Sample complexity en apprentissage par renforcement

Références bibliographiques: [LGM10b, MS08, MMLG10, ASM08]

Plan:

1. Inégalité d'Azuma
2. Sample complexity of LSTD
3. Other results

1 Inégalité d'Azuma

Etend l'inégalité de Chernoff-Hoeffding à des variables aléatoires qui peuvent être dépendantes mais qui forment une Martingale.
Proposition 1. Soient $X_{i} \in\left[a_{i}, b_{i}\right]$ variables aléatoires telles que $\mathbb{E}\left[X_{i} \mid X_{1}, \ldots, X_{i-1}\right]=0$. Alors

$$
\begin{equation*}
\mathbb{P}\left(\left|\sum_{i=1}^{n} X_{i}\right| \geq \epsilon\right) \leq 2 e^{-\frac{2 \epsilon^{2}}{\left.\sum_{i=1}^{n} b_{i}-a_{i}\right)^{2}}} \tag{1}
\end{equation*}
$$

Autrement dit, pour tout $\delta \in(0,1]$, on a avec probabilité au moins $1-\delta$,

$$
\frac{1}{n}\left|\sum_{i=1}^{n} X_{i}\right| \leq \sqrt{\frac{1}{n} \sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2}} \sqrt{\frac{\log 2 / \delta}{2 n}}
$$

Preuve. On a:

$$
\begin{aligned}
\mathbb{P}\left(\sum_{i=1}^{n} X_{i} \geq \epsilon\right) & =\mathbb{P}\left(e^{s \sum_{i=1}^{n} X_{i}} \geq e^{s \epsilon}\right) \\
& \leq e^{-s \epsilon} \mathbb{E}\left[e^{s \sum_{i=1}^{n} X_{i}}\right], \text { par Markov } \\
& \leq e^{-s \epsilon} \mathbb{E}_{X_{1}, \ldots, X_{n-1}}\left[\mathbb{E}_{X_{n}}\left[e^{s \sum_{i=1}^{n} X_{i}} \mid X_{1}, \ldots, X_{n-1}\right]\right] \\
& \leq e^{-s \epsilon} \mathbb{E}_{X_{1}, \ldots, X_{n-1}}\left[e^{s \sum_{i=1}^{n-1} X_{i}} \mathbb{E}_{X_{n}}\left[e^{s X_{n}} \mid X_{1}, \ldots, X_{n-1}\right]\right] \\
& \leq e^{-s \epsilon+s^{2}\left(b_{n}-a_{n}\right)^{2} / 8} \mathbb{E}_{X_{1}, \ldots, X_{n-1}}\left[e^{s \sum_{i=1}^{n-1} X_{i}}\right], \text { par Hoeffding } \\
& \leq e^{-s \epsilon+s^{2} \sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2} / 8}
\end{aligned}
$$

En choisissant $s=4 \epsilon / \sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2}$ on déduit $\mathbb{P}\left(\sum_{i=1}^{n} X_{i}-\mu_{i} \geq \epsilon\right) \leq e^{-\frac{2 \epsilon^{2}}{\left.\sum_{i=1}^{n} b_{i}-a_{i}\right)^{2}}}$. En refaisant le même calcul pour $\mathbb{P}\left(\sum_{i=1}^{n} X_{i}-\mu_{i} \leq-\epsilon\right)$ on déduit (1).

2 Sample complexity of LSTD

2.1 Pathwise LSTD

We follow a fixed policy π. Our goal is to approximate the value function V^{π} (written V removing reference to π to simplify notations). We use a linear approximation space \mathcal{F} spanned by a set of d basis functions $\varphi_{i}: \mathcal{X} \rightarrow \mathbb{R}$. We denote by $\phi: \mathcal{X} \rightarrow \mathbb{R}^{d}, \phi(\cdot)=\left(\varphi_{1}(\cdot), \ldots, \varphi_{d}(\cdot)\right)^{\top}$ the feature vector. Thus

$$
\mathcal{F}=\left\{f_{\alpha} \mid \alpha \in \mathbb{R}^{d} \text { and } f_{\alpha}(\cdot)=\phi(\cdot)^{\top} \alpha\right\} .
$$

Let $\left(X_{1}, \ldots, X_{n}\right)$ be a sample path (trajectory) of size n generated by following policy π. Let $v \in \mathbb{R}^{n}$ and $r \in \mathbb{R}^{n}$ such that $v_{t}=V\left(X_{t}\right)$ and $r_{t}=R\left(X_{t}\right)$ be the value vector and the reward vector, respectively. Also, let $\Phi=\left[\phi\left(X_{1}\right)^{\top} ; \ldots ; \phi\left(X_{n}\right)^{\top}\right]$ be the feature matrix defined at the states, and $\mathcal{F}_{n}=\left\{\Phi \alpha, \alpha \in \mathbb{R}^{d}\right\} \subset \mathbb{R}^{n}$ be the corresponding vector space. We denote by $\widehat{\Pi}: \mathbb{R}^{n} \rightarrow \mathcal{F}_{n}$ the empirical orthogonal projection onto \mathcal{F}_{n}, defined as

$$
\widehat{\Pi} y=\arg \min _{z \in \mathcal{F}_{n}}\|y-z\|_{n}
$$

where $\|y\|_{n}^{2}=\frac{1}{n} \sum_{t=1}^{n} y_{t}^{2}$. Note that $\widehat{\Pi}$ is a non-expansive mapping w.r.t. the ℓ_{2}-norm: $\|\widehat{\Pi} y-\widehat{\Pi} z\|_{n} \leq$ $\|y-z\|_{n}$.
Define the empirical Bellman operator $\widehat{\mathcal{T}}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ as

$$
(\widehat{\mathcal{T}} y)_{t}=\left\{\begin{array}{lc}
r_{t}+\gamma y_{t+1} & 1 \leq t<n \\
r_{t} & t=n
\end{array}\right.
$$

Proposition 2. The operator $\widehat{\Pi} \widehat{\mathcal{T}}$ is a contraction in ℓ_{2}-norm, thus possesses a unique fixed point \hat{v}.
Preuve. Note that by defining the operator $\widehat{P}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ as $(\widehat{P} y)_{t}=y_{t+1}$ for $1 \leq t<n$ and $(\widehat{P} y)_{n}=0$, we have $\widehat{\mathcal{T}} y=r+\gamma \widehat{P} y$. The empirical Bellman operator is a γ-contraction in ℓ_{2}-norm since, for any $y, z \in \mathbb{R}^{n}$, we have

$$
\|\widehat{\mathcal{T}} y-\widehat{\mathcal{T}} z\|_{n}^{2}=\|\gamma \widehat{P}(y-z)\|_{n}^{2} \leq \gamma^{2}\|y-z\|_{n}^{2} .
$$

Now, since the orthogonal projection $\widehat{\Pi}$ is non-expansive w.r.t. ℓ_{2}-norm, from Banach fixed point theorem, there exists a unique fixed-point \hat{v} of the mapping $\widehat{\Pi} \widehat{\mathcal{T}}$, i.e., $\hat{v}=\widehat{\Pi} \widehat{\mathcal{T}} \hat{v}$.
Since \hat{v} is the unique fixed point of $\widehat{\Pi} \hat{\mathcal{T}}$, the vector $\hat{v}-\widehat{\mathcal{T}} \hat{v}$ is perpendicular to the space \mathcal{F}_{n}, and thus, $\Phi^{\top}(\hat{v}-\widehat{\mathcal{T}} \hat{v})=0$. By replacing \hat{v} with $\Phi \alpha$, we obtain $\Phi^{\top} \Phi \alpha=\Phi^{\top}(r+\gamma \widehat{P} \Phi \alpha)$ and then $\underbrace{\Phi^{\top}(I-\gamma \widehat{P}) \Phi}_{A} \alpha=\underbrace{\Phi^{\top} r}_{b}$. Therefore, by setting

$$
\begin{aligned}
A_{i, j} & =\sum_{t=1}^{n-1} \phi_{i}\left(x_{t}\right)\left[\phi_{j}\left(x_{t}\right)-\gamma \phi_{j}\left(x_{t+1}\right)\right]+\phi_{i}\left(x_{n}\right) \phi_{j}\left(x_{n}\right) \\
b_{i} & =\sum_{t=1}^{n} \phi_{i}\left(x_{t}\right) r_{t}
\end{aligned}
$$

we have that the system $A \alpha=b$ always has at least one solution (since the fixed point \hat{v} exists) and we call the solution with minimal norm, $\hat{\alpha}=A^{+} b$, where A^{+}is the Moore-Penrose pseudo-inverse of A, the pathwise LSTD solution.

2.2 Performance Bound

Here we derive a bound for the performance of \hat{v} evaluated on the states of the trajectory used by the pathwise LSTD algorithm.

Théorème 1. Let X_{1}, \ldots, X_{n} be a trajectory of the Markov chain, and $v, \hat{v} \in \mathbb{R}^{n}$ be the vectors whose components are the value function and the pathwise LSTD solution at $\left\{X_{t}\right\}_{t=1}^{n}$, respectively. Then with probability $1-\delta$ (the probability is w.r.t. the random trajectory), we have

$$
\begin{equation*}
\|\hat{v}-v\|_{n} \leq \frac{1}{\sqrt{1-\gamma^{2}}}\|v-\widehat{\Pi} v\|_{n}+\frac{1}{1-\gamma}\left[\gamma V_{\max } L \sqrt{\frac{d}{\nu_{n}}}\left(\sqrt{\frac{8 \log (2 d / \delta)}{n}}+\frac{1}{n}\right)\right] \tag{2}
\end{equation*}
$$

where the random variable ν_{n} is the smallest strictly-positive eigenvalue of the sample-based Gram matrix $\frac{1}{n} \Phi^{\top} \Phi$.

Remark 1 When the eigenvalues of the sample-based Gram matrix $\frac{1}{n} \Phi^{\top} \Phi$ are all non-zero, $\Phi^{\top} \Phi$ is invertible, and thus, $\widehat{\Pi}=\Phi\left(\Phi^{\top} \Phi\right)^{-1} \Phi^{\top}$. In this case, the uniqueness of \hat{v} implies the uniqueness of $\hat{\alpha}$ since

$$
\hat{v}=\Phi \alpha \Longrightarrow \Phi^{\top} \hat{v}=\Phi^{\top} \Phi \alpha \Longrightarrow \hat{\alpha}=\left(\Phi^{\top} \Phi\right)^{-1} \Phi^{\top} \hat{v}
$$

On the other hand, when the sample-based Gram matrix $\frac{1}{n} \Phi^{\top} \Phi$ is not invertible, the system $A x=b$ may have many solutions. Among all the possible solutions, one may choose the one with minimal norm: $\hat{\alpha}=A^{+} b$.

Remark 3 Theorem 1 provides a bound without any reference to the stationary distribution of the Markov chain. In fact, the bound of Equation 2 holds even when the chain does not possess a stationary distribution. For example, consider a Markov chain on the real line where the transitions always move the states to the right, i.e., $p\left(X_{t+1} \in d y \mid X_{t}=x\right)=0$ for $y \leq x$. For simplicity assume that the value function V is bounded and belongs to \mathcal{F}. This Markov chain is not recurrent, and thus, does not have a stationary distribution. We also assume that the feature vectors $\phi\left(X_{1}\right), \ldots, \phi\left(X_{n}\right)$ are sufficiently independent, so that the eigenvalues of $\frac{1}{n} \Phi^{\top} \Phi$ are greater than $\nu>0$. Then according to Theorem 1, pathwise LSTD is able to estimate the value function at the samples at a rate $O(1 / \sqrt{n})$. This may seem surprising because at each state X_{t} the algorithm is only provided with a noisy estimation of the expected value of the next state. However, the estimates are unbiased conditioned on the current state, and we will see in the proof that using a concentration inequality for martingale, pathwise LSTD is able to learn a good estimate of the value function at a state X_{t} using noisy pieces of information at other states that may be far away from X_{t}. In other words, learning the value function at a given state does not require making an average over many samples close to that state. This implies that LSTD does not require the Markov chain to possess a stationary distribution.

In order to prove Theorem 1, we first introduce the model of regression with Markov design and then state and prove a lemma about this model.
Définition. The model of regression Markov design is a regression problem where the data $\left(X_{t}, Y_{t}\right)_{1 \leq t \leq n}$ are generated according to the following model: X_{1}, \ldots, X_{n} is a sample path generated by a Markov chain, $Y_{t}=f\left(X_{t}\right)+\xi_{t}$, where f is the target function, and the noise term ξ_{t} is a random variable which is adapted to the filtration generated by X_{1}, \ldots, X_{t+1} and is such that

$$
\begin{equation*}
\left|\xi_{t}\right| \leq C \quad \text { and } \quad \mathbb{E}\left[\xi_{t} \mid X_{1}, \ldots, X_{t}\right]=0 \tag{3}
\end{equation*}
$$

The next lemma reports a risk bound for the Markov design setting,
Lemme (Regression bound for the Markov design setting). Let $\hat{w} \in \mathcal{F}_{n}$ be the least-squares estimate of the (noisy) values $Y=\left\{Y_{t}\right\}_{1}^{n}$, i.e., $\hat{w}=\widehat{\Pi} Y$, and $w \in \mathcal{F}_{n}$ be the least-squares estimate of the (noiseless) values

Figure 1: This figure shows the components used in Lemma 2.2 and its proof such as w, \hat{w}, ξ, and $\hat{\xi}$, and the fact that $\langle\hat{\xi}, \xi\rangle_{n}=\|\hat{\xi}\|_{n}^{2}$.
$Z=\left\{Z_{t}=f\left(X_{t}\right)\right\}_{1}^{n}$, i.e., $w=\widehat{\Pi} Z$. Then for any $\delta>0$, with probability at least $1-\delta$ (the probability is w.r.t. the random sample path X_{1}, \ldots, X_{n}), we have

$$
\begin{equation*}
\|\hat{w}-w\|_{n} \leq C L \sqrt{\frac{2 d \log (2 d / \delta)}{n \nu_{n}}} \tag{4}
\end{equation*}
$$

where ν_{n} is the smallest strictly-positive eigenvalue of the sample-based Gram matrix $\frac{1}{n} \Phi^{\top} \Phi$.
Preuve. We define $\xi \in \mathbb{R}^{n}$ to be the vector with components ξ_{t}, and $\hat{\xi}=\hat{w}-w=\widehat{\Pi}(Y-Z)=\widehat{\Pi} \xi$. Since the projection is orthogonal we have $\langle\hat{\xi}, \xi\rangle_{n}=\|\hat{\xi}\|_{n}^{2}$ (see Figure 1). Since $\hat{\xi} \in \mathcal{F}_{n}$, there exists at least one $\alpha \in \mathbb{R}^{d}$ such that $\hat{\xi}=\Phi \alpha$, so by Cauchy-Schwarz inequality we have

$$
\begin{equation*}
\|\hat{\xi}\|_{n}^{2}=\langle\hat{\xi}, \xi\rangle_{n}=\frac{1}{n} \sum_{i=1}^{d} \alpha_{i} \sum_{t=1}^{n} \xi_{t} \varphi_{i}\left(X_{t}\right) \leq \frac{1}{n}\|\alpha\|_{2}\left[\sum_{i=1}^{d}\left(\sum_{t=1}^{n} \xi_{t} \varphi_{i}\left(X_{t}\right)\right)^{2}\right]^{1 / 2} \tag{5}
\end{equation*}
$$

Now among the vectors α such that $\hat{\xi}=\Phi \alpha$, we define $\hat{\alpha}$ to be the one with minimal ℓ_{2}-norm, i.e., $\hat{\alpha}=\Phi^{+} \hat{\xi}$. Let K denote the null space of Φ, which is also the null space of $\frac{1}{n} \Phi^{\top} \Phi$. Then $\hat{\alpha}$ can be decomposed as $\hat{\alpha}=\hat{\alpha}_{K}+\hat{\alpha}_{K^{\perp}}$, where $\hat{\alpha}_{K} \in K$ and $\hat{\alpha}_{K^{\perp}} \in K^{\perp}$, and because the decomposition is orthogonal, we have $\|\hat{\alpha}\|_{2}^{2}=\left\|\hat{\alpha}_{K}\right\|_{2}^{2}+\left\|\hat{\alpha}_{K^{\perp}}\right\|_{2}^{2}$. Since $\hat{\alpha}$ is of minimal norm among all the vectors α such that $\hat{\xi}=\Phi \alpha$, its component in K must be zero, thus $\hat{\alpha} \in K^{\perp}$.

The Gram matrix $\frac{1}{n} \Phi^{\top} \Phi$ is positive-semidefinite, thus its eigenvectors corresponding to zero eigenvalues generate K and the other eigenvectors generate its orthogonal complement K^{\perp}. Therefore, from the assumption that the smallest strictly-positive eigenvalue of $\frac{1}{n} \Phi^{\top} \Phi$ is ν_{n}, we deduce that since $\hat{\alpha} \in K^{\perp}$,

$$
\begin{equation*}
\|\hat{\xi}\|_{n}^{2}=\frac{1}{n} \hat{\alpha}^{\top} \Phi^{\top} \Phi \hat{\alpha} \geq \nu_{n} \hat{\alpha}^{\top} \hat{\alpha}=\nu_{n}\|\hat{\alpha}\|_{2}^{2} \tag{6}
\end{equation*}
$$

By using the result of Equation 6 in Equation 5, we obtain

$$
\begin{equation*}
\|\hat{\xi}\|_{n} \leq \frac{1}{n \sqrt{\nu_{n}}}\left[\sum_{i=1}^{d}\left(\sum_{t=1}^{n} \xi_{t} \varphi_{i}\left(X_{t}\right)\right)^{2}\right]^{1 / 2} \tag{7}
\end{equation*}
$$

Figure 2: This figure represents the space \mathbb{R}^{n}, the linear vector subspace \mathcal{F}_{n} and some vectors used in the proof of Theorem 1.

Now, from Equation 3, we have that for any $i=1, \ldots, d$

$$
\mathbb{E}\left[\xi_{t} \varphi_{i}\left(X_{t}\right) \mid X_{1}, \ldots, X_{t}\right]=\varphi_{i}\left(X_{t}\right) \mathbb{E}\left[\xi_{t} \mid X_{1}, \ldots, X_{t}\right]=0
$$

and since $\xi_{t} \varphi_{i}\left(X_{t}\right)$ is adapted to the filtration generated by X_{1}, \ldots, X_{t+1}, it is a martingale difference sequence w.r.t. that filtration. Thus one may apply Azuma's inequality to deduce that with probability $1-\delta$,

$$
\left|\sum_{t=1}^{n} \xi_{t} \varphi_{i}\left(X_{t}\right)\right| \leq C L \sqrt{2 n \log (2 / \delta)}
$$

where we used that $\left|\xi_{t} \varphi_{i}\left(X_{t}\right)\right| \leq C L$ for any i and t. By a union bound over all features, we have that with probability $1-\delta$, for all $1 \leq i \leq d$

$$
\begin{equation*}
\left|\sum_{t=1}^{n} \xi_{t} \varphi_{i}\left(X_{t}\right)\right| \leq C L \sqrt{2 n \log (2 d / \delta)} \tag{8}
\end{equation*}
$$

The result follows by combining Equations 8 and 7 .

Remarks about this Lemma In the Markov design model considered in this lemma, states $\left\{X_{t}\right\}_{1}^{n}$ are random variables generated according to the Markov chain and the noise terms ξ_{t} may depend on the next state X_{t+1} (but should be centered conditioned on the past states X_{1}, \ldots, X_{t}). This lemma will be used in order to prove Theorem 1, where we replace the target function f with the value function V, and the noise term ξ_{t} with the temporal difference $r\left(X_{t}\right)+\gamma V\left(X_{t+1}\right)-V\left(X_{t}\right)$.

Note that this lemma is an extension of the bound for the model of regression with deterministic design in which the states, $\left\{X_{t}\right\}_{1}^{n}$, are fixed and the noise terms, ξ_{t} 's, are independent. In deterministic design, usual concentration results provide high probability bounds similar to Equation 4, but without the dependence on ν_{n}. An open question is whether it is possible to remove ν_{n} in the bound for the Markov design regression setting.

Preuve. [Théorème 1]

Step 1: Using the Pythagorean theorem and the triangle inequality, we have (see Figure 2)

$$
\begin{equation*}
\|\hat{v}-v\|_{n}^{2}=\|v-\widehat{\Pi} v\|_{n}^{2}+\|\hat{v}-\widehat{\Pi} v\|_{n}^{2} \leq\|\hat{v}-\widehat{\Pi} v\|_{n}^{2}+\left(\|\hat{v}-\widehat{\Pi} \widehat{\mathcal{T}} v\|_{n}+\|\widehat{\Pi} \widehat{\mathcal{T}} v-\widehat{\Pi} v\|_{n}\right)^{2} \tag{9}
\end{equation*}
$$

From the γ-contraction of the operator $\widehat{\Pi} \widehat{\mathcal{T}}$ and the fact that \hat{v} is its unique fixed point, we obtain

$$
\begin{equation*}
\|\hat{v}-\widehat{\Pi} \widehat{\mathcal{T}} v\|_{n}=\|\widehat{\Pi} \widehat{\mathcal{T}} \hat{v}-\widehat{\Pi} \widehat{\mathcal{T}} v\|_{n} \leq \gamma\|\hat{v}-v\|_{n} \tag{10}
\end{equation*}
$$

Thus from Equation 9 and 10, we have

$$
\begin{equation*}
\|\hat{v}-v\|_{n}^{2} \leq\|\hat{v}-\widehat{\Pi} v\|_{n}^{2}+\left(\gamma\|\hat{v}-v\|_{n}+\|\widehat{\Pi} \widehat{\mathcal{T}} v-\widehat{\Pi} v\|_{n}\right)^{2} \tag{11}
\end{equation*}
$$

Step 2: We now provide a high probability bound on $\|\widehat{\Pi} \widehat{\mathcal{T}} v-\widehat{\Pi} v\|_{n}$. This is a consequence of Lemma 2.2 applied to the vectors $Y=\widehat{\mathcal{T}} v$ and $Z=v$. Since v is the value function at the points $\left\{X_{t}\right\}_{1}^{n}$, from the definition of the pathwise Bellman operator, we have that for $1 \leq t \leq n-1$,

$$
\xi_{t}=y_{t}-v_{t}=r\left(X_{t}\right)+\gamma V\left(X_{t+1}\right)-V\left(X_{t}\right)=\gamma\left[V\left(X_{t+1}\right)-\int P\left(d y \mid X_{t}\right) V(y)\right]
$$

and $\xi_{n}=y_{n}-v_{n}=-\gamma \int P\left(d y \mid X_{n}\right) V(y)$. Thus, Equation 3 holds for $1 \leq t \leq n-1$. Here we may choose $C=2 \gamma V_{\max }$ for a bound on $\xi_{t}, 1 \leq t \leq n-1$, and $C=\gamma V_{\max }$ for a bound on ξ_{n}. Azuma's inequality may only be applied to the sequence of $n-1$ terms (the n-th term adds a contribution to the bound), thus instead of Equation 8, we obtain

$$
\left|\sum_{t=1}^{n} \xi_{t} \varphi_{i}\left(X_{t}\right)\right| \leq \gamma V_{\max } L(2 \sqrt{2 n \log (2 d / \delta)}+1)
$$

with probability $1-\delta$, for all $1 \leq i \leq d$. Combining with Equation 7, we deduce that with probability $1-\delta$, we have

$$
\begin{equation*}
\|\widehat{\Pi} \widehat{\mathcal{T}} v-\widehat{\Pi} v\|_{n} \leq \gamma V_{\max } L \sqrt{\frac{d}{\nu_{n}}}\left(\sqrt{\frac{8 \log (2 d / \delta)}{n}}+\frac{1}{n}\right) \tag{12}
\end{equation*}
$$

where ν_{n} is the smallest strictly-positive eigenvalue of $\frac{1}{n} \Phi^{\top} \Phi$. The claim follows by combining Equations 12 and 11 , and solving the result for $\|\hat{v}-v\|_{n}$.

2.3 Generalization bound

When the Markov chain is ergodic (say β-mixing) and possesses a stationnary distribution μ, then it is possible to derive generalization bounds of the form: with probability $1-\delta$,

$$
\|\hat{V}-V\|_{\mu} \leq \frac{c}{\sqrt{1-\gamma^{2}}} \inf _{f \in \mathcal{F}}\|V-f\|_{\mu}+O\left(\sqrt{\frac{d \log (d / \delta)}{n \nu}}\right)
$$

which provides a bound expressed in terms of

- the best possible approximation of V in \mathcal{F} measured with μ
- the smallest eigenvalue ν of the Gram matrix $\left(\int \phi_{i} \phi_{j} d \mu\right)_{i, j}$
- β-mixing coefficients of the chain (hidden in O).
(see [Lazaric, Ghavamzadeh, Munos, Finite-sample analysis of LSTD, 2010]).

3 Other results

Similar results have been obtained for different algorithms:

- Approximate Value iteration [MS08]
- Policy iteration with Bellman residual minimization [MMLG10]
- Policy iteration with modified Bellman residual minimization [ASM08]
- Classification based policy iteration algorithm [LGM10a]

But there remains many open problems...

References

[ASM08] A. Antos, Cs. Szepesvari, and R. Munos. Learning near-optimal policies with Bellman-residual minimization based fitted policy iteration and a single sample path. Machine Learning Journal, 71:89-129, 2008.
[LGM10a] A. Lazaric, M. Ghavamzadeh, and R. Munos. Analysis of a classification-based policy iteration algorithm. In International Conference on Machine Learning, pages 607-614, 2010.
[LGM10b] A. Lazaric, M. Ghavamzadeh, and R. Munos. Finite-sample analysis of LSTD. In International Conference on Machine Learning, pages 615-622, 2010.
[MMLG10] O. A. Maillard, R. Munos, A. Lazaric, and M. Ghavamzadeh. Finite sample analysis of bellman residual minimization. In Masashi Sugiyama and Qiang Yang, editors, Asian Conference on Machine Learning. JMLR: Workshop and Conference Proceedings, volume 13, pages 309-324, 2010.
[MS08] R. Munos and Cs. Szepesvári. Finite time bounds for sampling based fitted value iteration. Journal of Machine Learning Research, 9:815-857, 2008.

