
Bandit Algorithms for Tree Search

Pierre-Arnaud Coquelin
CMAP, Ecole Polytechnique

91128 Palaiseau Cedex, France
coquelin@cmapx.polytechnique.fr

Rémi Munos
SequeL project, INRIA Futurs Lille

40 avenue Halley,
59650 Villeneuve d’Ascq, France

remi.munos@inria.fr

Abstract

Bandit based methods for tree search have
recently gained popularity when applied to
huge trees, e.g. in the game of go [6]. Their
efficient exploration of the tree enables to re-
turn rapidly a good value, and improve preci-
sion if more time is provided. The UCT algo-
rithm [8], a tree search method based on Up-
per Confidence Bounds (UCB) [2], is believed
to adapt locally to the effective smoothness
of the tree. However, we show that UCT is
“over-optimistic” in some sense, leading to
a worst-case regret that may be very poor.
We propose alternative bandit algorithms for
tree search. First, a modification of UCT us-
ing a confidence sequence that scales expo-
nentially in the horizon depth is analyzed.
We then consider Flat-UCB performed on
the leaves and provide a finite regret bound
with high probability. Then, we introduce
and analyze a Bandit Algorithm for Smooth
Trees (BAST) which takes into account ac-
tual smoothness of the rewards for perform-
ing efficient “cuts” of sub-optimal branches
with high confidence. Finally, we present
an incremental tree expansion which applies
when the full tree is too big (possibly in-
finite) to be entirely represented and show
that with high probability, only the optimal
branches are indefinitely developed. We illus-
trate these methods on a global optimization
problem of a continuous function, given noisy
values.

1 Introduction

Bandit algorithms have been used recently for tree
search, because of their efficient trading-off between
exploration of the most uncertain branches and ex-

ploitation of the most promising ones, leading to very
promising results for dealing with huge trees (see e.g.
the go program MoGo in [6]). In this paper we fo-
cus on bandit algorithms based on Upper Confidence
Bounds (UCB) [2] applied to tree search, such as UCT
(Upper Confidence Bounds applied to Trees) [8]. This
general bandit-based procedure for tree search is de-
fined by Algorithm 1; the core issue being the way the
upper-bounds Bi,p,ni on the value of each node i are
maintained.

Algorithm 1 Bandit Algorithm for Tree Search

for n ≥ 1 do
Run the n-th trajectory (sequence of nodes
(i0, . . . , iD) from the root to a leaf):
Set the current node i0 to the root
for d = 1 to D do

* Compute the bounds Bj,nid−1
,nj for all chil-

dren j ∈ C(id−1) of node id−1

* Select the node id as a child of node id−1 that
has the highest B value, i.e.

id ∈ arg max
j∈C(id−1)

Bj,nid−1
,nj

end for
Receive reward xn

iid∼ XiD

end for

A trajectory is a sequence of nodes from the root to a
leaf, where at each node i, the next node is chosen as
the (or one) child having the highest B value among its
children C(i). A reward is received at the leaf. After a
trajectory is run, the number of visits ni of each node
i in the trajectory are incremented.

For example, in the case of UCT, the upper-confidence
bound of a node i is:

Bi,p,ni

def
= Xi,ni +

√

2 log(p)

ni
. (1)

where ni (resp. p) is the number of times this node
(resp. its parent) has been visited, and Xi,ni is the

in
ria

-0
01

50
20

7,
 v

er
si

on
 1

 -
29

 M
ay

 2
00

7
Author manuscript, published in "Uncertainty in Artificial Intelligence, Vancouver, Canada : (2007)"

http://hal.inria.fr/inria-00150207/fr/
http://hal.archives-ouvertes.fr

empirical mean of the rewards that have been obtained
by trajectories going through that node.

In this paper we consider a max search in a binary
tree (i.e. there are 2 actions from each node) of depth
D. The extension to more actions is straightforward.
At each leaf i is assigned a random variable Xi, with
bounded support included in [0, 1], whose law is un-
known.

We write It the chosen leaf at round t (i.e. obtained
at the end of the t−th trajectory). Successive visits
of the leaves (It) yield a sequence of independent and
identically distributed (i.i.d.) samples xt ∼ XIt , called
rewards, or payoffs. We write xi,t the t-th reward re-
ceived at a leaf i.

The value of a leaf i is the expected reward: µi
def
= EXi.

Now we define the value of any node i as the maximal
value of the leaves in the sub-tree (branch) starting
from node i. An optimal leaf is a leaf having the largest
expected reward. We will denote by ∗ quantities re-
lated to an optimal node. For example µ∗ denote the
maximal value of the leaves, i.e. the value of the root.
One possible goal is to compute µ∗. Another goal is
to find an optimal branch, i.e. a sequence of nodes
from the root to an optimal leaf. Let i∗ be an optimal
leaf. We write ni(t) the random variable that counts
the number of times a node i has been visited up to
time t. Thus xt = xIt,nIt (t).

We define the cumulative regret up to time n as the
loss in the cumulative rewards resulting from choosing
sub-optimal leaves instead of an optimal one:

Rn
def
=

n
∑

t=1

xi∗,ni∗(t) −
n

∑

t=1

xt.

We also define the cumulative pseudo-regret:

R̄n
def
= nµ∗ −

n
∑

t=1

µIt =
∑

j∈L
nj∆j ,

where L is the set of leaves and ∆j
def
= µ∗ − µj . The

difference between the regret and the pseudo-regret
comes from the randomness of the rewards.

In tree search, our goal is thus to find an exploration
policy of the branches such as to minimize the re-
gret, in order to select an optimal leaf as fast as
possible. Notice that thanks to Wald’s theorem, the
regret and pseudo-regret have the same expectation:
ERn = ER̄n. Now, thanks to a contraction of measure
phenomenon, the regret per round Rn/n turns out to
be very close to the pseudo-regret per round R̄n/n.
Indeed, using Azuma’s inequality for martingale dif-
ference sequences (see Proposition 1), with probability
at least 1 − β, we have at time n,

|Rn − R̄n| ≤
√

|Sub(n)| log(2/β)/2, (2)

where |Sub(n)| is the cardinal of Sub(n)
def
= {t ∈

{1, . . . , n}, It 6= i∗}, the set of times t, up to time n,
when the chosen leaf It is different from i∗.

The fact that Rn − R̄n is a martingale difference se-
quence comes from the property that the chosen leaf
at time t is entirely determined by the filtration Ft−1

(defined by the random samples up to time t−1). Thus
E[xt|Ft−1] = µIt and R̄n − Rn =

∑

t∈Sub(n) xt − µIt

with E[xt−µIt |Ft−1] = 0, and (2) follows from Propo-
sition 1. Hence, in this paper, we will focus on provid-
ing high probability bounds on the pseudo-regret, and
on the number of sampled sub-optimal leaves. Bounds
on the regret directly follow from (2).

The paper is organized as follows. First, we analyze
the UCT algorithm defined by the upper confidence
bound (1). We show that its behavior is risky and may
lead to a regret (expressed in terms of the depth D of
the tree) as bad as Ω(exp(· · · exp(1) · · ·)) (there are
D − 1 composed exponential functions). If we mod-
ify the algorithm by using an increased exploration
sequence, defining:

Bi,p,ni

def
= Xi,ni +

√√
p

ni
, (3)

we obtain an improved worst-case behavior compared
to regular UCT, but the regret may still be as bad
as Ω(exp(exp(D))) (see Section 2). We then propose
in Section 3 a modified UCT based on the bound (3),
where the confidence interval is multiplied by a factor
that scales exponentially with the horizon depth.

Next, we analyze the Flat-UCB algorithm, which sim-
ply performs UCB directly on the leaves.

In Section 5 we introduce the Bandit Algorithm for
Smooth Trees (BAST), which takes into account ac-
tual smoothness of the rewards for performing efficient
“cuts” of branches that are (with high confidence) sub-
optimal, without having to explore all the leaves of
these branches. This is our main contribution. We an-
alyze the regret and show the improvement over both
UCT and Flat-UCB. We provide a numerical experi-
ment for the problem of optimizing a continuous func-
tion given noisy values.

Finally, in Section 6 we extend and analyze BAST us-
ing an incremental tree expansion procedure, which
applies when the tree is so big that its full represen-
tation in memory is impossible. We show that this
method builds an asymmetric tree that indefinitely de-
velops the optimal branch only.

Preliminaries and additional notations Let L
denotes the set of leaves and S the set of sub-optimal
leaves. For any node i, we write L(i) the set of leaves
that belong to the sub-tree starting from node i. When

in
ria

-0
01

50
20

7,
 v

er
si

on
 1

 -
29

 M
ay

 2
00

7

there is no possible confusion, we write ni instead of
ni(n) the number of times a node i has been visited up
to time n. For a leaf j, we define the empirical mean
of the rewards obtained at j:

Xj,nj

def
=

1

nj

nj
∑

t=1

xj,t.

Now, for any node i, we defined the empirical mean of
the rewards obtained from i, up to time n:

Xi,ni

def
=

1

ni

ni
∑

t=1

xi,t =
1

ni

∑

j∈L(i)

njXj,nj ,

and the empirical mean of the values of the leaves:

X̄i,ni

def
=

1

ni

∑

j∈L(i)

njµj .

We finally remind Azuma’s inequality (see [7]):

Proposition 1. Let Y1, Y2, · · · be a martingale differ-
ence sequence, i.e. for all t ≥ 1, E[Yt|Y1, . . . , Yt−1] = 0
with probability (w.p.) 1, and d1, d2, . . . real positive
numbers such that for all t ≥ 1, 0 ≤ Yi ≤ di w.p. 1.
Then for every ǫ > 0,

P(
∣

∣

n
∑

t=1

Yt

∣

∣ ≥ ǫ
)

≤ 2e−2ǫ2/
Pn

t=1 d2
t .

2 Regret lower bound for UCT

Notice that the bound (1) used in UCT comes from a
concentration inequality that applies when the rewards
are independent and identically distributed. However,
in the tree problem, the received rewards at each node
do not satisfy these assumptions because the chosen
leaves depend on a non-stationary node selection pro-
cess. Hence, the bound (1) may not be a true upper
confidence bound of the nodes value.

Nevertheless, as argued in [8], since the confidence in-
terval term increases with log(p) when a child node
is not chosen, all children from each node will even-
tually be indefinitely visited. Then, using an induc-
tive argument on the depth, it is proven that, after a
transitory period of time N0, only the optimal branch
will be followed, yielding an expected regret of order
O(N0 +log(n)). However, this “transitory” phase may
last very long.

Indeed, consider the example shown in Figure 1. The
rewards are deterministic and for a node of depth d in
the optimal branch (obtained after choosing d times
action 1), if action 2 is chosen, then a reward of D−d

D
is received (all leaves in this branch have the same re-
ward). If action 1 is chosen, then this moves to the

next node in the optimal branch. At depth D − 1,
action 1 yields reward 1 and action 2, reward 0. We
assume that when a node is visited for the first time,
the algorithm starts by choosing action 2 before choos-
ing action 1.

1

0

(D−1)/D

(D−2)/D

1/D

2/D
1

1

21

2

2

1

21

2

Figure 1: A bad example for UCT. From the root
(left node), action 2 leads to a node from which all
leaves yield reward D−1

D . The optimal branch consists
in choosing always action 1, which yields reward 1. In
the beginning, the algorithm believes the arm 2 is the
best, spending most of its times exploring this branch
(as well as all other sub-optimal branches). It takes
Ω(exp(. . . (exp(1)) . . .)) (D − 1 times) rounds to get
the 1 reward!

We now establish a lower bound on the number of
times suboptimal rewards are received before getting
the optimal 1 reward for the first time. Write n the
first time the optimal leaf is reached. Write nd the
number of times the node (also written d making a
slight abuse of notation) of depth d in the optimal
branch is reached. Thus n = n0 and nD = 1. At
depth D − 1, we have nD−1 = 2 (since action 2 has
been chosen once in node D − 1).

We consider both the logarithmic confidence sequence
used in (1) and the square root sequence in (3). Let
us start with the square root confidence sequence (3).
At depth d − 1, since the optimal branch is followed
by the n-th trajectory, we have (writting d′ the node
resulting from action 2 in the node d − 1): Xd′,nd′

+
√√

nd−1

nd′

≤ Xd,nd
+

√√
nd−1

nd
. But Xd′,nd′

= (D−d)/D

and Xd,nd
≤ (D−(d+1))/D since the 1 reward has not

been received before. We deduce that 1
D ≤

√√
nd−1

nd
.

Thus for the square root confidence sequence, we have
nd−1 ≥ n2

d/D4. Now, by induction,

n ≥ n2
1

D4
≥ n22

2

D4(1+2)
≥ n23

3

D4(1+2+3)
≥ · · · ≥ n2D−1

D−1

D2D(D−1)

Since nD−1 = 2, we obtain n ≥ 22D−1

D2D(D−1) . This is

in
ria

-0
01

50
20

7,
 v

er
si

on
 1

 -
29

 M
ay

 2
00

7

a double exponential dependency w.r.t. D. For ex-
ample, for D = 20, we have n ≥ 10156837. Thus the
transitory phase lasts N0 = Ω(exp(exp(D))), and the
regret is Ω(exp(exp(D)))+O(log n), showing a double
exponential dependency w.r.t. the depth of the tree.

Now, the usual logarithmic confidence se-
quence defined by (1) yields an even worst
lower bound on the regret since we may show
similarly that nd−1 ≥ exp(nd/(2D2)) thus
n = Ω(exp(exp(· · · exp(1) · · ·))) (composition of
D − 1 exponential functions). Thus UCT algorithm
has a regret Ω(exp(exp(· · · exp(1) · · ·))) + O(log(n)),
showing a hyperexponential dependency w.r.t. D.

The reason for this bad behavior is that the algorithm
is too optimistic (it does not explore enough and may
take a very long time before discovering good branches
that looked initially bad) since the bounds (1) and (3)
are not true upper bounds on the nodes value, at least
during the transitory period which may last very long.

3 Modified UCT

We modify the confidence sequence in order to ex-
plore more the nodes that are closer to the root than
the leaves, taking into account the fact that the time
needed to decrease the bias (µi − X̄i,ni) at a node i of
depth d increases with the depth horizon (D− d). For
such a node i of depth d, we define the upper confi-
dence bound:

Bi,ni

def
= Xi,ni + (kd + 1)

√

log(β−1
ni)

2ni
+

k′
d

ni
, (4)

where βn
def
= β

2Nn(n+1) with N
def
= 2D+1−1 the number

of nodes in the tree, and the coefficients:

kd
def
=

1 +
√

2√
2

[

(1 +
√

2)D−d − 1
]

(5)

k′
d

def
= (3D−d − 1)/2

Notice that we used a simplified notation, writing Bi,ni

instead of Bi,p,ni since the bound does not depend on
the number of visits of the parent’s node.

We now provide a high probability bound on the regret
which is exponential in the depth D and is square root
dependent on n. The proof is given in [4].

Theorem 1. Let β > 0. Consider Algorithm 1 with
the upper confidence bound (4). Then, with probabil-
ity at least 1 − β, for all n ≥ 1, the pseudo-regret is
bounded by

R̄n ≤ 1 +
√

2

2

[

(1 +
√

2)D − 1
]

√

log(β−1
n)n +

3D − 1

2

The confidence intervals used in (4) are actually chosen
such that the B values represent true upper confidence
bounds on the nodes value, i.e. with high probability
(at least 1−β), for all node i, for all ni ≥ 1, µi ≤ Bi,ni .
Thus this procedure is safe, which prevents us from
having bad behaviors for which the regret could be
disastrous, like in regular UCT. However, contrarily
to regular UCT, in good cases, the procedure does
not adapt to the effective smoothness in the tree. For
example, at the root level, the confidence interval is
O(exp(D)/

√
n) which leads to sampling almost uni-

formly both actions for a time O(exp(D)). Thus, if
the tree were to contain 2 branches, one only with ze-
ros, one only with ones, this smoothness would not
be taken into account by this method, and the regret
would still be O(exp(D)

√
n). Thus modified UCT is

less optimistic than regular UCT but safer in a worst-
case scenario.

4 Flat UCB

A method that would combine both the safety of mod-
ified UCT and the adaptivity of regular UCT is to con-
sider a regular UCB algorithm on the leaves. Such a
flat UCB could naturally be implemented in the tree
structure by defining the upper confidence bound of a
non-leaf node as the maximal value of the children’s
bound:

Bi,ni

def
=

{

Xi,ni +

√

log(β−1
ni

)

2ni
if i is a leaf,

maxj∈C(i) Bj,nj otherwise.
(6)

where we use βn
def
= β

2D+1n(n+1) . We deduce:

Theorem 2. Consider the flat UCB defined by Algo-
rithm 1 and (6). Then, with probability at least 1− β,
the pseudo-regret is bounded by a constant independent
of n:

R̄n ≤ 6
∑

i∈S

1

∆i
log(

2D+2

∆2
i β

) ≤ 6
2D

∆
log(

2D+2

∆2β
),

where ∆
def
= mini∈S ∆i.

Proof. Consider the event E under which, for all leaves
i, for all n ≥ 1, we have |Xi,n − µi| ≤ cn, with the

confidence intervals cn =

√

log(β−1
n)

2n . Then the event
E holds with probability at least 1−β. Indeed, from a
union bound argument, there are at most 2D Chernoff-
Hoeffding’s inequalities (one for each leaf) of the form:

P (|Xi,n − µi| ≤ cn, ∀n ≥ 1) ≥ 1 −
∑

n≥1

2βn = 1 − β

2D
.

Under the event E , we now provide a regret bound by
bounding the number of times each sub-optimal leaf is
visited. Let i ∈ S be a sub-optimal leaf. Write ∗ an

in
ria

-0
01

50
20

7,
 v

er
si

on
 1

 -
29

 M
ay

 2
00

7

optimal leaf. If, at some round n, the leaf i is chosen,
this means that X∗,n∗

+ cn∗
≤ Xi,ni + cni . Using

the (lower and upper) confidence interval bounds for
leaves i and ∗, we deduce that µ∗ ≤ µi + 2cni . Thus
(

∆i

2

)2 ≤ log(β−1
ni

)

2ni
. Hence, for all n ≥ 1, ni is bounded

by the smallest integer n0 such that n0

log(β−1
n0

)
> 2/∆2

i .

An upper bound on n0 may be found by analyzing
the zero of the function x → x − w log(2D+1x(x +
1)β−1), writing w = 2/∆2

i . A rough bound on n0

is 3w log(w2D+1β−1). We deduce that the number of
times a leaf i is chosen is at most

ni ≤
6

∆2
i

log(
2

∆2
i

2D+1β−1).

The bound on the regret follows immediately from the
property that R̄n =

∑

i∈S ni∆i.

This algorithm is safe in the sense that with high
probability, the bounds defined by (6) are true up-
per bounds on the value on the leaves. However, since
there are 2D leaves, the regret still depends exponen-
tially on the depth D.

In the next section, we introduce another UCB-based
algorithm that takes into account possible smooth-
ness of the rewards to process efficient “cuts” of sub-
optimal branches with high confidence.

5 Bandit Algorithm for Smooth Trees

We would like to exploit the fact that if the leaves of a
branch have similar values, then a confidence interval
on the value of that branch may be made much tighter
than the maximal confidence interval of its leaves (as
processed in the Flat UCB). Indeed, assume that from
a node i, all leaves j ∈ L(i) in the branch i have values
µj , such that µi − µj ≤ δ. Then,

µi ≤
1

ni

∑

j∈L(i)

nj(µj + δ) ≤ Xi,ni + δ + X̄i,ni − Xi,ni ,

and thanks to Azuma’s inequality, the term X̄i,ni −
Xi,ni is bounded with probability 1−β by a confidence

interval
√

log(2β−1)
2ni

which depends only on ni (and not

on nj for j ∈ L(i)). We now make such a smoothness
assumption either along an optimal path only or
along any almost optimal path.

Assumption A∗: for any depth d < D, there exists
δd > 0, such that for (at least) one optimal node i of
depth d (i.e. such that µi = µ∗), we have, for all leaves
j ∈ L(i) in the branch i, µ∗ − µj ≤ δd.

A stronger assumption requires the smoothness as-
sumption to hold for any η-optimal node i (where

η > 0), i.e. when i ∈ Iη
def
= {node i, ∆i ≤ η}.

Assumption Aη: For any i ∈ Iη of depth d < D,
there exists δd > 0, such that for all j ∈ L(i), µi−µj ≤
δd.

Typical choices of the smoothness coefficients δd are

exponential δd
def
= δγd (with δ > 0 and γ < 1), polyno-

mial δd
def
= δdα (with α < 0), or linear δd

def
= δ(D − d)

(Lipschitz in the tree distance) sequences.

We define the Bandit Algorithm for Smooth
Trees (BAST) by Algorithm 1 with the upper con-

fidence bounds defined, for any leaf i, by Bi,ni

def
=

Xi,ni + cni , and for any non-leaf node i of depth d,
by

Bi,ni

def
= min

{

max
j∈C(i)

Bj,nj , Xi,ni + δd + cni

}

(7)

with the confidence interval cn
def
=

√

log(2Nn(n+1)β−1)
2n .

We now provide high confidence bounds on the number
of times each sub-optimal node is visited.

Theorem 3. Assume A∗. Let I denotes the set of
nodes i such that ∆i > δdi , where di is the depth of
node i. Define recursively the numbers Ni associated
to each node i of a sub-optimal branch (i.e. for which
∆i > 0):

- If i is a leaf, then Ni
def
=

6 log(4Nβ−1/∆2
i)

∆2
i

.

- It i is not a leaf, then

Ni
def
=

{

Ni1 + Ni2 , if i /∈ I

min(Ni1 + Ni2 ,
6 log(4Nβ−1/(∆i−δdi

)2)

(∆i−δdi
)2), if i ∈ I

where i1 and i2 denote the children nodes of i. Then,
with probability 1−β, for all n ≥ 1, for all sub-optimal
nodes i, we have ni ≤ Ni.

Proof. We consider the event E under which |Xi,n −
X̄i,n| ≤ cn for all nodes i and all times n ≥ 1. Like
in the previous result, the confidence interval cn =
√

log(2Nn(n+1)β−1)
2n is chosen such that P (E) ≥ 1 − β.

Under E , the smoothness assumption along an op-
timal path implies that for any optimal node ∗ in
this branch, B∗,n∗

is a true upper bound on µ∗, i.e.
µ∗ ≤ B∗,n∗

.

Now, for any sub-optimal leaf i, using the same anal-
ysis as in Flat UCB, we deduce the bound ni ≤ Ni.
Then, by backward induction on the depth, assume
that ni ≤ Ni for all sub-optimal nodes of depth
d + 1. Let i be a node of depth d. Then ni ≤
ni1 + ni2 ≤ Ni1 + Ni2 . Now consider a sub-optimal
node i ∈ I. If the node i is chosen at round n, the
form of the bound (7) implies that for any optimal
node ∗, we have B∗,n∗

≤ Bi,ni . Since µ∗ ≤ B∗,n∗
and

in
ria

-0
01

50
20

7,
 v

er
si

on
 1

 -
29

 M
ay

 2
00

7

Bi,ni ≤ Xi,ni +δd+cni ≤ µi+δd+2cni, we deduce µ∗ ≤
µi+δd+2cni, which rewrites ∆i−δd ≤ 2cni . Using the
same argument as in the proof of Flat UCB, we deduce

that for all n ≥ 1, we have ni ≤ 6 log(4Nβ−1/(∆i−δd)2)
(∆i−δd)2 .

Thus ni ≤ Ni at depth d, which finishes the inductive
proof.

Now we would like to compare the regret of BAST
to that of Flat UCB. First, we expect a direct gain
for nodes i ∈ I. Indeed, from the previous result,
whenever a node i of depth d is such that ∆i > δd,
then this node will be visited, with high probability,
at most O(1/(∆i−δd)

2) times (neglecting log factors),
independently of the number of leaves (2D−d) in the
branch starting from i. But we also expect an im-
proved bound on ni whenever ∆i > 0 if at a certain
depth h ∈ [d, D], all nodes j of depth h in the branch
i satisfy ∆j > δh.

The next result enables to further analyze the expected
improvement over Flat UCB.

Theorem 4. Let η > 0. Write Jη
def
= Iη ∩ L the set

of η-optimal leaves. Assume Aη with an exponential
sequence δd = δγd. Then, with probability at least 1 −
β, the pseudo regret satisfies, for all n ≥ 1,

R̄n ≤
∑

i∈Jη,∆i>0

6

∆i
log(

4N

∆2
i β

) +
54(3δ)c

η2+c
log(

4N

η2β
)

≤ 6|Jη|
1

∆
log(

4N

∆2β
) +

54(3δ)c

η2+c
log(

4N

η2β
) (8)

where c
def
= log(2)/ log(1/γ).

The first term in the bound is the same as for Flat
UCB, but the sum is performed only on the leaves
i ∈ Jη whose value is η-close to optimality. The second
term is O(1/η2+c) depends weakly (linearly) on the
depth D (through log(N)). Thus, if η is fixed and
we increase the depth D of the tree, the first term is
dominant and we expect an important regret reduction
compared to Flat UCB when the number |Jη| of η-
optimal leaves is small compared to the total number
of leaves 2D.

Notice that this bound (8) has no explicit exponen-
tial dependency w.r.t. the depth D. However the
1/∆ term is of order O(1/γD) from our smoothness
assumption.

Proof. We consider the same event E as in the proof
of Theorem 3. Let h be the smallest integer such that

δh ≤ η/3. We have h ≤ log(3δ/η)
log(1/γ) +1. Let i be a node of

depth h. If i ∈ I2η/3, then, thanks to the assumption
Aη, we have for all j ∈ L(i), µj ≥ µi − η/3 ≥ µ∗ − η,
thus j ∈ Jη.

Now, if i /∈ I2η/3, then using similar arguments as
in Theorem 3, the number of times ni this node is

visited is at most ni ≤ 6 log(4Nβ−1/(∆i−δh)2)
(∆i−δh)2 , but since

∆i − δh ≥ 2η/3 − η/3 ≥ η/3, we have: ni ≤ l/η2,
writing l = 54 log(4Nβ−1/η2).

Since there are 2h nodes of depth h, the number of
times that nodes of depth h that do not belong to
I2η/3 are chosen is bounded by

2h l

η2
≤ 2

(3δ

η

)

log(2)
log(1/γ) l

η2
=

2l(3δ)c

ηc+2

The pseudo regret is bounded by the sum for all
η-optimal leaves i ∈ Jη of ni∆i (with ni ≤
6

∆2
i

log(4Nβ−1

∆2
i

) like in Theorem 2) plus the number of

times nodes i of depth h such that i /∈ I2η/3 are chosen:

R̄n ≤
∑

i∈Jη ,∆i>0

6

∆i
log(

4N

∆2
i β

) +
54(3δ)c

η2+c
log(

4N

η2β
).

which ends the proof.

Remark 1. Notice that if we choose δ = 0, then
BAST algorithm reduces to regular UCT (with a
slightly different confidence interval), since in that
case, the min in (7) gives the bounds Bi,ni = Xi,ni +
cni . Now if δ = ∞, then the bounds is Bi,ni =
maxj∈C(i) Bj,nj , which is simply Flat UCB. Thus
BAST may be seen as a generic UCB-based bandit al-
gorithm for tree search, that allows to take into account
actual smoothness of the tree, if available.

Numerical experiments: global optimization of
a noisy function. We search the global optimum of
an [0, 1]-valued function, given noisy values. This is a
continuum-armed bandit problem (see e.g. [3]). The
domain [0, 1] is uniformly discretized into 2D intervals
[j
2D , j+1

2D]0≤j<2D (of center yj), each one related to a
leaf j of a tree of depth D. The tree implements a
recursive binary splitting of the domain, each node
of depth d corresponding to an interval of size 2−d.
At time t, if the algorithm selects a leaf j, then the

(binary) reward xt
i.i.d.∼ B(f(yj)), a Bernoulli random

variable with parameter f(yj) (i.e. P (xt = 1) = f(yj),
P (xt = 0) = 1 − f(yj)).

If we assume that f is Lipschitz (with Lipschitz con-
stant L), then the exponential smoothness assumption
δd = δγd holds for all nodes with δ = L/2 and γ = 1/2
(thus c = 1). In the experiments, we used the function

f(x)
def
= max

(

3.6x(1−x), 1− 1
a |1−a−x|

)

, where a > 0,
which is plotted in Figure 2 for a = 0.1. Note that an
immediate upper bound on the Lipschitz constant of
f is L = 1/a.

BAST concentrates its ressources on the good leaves:
In Figure 2 we show the proportion nj/n of visits

in
ria

-0
01

50
20

7,
 v

er
si

on
 1

 -
29

 M
ay

 2
00

7

of each leaf j. We observe that, when n increases,
the proportion of visits concentrates around the global
maximum.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Location of the leaf

n=104

n=106

Shape of f

Figure 2: Function f for a = 0.1 (plain curve)
and (rescaled) proportion nj/n of leaves visitation for
BAST with δ = 5, D = 10 for n = 104 and n = 106.

We now compare the regret of Flat UCB, UCT and
BAST algorithms for a = 0.01, which exhibits a func-
tion that possess a broad local optimal bump and a
very picky global optimum. Figure 3 shows the cumu-
lative regret per round Rn/n (for n = 107) for BAST
used with different values of the smoothness constant
δ. Starting from δ = 0 (which corresponds to UCT
with a slightly different confidence interval), the regret
is poor. This holds also for regular UCT with the con-
fidence interval defined by (1). This happens because
the algorithm gets stuck in the local optimum, as illus-
trated in Section 2. When δ increases, the regret de-
creases (the global optimum of f is reached) first, and
then increases again, because the “cuts” performed by
BAST are less and less frequent. For an infinite value
of δ (which corresponds to Flat UCB) the regret is
0.23.

We observe that BAST with δ = L/2 = 1/(2a) =
50 (which corresponds to the Lipschitz smoothness of
f) outerforms both UCT and Flat UCB. The optimal
performance is actually reached for a value 0 < δ < 50.

Remark 2. If we know in advance that the function
is locally smooth around its maximum, then one may
use a smaller value of γ. For example, if the function
is locally quadratic, then δd = δγd would hold for γ =
1/4 and appropriate δ. This would cut more efficiently
sub-optimal branches and yield improved performance
(compared to γ = 1/2). Thus any a priori knowledge
about the tree smoothness around optimality could be
taken into account in the BAST bound (7).

10
−1

10
0

10
1

10
2

10
3

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Smoothness constant

R
eg

re
t p

er
 ro

un
d

Figure 3: Cumulative regret per round Rn/n for BAST
with different values of the smoothness constant δ.
The dotted curves represent +/− one standard devi-
ation computed over 20 simulations. Here a = 0.01,
n = 107, D = 17.

6 Growing trees

If the tree is too big (possibly infinite) to be repre-
sented, one may wish to discover it sequentially, ex-
ploring it at the same time as searching for an optimal
value. We propose an incremental algorithm similar
to the method described in [5] and [6]: The algorithm
starts with only the root node. Then, at each stage n,
it chooses which leaf, call it i, to expand next. Expand-
ing a leaf means turning it into a node i, and adding
in our current tree representation its children leaves
i1 and i2, from which a reward (one for each child)
is received. The process is then repeated in the new
tree. Such an iterative growing tree requires a amount
of memory O(n) linear in the number of rounds.

Here, the tree is such that the value of each node i is
the maximum of the values of its children. Besides,
the A∗ assumption says that from any optimal leaf ∗
of depth d, the received reward xn ∈ [0, 1] at time n
is a random variable whose expected value satisfies:
µ∗ − E[xn|Fn−1] ≤ δd. Notice that we only make an
assumption on the expectation of xn, and not on its
specific value at time n.

Theorem 5. Assume A∗. Consider this incremental
tree method using Algorithm 1 defined by the bound (7)
with the confidence interval of a node i of depth d:

cd,ni

def
=

√

log(22d+1ni(ni + 1)β−1)

2ni
.

Then, with probability 1− β, for any sub-optimal node
i (of depth d), i.e. s.t. ∆i > 0, we have:

ni ≤ 6 log(22d+2β−1/(∆i − δd)
2)

(∆i − δd)2
, if ∆i > δd,

≤ 3

2

(δ

c

)c(2 + c

∆i

)c+2

log
(22d

β

(2 + c)2

∆2
i

)

2−d,

otherwise.

in
ria

-0
01

50
20

7,
 v

er
si

on
 1

 -
29

 M
ay

 2
00

7

Hence, any sub-optimal branch is visited a finite num-
ber of times. Thus, the number of trajectories that
do not follow an optimal path up to a given depth is
finite. Thus this algorithm expands indefinitely
the optimal branches only.

Proof. Consider the event E under which |Xi,ni −
X̄i,ni | ≤ cd,ni for all depths d ≥ 1, for all nodes
i of depth d, for all times ni ≥ 1. Write cd,ni =
√

log(2β−1
d,ni

)

2ni
with β−1

d,n
def
= 22dn(n + 1)β−1. Since

∑

d≥1

∑2d

i=1

∑

ni≥1 βd,ni = β, we see that the confi-
dence intervals cd,ni are such that P (E) ≥ 1 − β.

At round n, let i be a node of depth d. If ∆i > δd,
then similarly to the proof of Theorem 3, we have ni ≤
6 log(22d+2β−1/(∆i−δd)2)

(∆i−δd)2 .

Otherwise, let h be a depth such that δh < ∆i (thus

h > d). This is satisfied for all integer h ≥ log(δ/∆i)
log(1/γ) .

Similarly, we deduce that the number of times nj a
node j of depth h has been visited is bounded by
6 log(22d+2β−1/(∆i − δh)2)/(∆i − δh)2. Thus i has
been visited at most

ni ≤ min
h≥ log(δ/∆i)

log(1/γ)

2h−d 6 log(22d+2β−1/(∆i − δh)2)

(∆i − δh)2
.

This function is minimized (neglecting the log term)

for h = log(δ(2+c)
c∆i

)/ log(1/γ), which leads to the sec-
ond bound.

For illustration, Figure 4 shows the tree obtained when
applied to the function optimization problem of pre-
vious section. This algorithm develops the tree in
an asymmetric way, expanding in depth the opti-
mal branch, leaving mainly unexplored sub-optimal
branches.

7 Conclusion

BAST enables to take into account possible smooth-
ness in the tree to perform efficient “cuts”1 of sub-
optimal branches, with high probability. Numerically,
in all the problems we considered, BAST performed
better than both UCT and Flat UCB for an appropri-
ate smoothness coefficient δ ∈ (0,∞). Experimental
work seems to be necessary to obtain the best coef-
ficient. However, if any additional smoothness of the
optimal branch is provided, the smoothness sequence
in the bound (7) may be refined, leading to improved
performance. The use of variance estimate (see e.g.

1Note that this term may be misleading here since the
UCB-based methods described here never explicitly delete
branches

Figure 4: Tree resulting from the iterative growing
BAST algorithm, after n = 4000 rounds, with δ = 5,
a = 0.1.

[1]) would tighten the confidence intervals and improve
the performance too. However, it seems important to
use true upper confidence bounds, in order to avoid
bad cases as illustrated in regular UCT.

Extension to minimax search in 2 players, 0-sum games
is possible and would yield similar results.

Acknowledgements: Warm thanks to Jean-François
Hren for running all the numerical experiments.

References

[1] J.-Y. Audibert, R. Munos, and Cs. Szepesvári. Vari-
ance estimates and exploration function in multi-armed
bandit. Research report 07-31, Certis - Ecole des Ponts,
2007.

[2] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time
analysis of the multiarmed bandit problem. Machine
Learning Journal, 47(2-3):235–256, 2002.

[3] P. Auer, R. Ortner, and Cs. Szepesvári. Improved rates
for the stochastic continuum-armed bandit problem.
Conference on Learning Theory, 2007.

[4] P.-A. Coquelin and R. Munos. Bandit algorithms for
tree search. Technical Report INRIA, RR-6141, 2007.

[5] R. Coulom. Efficient selectivity and backup operators
in Monte-Carlo tree search. 5th International Confer-
ence on Computer and Games, 2006.

[6] S. Gelly, Y. Wang, R. Munos, and O. Teytaud. Modica-
tion of UCT with patterns in Monte-Carlo go. Technical
Report INRIA RR-6062, 2006.

[7] L. Györfi, L. Devroye, and G. Lugosi. A Probabilistic
Theory of Pattern Recognition. Springer-Verlag, 1996.

[8] L. Kocsis and Cs. Szepesvari. Bandit based monte-carlo
planning. European Conference on Machine Learning,
pages 282–293, 2006.

in
ria

-0
01

50
20

7,
 v

er
si

on
 1

 -
29

 M
ay

 2
00

7

