CHAPTER 22

OPTIMISTIC PLANNING
IN MARKOV DECISION PROCESSES

LuciaN Busoniu!, REmi MuNos!, AND ROBERT BABUSKA?
b

ITeam SequelL, INRIA Lille-Nord Europe, France
2Delft Center for Systems and Control, Delft University of Technoldlyg, Netherlands

Abstract

We review a class of online planning algorithms for deteistio and stochastic
optimal control problems, modeled as Markov decision psees. At each discrete
time step, these algorithms maximize the predicted valptaoiing policies from the
current state, and apply the first action of the best polieyiéb An overall receding-
horizon algorithm results, which can also be seen as a typedél-predictive control.
The space of planning policies is explored optimisticalcusing on areas with
largest upper bounds on the value — or upper confidence bguarits stochastic case.
The resultingoptimistic planningframework integrates several types of optimism
previously used in planning, optimization, and reinforeslearning, in order to
obtain several intuitive algorithms with good performagcerantees. We describe
in detail three recent such algorithms, outline the thémabguarantees on their
performance, and illustrate their behavior in a numerigaheple.

Optimistic planning in Markov decision processByg.Busoniu, Munos, and BaBka 1
Copyright(© 2011 John Wiley & Sons, Inc.

2 OPTIMISTIC PLANNING IN MARKOV DECISION PROCESSES

22.1 INTRODUCTION

This chapter considers online algorithms for problems iictvia nonlinear, possibly
stochastic dynamic system must be optimally controlledsargte time. Optimality is
measured by a cumulative reward signal which must be magihithe return. Such
problems arise in many fields, including artificial intediiice, automatic control,
computer science, operations research, economics, megdieic. They are often
modeled as Markov decision processes (MDPs).

In an MDP, the system is described by a state signadrying in the state space
X, and can be influenced by actionsin the action spacé&. For the simplicity
of notation, X will be considered countable here, but uncountable (e mtirmaous)
spaces can easily be handled. Most of the algorithms thabwitlescribed in this
chapter require thdf consists of a small number of discrete actions. The proipabil
that next stater’ is reached after action is taken in stater is f(x,u,2’), where
f: X xUx X — [0,1] is atransition probability function describing the dynami
of the system. After the transition i, a reward’ = p(z,u, 2’) is received, where
p: X xU x X — Ris the reward function. A control policy : X — U indicates
how the controller should choose actions to interact withdjpstem. Denoting by
k the discrete time index, the expected infinite-horizonalisded return of state
under a policyr is:

Vﬂ(m) = ECEk+1~f(Ik,7T(CEk),') {Z 'yka-H} (221)
k=0

wherezy = z, rpr1 = p(ag, 7(zk), 2x+1), ¥ € (0,1) is the discount factor, and
the notationcy; ~ f(xg, 7(zk),-) means thaty,, is drawn from the distribution
f(zr,m(2),-) over next states. Other types of return can also be used, such as
finite-horizon or averaged over time. We clll' : X — R a value function. The
goal is to control the system using an optimal policy so that the value function
is maximized for every: € X. This maximal, optimal value function is denoted
by V* and is unique, so it does not depend on the particular optpobty. It

is also useful to consider an action-dependent optimalevalaction, the optimal
Q-function: Q*(z,u) = Eywf(z,u,) {p(z,u,2") +~+V*(2’)}. Note that optimal
control problems are often stated so that a cost is minimieatier than a return
being maximized — but the two formulations are equivalent.

We consider a class of online model-based algorithms thaaeh step of in-
teraction, look at the current system stajeand employ the model to predict the
system’s response to varioptanning policies— which may be e.g. simple open-
loop sequences of actions or more complex, closed-loogtsmberules. Note that
a planning policy is a different object from the interactjpulicy . Exploiting the
predictions, an actiony, that is as good as possible is applied, which results in a new
stater1. The entire cycle then repeats, in a receding-horizon desHin systems

INote the “prime” notation, as in e.g/, is used to generically indicate variables at the next stéyereas
if the actual time step is important, it is included as a supscei.g.z 1.

INTRODUCTION 3

and control, such algorithms are known as model-prediactivrol [16], while in
computer science they are called planning [14]. In this tdapve mainly draw
inspiration from the computer science literature, and tpkasize that we mean the
online, feedback control over trajectories consisting altiple (perhaps infinitely
many) steps, we call the algorithms online planning.

The quality of actionu;, returned at step by the planning algorithm is measured
by the simple regret, defined as follows:

R(xy) = max Q" (vk, u) — Q" (g, uk) (22.2)

that is, the loss incurred by choosing and then acting optimally, with respect to
acting optimally immediately, from stefp. Note the regret is always nonnegative,
and an optimal action choice attains a regret.of heoretical guarantees for planning
algorithms are usually given in terms of the regret at antestadependently of.
Then, if an algorithm achieves a regret=dr every state, the overall suboptimality
in terms of discounted return is at mq% [11]. This property motivates the use of
the simple regret as a performance measure.

The online planning approach is very different from the dtad methods for
solving MDPs considered in dynamic programming and reggorent learning. The
latter methods usually seek a global solution, whereasemianning finds actions
on demand, locally for each state where they are neededn&piinning is therefore
much less dependent on the state space size. It is genarbthptimal, but useful
bounds can be placed on its suboptimality, as will be oullire¢er in the chapter.
While global methods do achieve optimality in some restdaettings, in realistic
problems they must also use approximation, thereby sangfimptimality, as seen
elsewhere in this book and specifically reviewed in [4].

We focus on a class of online planning algorithms based opriheiple of opti-
mism in the face of uncertainty: given the choice betweenmplag policies having
uncertain values, more promising policies are explored fifis optimistic prin-
ciple has applications in many fields, among which thoseeslo® our focus are
optimization, where a representative optimistic metholdremch-and-bound; clas-
sical planning, with algorithms such as A* [14]; and the exption-exploitation
dilemma in reinforcement learning [20]. In classical plengy optimism relies on
deterministicupper bounds on the values of incomplete action sequenteseas
in exploration-exploitation, upp@onfidencdounds on stochastic values are used to
guide action choices [1]. Upper confidence bounds have akso tecently applied to
planning [13, 10], but typically without making the conrieatwith the deterministic
optimism of classical planning. In this chapter, we intégtaoth types of optimism
into a single framework, in the context of MDPs. To this enlnping is cast as
the problem of optimizing returns over planning policiesfrthe current state. This
interpretation leads to several intuitive planning altforis with strong performance
guarantees, which have been developed over the last few jigr2, 6] and which
we review in detail.

Next, Section 22.2 describes the foundations of optimisoniine optimization.
Section 22.3 forms the core of the chapter, and exploitsdéas of Section 22.2 to
introduce the family of optimistic planning algorithms. teds for three types of

4 OPTIMISTIC PLANNING IN MARKOV DECISION PROCESSES

system dynamics are reviewed: deterministic, generahasia, and stochastic but
where each transition can only end up in a finite number oéstdaRelated algorithms
from the literature are discussed in relation to optimigtamning in Section 22.4. The
behavior of the three methods is illustrated in a numerikah®le in Section 22.5.

22.2 OPTIMISTIC ONLINE OPTIMIZATION

The idea of optimism can best be understood by looking atribigl@m of optimizing
an unknown functiorv : H — R online, while observing possibly noisy values of
this function at chosen points. At each roung- 1,2, ..., the algorithm chooses
a pointh; € H, and is provided with a random sample= v(h;) + w; wherew
is zero-mean noise, drawn independently for each sample. gbhl is not just to
find an optimal poink* € argmax; . ; v(h), but due to the online setting, to find it
while sampling points of as high a quality as possible. We mét provide formal
guarantees for optimistic optimization in terms of thisuiegment (although they
are available), because we are only interested in theseonge#s stepping stones for
optimistic planning. In that context, a weaker requiremeititbe sufficient, which
only asks the algorithm to return the best point possibkr &tpending some number
of samples, without looking directly at the quality of thessanples.

We first consider two special cases: noisy evaluations batlsiiscrete set;
and infinite setd but deterministic evaluations. We then proceed to the génase.

22.2.1 Bandit problems

In the case of bandit problems, the observed values are,rmisy is small and
discrete:H = {h',...,h*}. The name comes from the fact that this case models
the optimization of the payoff achieved by pulling the arnisan M-armed slot
machine (“bandit”), where eadW is an arm. Thus, online optimization is a way to
solve the exploration-exploitation dilemma: given theoimhation available so far,
should the algorithm exploit the arm that seems the bestlfled®est average observed
value), or should another arm be explored to achieve bettdidence in its value?
This formalism is used especially in reinforcement leagraigorithms.

There are many ways to solve bandit problems, and here weniljliconsider the
upper confidence bour@CB) algorithm. At every round, this algorithm defines a
b-value for everyh/: _

S w [2logt
n(hy) n(h)

b(h?) = (22.3)
wheren(h?) is the number of instancég has been chosen up to roundnda? is the
random value (sample) observed at ttiesuch instance (the b-values of unsampled
points, for whichn(h?) = 0, are by convention positive infinite). Each b-value is an
UCB onwv(h?), that is, with high probability it is an upper bound. Then ghgorithm
simply makes amptimisticchoicearg max;,,; b(h?) for the next sample. It must be
emphasized that the counth’) and thus the b-valuih’) depend of course on the

OPTIMISTIC ONLINE OPTIMIZATION 5

round¢. Throughout the chapter, we leave such dependencies omtrentround
implicit in order to avoid cluttering the notation.

Such an algorithm is optimistic because it treats the UCB #sviere the actual
value of the point. The optimistic principle has strong tietical support in bandit
problems [1].

22.2.2 Lipschitz functions and deterministic samples

When the sefd is infinite (or just very large), it is impossible to samplegypoint.
Consider the deterministic case, where the algorithm isrgilie exact value(h) for
each point. it chooses. Let(h, h) be a metric ovef!, and assume is Lipschitz:

lu(h) — v(h)| < £(h,h) Vh,he H

where for convenience we do not make the Lipschitz consteitoit. Then for any
set of pointsh C H and any point. € h we have the following upper bound on the
supremum ob overh (i.e. this upper bound is larger thaf:) for anyh € h):

v(h) + diam(h)

wherediam(h) = sup, jcp, £(h, h) denotes the diameter of the set. If multiple
samples are available i, say their number ia(h), then the bound is refined to:
binit (h) = . 1mi1;11(h) [’U(hl) + dlam(h)] (224)
Using this property, a tree-based algorithm for optimizingan be derived: Algo-
rithm 22.1, calledoptimistic optimization for deterministic functiog®OD). This
method builds a tre@ of policy sets, where each node contains soméisatd its
children correspond to a partition Af No difference is made between the notation
of a node and its corresponding set, and the children of doare denoted by (h).
OOD starts building the tree from a root node containing thire spaceH, and
at each step, chooses aptimisticleaf by navigating the tree along the maximum-
b-value path. The optimistic leaf is expanded, i.e., theasponding set is split
(partitioned) into several child subsets, and an arbitpaipt is sampled in each sub-
set. The node splitting procedure should ensure that tteadéx decreases with the
depth. For example, if each node corresponds to a hyperbaXEinclidean space,
then the optimistic leaf could be split halfway along thegest edge.

B-valuesb;,;; at the leaves are computed with (22.4) and propagated upvard
the tree, where each parent node gets the largest boundtfamildren. The mini-
mization in (22.4) is useful because samples inherited &letéf from its parents may
provide a better bound than its own, newly obtained sampie tD the propagation
rule, navigating the tree along the optimistic path is egeint to directly choosing
the leaf with the largest b-value. The optimistic path iserthveless made explicit to
emphasize the connection with later algorithms.

Note the similarity of this algorithm with branch-and-bauoptimization. One
difference is that branch-and-bound also uses lower bouneliminate some nodes
from consideration. In Algorithm 22.1, all the nodes rent@ndidates for expansion,
but the algorithm always focuses on the most promising node.

6 OPTIMISTIC PLANNING IN MARKOV DECISION PROCESSES

Algorithm 22.1 Optimistic optimization of deterministic functions
1: initialize tree:7 — {H}
2. fort=1,2,... do
3 h « root H; while h is not leafdo h «— arg max;, ¢, b(h') end while
optimistic leaf found:h! — h
expandh into several child subsets, adding them ta@
sample a point in every new chilel
update b-values upwards in the tree, starting from the eave
b() {binit(h) from (2/2.4) ihis leaf
maxp/con) b(h') otherwise

N o g

8: end for

22.2.3 Lipschitz functions and random samples

A general algorithm, which works for the noisy optimizatadthipschitz functions de-
fined over arbitrary metric spaces, will combine the two s/pBoptimism highlighted
above: upper confidence bounds due to the stochastic samjilegiameter-related
bounds due to the non-zero size of the sets considered. fioipar, at round, a
high-probability upper bound on the supremunvaiver some seh is:

n(h) ~
S g, 2log ()

R TR T

+ diam(h) (22.5)

wheren(h) is as before the number of samples falling insidefseand®; are the
random values of these samples.

The resulting algorithm is callelierarchical optimistic optimizatiogHOO) [3]
and is shown in Algorithm 22.2. Like for OOD, the splittingogedure should de-
crease the diameter. The only difference from OOD is thatemaither inherits the
b-value from one of its children, or it uses its own b-valyg if it is better (smaller).
The latter situation could not arise in OOD, because the eliara decrease with the
depth and sample values are deterministic. Figure 224tiiltes how HOO develops
the tree and computes the b-values.

22.3 OPTIMISTIC PLANNING ALGORITHMS

Inthis section, the ideas of optimistic optimization arplégl to planning. As already
outlined in the introduction, the planning algorithms weasider work online, in a
receding-horizon fashion, and use a model of the MDP in thm fof the functions

f andp. At each stegk, the model is employed to predict possible behaviors of the
system (specifically, state trajectories and ensuing @syatarting from the current
statex;, and responding to various sequences of actions. Using fireséctions,

the algorithm returns an actian, that is as close to optimal as possible, where near-
optimality is measured by the simple regret (22.2). Thigads applied, the system
transits tar, 1, and the cycle repeats.

OPTIMISTIC PLANNING ALGORITHMS 7

Algorithm 22.2 Hierarchical optimistic optimization
1: initialize tree:7 — {H}
2. fort=1,2,... do
3: h « root H; while h is not leafdo h «— arg maxy, ¢, b(h') end while

4: optimistic leaf found:h" — h
5: expandh into several child subsets, adding them ta@”
6: sample a point in every new child
7: update b-values upwards in the tree, starting from the ave
b(h) = {binit(h) from (22.5) ith is leaf
min { bini¢ (R), maxp ec(n) b(R')} otherwise
8: end for

b-value 7y /\
diameter

averagg

subset

Figure22.1 Illustration of HOO. Each tree node corresponds to a subset alongrilzemtal
axis. For each leaf subskt the b-value is computed as the sum of the average of the observed

n(h) V; . . .
samples%, the confidence interva|/ %i()” and the subset diametéiam(h).

To place this problem in the context of optimistic optimirat let us isolate one
such step of interaction with the system, and by conventigapel the current time
fromk to0, so that the system staterg. Planning should then maximize the expected
return starting frome:

v(h) = By mf(zah(dia),) {Z vde} (22.6)
d=0

whereh is a rule describing how actions are chosen for each statarireg along
future trajectories. This equation immediately clariftes link with the optimization
problem discussed in Section 22.2: the functidio optimize is the expected return,
and the space over which we optimize consists of all possailibe .

8 OPTIMISTIC PLANNING IN MARKOV DECISION PROCESSES

The time step along planned trajectories is dendtiedtead ofk, for two reasons:
to emphasize the difference between planned and real atitamawith the system,
and becausé will be related to the depth in certain trees considered.|&tke rule
h is different from the policyr used whileinteractingwith the system, which is the
overall result of applying the planning algorithm at eaapstWe callh a planning
policy. Since in the sequel we are mostly interested in plappolicies, they will
often simply be called “policies” for the sake of brevity. Whglanning policies are
discussed together with interaction policies, we will use fong, explicit names of
both, to make things clear. Note it is not strictly necesgarjlave a dependence
on timed in the planning policy, since for the discounted infiniteihon MDPs
considered in this chapter, a policy that only depends orstate is sufficient to
obtain optimal behavior. Nevertheless, this is the gerferat of the policy sought
by planning algorithms.

Usually, an amount of computational resources will be specified, and the plagni
algorithm must return an, with the smallest simple regret given this constraint. The
computational units can be number of evaluations of the ifadetions, number of
basic arithmetic operations, etc. In practiaanay often not be specified in advance
but may depend e.g. on real-time constraints. This motvateanytime behavior,
which returns the best action possible after any ameuof units spent, without
using the actual value of. The exploration-exploitation tradeoff still appearshie t
weaker sense of judiciously prioritizing the sampling afrpting policies in order to
minimize the final, simple regret.

Three planning algorithms will be considered in detail iis thection: optimistic
planning for deterministic systems (OPD) [11], open loofirafstic planning (OLOP)
[2], and optimistic planning for sparsely stochastic sys€OPSS) [6]; the latter two
algorithms work for stochastic systems.

All these algorithms require discrete actions, so fhat {ul, ...,uM}. OPSS
also requires that each random transition ends up in one ofta fiumber of next
states. Thus it works for finite-state MDPs, as well as irdisitate MDPs that satisfy
the condition, which we call “sparsely stochastic”. Furthere, for all algorithms
it is assumed the rewards are bounded in the intgéval, i.e., p(z,u,z’) € [0,1]
for anyz, u, 2’. This assumption is not overly restrictive since, at leaspfoblems
that do not have terminal statésny bounded reward function can be normalized to
[0, 1] by translation and scaling, without changing the optiméiopes.

22.3.1 Optimistic planning for deterministic systems

In the deterministic case, the planning policy is suffidigspecified by an infinite
sequence of actions = [ug,u1,...,uq,...] With uy € U, since this sequence
completely determines the system trajectory. TRUSs the infinitely-dimensional

2A terminal state is one from which the system can no longerpesand from which all actions always
obtain zero rewards. Such states can be used to represefgaabachieved” and “failure” situations.

OPTIMISTIC PLANNING ALGORITHMS 9
space/>°. The value (return) of a policy is:

h) = 7'ra1 =Y 7'p(a; ta, zat1) (22.7)

d=0 d=0
Define the metric (distance between policies) akier
daige (h,h)

e(h,h):Wl_7

wheredgig (h, h) = min {d |ugq # 44}, that is, the smallest index where the two
policies are different. Intuitively, this distance is tteedest difference between the

returns provided by the two policies in any possible MDP &ese the rewards are

in [0, 1], the returns can differ by at moSt3Z, 77" 1= M

Optimistic planning for deterministic systef@PD) will be bU|It starting from
OOD (Algorithm 22.1). The sets considered are defined bynmpiete sequences of
lengthd, so that each policy in the set matches the sequence up to dndel and
is free to choose any action afterwards; = {[ug, u1, ..., ug—1,*,*,...]} with ‘x’
taken to mean “any action”. Note, = H since it imposes no constraints on the
policy. A sethy is split by making the choices far; definite, so that we obtaif/
different children seté, 1, one for every value of,; € {u',...,u*}. Note that,

under the chosen metric, the diameter of each such %%isince any two policies
in hy can differ at the earliest at indel thus alsadiam(H) = 1/1—~.

We have not specified how to sample a value in a leahgetin fact, since this
value is an infinite sum of rewards, it is not possible to obtai exact sample. This
is fortunately not a problem, since an upper bound on theegaddi policies in some
leaf seth, can still be obtained from the sequence of rewards simukiddr:

d

binit (hq) = v(hg) + diam(hg) = v(hg) + ’Y_ -~
d—1
wherev(h 27 (g ug, Tsy)
d=0

This can be understood using the intuition explained abow¢hie metricl. Thus,
expanding a node and computing the rewards obtained fdnireaeach of its children
replaces the usual sampling process. Noteitlhy) is alower bound on the values
of all policies inh.

After performingn expansions, OPD chooses the setthat maximigkeg) amongst
all the sets considered so far, and returns the aatipfor this set. Notice that in
contrast to the optimistic criterion used to build the tetghe end OPD makes a safe
choice, based on lower bounds. With this, the instantiado®PD as a variant of
Algorithm 22.1 is complete. Rather than making this instditn explicit, we choose
to present the algorithm in an alternative, equivalent vy tontributes additional
intuition and helps in understanding OPSS later.

There exists a one-to-one mapping between the tree digetsd a corresponding
tree ofstates see Figure 22.2. Each path through this latter tree is #jectory

10 OPTIMISTIC PLANNING IN MARKOV DECISION PROCESSES

obtained by applying a considered sequenge., . .., uq_1; thus each node, at
depthd corresponds to a shf;. An arc(xg, x44+1) corresponds to a transition and is
labeled by the associated actiopand reward ;1 = p(zq, ua, xq+1). Expanding

a nodex is done by simulating the transitions for all actions, and adding all the
resulting next states’ as childrerC(z) to the tree. The b-value of a leaf node is:

binio (2) = () + (@) (22.8)

wherev(x) is the return along the path fromy to z. Algorithm 22.3 summarizes
OPD using this second type of tree.

Figure 22.2 lllustration of an OPD tree. Each arc corresponds to a transition. Sptsscr
are depths, superscripts index thepossible actions/transitions from each nodé & 2 in
this example). The dashed outline encloses a possible optimistic path.

Algorithm 22.3 Optimistic planning for deterministic systems
1: initialize tree: 7 «— {xo}
2. fort=0,...,ndo
3: T « rootzo; while z is not leafdo x « argmax,c¢(,) b(z') end while

4: optimistic leaf found:z® «— «
5; expandz': simulate allM/ transitions fromzf, add next states’ to 7
6: update b-values upwards in the tree, starting from the kave
b(x) = {binit(x) from (22.8) ifz is leaf
max, cc(q) b(z') otherwise
7: end for

8: output ug, the first action along path with largest

22.3.2 Open-loop optimistic planning

In the stochastic case, there are multiple state outconmes diven action at some
step, so a simple sequence of actions is no longer sufficieaptesent a full planning
policy. Such a policy would need to depend on the state, gavim the fornh(d, z4)
in (22.6), which specifies an action choice for each possilieomer ; at every steg.

OPTIMISTIC PLANNING ALGORITHMS 11

Representing such a policy is unfortunately impossiblesimggal, since there can be
an infinite number of outcomes. Instead, tpen-loop optimistic planningOLOP)
algorithm chooses to still optimize only over plain sequenof actions, without
explicitly considering the underlying stateg — hence its “open-loop” nature.

OLOP will be described using the tree-of-sets formalismgsia tree of states does
not exist in this case. The spaéeand metric are the same as in the deterministic
case, and splitting has the same meaning of initializing@lbn choices for the next
step. However, the value of a polidyis now the expected return:

’U(h) = Ex(i+1Nf(Id7u(i7') {Z ,-de(xd, Ud, l’d+1)} (229)

d=0

so we are dealing with a noisy optimization problem: summipgthe rewards
along some simulated trajectory only givesamplereturn. Moreover, to obtain
independent return samples, whenever traveling down thimiggic action path in
the tree anewtrajectory must be simulated, rather than relying on theaaly ex-
isting reward samples as in OPD. Formally, each set (tree)nfog is associated
with a cumulative reward(h,;) and a counti(h,) of how many reward samples
are available for it, with both quantities initialized o Simulating a trajectory
(24,ug, Tgq:mg41) ford = 0,...,d — 1 provides new reward samples for all the
setshz,, = {[uo, u1, ..., ug, **,...]}:

r(hgyr) < r(hgpr) +7ai
n(hgy1) < n(hgy) +1

OLOP can be seen as a variant of HOO (Algorithm 22.2) that theeb-values:
_ d

d—1
-y r(hgpq1) 2log(t) ¥
P () = gzovd [”(h:l) * n(hd+1)‘| R (22.10)

for some seth,, wheret is the number ofrajectoriessimulated so far. These b-
values are different from what the “vanilla” application OO would give, see
(22.5): they cleverly exploit the additive structure of treue (return) to compute
separate UCBs at each step, whereas vanilla HOO would cenmgpsingle UCB
for the entire trajectory. The diameter compongﬁg remains the same as in the
deterministic case.

Algorithm 22.4 summarizes OLOP, in a variant where the cdatmnal unit
consists of simulating a single transition (rather thidnas in OPD), and the final
action choice is based on the most-often sampled first aft@her than the largest
v). There is a clear parallel between OLOP as an applicatibtOfd, and OPD as an
application of OOD. For instance, OLOP requires a minimurtinhe b-value;,;;
of the current node when propagating b-values up the tree.

SInstead of the theoretical OLOP algorithm of [2], we predesre a variant more directly related to the
HOO template, and also more amenable to practical implementation

12 OPTIMISTIC PLANNING IN MARKOV DECISION PROCESSES

Algorithm 22.4 Open-loop optimistic planning
1: initialize tree:7 — {H}
2: for t = 1,2, ..., stopping whem transitions have been exceediml
3: h « root H; while h is not leafdo h «— arg maxy, ¢, b(h') end while

4 optimistic leaf found:h), — h
5: expandh' into M child subsetd’, one for each action, adding themZo
6: simulate a trajectory from, using actions irhfi, reaching somey
7: from x4, simulate a transition for each action
8: update b-values upwards in the tree, starting from the ave

b(h) = {binit(h) from (22.10) ith is leaf

min {binit (h), maxp ec(n) b(h')} otherwise

9: end for

10: output ug, a first action that was sampled most often

22.3.3 Optimistic planning for sparsely stochastic systems

When each random state transition can only end up in a smalheusof next states,
it is in fact possible to represent full, closed-loop plarghpoliciesh(d, =), which
also depend on the underlying state. More specifically, &yohn be represented
as a vector:

h:[uo,uh...m{v,u;’l,...,uéV’N,]
because at stepit must provide an action for each of the possibleoutcomes; at
step2, for each of theV? outcomes, and so on. Exploiting this idealeterministic
algorithm can be built on the foundations of OOD, even thahgtsystem is stochas-
tic. We call systems with the property above sparsely sttiahaso the algorithm
is optimistic planning for sparsely stochastic systgi@®SS). This class includes
all finite-state MDPs (where good performance can be exgegteen N is small),
as well as important classes of continuous-state MDPs ssithoge that arise by
combining deterministic dynamics with discrete randomalaes, or by discretizing
in time some continuous-time stochastic systems.

Rather than use thenotation which is cumbersome in this case, OPD is described
using a tree of states, like OPD earlier. This tfEds built starting from a root
containingry and iteratively expanding nodes. Each expansion congigeerating
and adding all theV one-step successor states of the node-to-expand, fad all
actions, see Figure 22.3, left. The b-values of leaf nodesamputed with:

bue(2) = () + 1) (22.11)

wherev(z) is the discounted sum of rewards along the path frgtio z. The b-values
of nodes higher in the tree maximiaeighted sumsf children’s b-values, where the
weights are the children’s probabilitieff(z) = maxuev 3,/ cc(p) f (@ u, 2")b(2).
Here,C(z, u) denotes the set of children reachable fromifter performing actiom.

OPTIMISTIC PLANNING ALGORITHMS 13

Rather than an optimistic path as in OPD and OLOP, OPSS barildptimistic
subtree7t by starting from the root and selecting at each nodal the children
associated to an optimistic action:

T — - ’ /
u'(z) = arg max z,u,x)b(x
(z) g Zf ()b(z')

T

Among the leave£' of this subtree, the node to expand is selected using:

(@)
z" = arg max P(z) (22.12)
zeLlt 1- vy
whereP(x) is the probability to reach;, i.e. the product of all probabilities along
the path tar: P(x) = Z(jg’l f(zg,uq,xq41). After n expansions, the algorithm

selects at the root an action:

Uug = arg maxz o, u, 2" v(x)
uelU "

wherev-values are propagated up the tree just like b-valuesjragrom their defi-
nition at the leaves given above.

Algorithm 22.5 summarizes OPSS. The computational unisist&in this case of
generating all theV M children of a particular state.

Algorithm 22.5 Optimistic planning for sparsely stochastic systems
1: initialize tree: 7 «— {xo}
2. fort=1,...,ndo
3: build optimistic subtred

d(z)

4 choose node to expandi « arg max, ¢ .+ P() 71_y
5: expandz': simulate allN M transitions fromz', adding next states' to 7
6: update b-values upwards in the tree, starting from the eave
() = {binit (z) from (22.11) ifz is leaf
MaXuecU D yrec(z) | (T, U 2')b(2") otherwise
7: end for

8: output ug maximizingy

To better understand the choices made in OPSS, let us inlfgrneturn to the
tree-of-policy-sets interpretation. To keep the parallebr, we denote the tree of
sets by7 in contrast to the tree of statds and always specify explicitly to which
tree each entity belongs. Selecting the children of onaéquéeir action at each state
in 7T, recursively until reaching some set of leaves 7, corresponds to selecting
somesingleleaf subseh € 7, with the b-value:

= z) [v(x 7
b(h)wech(@)+ 7]
d(z)
= Z P(z)v(z) + Z P(z) ;y_ = v(h) + diam(h)

zeL xeLl

14 OPTIMISTIC PLANNING IN MARKOV DECISION PROCESSES

H

Figure 22.3 Left: illustration of an OPSS tree after three expansions (root, gray, rode
dashed node), foN = M = 2. The circles are state nodes, and the actions are explicitly
represented as square, choice nodes. Transition arcs to next stdtdseted by probabilities
and rewards. The dashed outline encloses a possible optimistic subiyee. d®rresponding
partition of the policy spaced. Expanding the root splitdf in two sets containing
policies of the form[1,,...] and[2,x,...] respectively (recall a policy has the structure

h = [uo,ui,ui,...]). Next, expanding the gray node — which corresponds to the second
random outcome of actidh— splits{[2, x, ...]} into {[2, %, 1, %,...]} and{[2, %, 2, %, ...]};

note the action for the first random outcome (dashed node) remaipfingdl Expanding the
dashed node then makes the action definite, thereby spliititfgsets{[2, x,1,*,...]} and
{[2,*,2,*,...]}, since the dashed node is reached with nonzero probability by bothslasse
of policies.

the standard formula for the b-value. The lower bouihl) is the sum of truncated
returns up to the leaves i, weighted by their probabilities. A similar weighted
formula holds for the diameter.

Among all these leaf policy sets i@, the optimistic action choices it lead
to the optimistic sek’ € 7T, which has the largest b-value, and expanding the
optimistic nodext e T splitsh! € T into M childrenalong the longest edgvhich
corresponds tef. Furthermore, contrary to all algorithms so far, this exgéanalso
splits many additional setsthose corresponding to all policies that reachwith
nonzero probability. Figure 22.3, right illustrates thifeet, and more generally how
expanding leaves i corresponds to splitting setsTh. Due to this multiple-splitting
property, there is no one-to-one mapping betwéesnd7 .

22.3.4 Theoretical guarantees

The core theoretical question for optimistic planning aidaons concerns the quality
of the action they produce after expending the budgét terms of the simple regret
(22.2). Available guarantees rely on a measure of the coditplef the problem that
can best be understood in terms of a branching factor of selated trees.

For OPD, this tree consists of near-optimal policy #et§™* = {hy|v*—v(hg) <

%} wherev* is the optimal return achievable fromy. So,7 * includes at every
leveld the policy sets for which it is impossible to tell, from thevaads achieved up
that level, whether they contain an optimal policy. Thedauttpe number of such sets,

RELATED PLANNING ALGORITHMS 15

the more difficult the problem is for planning. Denoting thsyptotic (as! — o)
branching factor o * by x, the simple regret of OPD is:

_logl/~y

_JOn e) ifk>1
Rimo) = {O(W) if = 1

wherec is a specific constant [11]. In the ideal case-= 1, which means there is a
single near-optimal set at every level, and a single optjtaining policy. A regret
that decreases exponentially withis obtained in this case. Asgrows toK, the
regret decreases more slowly with

OLOP defines the branching factewith a similar formula, but allows for tech-

nical reasons the sets to be suboptimal by uﬁ}tia rather thanﬁ%. Then, roughly
speaking (the actual technical statement is more involf&d)

Riag) ~ [O 7)Y iR > 1
PTlom) iR <1

Remarkably, wher+/k > 1 the regret has the same form as for OPD.
Similar guarantees hold for OPSS (these results have nbeget published).

22.4 RELATED PLANNING ALGORITHMS

A recent algorithm in the optimistic planning family is UCPBglied to trees (UCT)
[13], which has made a great impact in the planning field dugst@ompetitive
performance in games such as Go [10]. UCT basically appl@B dt every node
in a planning tree similar to that of Figure 22.3. It travetsaptimistic path along
the tree choosing actions with maximal UCBs (22.3) on thernst obtained from
the current node, and sampling states independently. Are igsth UCT is that
its b-values do not consider the size of the policy sets, whieans they are not
true upper confidence bounds; equivalently, it can be saidUET assumes infinite
smoothness of the value function it optimizes. A first attetojddress this problem,
by introducing a so-called smoothness coefficient in plddb® set diameter, was
made in [7]. This “bandit algorithm for smooth trees” can besidered a precursor
of OLOP. In [17] a continuous-action variant of UCT is inttmed, which tackles
continuous actions by using HOO instead of UCB in the treeesod his still does
not introduce information about the size of policy sets.

On the other hand, optimistic planning has a strong relatignto classical plan-
ning algorithms such as A* and AO* [14, 18], which also expgfahning trees by
optimistically prioritizing nodes. By using upper boundstbe values of incomplete
action sequences, A* and AO* do consider diameters of paitg and obey the
principles of optimistic optimization (more specificallyG>). OPD can be seen as
an extension of A* from goal-based problems to more genartahite-horizon dis-
counted MDPs, and OPSS as a similar extension of AO*, witpleeific rule (22.12)
for choosing the particular node to expand. Exploiting U@Ba strong innovation
brought by UCT and OLOP to classical planning.

16 OPTIMISTIC PLANNING IN MARKOV DECISION PROCESSES

The key observation here is that, in the context of MDPs,redké algorithms
belong to a general framework for optimistic optimizatioreoplanning policies.
This insight guides essential choices in the algorithmsr-rfstance, the need to
always include diameters in the b-values, and the node siqgracriterion (22.12)
in OPSS, intuitively seen as splitting a set along the longdge. If these choices
are made correctly, strong theoretical guarantees on ttierpgnce are achieved in
terms of the simple regret, as outlined in Section 22.3.4.

An early, non-optimistic sample-based planning algoritbnMDPs was given by
[12]. This algorithm builds a symmetric planning tree by g¢ing a fixed number of
states for each action, at each depth up to some horizorcaliésl “sparse sampling”
due to the finite number of outcomes sampled, so its sparsenafa different nature
thanin OPSS. Sparse sampling was extended by [19] to carasidalaptive horizon.
“Forward-search sparse sampling” [22] is an optimisticcaston, which does not
expand the tree uniformly, but along paths obtained by dhgawaximum b-value
actions, and then among the successors choosing the ongheithaximumgap
between the b-value and a lower-bound on the state value.

Disturbance trees are very similar to the planning treed heee, and planning
algorithms based on them were given e.g. by [8, 9]. The prapaigorithm of
[15] exploits a different notion of sparse stochasticitgrttOPSS, in which a small
number of the states lead to stochastic outcomes (ratherathatates leading to a
small number of outcomes, as in OPSS).

22.5 NUMERICAL EXAMPLE

To understand the behavior of OPD, OLOP, and OPSS in prathiegwill be applied
to the problem of swinging up an underactuated inverted plend— a rather simple
problem commonly used in the literature on solving MDPs.

The inverted pendulum consists of a mass attached to antedtliak (a rod)
that rotates in a vertical plane. The available power isrtaksufficient to push the
pendulum up in a single rotation from every initial statestéad, from certain states
(e.g., pointing down), the pendulum needs to be swung batfosih to gather energy,
prior to being pushed up and stabilized. Finding such a soius challenging for
planning algorithms, because the swing-up must be planvexéddonger horizon, and
solutions that seem optimal over a short horizon will notky@mstead just pushing
the pendulum in one direction.

A continuous-time model of the pendulum dynamics is:

& =1/J - [mglsin(a) — b — K*¢/R + Ku/R)

where we assign inertid = 1.91 - 10~ kgm?, massm = 0.055 kg, gravitational
accelerationy = 9.81m/<, length! = 0.042m, dampingb = 3 - 10~% Nms/rad,
torque constani’ = 0.0536 Nm/A, and resistanc®& = 9.52. The anglen varies
in the interval[—, 7| rad, witha = 0 pointing up, and ‘wraps around’ so that e.g.
a rotation of3r/2 corresponds tav = —x/2. The state ist = [o, 4] . The

NUMERICAL EXAMPLE 17

velocity « is restricted to[—15x, 157 rad/s, using saturation. The control action
u € [—3,3] V may be affected by noise as described below. It is dis@dtiato the
setU = {-3,0, 3}, so thatM = 3. The sampling time i§; = 0.05s.

The goal is to stabilize the pendulum in the unstable equuiib z = 0 (pointing
up), and is expressed by thenormalizedquadratic rewards:

r= punnorm(xv Uu, 1'/) = _xTQrcwx - chwu2
where: Qe = diag[5,0.1], Ryew = 1

Using the known bounds on the state and action variablesgtterds are normalized
(scaled and translated) to the inter{@l1]. The discount factor is = 0.95.

Two versions of the problem are considered. The first vatiastdeterministic
(noiseless) actions, and is used to exemplify the behafi@RD. In the second
variant, an unreliable actuator is modeled that only apjthie intended actiomwith
probability0.6, and applies an action with smaller magnitud&y, with probability
0.4 (when the intended action(st remaing) with probabilityl). This corresponds to
a sparsely stochastic MDP witth = 2, a more difficult problem than the deterministic
variant. The results we will present for the stochastic itae pendulum were first
given in [6], while those for the deterministic variant aen

To obtain a global performance measure, all algorithms ppéied in an offline
fashion, to find actions for the states on the dfigl= { —r, ={20™, =20%, ..., 7} x
{—1567,—14m,...,157}. Since an exact optimal Q-function for the inverted pendu-
lum problem is not known, in order to approximate the simplgret a near-optimal
Q-function is computed instead using interpolation-baggatoximate value iteration
[21, 5] with an accurate approximator.

Baseline planning solutions are obtained using unifornrmmitag, which always
expands a node having the smallest depth instead of an gfiimbde, thus devel-
oping uniform, symmetric trees.

Results with OPD. Figure 22.4 shows the results obtained by OPD for the deter-
ministic inverted pendulum, in comparison to uniform pleagn The budget varies

in the set{100, 200, ...,1000}. As expected, OPD works better (obtains smaller
regret) than uniform planning, since it expands the plagpitiees in a smart way,
resulting in much deeper trees. The regret of OPD decreaikswbut quickly
plateaus aften = 300, which indicates this budget is already sufficiént.

Results with OLOP and OPSS. For OLOP and OPSS, the sparsely stochastic
variant of the inverted pendulum is used. For OPSS, the ctatippal budget:

4Note that the regret does not decrease monotonicallywitfhis is because regret can vary nonmonoton-
ically with the planning horizon. For a concrete example sider a deterministic MDP with state space
{1,2,...,6}, two actions—1, 1, and additive dynamics’ = max(1, min(6,z + u)). The rewards
obtained upon reaching one of the six states are, resplgctlye, 0, 1, —10, 100, and the discount factor

is 0.5. Then, the optimal action far = 3 is 1. If a fully expanded planning tree of depth (horizdnis
used to compute-values and choose an action, the action returned will. Héthe depth is2, the action
changes te-1 due to the—10 reward. For depths larger th@ndue to thel00 reward, the action is again
optimal, i.e.,1. The simple regret far = 3 is thus clearly nonmonotonic with respect to the depth.

18 OPTIMISTIC PLANNING IN MARKOV DECISION PROCESSES

10

==©-— Uniform, regret
—&— OPD, regret
1071"/6\/9/ j

10

regret
o
tree depth

10” L L L L [

200 400 600 800 1000 °7 200 400 600 800 1000
n n

Figure22.4 Results of OPD, compared to uniform planning: average regret®yéleft),
average tree depth ovéf, (right).

varies in the sef100, 200, . .., 1000} like for OPD above. Since each node expansion
requiresN M transitions, overallV Mn = 6n transitions are simulated. Because the
computational unit of OLOP consists of simulating a singhasition, it is allowedn
transitions (the algorithm may use slightly more transiito finish the last trajectory).

Figure 22.5 shows the results obtained, compared to theramglanning baseline.
The relationship between OPSS and uniform planning mirntoas between OPD
and uniform planning in the deterministic case, althougtetibe performance of
OPSS continues to improve asncreases, reflecting the more difficult nature of the
stochastic problem. Less expected is that OLOP works pagiyilarly to uniform
planning. This likely happens because the computationdgéis considered do not
allow OLOP to decrease the upper confidence bounds on thasetuinformative
levels; OLOP may work better with a larger budget.

i
o

0 ==©— Uniform, regret |
—+&— OLOP, mean regret|
—>— OPSS, regret

10

-
IS

i
N

==©— Uniform, tree depth
—&— OLOP, mean tree depth|
—— OPSS, tree depth

10

RARRENGS=
107 M

regret
==
tree depth
=
o

8 1
ﬁ]
6 oo a o a o
107 . . . L a0
200 400 600 800 1000 200 400 600 800 1000
n n

Figure22.5 Comparison between OPSS and uniform planning: average regreXpyieft),
average tree depth ovéf, (right). As the results of OLOP depend on particular realizations
of stochastic trajectories, this algorithm is riitimes and mean results are reported @5
confidence regions are too tight to be visible at this scale).

Toillustrate the online control performance of optimigtianning, OPSS is applied
in a receding-horizon fashion starting from the stable ldguim of the pendulum
(pointing down), anch = 600. Figure 22.6 shows the resulting trajectory, compared
to that given by uniform planning. OPSS swings up the pendutuone go, whereas
uniform planning manages it only after a few attempts.

REFERENCES 19

4 - - - - 4 - - - -
Sl g] Sl g]
= =
Eo g o .
5 ©
2] 2]
” i i i i " i i i i
20 05 1 15 2 25 20 05 1 15 2 25
@ =
g 0 < E 0 4
© ©
-20 -20
05 1 15 2 25 05 1 15 2 25
2 u U L 2
= 9 Z 9
E} El
ol :] ol :]
. 1 _ 15 2 __ 25 o 05 1 15 2 _ 25
T 09 T 09
~ 08 ~ 08
0.7 i i i i 07 i i i i
0 05 1 15 2 25 0 05 1 15 2 25

t[s] t[s]

Figure22.6 Online control results of OPSS and uniform planning.

REFERENCES

1. Peter Auer, Nical Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed
bandit problemMachine Learning47(2-3):235-256, 2002.

2. SEbastien Bubeck anddfi Munos. Open loop optimistic planning. Rroceedings 23rd
Annual Conference on Learning Theory (COLTsXf8ges 477-489, Haifa, Israel, 27-29
June 2010.

3. Sbastien Bubeck,&ni Munos, Gilles Stoltz, and Csaba Sze@svOnline optimization
in X-armed bandits. In Daphne Koller, Dale Schuurmans, Yoshua iBeagd Leon
Bottou, editorsAdvances in Neural Information Processing Systempages 201-208.
MIT Press, 2009.

4. Lucian Busoniu, Robert BabBka, Bart De Schutter, and Damien ErnBteinforcement
Learning and Dynamic Programming Using Function Approximatoksitomation and
Control Engineering. Taylor & Francis CRC Press, 2010.

5. Lucian Busoniu, Damien Ernst, Bart De Schutter, and Robert $a@buApproximate
dynamic programming with a fuzzy parameterizatidwtomatica46(5):804—814, 2010.

6. Lucian Busoniu, Bmi Munos, Bart De Schutter, and Robert Bskaw Optimistic planning
for sparsely stochastic systems.Rroceedings 2011 IEEE International Symposium on
Adaptive Dynamic Programming and Reinforcement Learning (ADPRLpages 48-55,
Paris, France, 11-15 April 2011. Special SessioAadtive Reinforcement Learning

7. Pierre-Arnaud Coquelin and Remi Munos. Bandit algorithms for $esgch. InPro-
ceedings of the 23rd Conference on Uncertainty in Artificial Intelligend®{Qr), pages
67—74, Vancouver, Canada, 19-22 July 2007.

8. Boris Defourny, Damien Ernst, and Louis Wehenkel. Lazy plannimdeu uncertainties
by optimizing decisions on an ensemble of incomplete disturbance trees. Girgin,
M. Loth, R. Munos, P. Preux, and D. Ryabko, edit@scent Advances in Reinforcement
Learning volume 5323 ofLecture Notes in Computer Sciengages 1-14. Springer,
2008.

20

9.

10.

11.

12.

13.

14.
15.

16.
17.

18.

19.

20.

21.

22.

OPTIMISTIC PLANNING IN MARKOV DECISION PROCESSES

Boris Defourny, Damien Ernst, and Louis Wehenkel. Planning uodeertainty, en-
sembles of disturbance trees and kernelized discrete action spa¢&scérdings 2009
IEEE International Symposium on Adaptive Dynamic Programming armafé&eement
Learning (ADPRL-09)pages 145-152, Nashville, US, 30 March — 2 April 2009.

Sylvain Gelly, Yizao Wang, &ni Munos, and Olivier Teytaud. Modification of UCT with
patterns in Monte-Carlo Go. Technical report, INRIA, 2006.

Jean-Francois Hren an@&iRi Munos. Optimistic planning of deterministic systems. In
Proceedings 8th European Workshop on Reinforcement LearninR(E08) pages 151—
164, Villeneuve d'Ascq, France, 30 June — 3 July 2008.

Michael J. Kearns, Yishay Mansour, and Andrew Y. Ng. A spaempling algorithm
for near-optimal planning in large Markov decision proces$éachine Learning49(2-
3):193-208, 2002.

Levente Kocsis and Csaba Szepes\Bandit based Monte-Carlo planning. Pmoceed-
ings 17th European Conference on Machine Learning (ECML {¥es 282—-293, Berlin,
Germany, 18-22 September 2006.

Steven M. La VallePlanning Algorithms Cambridge University Press, 2006.

Maxim Likhachev, Geoffrey J. Gordon, and Sebastian Thrumnitig for Markov deci-
sion processes with sparse stochasticityAdlvances in Neural Information Processing
Systems 17MIT Press, 2004.

J. M. MaciejowskiPredictive Control with ConstraintsPrentice Hall, 2002.

Chris Mansley, Ari Weinstein, and Michael L. Littman. Sample-badadning for con-
tinuous action Markov decision processesPceedings 21st International Conference
on Automated Planning and Schedulipgges 335-338, Freiburg, Germany, 11-16 June
2011.

N.J. NilssonPrinciples of Artificial Intelligence Tioga Publishing, 1980.

Laurent Bret and Fecerick Garcia. On-line search for solving Markov decision pro-
cesses via heuristic sampling. Rroceedings 16th European Conference on Artificial
Intelligence, ECAI'2004pages 530-534, Valencia, Spain, 22—27 August 2004.

Richard S. Sutton and Andrew G. BarReinforcement Learning: An IntroductioMIT
Press, 1998.

John N. Tsitsiklis and Benjamin Van Roy. Feature-based metholdsderscale dynamic
programming.Machine Learning22(1-3):59-94, 1996.

Thomas J. Walsh, Sergiu Goschin, and Michael L. Littman. Integratmple-based
planning and model-based reinforcement learning2rbteedings 24th AAAI Conference
on Artificial Intelligence (AAAI-1Q)Atlanta, US, 11-15 July 2010.

