance
is often unreliable because of a poor approximation of
the target task. In fact, while each source task contains
m samples, only t ≪ m samples are available for the
target task. As a result, it may happen that the com-
pliance of σj is computed according to samples τi that
are significantly far in the state-action space. There-
fore, we need a formulation of relevance strictly related
to the compliance whenever the number of samples in
T̂ close to σj is sufficient, while tending to a default
value when the compliance is not reliable. Given the
definition of compliance λPji and λRji of σj with a sam-
ple τi, the compliance of σj with the approximated

model of the target task T̂ is

λj = P (σj |T̂) =
1

ZPZR

(
t∑

i=1

λPji

)(
t∑

i=1

λRji

)
. (5)

Let the samples τi be sorted in ascending order accord-
ing to wji. We compute the average distance between

σj and the samples τi ∈ T̂ as

dj =
1

hj

hj∑

i=1

d(〈sj , aj〉, 〈si, ai〉), (6)

where hj is such that
∑hj

i=1 wji < µ, where µ ∈ (0; 1]
determines the fraction of the total number of samples
considered in the computation of the average distance.

Definition 4 Given the compliance λj and the aver-
age distance dj, the relevance of σj is defined as

ρj = ρ(λj , dj) = e
−

„
λj−1

dj

«
2

, (7)

where λj is the compliance normalized over all the

samples in Ŝ.

Transfer of Samples in Batch Reinforcement Learning

Distance

 0

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

R
el

ev
an

ce

Compliance

 0.2

 0.4

dj

ρ
j

λj

Figure 1. Relevance function for different values of dj .

The relevance function is shown in Figure 1 for differ-
ent values of distance dj . As it can be noticed, sample
σj may have high relevance in two distinct cases: (i)
where there is a number of close samples τi which it is
compliant with, (ii) where there are no close samples
and, independently from the compliance, we assume
a high relevance value. The assumption underlying
this definition is that, whenever there is no evidence
against the transfer of a sample, it is convenient to
transfer it. In fact, in transfer problems the learner
often needs to infer knowledge about unexplored re-
gions of the target task. In these regions, the algo-
rithm selects samples from the most compliant source
tasks. The assumption is that samples far from target
samples, but drawn from highly compliant tasks, are
worth transferring, since they provide information in
regions that have not been actually experienced.

3.3. Transfer of Samples

The actual transfer process is based on the compliance
of the source tasks with the target samples and on the
relevance of samples within each source task. For sake
of simplicity, we bound the number of samples used by
the learning algorithm to m. Since |T̂ | = t samples are
already available, m − t samples need to be extracted
and transferred from the source tasks. For each source
task Sk, the number of samples transferred to the sam-
ple set T̃ of the new target task is proportional to its
normalized compliance Λk = ΛkP

n
l=1

Λl
. Then, for each

source task, samples are drawn according to their rele-
vance, thus avoiding to transfer samples that are quite
dissimilar from those in the target task. The whole
sample-transfer process is summarized in Algorithm 1.

4. Experiments

In order to evaluate the performance of the sample-
transfer algorithm we consider a variant of the boat

Algorithm 1 The sample transfer algorithm
Input: source tasks {Sk}k∈Nn , target task T
Parameters: δsa, δs′ , δr, t, m

Output: transferred sample set eT
for k = 1 to n do

bSk ← sampling(Sk, m)
end for
bT ← sampling(T, t)
for k = 1 to n do

Λk ← compliance(bSk, bT)

for σj ∈ bSk do

ρj ← relevance(σj , bT)
end for

Draw (m− t)Λk samples from bSk proportionally to ρj

end for

Put the additional samples in bT and form the sample set eT

problem proposed in (Lazaric et al., 2007). The prob-
lem is to learn a controller to drive a boat from the
left bank to the right-bank quay of a river, in pres-
ence of a non-linear current. The boat’s bow coor-
dinates, x and y, are defined in the range [0, 200]
and the controller sets the desired direction a ∈
[−90◦,−45◦, 0◦, 45◦, 90◦]. The chosen action is per-
turbed by a uniform noise in the range [−5◦; 5◦]. The
control frequency is set to 1Hz. For the lack of space,
we refer the reader to (Lazaric et al., 2007) for the
equations of the dynamics. In addition, we introduce
sandbanks, i.e., regions of the river in which the speed
is reduced by 20%. The reward function is defined as:

R(x, y) =

8
>>>>><
>>>>>:

+10 x = 200 and y ∈ Zs

D(x,y) x = 200 and y ∈ Zv

-10 x = 200 and y ∈ Zf

-2 (x, y) ∈ sandbank
-2 y ≤ 0 or y ≥ 200
0 elsewhere

(8)

where D is a function that gives a reward decreasing
linearly from 10 to -10 relative to the distance from
the quay, Zs is the quay zone, Zv is the viability zone
around the quay, and Zf is the failure zone in all the
other bank points. The dynamics and learning param-
eters are summarized in Tab. 1. In the following ex-
periments, we use Gaussian kernels and Mahalanobis
distance (see Section 3.1). The results are obtained by
averaging 100 runs. In FQI, we use extra-randomized
trees (Ernst et al., 2005) with 50 trees, 2 random splits,
and 2 minimum sample size for each node, trained on
25 iterations. Samples are obtained through random
sampling run on independent episodes of maximum 50
steps each. Each episode restarts the boat at the left
bank in a random position. Testing is performed on
1,000 episodes with the initial position drawn at ran-
dom from 20 evenly spaced positions at the left bank.

The first experiment is meant to illustrate the effec-
tiveness of the relevance in identifying which samples
are worth transferring. We consider a transfer prob-

Transfer of Samples in Batch Reinforcement Learning

Parameter Value

I/p 0.1 / 0.9
sMAX/sD 2.5 / 1.75

Zs / Zv width 10.0 / 10.0

Parameter Value

m 2000
µ 0.8

δsa 0.1
δr 0.5
δs′ 0.1

Table 1. The dynamics and
transfer parameters.

 0

 50

 100

 150

 200

 0 50 100 150 200

sandbank1

sandbank2

G1

π*1
π*2
π*

 0

 50

 100

 150

 200

 0 50 100 150 200

G2
fc=-0.5

Figure 2. (left) Sandbanks and goal of the target task and trajectories of the optimal policies
of S1, S2, and T tested in T . (right) Sandbanks and goal of S2.

lem with three tasks in which S1 and S2 are the source
tasks and T is the target task. In T the quay is G1

and there are two sandbanks as illustrated in Figure 2-
(left). In task S1 there are two quays G1 and G2, and
there is only one sandbank corresponding to the re-
gion labeled as sandbank1 in Figure 2-(left). Task S2

has the quay G2 and the sandbanks illustrated in Fig-
ure 2-(left). While T and S1 have the same current
force (fc = 0.5), the current in S2 is in the opposite
direction (fc = −0.5). The source task S2 has a com-
pletely different dynamics and reward function from
those in T because of different sandbanks and current.
Therefore, samples transferred from S2 are likely to
induce negative effects on the learning performance of
T . Furthermore, as it can be noticed from the trajec-
tories shown in Figure 2-(left), the optimal policy π∗2
of S2 obtains very poor performance when tested on
T . On the other hand, S1 has the same dynamics as
T in large regions of the state-action space and shares
one goal with T . Although its optimal policy π∗1 is
significantly different from π∗, it is possible to choose
samples from Ŝ1 to improve the performance in T .

Figure 3-(left) shows the performance obtained by FQI
with four different configurations: No Transfer, Ran-
dom, Compliance, and Relevance Transfer. In the first
configuration FQI is run with samples directly col-
lected from T . The other three configurations are run
on the sample set T̃ obtained by transferring samples
chosen at random, according to the compliance, and
according to the relevance respectively. Furthermore,
we also report the performance obtained by transfer-
ring policies π∗1 and π∗2 as baselines. The augmentation

of T̂ with samples drawn from S1 and S2 at random
does not lead to any significant improvement of the
performance with respect to learning directly on sam-
ples in T̂ . In fact, the only advantage achieved with the
transferred samples is that the agent avoids to go out-
side of the boundaries, but she learns neither to avoid

sandbanks nor to achieve the goal. The main reason
for this poor performance is that samples drawn from
S2 do not provide any information about the actual
dynamics and rewards of T and, thus, may lead to
learning very bad policies. On the other hand, the
compliance-based transfer successfully excludes sam-
ples of S2 from the transfer process (the normalized
compliance of S1 for t = 200 is Λ1 = 0.93 ± 0.09),

thus augmenting T̂ with samples mainly coming from
S1. Since S1 shares with T the dynamics and the
rewards in all the state space but at sandbank2 and
in the quay G2, the transfer is positive and leads to
a significant improvement in the performance of the
learning process. Nonetheless, there are still many
trajectories leading to the quay G2 and crossing the
sandbank because of the negative effect of transferring
samples from regions with dynamics and reward differ-
ent from T . In Figure 3-(right) we report the relevance

of the samples in Ŝ1 (averaged on all the actions). As
it can be noticed, the relevance identifies the regions
where samples are actually similar in source and tar-
get tasks, excluding samples coming from sandbank2
and the lower quay G2. As a result, the performance
of the relevance-based transfer is further improved.

In order to evaluate the relative improvement of trans-
fer, we compute the area ratio (Taylor et al., 2007) of
the three transfer configurations, defined as the differ-
ence between the accumulated reward with and with-
out transfer divided by the reward accumulated with-
out transfer. Figure 3-(center) shows the area ratio
for the three transfer configurations. As it can be no-
ticed, random transfer does not lead to any significant
improvement, while relevance-based transfer improves
the performance by 75.3% ± 13.2. All the differences
are statistically significant (p < 0.01).

In the previous experiment, source and target tasks
have been designed to show how the algorithm works.
Now, we consider the general case in which tasks are

Transfer of Samples in Batch Reinforcement Learning

-80

-70

-60

-50

-40

-30

-20

-10

 50 250 450 650 850 1050 1250

T
ot

al
 R

ew
ar

d

Number of samples (x100)

π*1

π*2

No Transfer
Random

Compliance
Relevance

 0

 0.2

 0.4

 0.6

 0.8

 1

Random Comp. Relevance

A
re

a
R

at
io

0 50 100 150 200
0

50

100

150

200

x

y

0

1

2

3

4

5

x 10
−4

Figure 3. (left-center) Total reward and area ratio. (right) Relevance of samples in bS1 at convergence.

drawn from an infinite task space T . For sake of sim-
plicity, we consider the same target task of the previ-
ous experiment, while source tasks have current fc=0.5
and one sandbank. Source tasks are drawn from a
distribution Ω such that the coordinates of the cen-
ter, height, and width of the sandbank are uniformly
drawn from the space [20.0; 180.0] × [20.0; 180.0] ×
[40.0; 100.0] × [40.0; 100.0], while the quay position is
drawn uniformly in [20.0; 180.0]. In Figure 4, we report
the results of relevance-based transfer obtained by av-
eraging the result with 10 different sets of five source
tasks. Although the source tasks are different from the
target in large regions, the transfer algorithm is able to
identify which samples are worth transferring from the
source tasks and it successfully improves the learning
performance with an area ratio of 59.5%± 15.4.

Since the algorithms of transfer in RL proposed so far
rely on temporal-difference or model-based learning
algorithms, an empirical comparison with the perfor-
mance of sample transfer would not be fair. Nonethe-
less, in the next section, we discuss its similarities and
differences with other transfer approaches.

5. Related Works

In (Sunmola & Wyatt, 2006) a Bayesian approach is
used for transfer of MDPs, where source task models
are pre-posteriors for the distributions of the parame-
ters of the target model and model-based RL is used
to compute the solution. Although we similarly adopt
a Bayesian argument in the compliance, we directly
transfer samples and we use a model-free learning algo-
rithm. Furthermore, instead of a parametric approx-
imation of the model of the source tasks, we follow a
non-parametric solution.

The task compliance can be interpreted as a sort of
distance metric between tasks. In (Ferns et al., 2004),
distance metrics for MDP similarity are introduced in
the context of bisimulation to aggregate states with
similar dynamics and reward. Under a transfer per-

spective, these metrics can be used to measure the dif-
ference between states in distinct tasks and to bound
the performance loss of using the optimal policy of
a source task in the target task. Unfortunately, this
technique cannot be directly applied to our scenario for
different reasons. The computation of the Kantorovich
distance between different states is very expensive, be-
cause it requires the solution of a complex optimiza-
tion problem. Furthermore, the proposed algorithm
needs either the exact models of tasks or accurate ap-
proximations. On the other hand, we adopt a solution
with low computational complexity, linearly depend-
ing on the number of samples of the source tasks. Fi-
nally, empirical analysis (Phillips, 2006) showed that
the theoretical bounds on the performance loss are too
loose and they do not provide useful directions about
the actual performance of the transferred policy.

The transfer of samples is also related to works about
transfer of solutions in the RL context (Taylor et al.,
2007). Although the transfer of samples or solutions
(e.g., policies) from only one source task obtains simi-
lar results, there are situations in which sample trans-
fer can obtain better results than solution transfer.
Even when the difference between source and target
tasks is limited to few state-action pairs, the optimal
policies of the two tasks can be significantly different
and the transfer may achieve very poor performance.
On the other hand, the transfer of samples can still be
effective. In fact, since most of the samples in the two
tasks are identical, the learning algorithm can bene-
fit from samples coming from the source task inde-
pendently from the actual difference of their optimal
policies. Furthermore, the transfer of samples does
not require to actually solve the source tasks, and it
can be used even when the samples are not enough to
solve source tasks. In (Mehta et al., 2005) a solution
in which the model-based hierarchical task decomposi-
tion allows for transfer at multiple levels of the hierar-
chy is proposed. This approach relies on the assump-
tion that rewards are a linear combination of basis re-

Transfer of Samples in Batch Reinforcement Learning

-80

-70

-60

-50

-40

-30

-20

-10

 50 250 450 650 850 1050 1250

T
ot

al
 R

ew
ar

d

Number of samples (x100)

No Transfer
Relevance

Figure 4. Performance with five random source tasks.

ward functions and it can be applied only to prob-
lems of goal transfer, with a fixed transition model.
On the other hand, sample transfer can be applied to
any transfer scenario. Finally, a method for mapping
samples from a source to a target task with different
state-action space is proposed in (Taylor et al., 2008).

6. Conclusions

In this paper, we introduced a mechanism for the
transfer of samples with the aim of improving the
learning performance. The main advantages of the
proposed solution are: (i) it is independent from the
similarity of the policies and action-value functions of
the tasks at hand and, thus, can be applied to a wide
range of problems, (ii) it is independent from the batch
RL algorithm, (iii) it can be applied to any transfer
problem in which either reward or transition or both
models change. Experimental results show the effec-
tiveness of the method in improving the learning per-
formance and in avoiding negative transfer when the
source tasks are significantly different from the target.

Some aspects of the algorithm can be improved in fu-
ture works. In case of tasks that either share exactly
the same transition or reward model, it is possible to
transfer only the part of the samples common to all
the tasks. For instance, if two tasks share the same
transition model, but have different goals, it is possi-
ble to transfer the 〈s, a, s′〉 part of the samples and to
“complete” the sample using an approximation of the
reward function of the target task (e.g., using the first
iteration of FQI). Furthermore, the sample-transfer al-
gorithm could be integrated with the model proposed
in (Taylor et al., 2008) in order to deal with problems
with tasks defined on different state-action spaces.

References

Carroll, J. L., & Seppi, K. (2005). Task similarity
measures for transfer in reinforcement learning task
libraries. Proceddings of IJCNN (pp. 803–808).

Şimşek, O., Wolfe, A. P., & Barto, A. G. (2005). Iden-
tifying useful subgoals in reinforcement learning by
local graph partitioning. Proceedings of ICML (pp.
816–823).

Ernst, D., Geurts, P., & Wehenkel, L. (2005). Tree-
based batch mode reinforcement learning. Journal
of Machine Learning Research, 6, 503–556.

Ferns, N., Panangaden, P., & Precup, D. (2004). Met-
rics for finite markov decision processes. Proceedings
of UAI (pp. 162–169).

Jong, N. K., & Stone, P. (2007). Model-based function
approximation for reinforcement learning. Proceed-
ings of AAMAS (pp. 1–8).

Konidaris, G., & Barto, A. G. (2007). Building
portable options: Skill transfer in reinforcement
learning. Proceedings of IJCAI (pp. 895–900).

Lazaric, A., Restelli, M., & Bonarini, A. (2007). Re-
inforcement learning in continuous action spaces
through sequential monte carlo methods. Advances
in Neural Information Processing Systems.

Mehta, N., Natarajan, S., Tadepalli, P., & Fern, A.
(2005). Transfer in variable-reward hierarchical re-
inforcement learning. NIPS Workshop on Inductive
Transfer.

Phillips, C. (2006). Knowledge transfer in
markov decision processes (Technical Re-
port). McGill School of Computer Science.
(http://www.cs.mcgill.ca/˜martin/usrs/phillips.pdf).

Rosenstein, M. T., Marx, Z., Kaelbling, L. P., & Diet-
terich, T. G. (2005). To transfer or not to transfer.
NIPS Workshop on Inductive Transfer.

Sunmola, F. T., & Wyatt, J. L. (2006). Model transfer
for markov decision tasks via parameter matching.
Workshop of the UK Planning and Scheduling Spe-
cial Interest Group.

Taylor, M. E., Jong, N. K., & Stone, P. (2008).
Transferring instances for model-based reinforce-
ment learning. AAMAS 2008 Workshop on Adaptive
Learning Agents and Multi-Agent Systems.

Taylor, M. E., Stone, P., & Liu, Y. (2007). Transfer
learning via inter-task mappings for temporal dif-
ference learning. Journal of Machine Learning Re-
search, 8, 2125–2167.

