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Initial motivation

Monte-Carlo Tree Search in computer-go

T

I

T

| Root Position

4/10

3/10

MCTS in Crazy-Stone (Rémi Coulom, 2005)

Idea: use bandits at each node of the tree search.



Monte-Carlo Tree Search

@ Very efficient in several problems
@ Very inefficient in many other problems (even toy problems)

@ Not much theoretical guarantee...

We would like
@ Understand how the “optimism in the face of uncertainty”
principle works in hierarchical problems

@ Define classes of problems for which variants of MCTS would
be efficient



Outline of this tutorial

@ The stochastic multi-armed bandit
e The K-armed bandit and UCB
o The many-armed bandit
@ Monte Carlo Tree Search
e Bandits in a hierarchy
e Computer go and UCT
© Optimistic optimization with known smoothness

o Deterministic rewards
e Stochastic rewards (X-armed bandit)

@ Extension to unknown smoothness
© Optimistic planning
o Deterministic dynamics,

e Open Loop planning
e MDPs with a model



Main message of this tutorial

The “optimism in the face of uncertainty” principle:

@ applies in a large class of decision making problems in
stochastic and deterministic environments

@ provides an efficient exploration of the search space by
exploring the most promising areas first
@ provides a natural transition from global to local search

@ Performance depends on the “smoothness” of the function
around the maximum w.r.t. some metric,
e a measure of the quantity of near-optimal solutions,
e and our knowledge or not of this metric.



Introduction to bandits
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Multi-armed bandit

The multi-armed bandit problem

Setting:
@ Set of K arms (possible actions)

@ At each time t, choose an arm
It € {1,...,K} and receive a reward X;
coming from arm /;.

@ Goal: find an arm selection policy such
as to maximize a function of the rewards.

Exploration-exploitation tradeoff:
o Exploit: act optimally according to our current beliefs

@ Explore: learn more about the environment
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Multi-armed bandit

Numerous variants

Different settings:

@ Stochastic environments: the rewards are samples from
probability distributions. We compare our strategy to the
optimal oracle one.

@ Adversarial environments: the rewards are chosen by an
adversary. We compare our strategy to a class of possible
strategies.

@ Action space can be finite, countably infinite, continous
(function optimization), combinatorial (paths), structured
(policies), ...

Different targets:

@ maximizing cumulative rewards, returning the best possible

solution, estimating the values of all the arms, ...
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Multi-armed bandit

Various applications

Clinical trials [Thompson 1933]

Ads placement on webpages

Nash equilibria (traffic or communication networks, agent
simulation, poker, ...)

Packet routing, itinerary selection, ...

Game-playing computers (Go, urban rivals, ...)

Optimization / planning given a finite numerical budget
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Multi-armed bandit

The stochastic multi-armed bandit problem

Setting:
@ Set of K arms, defined by distributions v (with support in
[0, 1]), whose law is unknown,
@ At each time t, choose an arm /s € {1,..., K} and receive
reward X; i vj,.
@ Goal: maximize the sum of rewards.
Definitions:
o Let puy = Ex~,, [X] be the mean value of arm k,
o Let u* = maxy ux the best mean value,

Define the cumulative regret:

R, def Z (M* — Xt).

t=1
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Multi-armed bandit

The cumulative regret

The expected cumulative regret is

ER, = E[Y ' - X]

t=1
= E[E[Zn:u _Xt|ItH —E[zn:lt _Mlt}
t—1 t=1
= E[ZK:(M* — Mk)zn:l{/t = k}} = zK:AkE[Tk(n)L
k=1 t=1 k=1

where Ay def w* — pk, and Ty(n) is the number of times arm k has
been pulled up to round n.
Goal: Find an arm selection policy such as to minimize ER,,.
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Multi-armed bandit

Proposed solutions

This is an old problem! [Robbins, 1952] Surprisingly, not fully
solved yet!
Many proposed strategies:

o c-greedy exploration: choose current best action with proba
1 — ¢, or random action with proba e,

o Bayesian exploration: assign prior to the arm distributions
and select arm according to the posterior distributions (Gittins
index, Thompson sampling, ...)

e Softmax exploration: choose arm k with proba o< exp(/Sfix)
o Follow the perturbed leader: choose best perturbed arm

o Optimistic exploration: select best arm in the most
favorable environment compatible with observations
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Multi-armed bandit

Optimism in the face of uncertainty

Follow the optimal policy in the most favorable environments
among all enviroments that are reasonably plausible given past
observations
@ At time t, for each arm k, use past observations and some
probabilistic argument to define high-probability confidence
intervals containing the expected reward pi
@ The most favorable environment for arm k is thus the upper
confidence bound (UCB) on p
@ Simple implementation: play the arm having the largest UCB!
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ucB

The UCB1 algorithm [Auer, Cesa-Bianchi, Fischer, 2002]

Upper Confidence Bound algorithm: at each time t, select the
arm with highest UCB:

def 2 log(t
Bk,t = Mk, t Tkg(i_))a

where:

® k= %(t) S-f_1 Xs1{ls = k} is the empirical mean of the
rewards received from arm k up to time t,

o Ty(t)=>_t_, 1{ls = k} is the number of times arm k has
been pulled up to time t

Note that

@ Sum of an exploitation term and an exploration term.
2log(t)

Te(t) is a confidence interval term, so By ; is a UCB.
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Intuition of the UCB algorithm

Idea:
@ The B-values By ; are h.p. UCBs on . Indeed we have:

2Iog(t)) < 2

Pl |tx s — > =
(|Mk,t L] > T(®)

t2’

using a union bound for all possible values of Ty(t) € {1,...,t}
together with Chernoff-Hoeffding's inequality:

1 m
PI-Y Yi-uze) < 2672
i=1
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ucB

Why does it make sense?

Could we stay a long time playing a wrong arm?
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ucB

Why does it make sense?

Could we stay a long time playing a wrong arm?

No, since
@ The more we pull an arm k, the smaller the size of the
confidence interval and the closer its UCB gets to its mean
value i
@ But in h.p., it cannot be pulled once its UCB becomes smaller
than p*

So each sub-optimal arm k can be only pulled a number of times

Tk(n) such that the size of its confidence interval 2T|k°(gn’)’ is of

order Ay = p* — k.
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Regret bound for UCB

Each sub-optimal arm k is visited in average, at most:

log n 2
1+

ET,
k(n) < 8A2 3

times (where Ay — w = >0).

Thus the expected regret is bounded by:

2

FKA+ T

log n
3 )

ER, = Z]E[Tk A, < 8 Z

k:A>0
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Intuition of the proof

Let k be a sub-optimal arm, and k* be an optimal arm. At time t,
if arm k is selected, this means that

Brkt = By

. 2 log(t) . 2log(t)
> *
lu’k,t+ Tk(t) - lu’k ,t+ Tk*(t)
2log(t) L L
2 > u* th high b
i+ T () - W, wi igh proba
8log(t)
T(t) < —=—=
A

Thus, if Tk(t) > 8'°g(t) , then there is only a small probability that

arm k can be selected.
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Proof of Proposition 1

Write u = Sl%(") + 1. We have:
k

u+ z": 1{l; = k; Ti(t) > u}

Tk(n) S
t=u+1
: 2logt 2logt
< R > {0 + — < —
< u—&-t:zu;l[ {fk,e — pue > Tk(t)}+ {fie ¢ — pue < Tk*(t)}}
Now, taking the expectation of both sides,

u+ zn: 272

t=u+1

E[Tx(n)]

IN

8log(n) v
14 2
A T3

IN
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Some variants

Better confidence bounds imply smaller regret

@ Chernoff-Hoeffding's inequality 1/t-confidence bound:
I
EX < — ZX Og

@ Bernstein's inequality:

[202 Iogt log t
EX < — Xi +
Z + 3m

@ Empirical Bernstein's inequality:

m ~2
EX < 1 ZXi n 25" log(3t) n 8log(3t)
m m 3m

[Audibert, Munos, Szepesvari, 2007], [Maurer, Pontil, 2009]
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Some variants

UCB-V

[Audibert, Munos, Szepesvari, 2007]

e UCB using empirical variance estimate:

o
def okt log(1.2t)  3log(1.2t)
Bi: = 2—

Then the expected regret is bounded as:

2
Z Tk
k:A>0
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Some variants

KL-UCB

[Garivier & Cappé, 2011] and [Maillard, Munos, Stoltz, 2011].
For Bernoulli distributions, define the kl-UCB

log t
B sup {x € [0.1], K(Ae().x) < 5

~ Ti(t)
20} |
I Kl(f(t), x)
\
15F
\\
10f \ ‘
osf \\\ f.'
lo .
T;Tlt) 777777777777777777 P o ,s‘l-_f/l
0.2 0.4 06 0.8 ‘1.0

fu(t) By

(non-asymptotic version of Sanov’s theorem)
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Some variants

KL-UCB

The regret of KL-UCB is then bounded as

Z kI er Iogn+ o(log n).

This extends to several classes of distributions (one-dimensional
exponential family, finitely supported, ...)

See also DMED [Honda, Takemura, 2010, 2011] and other related
algorithms.

Idea: Use the full empirical distribution to get a refined UCB.
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Some variants

Lower bounds

For single-dimensional distributions [Lai, Robbins, 1985]:

o Ay
lim inf = > —_—
n—oo log n k:Az,;o KL(vk, v*)

For larger class of distributions D [Burnetas, Katehakis, 1996]:

ER, S Ay

lim inf Sk
KCine (v, p1*)

n—oo logn —

k:A>0

where

Kint (v, 1) % inf {KL(Z/, V)V €D and Ex . [X] > ,u}.
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Some variants

Distribution-independent bound for UCB

Regret for UCB: ER, = O(log n >~y A%)
@ The smaller the gaps, the harder the problem (for large n)
@ For small n, the regret is trivially bounded by nmax, Ay

For small gaps it takes a long time to distinguish which arm is the
best.

Proposition 2.

Distribution-independent bounds:

2
sup ER, < 2\/2Kn[logn—i— 1+ W—]

Distributions 3
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Some variants

Proof of the Proposition

We have

ER, = Y AETi(n)
k

= > AWETi(n)VET(n)
k
\/Z AiETk(n)\/ZETk(n)
k k

2

™
< \/8Kn[|ogn+1+3]

IN

since ETx(n) < 8'°Agi” +1+Z and 3, T(n) = n.
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Some variants

Distribution-independent bounds

We also have the lower bound [Cesa-Bianchi, Lugosi, 2006]:

inf  sup ER,= Q(M)

Algo Distributions

Notice that a refined algorithm (MOSS [Audibert, Bubeck, 2009])
achieves the same order:

sup ER,= O(M)

Distributions
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Many-armed bandits

Many-armed bandits: an example

There is a countably infinite number of arms.

Unstructured set of actions: The rewards received so far do not
tell us anything about the value of unobserved arms.

Example: Each day, select a restaurant:

@ among the ones where you have already been

e because it is good (Exploitation)
e or not well known (Exploration)

@ or choose a new one randomly (Discovery)

Other examples: Marketing (ex: sending catalogues), mining for
valuable resources, ...
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Many-armed bandits

Many-armed bandits: Assumptions

We make a (probabilistic) assumption about the mean-value of any
new arm.

@ Usual assumption: the distribution of the mean-reward of a
new arm is known [Banks, Sundaram, 1992], [Berry, Chen,
Zame, Heath, Shepp, 1997].

@ Much weaker assumption: Assume we know 3 > 0 such

that
P(u(new arm) > p* — €) = O(e?),

B characterizes the probability of selecting near-optimal arms

Large 5 = small chance of pulling good arm, thus one
needs to pull many arms. And vice-versa.
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Many-armed bandits

UCB with Arm Increasing Rule [wang, Audibert, Munos, 2008]

S8es88s 88888 -
K(t) played arms Arms not played yet

UCB-AIR:
e K(0) =0. At time t + 1, pull a new arm if

8
t2 if land p* <1
K(t) < 2i if 3<1land p* <
téri ifg>lorpu*=1
o Otherwise, apply UCB-V on the K(t) current arms, i.e., play

argma . Vil 3&
rgmax fik, )
1<k<K(t) Ny Ti(t)  Tk(t)

empirical rewards

Confidence interval

with exploration sequence: clog(logt) < & < log t.
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Many-armed bandits

Regret analysis of UCB-AIR

Upper bound on the regret of UCB-AIR:

ER — (N)(ﬁ) if B<land p*<1
" 5(n%) ifu*=1orpB>1

Exponent
1

B —
X
A}

Many near-optimal arms Few near-optimal arms

i
Lower bound: V5 > 0, u* < 1, for any algorithm ER, = Q(n1+5).
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Many-armed bandits

Remarks and possible extensions

Remarks

@ When 3> 1 or u* =1 the upper and lower bounds match (up
to logarithmic factor).
@ Exploration-Exploitation-Discovery tradeoff:

o Exploitation: Pull a good arm
e Exploration: Pull an uncertain arm
o Discovery: Pull a new arm

@ The exploration sequence &; can be of order loglog t (instead
of log t): discovery replaces exploration

@ Open question: similar performance when [ is unknown?

(i.e. adaptive strategy that estimates /3 while minimizing
regret).
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Many-armed bandits

Bandits with a structured set of actions

Optimism in the face of uncertainty extends to:

Linear ba ndits [Auer, 2002], [Dani, Hayes, Kakade, 2008], [Abbasi-Yadkori, 2009],
[Rusmevichientong, Tsitsiklis, 2010], [Filippi, Cappé, Garivier, Szepesvari, 2010]

COnVeX bandlts [Zinkevich, 2003], [Flaxman, Kalai, McMahan, 2005], [Hazan, Agarwal, Kale,
2006], [Bartlett, Hazan, Rakhlin, 2007], [Shalev-Shwartz, 2007], [Abernethy, Bartlett, Rakhlin, Tewari,
2008], [Narayanan, Rakhlin, 2010]

LIpSChItZ bandlts [Agrawal, 1995], [Kleinberg, 2004], [Auer, Ortner, Szepesvari, 2007],
[Kleinberg, Slivkins, Upfall, 2008], [Bubeck, Munos, Stoltz, Szepesvari, 2011]

Ga Ussian ba ndits [Dorard, Glowacka, Shawe-Taylor, 2009], [Griinewilder, Audibert, Opper,
Shawe-Taylor, 2010], [Srinivas, Krause, Kakade, Seeger, 2010]

Contextual bandits [woodroofe, 1979, [Auer, 2002], [Wang, Kulkarni, Poor, 2005], [Pandey,
Agarwal, Chakrabarti, Josifovski, 2007], [Langford, Zhang, 2007], [Hazan, Megiddo, 2007], [Rigollet, Zeevi,
2010], [Chu, Li, Reyzin, Schapire, 2011], [Slivkins, 2011]

M DPS [Burnetas, Katehakis, 1997], [Jaksch, Ortner, Auer, 2010], [Bartlett, Tewari, 2009]

Com binatorial ba ndits [Cesa-Bianchi, Lugosi, 2009], [Audibert, Bubeck, Lugosi, 2011]



Bandits in a hierarchy

Bandit = tool to rapidly select the right action, given noisy
estimate of their value

Serve as building block for more complex problems

Hierarchy of bandits: The reward obtained when pulling an
arm is itself the return of another bandit in a hierarchy.

[llustration: Monte-Carlo Tree Search in computer-go.



computer go
Monte-Carlo Tree Search in computer-go

Root Position

Idea: use bandits at each node of the tree search.
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computer go

Hierarchical bandit algorithm

Upper Confidence Bound
(UCB) algo at each node

def
B;(t) = [i;(t .
Intuition:
- Explore first the most
promising branches
- Average converges to max

e Adaptive Multistage Sampling (AMS) algorithm [Chang, Fu,
Hu, Marcus, 2005]

e UCB applied to Trees (UCT) [Kocsis and Szepesvari, 2006]
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computer go

The MoGo program

[Gelly, Wang, Munos, Teytaud, 2006] + many others.

Features: Pl NS _
o Explore-Exploit with UCT . . - -

@ Monte-Carlo evaluation

@ Asymmetric tree
expansion

@ Anytime algo
@ Use of features

Among world best programs!

=
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Asymptotic analysis of UCT

[Kocsis and Szepesvari, 2006]

@ In a tree with finite depth, all leaves will be eventually
explored an infinite number of times, thus by backward
induction, UCT is consistent and the regret is O(log n).

@ However, the constant can be so bad that there is not
finite-time guarantee for any reasonable n.



ucTt

Bad example for UCT

{depth D

D-1

?
N
v
w

1
D

o|
o|

The left branches are explored exponentially more often than the
right ones.
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Finite-time analysis of UCT

The regret is disastrous: (see [Coquelin and Munos, 2007])

ER, = Q(exp(exp(...exp(1)...))) + O(log(n)),
D times

whereas a uniform exploration of the tree would be “only”
exponential in D.

Problem: at each node, the rewards are not i.i.d.
— the B-values are not UCBs.

UCT implicitely makes the assumption that the underlying function
is very smooth.
Problems:

@ Can we recover the optimistic principle?

@ How should we define the smoothness of a function?
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lllustration

Optimization of a deterministic Lipschitz function

Problem: Find online the maximum of f : X — R, assumed to be

Lipschitz:
[£(x) = F(y)| < U(x, y).
Protocol:
@ For each time step t =1,2,..., n select a state x; € X

@ Observe f(x¢)
@ Return a state x(n)

Performance assessed in terms of the simple regret
rp =" —f(x(n)),

where f* = sup,cx f(x).
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lllustration

Example in 1d

fr

f(x)

Lipschitz property — the evaluation of f at x; provides a first
upper-bound on f.
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lllustration

Example in 1d (continued)

New point — refined upper-bound on f.
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lllustration

Example in 1d (continued)

Question: where should one sample the next point?
Answer: select the point with highest upper bound!
“Optimism in the face of (partial observation) uncertainty”



Optimistic optimization
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lllustration

Several issues

© Lipschitz assumption is quite strong

@ Finding the optimum of the upper-bounding function may be
hard!

@ How to handle noise?
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DOO

Local smoothness property

Assumption: f is “locally smooth” around its max. w.r.t. ¢
@ X is equipped with a semi-metric ¢: ¢ is symmetric, and
Ux,y)=0& x=y.
@ Forall x e X,
f(x*) — f(x) < l(x,x").
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DOO

Local smoothness property

For all x € X,



Optimistic optimization
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DOO

Local smoothness is enough!

Optimistic principle only requires:
@ a true bound at the maximum

@ the bounds gets refined when adding more points
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DOO

Efficient implementation

Deterministic Optimistic Optimization (DOO) builds an
adaptive partitioning of the domain where cells are refined
according to their upper bounds.

@ Fort=1ton,

o Let 7; be the current partition with cells X;
o Define an upper bound for each cell:

B,’ = f(X,') + diam(X,-),

where x; € X; and diam(X;) o SUP, yex; £(x,¥)
o Select the cell with highest bound

Iy = argmax B;.

o Expand /;: refine the grid and evaluate f in children cells

@ Return x(n) o argmax, 1 ,«, f(xt)
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DOO

Properties of DOO

o At any time t, let X;« be the cell containing x* and x;« € X«
the point where the function has been evaluated. Then

F(x) < Flox-) + (" ) < F(3x-) + diam(X;-) = B
@ Thus any suboptimal cell X; such that
f(x;) + diam(X;) < f(x¥)

will never be expanded.

@ Thus finite-time performance guarantees can be obtained.
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DOO

Near-optimality dimension

Define the near-optimality dimension of f as the smallest d > 0
such that 3C, Ve, the set of e-optimal states

X. Y ixe X, f(x)>F—e

can be covered by Ce=? ¢-balls of radius .
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DOO

Example 1:

Assume the function is piecewise linear at its maximum:

F(x*) = £(x) = O(lIx" = x]|).

€

Using £(x,y) = ||x — y||, it takes O(€°) balls of radius € to cover
Xe. Thus d = 0.
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DOO

Example 2:

Assume the function is locally quadratic around its maximum:

F(x*) = f(x) = ©(llx* — x|P?).

@)= e =a’]

\e

For /(x,y) = ||x — y||, it takes O(e~P/?) balls of radius € to cover
X. (of size O(eP/?)). Thus d = D/2.
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DOO

Example 2:

Assume the function is locally quadratic around its maximum:

F(x*) = £(x) = O(|Ix" — x[[?)

) — e — a2

T T
-

€

For £(x,y) = ||x — y||?, it takes O(€®) ¢-balls of radius € to cover
X.. Thus d = 0.
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DOO

Example 3:

Assume the function has a square-root behavior around its
maximum:

f(x*) = f(x) = ©(|Ix" — x||'/?)

e f(l*) _ Hl _ I*||1/2

€

1/2

For {(x,y) = ||x — y||*/* we have d = 0.
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DOO

Example 4:

Assume X = [0,1]P and f is locally equivalent to a polynomial of
degree a > 0 around its maximum (i.e. f is a-smooth):

F(x*) = F(x) = O(lIx* — x|)

Consider the semi-metric £(x,y) = ||x — y||%, for some 8 > 0.
o If = p3, then d =0.
o If a> g, thend = D(5 - 3)>0.
o If a < 3, then the function is not locally smooth wrt /.
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DOO

Analysis of DOO (deterministic case)

Assume that the /-diameters of the nodes of depth h decrease
exponentially fast with h (i.e., diam(h) = cy", for some ¢ > 0 and
v <1).

This is true for example when X = [0,1]P and £(x,y) = ||x — y||®
for some 8 > 0.

Theorem 2.
The loss of DOO is
1/d
( - ) n 4 ford >0,

1—~9
rn =

cyn/ €1 for d = 0.

(Remember that r, % £(x*) — £(x(n))).
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DOO

Sketch of proof

Only cells X; of depth h such that f(x;) + diam(h) > f(x*)
may be expanded by DOO

@ From the definition of d, the number of such cells is less that
Cdiam(h)~9
@ The number of node expansions n < CZZSS diam(h)~¢

@ Ford >0, n= O(diam(hmax)_d> and the value of the

returned point x(n) is at least as good as f(xmax) for the
deepest expanded node (of depth hmax):

f(X(”)) > f(xmax) > f(X*) —diam(hmax) > f(x*) — O(nfl/d).

@ For d =0, n = Chpay and f(x(n)) > f(x*) — O(y"/€).
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Optimistic optimization
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About the local smoothness assumption

Assume f satisfies f(x*) — f(x) = O(||x* — x||%).
Use DOO with the semi-metric /(x,y) = ||x — y||*:

o If « = 3, then d = 0: the true “local smoothness” of the
function is known, and exponential rate is achieved.

o If a > 3, then d = D(% — 1) > 0: we under-estimate the

(0%
smoothness, which causes more exploration than needed.

o If a < B: We over-estimate the true smoothness and DOO
may fail to find the global optimum.

The performance of DOO heavilly relies on our knowledge of the
true local smoothness.
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Experiments [1]

f(x) = 3(sin(13x)sin(27x) + 1) satisfies the local smoothness
assumption f(x) > f(x*) — £(x, x*) with

e /1(x,y) = 14|x — y| (i.e., f is globally Lipschitz),

o la(x,y) =222|x — y|? (i.e., f is locally quadratic).
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Experiments [2]

Using ¢1(x,y) = 14|x — y| (i.e., f is globally Lipschitz). n = 150.
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DOO

Experiments [3]

Using £2(x,y) = 222|x — y|? (i.e., f is locally quadratic). n = 150.
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Experiments [4]

Optimistic optimization
0000000000000000CH

n | uniform grid | DOO with ¢; (d =1/2) | DOO with ¢> (d =0)
50 | 1.25 x 102 2.53 x 107> 1.20 x 102
100 | 8.31 x 1073 2.53 x 107° 1.67 x 1077
150 | 9.72 x 1073 4.93 x 107° 4.44 x 10716

Loss r, for different values of n for a uniform grid and DOO with
the two semi-metric ¢1 and /5.
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X-armed bandits

How to handle noise?

The evaluation of f at x; is perturbed by noise:

ry = f(Xt) + €t, with E[€t|Xt] =0.

fr

f(x)
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X-armed bandits

Where should one sample next?

How to define a high probability upper bound at any state x?
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X-armed bandits

UCB in a given cell

Tt

LU
LILLI T ]
For a fixed domain X; © x containing T,- points {x;} € X, we have
that Zz—;l re — f(x¢) is a Martingale. Thus by Azuma'’s inequality,
with 1/n-confidence,
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X-armed bandits

UCB in a given cell

For an optimal cell X; 3 x* containing T; points {x;} € X;,

@ we have
1 Ti 1 T,'
T, ; f(xe) = £(x*) — T ;E(an*) > f(x*) — diam(X;).

(where we used f(x;) > f(x*) — £(xt, x*))
@ Thus

72 re + 'Og -+ diam(X;) > £(x).
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X-armed bandits

Upper confidence bound

Upper-bound A
I

| diam(X;)

v

log n
2T;

Tradeoff between size of the conﬁdence interval and diameter.
Considering several domains we can derive a tighter UCB

In any cell X; define the UCB: — Z re + + diam(X;).
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X-armed bandits

Optimistic principle for X-armed bandits

Consider a series of partitions 7j, of the domain in cells { X}, ; };

Define a UCB for all cells of each partition

logt
2Th7,'(t)

Bh,i = Iin,i(t) + + diam(Xp;)

Define tighter UCB function:

B(x) = min By,
(X) XT,-ISX h,is

Select the point with highest UCB:

Xep1 € argmax B(x).
X
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X-armed bandits

Hierarchical Optimistic Optimization (HOO)

[Bubeck, Munos, Stoltz, Szepesvari, 2008]: Use a tree
representation to build a hierarchical partitioning of X

HOO Algorithm: e
At round t, tree T; Tumed-on i
- Select a leaf J; of T; by fol-
lowing a path from the root that
maximizes the B-values,

- Expand J;:

- Select x; € X, (arbitrarily) l

Bh+1.2i

lected node

- Observe reward ry = f(x¢) + €
and update the B-values: X

ulled pointX¢

2 log(t)
Ti(t)

Bi(t) ' min [ +

diam(X;), B;(t
+diam(X;), max ()]
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X-armed bandits

Properties of HOO

@ HOO selects a leaf J; such that

2log(t)
Ti(t)

+ diam(X,-)]

J; € argmax min {ﬁ;t
j€Le i€PU)

e For any X; 3 x*, Bj(t) is a h.p. UCB on f(x*).
@ Thus any suboptimal node X; such that

sup f(x)+ 2log(t)

sup Tt + diam(Xj) < f(x¥)

will not be selected.
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X-armed bandits

Example in 1d

Resulting tree at time n = 1000 and at n = 10000.
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X-armed bandits

Analysis of HOO

Assuming a slightly stronger assumption on f (weak Lipschitz):
Vx,y € X,

Fy) — f(x) < max{f* — f(y),{(x,y)}

Assume that the diameters decrease exponentially fast with their

depth h. The loss of HOO is

o= o((] ™)

(recall that for deterministic rewards r, = O(n=/9) for d > 0)
(see also the Zooming algorithm [Kleinberg, Slivkins, Upfal, 2008]).
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X-armed bandits

Example

Let X = [0,1]P. Assume that f is locally a-smooth around x*, i.e.
fF(x*) = F(x) = O(IIx" — x[[).

Choose /(x,y) = ||x — y||°.
o If the smoothness of the function is known (a = ): the

loss of HOO is O(y/log n/n). The rate is independent of
the dimension.

o The smoothness is underestimated (o > j):
d=D(1/3 — 1/a) and the loss is O(n~1/(d+2))

@ The smoothness is overestimated (a < ): the
weak-Lipschitz assumption is violated, thus there is no
finite-time guarantee (e.g., UCT = HOO with § = o0)
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Cumulative regret versus loss

n
The cumulative regret is defined as: R, = Z f(x*) = f(xt),
=1
whereas the loss (or simple regret) is r, = f(x*) — f(x(n)).
Properties:

@ Any exploration strategy with cumulative regret R, can be
turned into a strategy with expected loss Er, = %ER,, using
x(n) = xy where N ~U({1,2,...,n}).

@ In multi-armed bandits there exists much better strategies for
the simple regret [Audibert, Bubeck, Munos, 2010], [Bubeck,
Munos, Stoltz, 2009].

@ In bandits with many arms, the situation is not so clear...



Unknown smoothness

Assume that the smoothness is unknown

Previous algorithms heavily rely on the knowledge or the local
smoothness of the function (i.e. knowledge of the best metric).

Question: When the smoothness is unknown, is it possible to
implement the optimistic principle for function optimization?

Some approaches relies on estimating the local or global
smoothness of the function [Bubeck, Stoltz, Yu, 2011], [Slivkins,
2011], [Bull, 2013].
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DIRECT algorithm

Assume f is Lipschitz but the Lipschitz constant L is unknown.

The DIRECT algorithm [Jones, Perttunen, Stuckman, 1993]
expands simultaneously all nodes that may potentially contain the
maximum for some value of L.
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[[lustration of DIRECT

The sin function and its upper bound for L = 2.
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[[lustration of DIRECT

The sin function and its upper bound for L = 1/2.
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Other representation of DIRECT

value

|Xz| Size
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Other representation of DIRECT

value
fle)+ LX) L o
fa) | @ ¥ e
¢
o
] i (]

|Xz| Size
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Other representation of DIRECT

value

f(x) + LX|

f(x)

| X Size
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Other representation of DIRECT

value

Size
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Limitations of DIRECT

Assuming the function is globally Lipschitz is too restrictive. We
would like to handle the general case where:

@ where the function is only locally smooth w.r.t. ¢

o for any semi-metric ¢
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Extension to /(x,y) = L|x — y||*/?

value

Flag) + LIX|'

f(z:)

| X Size
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Extension to /(x,y) = L||x — y||?

value

fla) + LIX, P

f:)

| X Size
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SO0

Extension to any /!

value

Size
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SO0

Simultaneous Optimistic Optimization (SOO)

[Munos, 2011]
o Expand several leaves simultaneously
@ SOO expands at most one leaf per depth
@ SOO expands a leaf only if its value is larger that the value of
all leaves of same or lower depths.
@ At round t, SOO does not expand leaves with depth larger
than Amax(t)
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SO0

SOO algorithm

Input: the maximum depth function t — hmax(t)
Initialization: 71 = {(0,0)} (root node). Set t = 1.
while True do
Set Vinax = —00.
for h = 0 to min(depth(7;), hmax(t)) do
Select the leaf (h,j) € L; of depth h with max f(x4 ) value
if f(XhJ') > Vmax then
Expand the node (h, i), Set Vmax = f(xp;), Set t =t +1
if t=nthen return x(n) = arg max( i\e7, Xh,i
end if
end for
end while.
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Performance of SOO

For any semi-metric ¢ such that

o f is locally smooth w.r.t. ¢

o The (-diameter of cells of depth h is cy"

@ The near-optimality dimension of f w.r.t. £ is d =0,
by choosing hmax(n) = \/n, the expected loss of SOO is

ry < cyVA/C1

In the case d > 0 a similar statement holds with Er, = O(n~1/9),
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SO0

Performance of SOO

Remarks:
@ Since the algorithm does not depend on /¢, the analysis holds
for the best possible choice of the semi-metric ¢ satisfying the
assumptions.

@ SOO does almost as well as DOO optimally fitted (thus
“adapts” to the unknown local smoothness of f).
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Numerical experiments

Unknown smoothness
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Again for the function f(x) = (sin(13x)sin(27x) + 1)/2 we have:

n SO0 uniform grid | DOO with ¢; | DOO with />
50 | 356 x107% [ 1.25x 1072 | 253 x 10> | 1.20 x 102
100 | 590 x 1077 | 831 x 1073 | 253 x 107> | 1.67 x 107
150 [ 1.92 x 10710 | 9.72x 1073 | 493 x10°° | 4.44 x 10716
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The case d = 0 is non-trivial!

Example:

o f is locally a-smooth around its maximum:
F(x*) = F(x) = (lIx* — x[|),

for some a > 0.
@ SOO algorithm does not require the knowledge of 7,

@ Using {(x,y) = ||[x — y||* in the analysis, all assumptions are
satisfied (with v = 37%/D and d = 0, thus the loss of SOO is
r, = O(3~V7/(CD)) (stretched-exponential loss),

@ This is almost as good as DOO optimally fitted!

(Extends to the case f(x*) — f(x) ~ ZiD:1 ci|x — xi|“7)
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The case d =0

More generally, any function whose upper- and lower envelopes
around x* have the same shape: 3¢ > 0 and n > 0, such that

min(n, cl(x, x*)) < f(x*) — f(x) < Ll(x,x*), forall x € X.

has a near-optimality d = 0 (w.r.t. the metric /).

F@) —omm e [(@") = el(z,27)

f(@) =, )
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Example of functions for which d =0

U(x,y) = clx - y|?
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Example of functions with d =0

Ux,y) = clx = y|I'/?
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Ux,y) = clx = y|I'/?
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F(x) = 1= VX + (=32 £ VX) * (sin(1/x3) + 1) /2

The lower-envelope is of order 1/2 whereas the upper one is of
order 2. We deduce that d > 3/2.
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Unknown smoothness
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Sketch of proof

For any ¢, define

In = { cells X; of depth h such that f(x;) + diam(h) > f(x*)}
Once the optimal cell of depth h has been expanded, it takes
at most |/p41| cell expansions of depth h + 1 before the
optimal cell is expanded.

Thus n < hmax(n) hm;'é)(h”‘“(")’h’t) |In], where h* is the depth
of the node containing x*.

Assuming d =0, |l5| < C, and using hmax(n) = v/n, we have
Vv/n = Cmin(hmax(n), h%) = Ch,

Finally the value of the returned point x(n) is at least as good
as that of the optimal expanded node i containing x*:

f(x(n)) > f(x;x) > f(x*) — diam(hy) > f(x*) — Vi€,

where we used that the diameters are cy".
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Comparison SOO versus DIRECT algorithms

@ SOO is much more general than DIRECT: the function is
only locally smooth and the space is semi-metric.

e Finite-time analysis of SOO (whereas only a consistency
property limp_,o r, = 0 is available for DIRECT in [Finkel and
Kelley, 2004])

@ SOO is a rank-based algorithm: any transformation of the
values while preserving their rank will not change anything in
the algorithm. Thus extends to the optimization of function
givens pair-wise comparisons.

@ SOOQ is easier to implement...
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Stochastic SOO (StoSOO)

A simple way to extends SOO to the case of stochastic rewards is
the following:

@ Select a cell j (and sample f at x;) according to SOO based

on the values

- log n
) c ’
/’Ll,t + Tk(t)

(where [ij ¢+ is the arerage rewards received at x; and T;(t) is
the number of rewards received at state x;),

e Expand the cell X; only if T;(t) > k, where k is a parameter.
Remark: This really looks like UCT, except that
@ several cells are selected at each round,

@ a cell is refined only when we received k samples.
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StoSOO

Intuition for StoSOO

With high probability, StoSOO acts as a e-pertubed version of
SOO where:
Iogn)

e The values f(x;) are perturbed by €, where ¢ = O(y/ ¢

@ There are only m = n/k evaluations to the function.
Thus the loss of StoSOO is

log n
P

Ery(StoSO0) = Ern(S00) + O(
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StoSOO

Performance of StoSOO

Theorem 5 (Valko, Carpentier, Munos, 2013).

For any semi-metric ¢ such that

e f is locally smooth w.r.t. £

@ The {-diameters of the cells decrease exponentially fast with
their depth,
@ The near-optimality dimension of f w.r.t. £ is d = 0,
by choosing k = m,
S5toSOO0 is

er, = o( {620,

hmax(n) = (log n)3/2, the expected loss of
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StoSOO

Comments about StoSOO

In the (rather general) case d = 0, StoSOO gives a O(1/1/n) loss
In comparison to HOO/Zooming:

o HOO optimally fitted gives o(w/'°§") loss

@ HOO with underestimation of the right smoothness
deteriorates
@ HOO with overestimation of the right smoothness may not
converge.
Thus StoSOO is almost as good as HOO optimally fitted.
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StoSOO

Range of application of DOO/HOO and SOO/StoSOO

llustrations in Euclidean spaces [0, 1]° only.

But there are plenty of other semi-metric spaces:
@ Trees, graphs, combinatorial spaces, structured spaces, ...
@ Ex: space of policies for MDPs

We only require:
@ the search space X to be equipped with a semi-metric ¢

@ a nested (hierarchical) partitioning of the space, such that the
{-diameters of the cells decrease with their depth

o f to satisfy a local smoothness property w.r.t. £

@ ¢ may or may not be known.
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Online planning in a MDP

Setting:
@ Assume we have a model of the MDP.

@ The state space is large: no way to approximate the value
function

@ Search for the best policy given an initial state, using a finite
numerical budget (number of calls to the model)

Protocol:

@ From current state s, perform planning using n calls to the
model and recommend action a(n),

e Play a(n), observe next state sx11, and repeat

Loss: r, & max Q*(sk, a) — Q" (sk, a(n)).
ac
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Deterministic dynamics

Deterministic transitions and rewards

(infinite time horizon and discounted setting)
Initial state

h(z,y) =2

A policy x is an infinite path

Value f(x) = > .~q7°rs(x), where
the rewards are in [0, 1]

Metric: ¢(x,y) = Wh(xi)

Prop: f(x) is Lipschitz w.r.t. £

— Use optimistic search
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Deterministic dynamics

OPD algorithm

Optimistic Planning in Deterministic systems:

@ Define the B-values:

Optimal path
d(7) d(i)+1
f
B « E 'ysrs—l—’yl_
s=0

e We have B; > max,s; f(x)

@ For each round t =1 to n,
expand the node with
highest B-value

@ Observe reward, update
B-values

Recommend the first action a(n) of the best policy.
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Deterministic dynamics

Performance of OPD

Define 3 such that P(Random path is e-optimal) = O(¢).

Define 1 % K~% € [1, K]. Then & is the branching factor of the
set of near-optimal sequences:

h h+1

| = {sequences of length h such that Z’ysrs >V — i }
I-n
s=0
Property: « relates to the near-opt. dimension d = |o'zg177 (the set

of e-optimal paths is covered by O(e~?) ¢-balls of radius )
Loss of OPD [Hren and Munos, 2008]:

1 log1/~y
rhn=0(n"4)=0 (n log r > .

Performance depends on the quantity of near-optimal policies
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Deterministic dynamics

k-minimax lower bounds

Let M, the set of problems with coefficient .
Upper-bound of OPD uniformly over M,

_logl/y
sup ra(Aopp, M) =0 (n log = > )
MeMg

We can prove that we have a xk-minimax lower-bound:

_logl/y

sup inf r,(A,M)>Q <n fog = ) .
A MeM,

Sketch of proof:

OPD only expands nodes in /. Reciproquely, I is the set of nodes

that need to be expanded in order to find the optimal path.
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Stochastic rewards

Extension to stochastic rewards

Dynamics are still deterministic thus the space of policies is still
the set of sequences of actions.

. KJ“‘MK@
Stochastic rewards:

@ Reward along a path x: Vi~ n(2)

S
ZSZO’Y Ys’ Y, ~ vo(x)

where Y5 ~ vs(x) where vg(x) is
the reward distribution (& [0, 1])
after s actions along path x.
o Write rs(x) = Ex.y,(x)[X] and
F(x) = 2s207°rs(x)
Then f(x) is Lipschitz w.rt. /(x,y) = % o 7) and one can think of
applying HOO.

T
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Using HOO for planning

Apply HOO to the search space X:
@ Assign a B-value to each finite sequence

@ At each round t, select a finite sequence x; maximizing the
B-value.

o Observe sample reward ). ,7° Ys(x¢) of the path x; and use
it to update the B-values.

@ The loss is .

O(n~a+2).

Problem: HOO does not make full use of the tree structure:
It uses the sample reward of the whole path x but not the
individual reward samples Y;(x) collected along the path x.
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Optimistic sampling using the tree structure

Open Loop Optimistic Planning (OLOP) [Bubeck, Munos,
2010]:

e At round t, play path x; (up to depth h = %lolzgi%)

@ Observe sample rewards Y5(x;) of each node along the path x;

e Compute empirical rewards [i+(x1.s) for each node xj.s of
depth s < h

@ Define bound for each path x:

B 2logn A tt
500 = i, [ 377 (5o + | 150

o Select path x;y1 = argmax, B:(x)

This algorithm fully uses the tree structure of the rewards.
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Stochastic rewards

Performance of OLOP

Define
@ 3> 0 such that P(Random path is e-optimal) = O(€”).

oorn™ K~? € [1, K] the branching factor of the set of

near-optimal sequences.
log Kk
log1/~"

@ or the near-optimality dimension, d =

Theorem 6 (Loss of OLOP).

After n calls to the generative model,

O(nYd) ifd>2

Er, = f(x*) — Ef(x(n)) = { 5(1/ﬁ) ifd<?2

Much better than HOO! As good as OPD for d > 2.
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Stochastic rewards

Comparison: OLOP, HOO, Zooming, UCB-AIR

Exponent

UCB AlR:

~1/2 \
OLOP: —=
| | lo, "l'
0 y 2 loggl/\w d
log K 1 0 /8

log 1/
Few good arms Many good arms
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Optimistic Planning in MDPs

Stochastic transitions, but assume that the number of next states
is finite.

Here a policy is no more a sequence of actions

OP-MDP [Busoniu and Munos, 2012]:
@ The root = current state.
@ Fort =1 to n:

o Compute the B-value of all nodes of the current sub-tree

e Compute the optimistic policy

e Select a leaf of the optimistic sub-tree and expand it
(generates transitions to next states using the model)

@ Return first action of the best policy
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MDPs

[llustration of OP-MDP

B-values: upper-bounds on the optimal value function V*(s):

1
B(s) = T for leaves
— / / /
B(s) = m;axZ: p(s'ls,a)[r(s,a,s") +vB(s)]
S

Compute the optimistic policy 7.
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MDPs

Optimistic Planning in MDPs

,yd(s)
1—v>

Expand leaf in 7" with largest contribution: arg maxsc. P(s)
where P(s) is the probability to reach s when following 7.
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Performance analysis of OP-MDP

Define X. the set of states
@ whose “contribution” is at least €

@ and that belong to an e-optimal policy

Near-optimality planning dimension: Define the measure of
complexity of planning in the MDP as the smallest d > 0 such
that [X.| = O(e~9).

The performance of OP-MDP is r, = O(n_l/d). \

The performance depends on the quantity of states that
contribute significantly to near-optimal policies
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Optimistic Planning

lllustration of the performance

Reminder: r, = O(n~Y/9).

Uniform rewards and probabilities d = % (uniform
planning)
Structured rewards, uniform probabilities d = Io 1/ (uniform
planning for a single policy)

og K

Uniform rewards, concentrated probabilities d — |<I:g 175

(planning in deterministic systems)

Structured rewards, concentrated probabilities d — 0
(exponential rate)
Remarks: d is small when

@ Structured rewards

@ Heterogeneous transition probabilities

(ololele] Jol
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MDPs

Towards d-minimax lower bounds

Let My the set of MDPs with near-optimality planning dim. d
Upper-bound of OP-MDP uniformly over Mg

sup ra(Aop_mpp, M) < O(n~Y9).
MeMy

We conjecture that we have a d-minimax lower-bound:

inf E M) > Q(n~1/9).
sup inf . ra(A, M) > Q(n™ ")
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Optimistic Planning

Conclusions on optimistic planning

Perform optimistic search in policy space.

In deterministic dynamics, deterministic rewards, can be seen
as a direct application of optimistic optimization

In stochastic rewards, the structure of the reward function can
help estimation of paths given samples from other paths

In MDPs the near-optimality planning dimension is a new
measure of the quantity of states that need to be expanded
(the set of states that significantly contribute to near-optimal
policies)

Fast rates when the MDP has structured rewards and
heterogeneous transition probabilities.

Applications to Bayesian Reinforcement learning and planning
in POMDPs.

DOO000
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MDPs

Possible extensions in optimistic planning

@ Extends OP-MDP to the case when only a generative model
of the dynamics is available

@ Extension to a possibly infinite number of next-states

@ Apply SOO / StoSOO ideas for planning: Although the value

. . . . . Ay

function is Lipschitz w.r.t. the metric {(x,y) = = it may
possess additional smoothness around the maximum with a
higher-order semi-metric.
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MDPs

Main message of this tutorial

The “optimism in the face of uncertainty” principle:

@ applies in a large class of decision making problems in
stochastic and deterministic environments (in unstructured
and structured problems)

@ provides an efficient exploration of the search space by
exploring the most promising areas first
@ provides a natural transition from global to local search

@ Performance depends on the “smoothness” of the function
around the maximum w.r.t. some metric,

e a measure of the quantity of near-optimal solutions,
e and our knowledge or not of this metric.

DOOO0OOH
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Conclusions

Thanks !l

Slides and a review paper are available from my web page:

http://chercheurs.lille.inria.fr/~munos/

Optimistic Planning
{olole]elele]



	Introduction to bandits
	Multi-armed bandit
	UCB
	Some variants
	Many-armed bandits

	MCTS
	computer go
	UCT

	Optimistic optimization
	Illustration
	DOO
	X-armed bandits

	Unknown smoothness
	SOO
	StoSOO

	Optimistic Planning
	Deterministic dynamics
	Stochastic rewards
	MDPs


