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Abstract

We review a class of online planning algorithms for deterministic and stochastic
optimal control problems, modeled as Markov decision processes. At each discrete
time step, these algorithms maximize the predicted value ofplanning policies from the
current state, and apply the first action of the best policy found. An overall receding-
horizon algorithm results, which can also be seen as a type ofmodel-predictive control.
The space of planning policies is explored optimistically,focusing on areas with
largest upper bounds on the value – or upper confidence bounds, in the stochastic case.
The resultingoptimistic planningframework integrates several types of optimism
previously used in planning, optimization, and reinforcement learning, in order to
obtain several intuitive algorithms with good performanceguarantees. We describe
in detail three recent such algorithms, outline the theoretical guarantees on their
performance, and illustrate their behavior in a numerical example.
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22.1 INTRODUCTION

This chapter considers online algorithms for problems in which a nonlinear, possibly
stochastic dynamic system must be optimally controlled in discrete time. Optimality is
measured by a cumulative reward signal which must be maximized: the return. Such
problems arise in many fields, including artificial intelligence, automatic control,
computer science, operations research, economics, medicine, etc. They are often
modeled as Markov decision processes (MDPs).

In an MDP, the system is described by a state signalx varying in the state space
X, and can be influenced by actionsu in the action spaceU . For the simplicity
of notation,X will be considered countable here, but uncountable (e.g. continuous)
spaces can easily be handled. Most of the algorithms that will be described in this
chapter require thatU consists of a small number of discrete actions. The probability
that next statex′ is reached after actionu is taken in statex is f(x, u, x′), where
f : X ×U ×X → [0, 1] is a transition probability function describing the dynamics
of the system. After the transition tox′, a rewardr′ = ρ(x, u, x′) is received, where
ρ : X × U ×X → R is the reward function. A control policyπ : X → U indicates
how the controller should choose actions to interact with the system. Denoting by
k the discrete time index, the expected infinite-horizon discounted return of statex
under a policyπ is:

V π(x) = Exk+1∼f(xk,π(xk),·)

{

∞
∑

k=0

γkrk+1

}

(22.1)

wherex0 = x, rk+1 = ρ(xk, π(xk), xk+1), γ ∈ (0, 1) is the discount factor, and
the notationxk+1 ∼ f(xk, π(xk), ·) means thatxk+1 is drawn from the distribution
f(xk, π(xk), ·) over next states.1 Other types of return can also be used, such as
finite-horizon or averaged over time. We callV π : X → R a value function. The
goal is to control the system using an optimal policyπ∗, so that the value function
is maximized for everyx ∈ X. This maximal, optimal value function is denoted
by V ∗ and is unique, so it does not depend on the particular optimalpolicy. It
is also useful to consider an action-dependent optimal value function, the optimal
Q-function: Q∗(x, u) = Ex′∼f(x,u,·) {ρ(x, u, x′) + γV ∗(x′)}. Note that optimal
control problems are often stated so that a cost is minimized, rather than a return
being maximized – but the two formulations are equivalent.

We consider a class of online model-based algorithms that, at each step of in-
teraction, look at the current system statexk and employ the model to predict the
system’s response to variousplanning policies– which may be e.g. simple open-
loop sequences of actions or more complex, closed-loop selection rules. Note that
a planning policy is a different object from the interactionpolicy π. Exploiting the
predictions, an actionuk that is as good as possible is applied, which results in a new
statexk+1. The entire cycle then repeats, in a receding-horizon fashion. In systems

1Note the “prime” notation, as in e.g.x
′, is used to generically indicate variables at the next step,whereas

if the actual time step is important, it is included as a subscript, e.g.xk+1.
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and control, such algorithms are known as model-predictivecontrol [16], while in
computer science they are called planning [14]. In this chapter, we mainly draw
inspiration from the computer science literature, and to emphasize that we mean the
online, feedback control over trajectories consisting of multiple (perhaps infinitely
many) steps, we call the algorithms online planning.

The quality of actionuk returned at stepk by the planning algorithm is measured
by the simple regret, defined as follows:

R(xk) = max
u∈U

Q∗(xk, u)−Q∗(xk, uk) (22.2)

that is, the loss incurred by choosinguk and then acting optimally, with respect to
acting optimally immediately, from stepk. Note the regret is always nonnegative,
and an optimal action choice attains a regret of0. Theoretical guarantees for planning
algorithms are usually given in terms of the regret at any state, independently ofk.
Then, if an algorithm achieves a regret ofε for every state, the overall suboptimality
in terms of discounted return is at mostε1−γ [11]. This property motivates the use of
the simple regret as a performance measure.

The online planning approach is very different from the standard methods for
solving MDPs considered in dynamic programming and reinforcement learning. The
latter methods usually seek a global solution, whereas online planning finds actions
on demand, locally for each state where they are needed. Online planning is therefore
much less dependent on the state space size. It is generally suboptimal, but useful
bounds can be placed on its suboptimality, as will be outlined later in the chapter.
While global methods do achieve optimality in some restricted settings, in realistic
problems they must also use approximation, thereby sacrificing optimality, as seen
elsewhere in this book and specifically reviewed in [4].

We focus on a class of online planning algorithms based on theprinciple of opti-
mism in the face of uncertainty: given the choice between planning policies having
uncertain values, more promising policies are explored first. This optimistic prin-
ciple has applications in many fields, among which those closest to our focus are
optimization, where a representative optimistic method isbranch-and-bound; clas-
sical planning, with algorithms such as A* [14]; and the exploration-exploitation
dilemma in reinforcement learning [20]. In classical planning, optimism relies on
deterministicupper bounds on the values of incomplete action sequences, whereas
in exploration-exploitation, upperconfidencebounds on stochastic values are used to
guide action choices [1]. Upper confidence bounds have also been recently applied to
planning [13, 10], but typically without making the connection with the deterministic
optimism of classical planning. In this chapter, we integrate both types of optimism
into a single framework, in the context of MDPs. To this end, planning is cast as
the problem of optimizing returns over planning policies from the current state. This
interpretation leads to several intuitive planning algorithms with strong performance
guarantees, which have been developed over the last few years [11, 2, 6] and which
we review in detail.

Next, Section 22.2 describes the foundations of optimism inonline optimization.
Section 22.3 forms the core of the chapter, and exploits the ideas of Section 22.2 to
introduce the family of optimistic planning algorithms. Methods for three types of
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system dynamics are reviewed: deterministic, general stochastic, and stochastic but
where each transition can only end up in a finite number of states. Related algorithms
from the literature are discussed in relation to optimisticplanning in Section 22.4. The
behavior of the three methods is illustrated in a numerical example in Section 22.5.

22.2 OPTIMISTIC ONLINE OPTIMIZATION

The idea of optimism can best be understood by looking at the problem of optimizing
an unknown functionv : H → R online, while observing possibly noisy values of
this function at chosen points. At each roundt = 1, 2, . . . , the algorithm chooses
a pointht ∈ H, and is provided with a random sampleṽt = v(ht) + wt wherew
is zero-mean noise, drawn independently for each sample. The goal is not just to
find an optimal pointh∗ ∈ arg maxh∈H v(h), but due to the online setting, to find it
while sampling points of as high a quality as possible. We will not provide formal
guarantees for optimistic optimization in terms of this requirement (although they
are available), because we are only interested in these methods as stepping stones for
optimistic planning. In that context, a weaker requirementwill be sufficient, which
only asks the algorithm to return the best point possible after expending some number
of samples, without looking directly at the quality of thesesamples.

We first consider two special cases: noisy evaluations but small discrete setH;
and infinite setH but deterministic evaluations. We then proceed to the general case.

22.2.1 Bandit problems

In the case of bandit problems, the observed values are noisy, but H is small and
discrete:H =

{

h1, . . . , hM
}

. The name comes from the fact that this case models
the optimization of the payoff achieved by pulling the arms of an M -armed slot
machine (“bandit”), where eachhj is an arm. Thus, online optimization is a way to
solve the exploration-exploitation dilemma: given the information available so far,
should the algorithm exploit the arm that seems the best (hasthe best average observed
value), or should another arm be explored to achieve better confidence in its value?
This formalism is used especially in reinforcement learning algorithms.

There are many ways to solve bandit problems, and here we willonly consider the
upper confidence bound(UCB) algorithm. At every roundt, this algorithm defines a
b-value for everyhj :

b(hj) =

∑n(hj)
i=1 ṽj

i

n(hj)
+

√

2 log t

n(hj)
(22.3)

wheren(hj) is the number of instanceshj has been chosen up to roundt, andṽj
i is the

random value (sample) observed at theith such instance (the b-values of unsampled
points, for whichn(hj) = 0, are by convention positive infinite). Each b-value is an
UCB onv(hj), that is, with high probability it is an upper bound. Then thealgorithm
simply makes anoptimisticchoicearg maxhj b(hj) for the next sample. It must be
emphasized that the countn(hj) and thus the b-valueb(hj) depend of course on the
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roundt. Throughout the chapter, we leave such dependencies on the current round
implicit in order to avoid cluttering the notation.

Such an algorithm is optimistic because it treats the UCB as if it were the actual
value of the point. The optimistic principle has strong theoretical support in bandit
problems [1].

22.2.2 Lipschitz functions and deterministic samples

When the setH is infinite (or just very large), it is impossible to sample every point.
Consider the deterministic case, where the algorithm is given the exact valuev(h) for
each pointh it chooses. Letℓ(h, h̄) be a metric overH, and assumev is Lipschitz:

∣

∣v(h)− v(h̄)
∣

∣ ≤ ℓ(h, h̄) ∀h, h̄ ∈ H

where for convenience we do not make the Lipschitz constant explicit. Then for any
set of pointsh ⊂ H and any pointh ∈ h we have the following upper bound on the
supremum ofv overh (i.e. this upper bound is larger thanv(h̄) for anyh̄ ∈ h):

v(h) + diam(h)

wherediam(h) = suph,h̄∈h ℓ(h, h̄) denotes the diameter of the set. If multiple
samples are available inh, say their number isn(h), then the bound is refined to:

binit(h) = min
i=1,...,n(h)

[v(hi) + diam(h)] (22.4)

Using this property, a tree-based algorithm for optimizingv can be derived: Algo-
rithm 22.1, calledoptimistic optimization for deterministic functions(OOD). This
method builds a treeT of policy sets, where each node contains some seth and its
children correspond to a partition ofh. No difference is made between the notation
of a node and its corresponding set, and the children of someh are denoted byC(h).
OOD starts building the tree from a root node containing the entire spaceH, and
at each step, chooses anoptimistic leaf by navigating the tree along the maximum-
b-value path. The optimistic leaf is expanded, i.e., the corresponding set is split
(partitioned) into several child subsets, and an arbitrarypoint is sampled in each sub-
set. The node splitting procedure should ensure that the diameter decreases with the
depth. For example, if each node corresponds to a hyperbox ina Euclidean space,
then the optimistic leaf could be split halfway along the longest edge.

B-valuesbinit at the leaves are computed with (22.4) and propagated upwards in
the tree, where each parent node gets the largest bound from its children. The mini-
mization in (22.4) is useful because samples inherited by the leaf from its parents may
provide a better bound than its own, newly obtained sample. Due to the propagation
rule, navigating the tree along the optimistic path is equivalent to directly choosing
the leaf with the largest b-value. The optimistic path is nevertheless made explicit to
emphasize the connection with later algorithms.

Note the similarity of this algorithm with branch-and-bound optimization. One
difference is that branch-and-bound also uses lower boundsto eliminate some nodes
from consideration. In Algorithm 22.1, all the nodes remaincandidates for expansion,
but the algorithm always focuses on the most promising node.
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Algorithm 22.1 Optimistic optimization of deterministic functions

1: initialize tree:T ← {H}
2: for t = 1, 2, . . . do
3: h← rootH; while h is not leafdo h← arg maxh′∈C(h) b(h′) end while

4: optimistic leaf found:h† ← h

5: expandh† into several child subsetsh′, adding them toT
6: sample a point in every new childh′

7: update b-values upwards in the tree, starting from the leaves:

b(h)←
{

binit(h) from (22.4) ifh is leaf

maxh′∈C(h) b(h′) otherwise
8: end for

22.2.3 Lipschitz functions and random samples

A general algorithm, which works for the noisy optimizationof Lipschitz functions de-
fined over arbitrary metric spaces, will combine the two types of optimism highlighted
above: upper confidence bounds due to the stochastic samples, with diameter-related
bounds due to the non-zero size of the sets considered. In particular, at roundt, a
high-probability upper bound on the supremum ofv over some seth is:

binit(h) =

∑n(h)
i=1 ṽi

n(h)
+

√

2 log(t)

n(h)
+ diam(h) (22.5)

wheren(h) is as before the number of samples falling inside seth, andṽi are the
random values of these samples.

The resulting algorithm is calledhierarchical optimistic optimization(HOO) [3]
and is shown in Algorithm 22.2. Like for OOD, the splitting procedure should de-
crease the diameter. The only difference from OOD is that a parent either inherits the
b-value from one of its children, or it uses its own b-valuebinit if it is better (smaller).
The latter situation could not arise in OOD, because the diameters decrease with the
depth and sample values are deterministic. Figure 22.1 illustrates how HOO develops
the tree and computes the b-values.

22.3 OPTIMISTIC PLANNING ALGORITHMS

In this section, the ideas of optimistic optimization are applied to planning. As already
outlined in the introduction, the planning algorithms we consider work online, in a
receding-horizon fashion, and use a model of the MDP in the form of the functions
f andρ. At each stepk, the model is employed to predict possible behaviors of the
system (specifically, state trajectories and ensuing rewards) starting from the current
statexk and responding to various sequences of actions. Using thesepredictions,
the algorithm returns an actionuk that is as close to optimal as possible, where near-
optimality is measured by the simple regret (22.2). This action is applied, the system
transits toxk+1, and the cycle repeats.
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Algorithm 22.2 Hierarchical optimistic optimization

1: initialize tree:T ← {H}
2: for t = 1, 2, . . . do
3: h← rootH; while h is not leafdo h← arg maxh′∈C(h) b(h′) end while

4: optimistic leaf found:h† ← h

5: expandh† into several child subsetsh′, adding them toT
6: sample a point in every new childh′

7: update b-values upwards in the tree, starting from the leaves:

b(h) =

{

binit(h) from (22.5) ifh is leaf

min
{

binit(h),maxh′∈C(h) b(h′)
}

otherwise
8: end for

average

diameter

confidence
interval

b-value

subset

} h

v(h)

Figure 22.1 Illustration of HOO. Each tree node corresponds to a subset along the horizontal
axis. For each leaf subseth, the b-value is computed as the sum of the average of the observed

samples
Pn(h)

i=1 ṽi

n(h)
, the confidence interval

q

2 log(t)
n(h)

, and the subset diameterdiam(h).

To place this problem in the context of optimistic optimization, let us isolate one
such step of interaction with the system, and by convention,relabel the current time
fromk to0, so that the system state isx0. Planning should then maximize the expected
return starting fromx0:

v(h) = Exd+1∼f(xd,h(d,xd),·)

{

∞
∑

d=0

γdrd+1

}

(22.6)

whereh is a rule describing how actions are chosen for each state occurring along
future trajectories. This equation immediately clarifies the link with the optimization
problem discussed in Section 22.2: the functionv to optimize is the expected return,
and the space over which we optimize consists of all possibleh for x0.
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The time step along planned trajectories is denotedd instead ofk, for two reasons:
to emphasize the difference between planned and real interaction with the system,
and becaused will be related to the depth in certain trees considered later. The rule
h is different from the policyπ used whileinteractingwith the system, which is the
overall result of applying the planning algorithm at each step. We callh a planning
policy. Since in the sequel we are mostly interested in planning policies, they will
often simply be called “policies” for the sake of brevity. When planning policies are
discussed together with interaction policies, we will use the long, explicit names of
both, to make things clear. Note it is not strictly necessaryto have a dependence
on time d in the planning policy, since for the discounted infinite-horizon MDPs
considered in this chapter, a policy that only depends on thestate is sufficient to
obtain optimal behavior. Nevertheless, this is the generalform of the policy sought
by planning algorithms.

Usually, an amountnof computational resources will be specified, and the planning
algorithm must return anu0 with the smallest simple regret given this constraint. The
computational units can be number of evaluations of the model functions, number of
basic arithmetic operations, etc. In practice,n may often not be specified in advance
but may depend e.g. on real-time constraints. This motivates an anytime behavior,
which returns the best action possible after any amountn of units spent, without
using the actual value ofn. The exploration-exploitation tradeoff still appears in the
weaker sense of judiciously prioritizing the sampling of planning policies in order to
minimize the final, simple regret.

Three planning algorithms will be considered in detail in this section: optimistic
planning for deterministic systems (OPD) [11], open loop optimistic planning (OLOP)
[2], and optimistic planning for sparsely stochastic systems (OPSS) [6]; the latter two
algorithms work for stochastic systems.

All these algorithms require discrete actions, so thatU =
{

u1, ..., uM
}

. OPSS
also requires that each random transition ends up in one of a finite number of next
states. Thus it works for finite-state MDPs, as well as infinite-state MDPs that satisfy
the condition, which we call “sparsely stochastic”. Furthermore, for all algorithms
it is assumed the rewards are bounded in the interval[0, 1], i.e.,ρ(x, u, x′) ∈ [0, 1]
for anyx, u, x′. This assumption is not overly restrictive since, at least for problems
that do not have terminal states,2 any bounded reward function can be normalized to
[0, 1] by translation and scaling, without changing the optimal policies.

22.3.1 Optimistic planning for deterministic systems

In the deterministic case, the planning policy is sufficiently specified by an infinite
sequence of actionsh = [u0, u1, . . . , ud, . . . ] with ud ∈ U , since this sequence
completely determines the system trajectory. ThusH is the infinitely-dimensional

2A terminal state is one from which the system can no longer escape, and from which all actions always
obtain zero rewards. Such states can be used to represent e.g. “goal achieved” and “failure” situations.
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spaceU∞. The value (return) of a policyh is:

v(h) =

∞
∑

d=0

γdrd+1 =

∞
∑

d=0

γdρ(xd, ud, xd+1) (22.7)

Define the metric (distance between policies) overH:

ℓ(h, h̄) =
γddiff (h,h̄)

1− γ

whereddiff(h, h̄) = min {d |ud 6= ūd }, that is, the smallest index where the two
policies are different. Intuitively, this distance is the largest difference between the
returns provided by the two policies in any possible MDP. Because the rewards are

in [0, 1], the returns can differ by at most
∑∞

d̄=ddiff(h,h̄) γd̄ · 1 = γddiff (h,h̄)

1−γ .
Optimistic planning for deterministic systems(OPD) will be built starting from

OOD (Algorithm 22.1). The sets considered are defined by incomplete sequences of
lengthd, so that each policy in the set matches the sequence up to index d − 1 and
is free to choose any action afterwards:hd = {[u0, u1, . . . , ud−1, ⋆, ⋆, ...]} with ‘⋆’
taken to mean “any action”. Noteh0 = H since it imposes no constraints on the
policy. A sethd is split by making the choices forud definite, so that we obtainM
different children setshd+1, one for every value ofud ∈

{

u1, ..., uM
}

. Note that,

under the chosen metric, the diameter of each such set isγd

1−γ since any two policies
in hd can differ at the earliest at indexd; thus alsodiam(H) = 1/1−γ.

We have not specified how to sample a value in a leaf sethd. In fact, since this
value is an infinite sum of rewards, it is not possible to obtain an exact sample. This
is fortunately not a problem, since an upper bound on the values of policies in some
leaf sethd can still be obtained from the sequence of rewards simulatedso far:

binit(hd) = ν(hd) + diam(hd) = ν(hd) +
γd

1− γ

whereν(hd) =

d−1
∑

d̄=0

γd̄ρ(xd̄, ud̄, xd̄+1)

This can be understood using the intuition explained above for the metricℓ. Thus,
expanding a node and computing the rewards obtained for reaching each of its children
replaces the usual sampling process. Note thatν(hd) is a lower bound on the values
of all policies inhd.

After performingnexpansions, OPD chooses the set that maximizesν(hd)amongst
all the sets considered so far, and returns the actionu0 for this set. Notice that in
contrast to the optimistic criterion used to build the tree,at the end OPD makes a safe
choice, based on lower bounds. With this, the instantiationof OPD as a variant of
Algorithm 22.1 is complete. Rather than making this instantiation explicit, we choose
to present the algorithm in an alternative, equivalent way that contributes additional
intuition and helps in understanding OPSS later.

There exists a one-to-one mapping between the tree of setshd and a corresponding
tree ofstates, see Figure 22.2. Each path through this latter tree is the trajectory
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obtained by applying a considered sequenceu0, u1, . . . , ud−1; thus each nodexd at
depthd corresponds to a sethd. An arc(xd, xd+1) corresponds to a transition and is
labeled by the associated actionud and rewardrd+1 = ρ(xd, ud, xd+1). Expanding
a nodex is done by simulating the transitions for allM actions, and adding all the
resulting next statesx′ as childrenC(x) to the tree. The b-value of a leaf node is:

binit(x) = ν(x) +
γd(x)

1− γ
(22.8)

whereν(x) is the return along the path fromx0 to x. Algorithm 22.3 summarizes
OPD using this second type of tree.

x0

u
1

0 u0

2

x
1

1 x
2

1

Figure 22.2 Illustration of an OPD tree. Each arc corresponds to a transition. Subscripts
are depths, superscripts index theM possible actions/transitions from each node (M = 2 in
this example). The dashed outline encloses a possible optimistic path.

Algorithm 22.3 Optimistic planning for deterministic systems

1: initialize tree:T ← {x0}
2: for t = 0, . . . , n do
3: x← rootx0; while x is not leafdo x← arg maxx′∈C(x) b(x′) end while
4: optimistic leaf found:x† ← x
5: expandx†: simulate allM transitions fromx†, add next statesx′ to T
6: update b-values upwards in the tree, starting from the leaves:

b(x) =

{

binit(x) from (22.8) ifx is leaf

maxx′∈C(x) b(x′) otherwise
7: end for
8: output u0, the first action along path with largestν

22.3.2 Open-loop optimistic planning

In the stochastic case, there are multiple state outcomes for a given action at some
step, so a simple sequence of actions is no longer sufficient to represent a full planning
policy. Such a policy would need to depend on the state, having e.g. the formh(d, xd)
in (22.6), which specifies an action choice for each possibleoutcomexd at every stepd.
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Representing such a policy is unfortunately impossible in general, since there can be
an infinite number of outcomes. Instead, theopen-loop optimistic planning(OLOP)
algorithm chooses to still optimize only over plain sequences of actions, without
explicitly considering the underlying statesxd – hence its “open-loop” nature.3

OLOP will be described using the tree-of-sets formalism, since a tree of states does
not exist in this case. The spaceH and metric are the same as in the deterministic
case, and splitting has the same meaning of initializing allaction choices for the next
step. However, the value of a policyh is now the expected return:

v(h) = Exd+1∼f(xd,ud,·)

{

∞
∑

d=0

γdρ(xd, ud, xd+1)

}

(22.9)

so we are dealing with a noisy optimization problem: summingup the rewards
along some simulated trajectory only gives asamplereturn. Moreover, to obtain
independent return samples, whenever traveling down the optimistic action path in
the tree anew trajectory must be simulated, rather than relying on the already ex-
isting reward samples as in OPD. Formally, each set (tree node) hd is associated
with a cumulative rewardr(hd) and a countn(hd) of how many reward samples
are available for it, with both quantities initialized to0. Simulating a trajectory
(xd̄, ud̄, xd̄+1, rd̄+1) for d̄ = 0, . . . , d − 1 provides new reward samples for all the
setshd̄+1 = {[u0, u1, . . . , ud̄, ⋆, ⋆, . . . ]}:

r(hd̄+1)← r(hd̄+1) + rd̄+1

n(hd̄+1)← n(hd̄+1) + 1

OLOP can be seen as a variant of HOO (Algorithm 22.2) that usesthe b-values:

binit(hd) =

d−1
∑

d̄=0

γd̄

[

r(hd̄+1)

n(hd̄+1)
+

√

2 log(t)

n(hd̄+1)

]

+
γd

1− γ
(22.10)

for some sethd, wheret is the number oftrajectoriessimulated so far. These b-
values are different from what the “vanilla” application ofHOO would give, see
(22.5): they cleverly exploit the additive structure of thevalue (return) to compute
separate UCBs at each step, whereas vanilla HOO would compute a single UCB

for the entire trajectory. The diameter componentγd

1−γ remains the same as in the
deterministic case.

Algorithm 22.4 summarizes OLOP, in a variant where the computational unit
consists of simulating a single transition (rather thanM as in OPD), and the final
action choice is based on the most-often sampled first action(rather than the largest
ν). There is a clear parallel between OLOP as an application ofHOO, and OPD as an
application of OOD. For instance, OLOP requires a minimum with the b-valuebinit

of the current node when propagating b-values up the tree.

3Instead of the theoretical OLOP algorithm of [2], we presenthere a variant more directly related to the
HOO template, and also more amenable to practical implementation.
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Algorithm 22.4 Open-loop optimistic planning

1: initialize tree:T ← {H}
2: for t = 1, 2, ..., stopping whenn transitions have been exceededdo
3: h← rootH; while h is not leafdo h← arg maxh′∈C(h) b(h′) end while

4: optimistic leaf found:h†
d ← h

5: expandh† into M child subsetsh′, one for each action, adding them toT
6: simulate a trajectory fromx0, using actions inh†

d, reaching somexd

7: from xd, simulate a transition for each action
8: update b-values upwards in the tree, starting from the leaves:

b(h) =

{

binit(h) from (22.10) ifh is leaf

min
{

binit(h),maxh′∈C(h) b(h′)
}

otherwise
9: end for

10: output u0, a first action that was sampled most often

22.3.3 Optimistic planning for sparsely stochastic systems

When each random state transition can only end up in a small numberN of next states,
it is in fact possible to represent full, closed-loop planning policiesh(d, xd), which
also depend on the underlying state. More specifically, a policy can be represented
as a vector:

h = [u0, u
1
1, . . . , u

N
1 , u1,1

2 , . . . , uN,N
2 , . . . . . . ]

because at step1 it must provide an action for each of the possibleN outcomes; at
step2, for each of theN2 outcomes, and so on. Exploiting this idea, adeterministic
algorithm can be built on the foundations of OOD, even thoughthe system is stochas-
tic. We call systems with the property above sparsely stochastic, so the algorithm
is optimistic planning for sparsely stochastic systems(OPSS). This class includes
all finite-state MDPs (where good performance can be expected whenN is small),
as well as important classes of continuous-state MDPs such as those that arise by
combining deterministic dynamics with discrete random variables, or by discretizing
in time some continuous-time stochastic systems.

Rather than use theh notation which is cumbersome in this case, OPD is described
using a tree of states, like OPD earlier. This treeT is built starting from a root
containingx0 and iteratively expanding nodes. Each expansion consists of generating
and adding all theN one-step successor states of the node-to-expand, for allM
actions, see Figure 22.3, left. The b-values of leaf nodes are computed with:

binit(x) = ν(x) +
γd(x)

1− γ
(22.11)

whereν(x) is the discounted sum of rewards along the path fromx0 tox. The b-values
of nodes higher in the tree maximizeweighted sumsof children’s b-values, where the
weights are the children’s probabilities:b(x) = maxu∈U

∑

x′∈C(x,u) f(x, u, x′)b(x′).
Here,C(x, u) denotes the set of children reachable fromx after performing actionu.
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Rather than an optimistic path as in OPD and OLOP, OPSS buildsanoptimistic
subtreeT † by starting from the root and selecting at each nodex all the children
associated to an optimistic action:

u†(x) = arg max
u∈U

∑

x′

f(x, u, x′)b(x′)

Among the leavesL† of this subtree, the node to expand is selected using:

x† = arg max
x∈L†

P(x)
γd(x)

1− γ
(22.12)

whereP(x) is the probability to reachx, i.e. the product of all probabilities along
the path tox: P(x) =

∑d(x)−1
d=0 f(xd, ud, xd+1). After n expansions, the algorithm

selects at the root an action:

u0 = arg max
u∈U

∑

x′

f(x0, u, x′)ν(x′)

whereν-values are propagated up the tree just like b-values, starting from their defi-
nition at the leaves given above.

Algorithm 22.5 summarizes OPSS. The computational unit consists in this case of
generating all theNM children of a particular state.

Algorithm 22.5 Optimistic planning for sparsely stochastic systems

1: initialize tree:T ← {x0}
2: for t = 1, . . . , n do
3: build optimistic subtreeT †

4: choose node to expand:x† ← arg maxx∈L† P(x) γd(x)

1−γ

5: expandx†: simulate allNM transitions fromx†, adding next statesx′ to T
6: update b-values upwards in the tree, starting from the leaves:

b(x) =

{

binit(x) from (22.11) ifx is leaf

maxu∈U

∑

x′∈C(x,u) f(x, u, x′)b(x′) otherwise
7: end for
8: output u0 maximizingν

To better understand the choices made in OPSS, let us informally return to the
tree-of-policy-sets interpretation. To keep the parallelclear, we denote the tree of
sets byT in contrast to the tree of statesT , and always specify explicitly to which
tree each entity belongs. Selecting the children of one particular action at each state
in T , recursively until reaching some set of leavesL̄ ∈ T , corresponds to selecting
somesingleleaf subseth ∈ T , with the b-value:

b(h) =
∑

x∈L̄

P(x) [ν(x) +
γd(x)

1− γ
]

=
∑

x∈L̄

P(x) ν(x) +
∑

x∈L̄

P(x)
γd(x)

1− γ
= ν(h) + diam(h)
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Figure 22.3 Left: illustration of an OPSS tree after three expansions (root, gray node, and
dashed node), forN = M = 2. The circles are state nodes, and the actions are explicitly
represented as square, choice nodes. Transition arcs to next states are labeled by probabilities
and rewards. The dashed outline encloses a possible optimistic subtree. Right: corresponding
partition of the policy spaceH. Expanding the root splitsH in two sets containing
policies of the form[1, ⋆, . . . ] and [2, ⋆, . . . ] respectively (recall a policy has the structure
h = [u0, u

1
1, u

2
1, . . . ]). Next, expanding the gray node – which corresponds to the second

random outcome of action2 – splits{[2, ⋆, . . . ]} into {[2, ⋆, 1, ⋆, . . . ]} and{[2, ⋆, 2, ⋆, . . . ]};
note the action for the first random outcome (dashed node) remains undefined. Expanding the
dashed node then makes the action definite, thereby splittingbothsets{[2, ⋆, 1, ⋆, . . . ]} and
{[2, ⋆, 2, ⋆, . . . ]}, since the dashed node is reached with nonzero probability by both classes
of policies.

the standard formula for the b-value. The lower boundν(h) is the sum of truncated
returns up to the leaves inT , weighted by their probabilities. A similar weighted
formula holds for the diameter.

Among all these leaf policy sets inT , the optimistic action choices inT lead
to the optimistic seth† ∈ T , which has the largest b-value, and expanding the
optimistic nodex† ∈ T splitsh

† ∈ T intoM childrenalong the longest edge, which
corresponds tox†. Furthermore, contrary to all algorithms so far, this expansionalso
splits many additional sets: those corresponding to all policies that reachx† with
nonzero probability. Figure 22.3, right illustrates this effect, and more generally how
expanding leaves inT corresponds to splitting sets inT . Due to this multiple-splitting
property, there is no one-to-one mapping betweenT andT .

22.3.4 Theoretical guarantees

The core theoretical question for optimistic planning algorithms concerns the quality
of the action they produce after expending the budgetn, in terms of the simple regret
(22.2). Available guarantees rely on a measure of the complexity of the problem that
can best be understood in terms of a branching factor of some related trees.

For OPD, this tree consists of near-optimal policy setsh: T ∗ =
{

hd

∣

∣v∗−ν(hd) ≤
γd

1−γ

}

, wherev∗ is the optimal return achievable fromx0. So,T ∗ includes at every
leveld the policy sets for which it is impossible to tell, from the rewards achieved up
that level, whether they contain an optimal policy. The larger the number of such sets,
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the more difficult the problem is for planning. Denoting the asymptotic (asd→∞)
branching factor ofT ∗ by κ, the simple regret of OPD is:

R(x0) =

{

O(n−
log 1/γ
log κ ) if κ > 1

O(γnc) if κ = 1

wherec is a specific constant [11]. In the ideal caseκ = 1, which means there is a
single near-optimal set at every level, and a single optimalplanning policy. A regret
that decreases exponentially withn is obtained in this case. Asκ grows toK, the
regret decreases more slowly withn.

OLOP defines the branching factorκ with a similar formula, but allows for tech-

nical reasons the sets to be suboptimal by up to2γd

1−γ rather than γd

1−γ . Then, roughly
speaking (the actual technical statement is more involved)[2]:

R(x0) ≈
{

O(n−
log 1/γ
log κ ) if γ

√
κ > 1

O(n−1/2) if γ
√

κ ≤ 1

Remarkably, whenγ
√

κ > 1 the regret has the same form as for OPD.
Similar guarantees hold for OPSS (these results have not yetbeen published).

22.4 RELATED PLANNING ALGORITHMS

A recent algorithm in the optimistic planning family is UCB applied to trees (UCT)
[13], which has made a great impact in the planning field due toits competitive
performance in games such as Go [10]. UCT basically applies UCB at every node
in a planning tree similar to that of Figure 22.3. It travels an optimistic path along
the tree choosing actions with maximal UCBs (22.3) on the returns obtained from
the current node, and sampling states independently. An issue with UCT is that
its b-values do not consider the size of the policy sets, which means they are not
true upper confidence bounds; equivalently, it can be said that UCT assumes infinite
smoothness of the value function it optimizes. A first attempt to address this problem,
by introducing a so-called smoothness coefficient in place of the set diameter, was
made in [7]. This “bandit algorithm for smooth trees” can be considered a precursor
of OLOP. In [17] a continuous-action variant of UCT is introduced, which tackles
continuous actions by using HOO instead of UCB in the tree nodes. This still does
not introduce information about the size of policy sets.

On the other hand, optimistic planning has a strong relationship to classical plan-
ning algorithms such as A* and AO* [14, 18], which also expandplanning trees by
optimistically prioritizing nodes. By using upper bounds on the values of incomplete
action sequences, A* and AO* do consider diameters of policysets and obey the
principles of optimistic optimization (more specifically OOD). OPD can be seen as
an extension of A* from goal-based problems to more general,infinite-horizon dis-
counted MDPs, and OPSS as a similar extension of AO*, with thespecific rule (22.12)
for choosing the particular node to expand. Exploiting UCBsis a strong innovation
brought by UCT and OLOP to classical planning.
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The key observation here is that, in the context of MDPs, all these algorithms
belong to a general framework for optimistic optimization over planning policies.
This insight guides essential choices in the algorithms – for instance, the need to
always include diameters in the b-values, and the node expansion criterion (22.12)
in OPSS, intuitively seen as splitting a set along the longest edge. If these choices
are made correctly, strong theoretical guarantees on the performance are achieved in
terms of the simple regret, as outlined in Section 22.3.4.

An early, non-optimistic sample-based planning algorithmfor MDPs was given by
[12]. This algorithm builds a symmetric planning tree by sampling a fixed number of
states for each action, at each depth up to some horizon. It iscalled “sparse sampling”
due to the finite number of outcomes sampled, so its sparseness is of a different nature
than in OPSS. Sparse sampling was extended by [19] to consider an adaptive horizon.
“Forward-search sparse sampling” [22] is an optimistic extension, which does not
expand the tree uniformly, but along paths obtained by choosing maximum b-value
actions, and then among the successors choosing the one withthe maximumgap
between the b-value and a lower-bound on the state value.

Disturbance trees are very similar to the planning trees used here, and planning
algorithms based on them were given e.g. by [8, 9]. The planning algorithm of
[15] exploits a different notion of sparse stochasticity than OPSS, in which a small
number of the states lead to stochastic outcomes (rather than all states leading to a
small number of outcomes, as in OPSS).

22.5 NUMERICAL EXAMPLE

To understand the behavior of OPD, OLOP, and OPSS in practice, they will be applied
to the problem of swinging up an underactuated inverted pendulum – a rather simple
problem commonly used in the literature on solving MDPs.

The inverted pendulum consists of a mass attached to an actuated link (a rod)
that rotates in a vertical plane. The available power is taken insufficient to push the
pendulum up in a single rotation from every initial state. Instead, from certain states
(e.g., pointing down), the pendulum needs to be swung back and forth to gather energy,
prior to being pushed up and stabilized. Finding such a solution is challenging for
planning algorithms, because the swing-up must be planned over a longer horizon, and
solutions that seem optimal over a short horizon will not work, instead just pushing
the pendulum in one direction.

A continuous-time model of the pendulum dynamics is:

α̈ = 1/J · [mgl sin(α)− bα̇−K2α̇/R + Ku/R]

where we assign inertiaJ = 1.91 · 10−4 kgm2, massm = 0.055 kg, gravitational
accelerationg = 9.81 m/s2, lengthl = 0.042 m, dampingb = 3 · 10−6 Nms/rad,
torque constantK = 0.0536 Nm/A, and resistanceR = 9.5 Ω. The angleα varies
in the interval[−π, π] rad, withα = 0 pointing up, and ‘wraps around’ so that e.g.
a rotation of3π/2 corresponds toα = −π/2. The state isx = [α, α̇]

⊤. The
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velocity α̇ is restricted to[−15π, 15π] rad/s, using saturation. The control action
u ∈ [−3, 3] V may be affected by noise as described below. It is discretized into the
setU = {−3, 0, 3}, so thatM = 3. The sampling time isTs = 0.05 s.

The goal is to stabilize the pendulum in the unstable equilibrium x = 0 (pointing
up), and is expressed by theunnormalizedquadratic rewards:

r = ρunnorm(x, u, x′) = −x⊤Qrewx−Rrewu2

where:Qrew = diag[5, 0.1], Rrew = 1

Using the known bounds on the state and action variables, therewards are normalized
(scaled and translated) to the interval[0, 1]. The discount factor isγ = 0.95.

Two versions of the problem are considered. The first varianthas deterministic
(noiseless) actions, and is used to exemplify the behavior of OPD. In the second
variant, an unreliable actuator is modeled that only applies the intended actionu with
probability0.6, and applies an action with smaller magnitude,0.7u, with probability
0.4 (when the intended action is0 it remains0 with probability1). This corresponds to
a sparsely stochastic MDP withN = 2, a more difficult problem than the deterministic
variant. The results we will present for the stochastic inverted pendulum were first
given in [6], while those for the deterministic variant are new.

To obtain a global performance measure, all algorithms are applied in an offline
fashion, to find actions for the states on the gridX0 =

{

−π, −150π
180 , −120π

180 , . . . , π
}

×
{−15π,−14π, . . . , 15π}. Since an exact optimal Q-function for the inverted pendu-
lum problem is not known, in order to approximate the simple regret a near-optimal
Q-function is computed instead using interpolation-basedapproximate value iteration
[21, 5] with an accurate approximator.

Baseline planning solutions are obtained using uniform planning, which always
expands a node having the smallest depth instead of an optimistic node, thus devel-
oping uniform, symmetric trees.

Results with OPD. Figure 22.4 shows the results obtained by OPD for the deter-
ministic inverted pendulum, in comparison to uniform planning. The budgetn varies
in the set{100, 200, . . . , 1000}. As expected, OPD works better (obtains smaller
regret) than uniform planning, since it expands the planning trees in a smart way,
resulting in much deeper trees. The regret of OPD decreases with n but quickly
plateaus aftern = 300, which indicates this budget is already sufficient.4

Results with OLOP and OPSS. For OLOP and OPSS, the sparsely stochastic
variant of the inverted pendulum is used. For OPSS, the computational budgetn

4Note that the regret does not decrease monotonically withn. This is because regret can vary nonmonoton-
ically with the planning horizon. For a concrete example, consider a deterministic MDP with state space
{1, 2, . . . , 6}, two actions−1, 1, and additive dynamicsx′ = max(1, min(6, x + u)). The rewards
obtained upon reaching one of the six states are, respectively, 4, 0, 0, 1,−10, 100, and the discount factor
is 0.5. Then, the optimal action forx = 3 is 1. If a fully expanded planning tree of depth (horizon)1 is
used to computeν-values and choose an action, the action returned will be1. If the depth is2, the action
changes to−1 due to the−10 reward. For depths larger than2, due to the100 reward, the action is again
optimal, i.e.,1. The simple regret forx = 3 is thus clearly nonmonotonic with respect to the depth.
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Figure 22.4 Results of OPD, compared to uniform planning: average regret overX0 (left),
average tree depth overX0 (right).

varies in the set{100, 200, . . . , 1000} like for OPD above. Since each node expansion
requiresNM transitions, overallNMn = 6n transitions are simulated. Because the
computational unit of OLOP consists of simulating a single transition, it is allowed6n
transitions (the algorithm may use slightly more transitions to finish the last trajectory).

Figure 22.5 shows the results obtained, compared to the uniform planning baseline.
The relationship between OPSS and uniform planning mirrorsthat between OPD
and uniform planning in the deterministic case, although here the performance of
OPSS continues to improve asn increases, reflecting the more difficult nature of the
stochastic problem. Less expected is that OLOP works poorly, similarly to uniform
planning. This likely happens because the computational budgets considered do not
allow OLOP to decrease the upper confidence bounds on the returns to informative
levels; OLOP may work better with a larger budget.
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Figure 22.5 Comparison between OPSS and uniform planning: average regret over X0 (left),
average tree depth overX0 (right). As the results of OLOP depend on particular realizations
of stochastic trajectories, this algorithm is run10 times and mean results are reported (the95%
confidence regions are too tight to be visible at this scale).

To illustrate the online control performance of optimisticplanning, OPSS is applied
in a receding-horizon fashion starting from the stable equilibrium of the pendulum
(pointing down), andn = 600. Figure 22.6 shows the resulting trajectory, compared
to that given by uniform planning. OPSS swings up the pendulum in one go, whereas
uniform planning manages it only after a few attempts.
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Figure 22.6 Online control results of OPSS and uniform planning.
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