
IS
S

N
 0

24
9-

63
99

ap po r t
d e r e c h e r c h e

Thème COG

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Modification of UCT with Patterns in Monte-Carlo
Go

Sylvain Gelly — Yizao Wang — Rémi Munos — Olivier Teytaud

N◦ 6062

November 2006

in
ria

-0
01

17
26

6,
 v

er
si

on
 3

 -
20

 D
ec

 2
00

6

http://hal.inria.fr/inria-00117266/fr/
http://hal.archives-ouvertes.fr

in
ria

-0
01

17
26

6,
 v

er
si

on
 3

 -
20

 D
ec

 2
00

6

Unité de recherche INRIA Futurs
Parc Club Orsay Université, ZAC des Vignes,

4, rue Jacques Monod, 91893 ORSAY Cedex (France)
Téléphone : +33 1 72 92 59 00 — Télécopie : +33 1 72 92 59 ??

Modification of UCT with Patterns in Monte-Carlo Go

Sylvain Gelly∗, Yizao Wang† , Rémi Munos‡ , Olivier Teytaud§

Thème COG — Systèmes cognitifs
Projet TAO

Rapport de recherche n◦ 6062 — November 2006 — 21 pages

Abstract: Algorithm UCB1 for multi-armed bandit problem has already been extended to
Algorithm UCT (Upper bound Confidence for Tree) which works for minimax tree search.
We have developed a Monte-Carlo Go program, MoGo, which is the first computer Go
program using UCT. We explain our modification of UCT for Go application and also the
intelligent random simulation with patterns which has improved significantly the perfor-
mance of MoGo. UCT combined with pruning techniques for large Go board is discussed,
as well as parallelization of UCT. MoGo is now a top level Go program on 9× 9 and 13× 13
Go boards.

Key-words: Computer Go, Exploration-exploitation, UCT, Monte-Carlo, Patterns

∗ projet TAO, INRIA-Futurs, LRI, Batiment 490, Université Paris-Sud 91405 ORSAY CEDEX, France
† Centre de Mathématiques Appliquées, École Polytechnique, 91128 PALAISEAU CEDEX, France
‡ Centre de Mathématiques Appliquées, École Polytechnique, 91128 PALAISEAU CEDEX, France
§ projet TAO, INRIA-Futurs, LRI, Batiment 490, Université Paris-Sud 91405 ORSAY CEDEX, France

in
ria

-0
01

17
26

6,
 v

er
si

on
 3

 -
20

 D
ec

 2
00

6

Modification d’UCT avec motifs dans le Monte-Carlo
Go

Résumé : L’algorithme UCB1 pour le problème du bandit-manchot a récemment été étendu
en l’algorithme UCT (Upper bound Confidence for Tree) pour la recherche arborescente
min-max. Nous avons développé un joueur artificiel de Go, MoGo, basé sur des simulations
Monte-Carlo, qui est le premier programme de Go utilisant UCT. Nous exposons notre
modification de l’algorithme UCT pour l’application au jeu de Go, ainsi que l’utilisation
de motifs dans les simulations aléatoires qui ont permis d’augmenter significativement le
niveau de MoGo. Nous introduisons d’autre part des techniques d’élagage dans l’algorithme
UCT pour les grands Goban, ainsi que de la parallélisation d’UCT. MoGo est maintenant
un joueur artificiel de premier plan sur les Gobans de taille 9× 9 et 13× 13.

Mots-clés : Joueurs artificiels de Go, Exploration-exploitation, UCT, Monte-Carlo, Motifs

in
ria

-0
01

17
26

6,
 v

er
si

on
 3

 -
20

 D
ec

 2
00

6

Modification of UCT with Patterns in Monte-Carlo Go 3

1 Introduction

The history of Go stretches back some 4000 years and the game still enjoys a great pop-
ularity all over the world. Although its rules are simple (see http://www.gobase.org for a
comprehensive introduction), its complexity has defeated the many attempts done to build
a good Computer-Go player since the late 70’s [4]. Presently, the best Computer-Go players
are at the level of weak amateurs; Go is now considered one of the most difficult challenges
for AI, replacing Chess in this role.

Go differs from Chess in many respects. First of all, the size and branching factor of the
tree are significantly larger. Typically the Go board ranges from 9 × 9 to 19 × 19 (against
8 × 8 for the Chess board); the number of potential moves is a few hundred against a
few dozen for Chess. Secondly, no efficient evaluation function approximating the minimax
value of a position is available. For these reasons, the powerful alpha-beta search used by
Computer-Chess players (see [14]) failed to provide good enough Go strategies.

Recent progress has been done regarding the evaluation of Go positions, based on Monte-
Carlo approaches [6] (more on this in section 2). However, this evaluation procedure has
a limited precision; playing the move with highest score in each position does not end up
in winning the game. Rather, it allows one to restrict the number of relevant candidate
moves in each step. Still, the size of the (discrete) search space makes it hardly tractable to
use some standard Reinforcement Learning approach [16], to enforce the exploration versus
exploitation (EvE) search strategy required for a good Go player.

Another EvE setting originated from Game Theory, the multi-armed bandit problem,
is thus considered in this paper. The multi-armed bandid problem models the gambler,
choosing the next machine to play based on her past selections and rewards, in order to
maximize the total reward [2]. The UCB1 algorithm proposed by Auer et al. in the multi-
armed bandit framework [1] was recently extended to tree-structured search space by Kocsis
et al. (algorithm UCT) [12].

The main contributions of the player we present (named MoGo) are: (i) modification of
UCT algorithm for Go, (ii) original use of sequence-like simulations in Monte-Carlo evalua-
tion function. Several algorithmic (dynamic tree structure [9], parallelized implementation)
or heuristic (simple pruning heuristics) issues were also tackled. MoGo has reached a com-
paratively good Go level: MoGo has been ranked as the first Go program out of 142 on 9×9
Computer Go Server (CGOS1) since August 2006; and it won all the tournaments (9x9 and
13x13) on the international Kiseido Go Server2 on October and November 2006.

This paper is organized as follows. Section 2 briefly introduces related work, assuming
the reader’s familiarity with the basics of Go. Section 3 describes MoGo, focussing on
our contributions: the implementation of UCT in large sized search spaces, and the use
of prior, pattern-based, knowledge to bias the Monte-Carlo evaluation. Experiment results
are reported and discussed in Section 4. The paper concludes with some knowledge- and
computer-intensive perspectives for improving MoGo.

1http://cgos.boardspace.net/
2http://www.weddslist.com/kgs/past/index.html

RR n◦ 6062

in
ria

-0
01

17
26

6,
 v

er
si

on
 3

 -
20

 D
ec

 2
00

6

http://cgos.boardspace.net/
http://www.weddslist.com/kgs/past/index.html

4 Sylvain Gelly, Yizao Wang, Rémi Munos & Olivier Teytaud

2 Previous Related Work

Our approach is based on the Monte-Carlo Go and multi-armed bandit problems, which
we present respectively in Section 2.1 and 2.2. UCT, which applies multi-armed bandit
techniques to minimax tree search, is presented in Section 2.3. We suppose minimax tree
and alpha-beta search is well known for the reader.

2.1 Monte-Carlo Go

Monte-Carlo Go, first appeared in 1993 [6], has attracted more and more attention in the last
years. Monte-Carlo Go has been surprisingly efficient, especially on 9×9 game; CrazyStone,
developed by Rémi Coulom [9], a program using stochastic simulations with very little
knowledge of Go, is the best known3.

Two principle methods in Monte-Carlo Go are also used in our program. First we evaluate
Go board situations by simulating random games until the end of game, where the score
could be calculated easily and precisely. Second we combine the Monte-Carlo evaluation
with minimax tree search. We use the tree structure of CrazyStone [9] in our program.

Remark 1 We speak of a tree, in fact what we have is often an oriented graph. However,
the terminology ”tree” is widely used. As to the Graph History Interaction Problem (GHI)
explained in [11], we ignore this problem considering it not very serious, especially compared
to other difficulties in Computer-Go.

2.2 Bandit Problem

A K-armed bandit, is a simple machine learning problem based on an analogy with a
traditional slot machine (one-armed bandit) but with more than one arm. When played,
each arm provides a reward drawn from a distribution associated to that specific arm. The
objective of the gambler is to maximize the collected reward sum through iterative plays4.
It is classically assumed that the gambler has no initial knowledge about the arms, but
through repeated trials, he can focus on the most rewarding arms.

The questions that arise in bandit problems are related to the problem of balancing
reward maximization based on the knowledge already acquired and attempting new actions
to further increase knowledge, which is known as the exploitation-exploration dilemma in
reinforcement learning. Precisely, exploitation in bandit problems refers to select the current
best arm according to the collected knowledge, while exploration refers to select the sub-
optimal arms in order to gain more knowledge about them.

A K-armed bandit problem is defined by random variables Xi,n for 1 ≤ i ≤ K and n ≥ 1,
where each i is the index of a gambling machine (i.e., the ”arm” of a bandit). Successive plays

3CrazyStone won the gold medal for the 9 × 9 Go game during the 11th Computer Olympiad at Turin
2006, beating several strong programs including GnuGo, Aya and GoIntellect.

4We will use ”play an arm” when refering to general multi-armed problems, and ”play a move” when
refering to Go. In Go application, the ”play” will not refer to a complete game but only one move.

INRIA

in
ria

-0
01

17
26

6,
 v

er
si

on
 3

 -
20

 D
ec

 2
00

6

Modification of UCT with Patterns in Monte-Carlo Go 5

of machine i yield rewards Xi,1,Xi,2,... which are independent and identically distributed
according to a certain but unknown law with unknown expectation µi. Here independence
holds also for rewards across machines; i.e., Xi,s and Xj,t are independent (probably not
identically distributed) for each 1 ≤ i < j ≤ K and each s, t ≥ 1. Algorithms choose the
next machine to play depending on the obtained results of the previous plays. Let Ti(n) be
the number of times machine i has been played after the first n plays. Since the algorithm
does not always make the best choice, its expected loss is studied. Then the regret after n
plays is defined by

µ∗n−
K∑

j=1

µjE[Tj(n)] where µ∗ = max
1≤i≤K

µi

E[] denotes expectation. In the work of Auer and Al. [1], a simple algorithm UCB1 is
given, which ensures the optimal machine is played exponentially more often than any other
machine uniformly when the rewards are in [0, 1]. Note

X̄i,s =
1
s

s∑
j=1

Xi,j , X̄i = X̄i,Ti(n) ,

then we have:

Algorithm 1 Deterministic policy: UCB1

• Initialization: Play each machine once.

• Loop: Play machine j that maximizes X̄j +
√

2 log n
Tj(n) , where n is the overall number of

plays done so far.

One formula with better experimental results is suggested in [1]. Let

Vj(s) =

(
1
s

s∑
γ=1

X2
j,γ

)
− X̄2

j,s +

√
2 log n

s

be an estimated upper bound on the variance of machine j, then we have a new value to
maximize:

X̄j +

√
log n

Tj(n)
min{1/4, Vj(Tj(n))} . (1)

According to Auer and Al., the policy maximizing (1) named UCB1-TUNED, considering
also the variance of the empirical value of each arms, performs substantially better than
UCB1 in all his experiments. This corresponds to our early results and then we use always
the policy UCB1-TUNED in our program5.

5We will however say UCB1 for short.

RR n◦ 6062

in
ria

-0
01

17
26

6,
 v

er
si

on
 3

 -
20

 D
ec

 2
00

6

6 Sylvain Gelly, Yizao Wang, Rémi Munos & Olivier Teytaud

2.3 UCT: UCB1 for Tree Search

UCT [12] is the extension of UCB1 [1] to minimax tree search. The idea is to consider
each node as an independent bandit, with its child-nodes as independent arms. Instead of
dealing with each node once iteratively, it plays sequences of bandits within limited time,
each beginning from the root and ending at one leaf.

The algorithm UCT is defined in Table 16. The program continues playing one sequence
each time, which is defined from line 1 to line 8. Line 9 to line 21 are the function using
UCB1 for choosing one arm (one child-node in the UCT case). Line 15 ensures each arm be
selected once before further exploration. Line 16 applies the formula of UCB1. After each
sequence, the value of played arm of each bandit is updated7 iteratively from the father-node
of the leaf to the root by formula UCB1, described in function updateV alue from line 22
to line 29. Here the code deals with the minimax case. In general, the value of each node
converges to the real max (min) value as the number of simulations increases.

Figure 1: UCT search. The shape of the tree enlarges asymmetrically. Only updated values
(node[i].value) are shown for each visited nodes.

In the problems of minimax tree search, what we are looking for is often the optimal
branch at the root node. It is sometimes acceptable if one branch with a score near to the
optimal one is found, especially when the depth of the tree is very large and the branching
factor is big, like in Go, as it is often too difficult to find the optimal branch within short
time.

In this sense, UCT outperforms alpha-beta search. Indeed we can outlight three ma-
jor advantages. First, it works in an anytime manner. We can stop at any moment the
algorithm, and its performance can be somehow good. This is not the case of alpha-beta
search. Figure 2 shows if we stop alpha-beta algorithm prematurely, some moves at first
level has even not been explored. So the chosen move can be far from optimal. Of course
iterative deepening can be used, and solve partially this problem. Still, the anytime property
is stronger for UCT and it is easier to finely control time in UCT algorithm.

6Giving the pseudocode in order to have a clear explanation, we do not talk about the optimization here.
7Here we use the original formula in Algorithm 1.

INRIA

in
ria

-0
01

17
26

6,
 v

er
si

on
 3

 -
20

 D
ec

 2
00

6

Modification of UCT with Patterns in Monte-Carlo Go 7

1: function playOneSequence(rootNode);
2: node[0] := rootNode; i = 0;
3: while(node[i] is not leaf) do
4: node[i+1] := descendByUCB1(node[i]);
5: i := i + 1;
6: end while ;
7: updateValue(node, -node[i].value);
8: end function;

9: function descendByUCB1(node)
10: nb := 0;
11: for i := 0 to node.childNode.size() - 1 do
12: nb := nb + node.childNode[i].nb;
13: end for;
14: for i := 0 to node.childNode.size() - 1 do
15: if node.childNode[i].nb = 0

do v[i] := ∞;
16: else v[i] := -node.childNode[i].value

/node.childNode[i].nb
+sqrt(2*log(nb)/(node.childNode[i].nb)

17: end if ;
18: end for;
19: index := argmax(v[j]);
20: return node.childNode[index];
21: end function;

22: function updateValue(node,value)
23: for i := node.size()-2 to 0 do
24: node[i].value := node[i].value + value;
25: node[i].nb := node[i].nb + 1;
26: value := -value;
27: end for;
28: end function;

Table 1: Pseudocode of UCT for minimax tree.

Second, UCT is robust as it automatically handles uncertainty in a smooth way. At each
node, the computed value is the mean of the value for each child weighted by the frequency
of visits. Then the value is a smoothed estimation of max, as the frequency of visits depends
on the difference between the estimated values and the confidence of this estimates. Then,
if one child-node has a much higher value than the others, and the estimate is good, this
child-node will be explored much more often than the others, and then UCT selects most
of the time the ’max’ child node. However, if two child-nodes have a similar value, or a low
confidence, then the value will be closer to an average.

RR n◦ 6062

in
ria

-0
01

17
26

6,
 v

er
si

on
 3

 -
20

 D
ec

 2
00

6

8 Sylvain Gelly, Yizao Wang, Rémi Munos & Olivier Teytaud

Third, the tree grows in an asymmetric manner. It explores more deeply the good moves.
What is more, this is achieved in an automatic manner. Figure 1 gives an example.

Figure 1 and Figure 2 compares clearly the explored tree of two algorithms within limited
time. However, the theoretical analysis of UCT is in progress [13]. We just give some remarks
on this aspect at the end of this section. It is obvious that the random variables involved
in UCT are not identically distributed nor independent. This complicates the analysis of
convergence. In fact we can define the bias for the arm i by:

δi,t =

∣∣∣∣∣µ∗i − 1
t

t∑
s=1

Xi,s

∣∣∣∣∣ ,

where µ∗i is the minimax value of this arm. It is clear that at leaf level δi,t = 0. We can also
prove that

δi,t ≤ KD log t

t
,

with K constant and D the depth of the arm (counted from the root down). This corresponds
to the fact that the bias is amplified when passing from deep level to the root, which prevents
the algorithm from finding quickly the optimal arm at the root node.

An advantage of UCT is that it adapts automatically to the ’real’ depth. For each
branch of the root, its ’real’ depth is the depth from where δi,t = 0 holds true. For these
branches, the bias at the root is bounded by Kd log t

t with the real depth d < D. The
values of these branches converging faster than the other, UCT spends more time on other
interesting branches.

Figure 2: Alpha-beta search with limited time. The node with ’?’ is the node not explored
yet. This happens often during the large-sized tree search where entire search is impossible.
Iterative deepening solves partially this problem.

3 Main Work

In this section we present our program MoGo using UCT algorithm. Section 3.1 presents our
application of UCT. Then, considering two important aspects for having a strong Monte-

INRIA

in
ria

-0
01

17
26

6,
 v

er
si

on
 3

 -
20

 D
ec

 2
00

6

Modification of UCT with Patterns in Monte-Carlo Go 9

1: function playOneSequenceInMoGo(rootNode)
2: node[0] := rootNode; i := 0;
3: do
4: node[i+1] := descendByUCB1(node[i]); i := i + 1;
5: while node[i] is not first visited;
6: createNode(node[i]);
7: node[i].value := getValueByMC(node[i]);
8: updateValue(node,-node[i].value);
9: end function;

Table 2: Pseudocode of UCT for MoGo

Carlo program: the quality of simulations (then the estimation of score) and the depth of
the tree, we show in the two following sections our corresponding improvements. Section
3.2 presents the sequence-like random simulation with patterns. Section 3.3 presents ideas
for tree search pruning on large Go board. Section 3.4 presents the modification on the
exploring order of non-visited nodes. At last, Section 3.5 presents parallelization.

3.1 Application of UCT for Computer-Go

MoGo contains mainly two parts, namely the tree search part and the random simulation
part, as shown in Figure 3. Each node of the tree represents a Go board situation, with
child-nodes representing next situations after corresponding move.

The application of UCT for Computer-Go is based on the hypothesis that each Go board
situation is a bandit problem, where each legal move is an arm with unknown reward but of
a certain distribution. We suppose that there are only two kinds of arms, the winning ones
and the losing ones. We set respectively reward 1 and 0. We ignore the case of draw, which
is too rare in Go.

In the tree search part, we use a parsimonious version of UCT by introducing the same
dynamic tree structure as in CrazyStone [9] in order to economize memory. The tree is then
created incrementally by adding one node after each simulation as explained in the following.
This is different from the one presented in [12], and is more efficient because less nodes are
created during simulations. In other words, only nodes visited more than twice are saved,
which economizes largely the memory and accelerates the simulations. The pseudocode is
given in Table 2. Again we do not talk about optimization.

During each simulation, MoGo starts from the root of the tree that it saves in the
memory. At each node, MoGo selects one move according to the UCB1 formula 1. MoGo
then descends to the selected child node and selects a new move (still according to UCB1)
until such a node has not yet been created in the tree. This part corresponds to the code
from line 1 to line 5. The tree search part ends by creating this new node (in fact one leaf)
in the tree. This is finished by createNode. Then MoGo calls the random simulation part,

RR n◦ 6062

in
ria

-0
01

17
26

6,
 v

er
si

on
 3

 -
20

 D
ec

 2
00

6

10 Sylvain Gelly, Yizao Wang, Rémi Munos & Olivier Teytaud

the corresponding function getV alueByMC at line 7, to give a score of the Go board at
this leaf.

In the random simulation part, one random game is played from the corresponding Go
board till the end, where score is calculated quickly and precisely according to the rules.
The nodes visited during this random simulation are not saved. The random simulation
done, the score received, MoGo updates the value at each node passed by the sequence of
moves of this simulation8.

Figure 3: MoGo contains the tree search part using UCT and the random simulation part giv-
ing scores. The numbers on the bottom correspond to the final score of the game (win/loss).
The numbers in the nodes are the updated values of the nodes (node[i].value)

Remark 2 In the update of the score, we use the 0/1 score instead of the territory score,
since the former is much more robust. Then the real minimax value of each node should
be either 0 or 1. In practice, however, UCT approximates each node by a weighted average
value in [0, 1]. This value is usually considered as the probability of winning.

3.2 Improving simulation with domain knowledge

In this section we introduce our sequence-like random simulation with patterns. Its advan-
tage is obvious compared with the classical random simulation, which we call pure random
mode. In the following we talk about our improved random mode as well as our implemen-
tation of patterns.

8It is possible to arrive at one end game situation during the tree search part. In this case, one score
could be calculated immediately and there is no need to create the node nor to call the random simulation
part.

INRIA

in
ria

-0
01

17
26

6,
 v

er
si

on
 3

 -
20

 D
ec

 2
00

6

Modification of UCT with Patterns in Monte-Carlo Go 11

In the random simulation part, it is very important to have clever simulations giving
credible scores. Using some simple 3×3 patterns inspired by Indigo [3] (similar patterns can
also be found in [15]), our random simulation is likely to have more meaningful sequences
in random simulations than before, which has improved significantly the level of MoGo.

The essential difference on the usage of patterns between the ours and other pattern-
based Monte-Carlo programs ([3]) is that we use patterns to create meaningful sequences in
simulations by finding local answers. The moves played are not necessarily globally better
moves. It is not obvious that is more important to get better sequences rather that better
moves to make the Monte-Carlo evaluation more accurate. However our experiments showed
that the main improvement came from the use of local answers. If the same patterns are
used to find interesting moves everywhere in the board instead of near the previous moves,
the accuracy decreases. We believe that this claim is not obvious, and one of the main
contribution of MoGo. We also don’t use patterns for pruning in the tree. We have not
investigated the more sophisticated patterns equipped by other programs like GnuGo.

In our pure random mode, legal moves are played on the Go board uniformly randomly,
with few rules preventing the program from filling its own eyes. We also privilege the
moves capturing some stones. On CGOS the bot named MoGo using exactly this mode has
achieved rank score 1647 ELO9. Currently the rank of MoGo is close to 2200 ELO.

Then, since we were not satisfied by the pure random simulations which gave meaningless
games most of the time, local patterns are introduced in order to have some more reasonable
moves during random simulations. Our patterns are defined as 3× 3 intersections, centered
on one free intersection, where one move is supposed to be played. Our patterns consist of
several functions, testing if one move in such a local situation (3 × 3) is interesting. More
precisely, we test if one move satisfies some classical forms in Go games, for example cut
move, Hane move, etc.

Moreover, we look for interesting moves only around the last played move on the Go
board. This is because that local interesting moves look more likely to be the answer moves
of the last moves, and thus local sequence appears when several local interesting moves are
tested and then played continuously in random simulations.

We describe briefly how the improved random mode generates moves. It first verifies
whether the last played move is an Atari; if yes, and if the stones under Atari can be saved
(in the sense that it can be saved by capturing stones or increasing liberties), it chooses one
saving move randomly; otherwise it looks for interesting moves in the 8 positions around the
last played move and plays one randomly if there is any; otherwise it looks for the moves
capturing stones on the Go board, plays one if there is any. At last, if still no move is
found, it plays one move randomly on the Go board. Surely, the code of MoGo is actually
complicated in details, with many small functions equipped with hand-coded Go knowledges.
However, we believe the main frame given here is the most essential to have sequence-like
simulations.

9The ELO (http://en.wikipedia.org/wiki/Elo rating system) is a rating system where the probability
of winning is related to the difference between the ranks.

RR n◦ 6062

in
ria

-0
01

17
26

6,
 v

er
si

on
 3

 -
20

 D
ec

 2
00

6

http://en.wikipedia.org/wiki/Elo_rating_system

12 Sylvain Gelly, Yizao Wang, Rémi Munos & Olivier Teytaud

Figure 4 shows the first 30 moves of two random games using different modes. Moves
generated by the improved random mode are obviously much more meaningful. We now give

Figure 4: Left: beginning of one random game simulated by pure random mode. Moves
are sporadically played with little sense. Right: beginning of one random game simulated
by the pattern-based random mode. From move 5 to move 29 one complicated sequence is
generated.

the detailed information on our patterns. The patterns are 3×3 intersections centered on an
empty position, say p, where is supposed to play the next move. Each pattern is a boolean
function, answering the question whether the next move playing on p is an interesting move.
True is returned (when pattern is matched), if and only if the state of each position on the
Go board is the same as the one on the corresponding position of the pattern, or there is a
cross on the corresponding position (which means the situation of this position is ignored).
Normally there is no constraints on the color of the next move (one move good for black
is supposed to be also good for white). Some special cases are explained when mentioned.
The symmetry, rotations and exchange of stone colors of patterns are considered. Moves are
tested by patterns only if they are neither illegal moves nor self-Atari moves.

We have tried several patterns during the development of MoGo and implemented finally
the ones shown in Figure 5, 6, 7 and 8, where the position with a square is where the
next move is supposed to be played. We used hand-coded patterns in our implementation.
However, it will be more interesting if this can be achieved by a learning system. Another
approach using Bayesian generation can be found in Bouzy’s work [5].

Remark 3 We believe that it is not always better to have more ’good’ patterns in the random
modes, meanwhile what is more important is whether the random simulation can have some
meaningful often. This claim needs more experiments.

The Table 3 shows clearly how patterns improve the overall performance.

INRIA

in
ria

-0
01

17
26

6,
 v

er
si

on
 3

 -
20

 D
ec

 2
00

6

Modification of UCT with Patterns in Monte-Carlo Go 13

Figure 5: Patterns for Hane. True is returned if any pattern is matched. In the right one, a
square on a black stone means true is returned if and only if the eight positions around are
matched and it is black to play.

Figure 6: Patterns for Cut1. The Cut1 Move Pattern consists of three patterns. True is
returned when the first pattern is matched and the next two are not matched.

Figure 7: Pattern for Cut2. True is returned when the 6 upper positions are matched and
the 3 bottom positions are not white.

RR n◦ 6062

in
ria

-0
01

17
26

6,
 v

er
si

on
 3

 -
20

 D
ec

 2
00

6

14 Sylvain Gelly, Yizao Wang, Rémi Munos & Olivier Teytaud

Figure 8: Patterns for moves on the Go board side. True is returned if any pattern is
matched. In the three right ones, a square on a black (resp. white) stone means true is
returned if and only if the positions around are matched and it is black (resp. white) to
play.

Random mode Win. Rate Win. rate Total
for B. Games for W. Games Win. Rate

Pure 46% (250) 36% (250) 41.2% ± 4.4%
Sequence-like 77% (400) 82% (400) 80% ± 2.8%

Table 3: Different modes with 70000 random simulations/move in 9x9.

3.3 UCT with pruning ideas

In this section we show our ideas (heuristics) to reduce the huge tree size, which makes MoGo
relatively strong on large Go board. Thus we gain a larger local depth in the search tree
by losing the global view of UCT. Obviously pruning heuristics may lead to a sub-optimal
solution. First we define group by Go knowledge to reduce the branching factor in tree
search. Then zone division is derived from group, which helps to have a more precise score.
We use group and zone mode for 13× 13 and 19× 19 Go board. Figure 9 and 10 will give
two convincing examples.

Remark 4 As we are not very experienced for Go-knowledge-based programming and we had
little time working on it, we believe other programs like GnuGo and AyaGo, or Monte-Carlo
programs as [7][8] have more clever pruning techniques. Then, due to the space limitation,
we do not give the detailed pseudo code of this part. However, our experimental results of
combining UCT with pruning techniques are already encouraging.

First we define one group as a set of strings and free intersections on a Go board according
to certain Go knowledge, which gathers for example one big living group and its close
enemies. We have implemented Common Fate Graph (CFG) [10] in our program to help the
calculation of groups. The method starts from one string and recursively adds close empty
intersections and strings close to these empty intersections until no more close strings are
found within a distance controled by a parameter.

INRIA

in
ria

-0
01

17
26

6,
 v

er
si

on
 3

 -
20

 D
ec

 2
00

6

Modification of UCT with Patterns in Monte-Carlo Go 15

In group mode, in the tree search part we search only the moves in the group instead of
all over the Go board. In random simulation part there is no more such restriction. Using
groups, we reduce the branching factor to less than 50 at the opening period. Then, depth of
MoGo’s tree could be around 7-8 on large Go board. Table 4 shows MoGo becomes compet-
itive on large Go board by using group pruning technique. However, sophisticated pruning
techniques are undoubtedly necessary to improve the level of Computer-Go programs.

Opponents Win. Rate Win. rate Total
for B. Games for W. Games Win. Rate

No group vs GnuGo level 0 53.2%(216) 51.8% (216) 52% ± 4.8%
No group vs GnuGo level 8 24.2%(300) 30% (300) 27% ± 3.6%

group vs GnuGo level 0 67.5% (80) 61.2% (80) 64.3% ± 7.5%
group vs GnuGo level 8 51.9% (160) 60% (160) 56% ± 5.5%

Table 4: MoGo with 70000 simulations per move, on 13 × 13 Go board, using or not the
group mode heuristic.

Then we developed the zone mode. As explained above, group mode limits the selection
of moves in the tree search part. It has however no restriction on the random simulation.
In zone mode, the random moves is generated only in a certain zone instead of on the whole
Go board. This is because on the large Go board, random simulations are too long (of an
average length more than 400 for 19 × 19 Go board) to be able to return credible scores.
The score obtained in this zone is then tuned for the global Go board.

The tuning idea is very crucial in our zone mode, otherwise the global evaluation of
situation by random simulations, which is very imprecise most of the time for the large Go
board, biases too much the local decision. More precisely, before UCT we estimate, by a
certain number (5000 in our experiments) of Monte-Carlo simulations, the score s̄0 for the
zone decided by the current situation (including last move of opponent), and the score s̄1

for the area outside the zone. Then we tune the s1 by

ŝ1 = α(s̄1 + s̄0 − komi)− (s̄0 − komi) (2)

and then after each simulation in the zone, with local score s0 we return s0 + ŝ1 as the final
score of the simulation. In this way, the score is always closer to a close game score than it
should have been by using s0 + s̄1. This helps MoGo play more normally locally.

3.4 Modification of exploring order for non-visited nodes

UCT works very well when the node is frequently visited as the trade-off between exploration
and exploitation is well handled by UCB1 formula. However, for the nodes far from the root,
whose number of simulations is very small, UCT tends to be too much exploratory. This
is due to the fact that all the possible moves in one position are supposed to be explored
before using the UCB1 formula. Thus, the values associated to moves in deep nodes are

RR n◦ 6062

in
ria

-0
01

17
26

6,
 v

er
si

on
 3

 -
20

 D
ec

 2
00

6

16 Sylvain Gelly, Yizao Wang, Rémi Munos & Olivier Teytaud

Figure 9: From one game played by MoGo (White) on KGS. In the left figure, it found
almost the exact joseki response in the left-up corner using group and zone mode. In the
right figure, the union of the two groups related to the last two moves (move 4 and move
5) are marked by squares (only on the free positions). The other area of zone (besides the
stones and the group area) at this moment is marked by shadow.

not meaningful, since the child-nodes of these nodes are not all explored yet and, sometimes
even worse, the visited ones are selected in fixed order. This can leads to bad predicted
sequences.

Two modifications are made to have a better order.

First-play urgency

UCB1 algorithm begins by exploring each arm once, before using the formula (1). This
can sometimes be unefficient especially if the number of trials is not large comparing to
the number of arms. This is the case for numerous nodes in the tree (number of visits is
small comparing to the number of moves). For example if an arm keeps returning 1 (win),
there is no good reason to explore other arms. We have set a fixed constant named first-
play urgency (FPU) in the algorithm. For each move, we name its urgency by the value of
formula (1). The FPU is by default set to ∞ for each legal move before first visit (see line 15
in Table 1). Any node, after being visited at least once, has its urgency updated according
to UCB1 formula. We play the move with the highest urgency. Thus, the FPU ∞ ensures
the exploration of each move once before further exploitation of any previously visited move.
On the other way, smaller FPU ensures earlier exploitations if the first simulations lead to
an urgency smaller than FPU (in this case the other unvisited nodes are not selected). This
improved the level of MoGo according to our experiment as shown in Table 7.

INRIA

in
ria

-0
01

17
26

6,
 v

er
si

on
 3

 -
20

 D
ec

 2
00

6

Modification of UCT with Patterns in Monte-Carlo Go 17

Figure 10: The opening of one game between MoGo and Indigo in the 18th KGS Computer
Go Tournament. MoGo (Black) was in advantage at the beginning of the game, however it
lost the game at the end.

Use information of the parents

One assumption that can be made in go game is that given a situation, good moves may
sometimes still be good ones on the following move. When we encounter a new situation,
instead of exploring each move m in any order, we can use the value estimation of m in
an earlier position to choose a better order. We typically use the estimated values of the
grandfather of the node. We believe this helps MoGo on the large Go board, however we do
not have enough experiments to claim significant results.

RR n◦ 6062

in
ria

-0
01

17
26

6,
 v

er
si

on
 3

 -
20

 D
ec

 2
00

6

18 Sylvain Gelly, Yizao Wang, Rémi Munos & Olivier Teytaud

3.5 Parallelization

As UCT scales well with time, we made MoGo run on a multi-processors machine with
shared memory. The modifications to the algorithm are quite straightforward. All the
processors share the same tree, and the access to the tree is locked by mutexes. As UCT is
deterministic, all the threads could take exactly the same path in the tree, except for the
leaf. The behavior of the multithreaded UCT as presented here is then different from the
monothreaded UCT. Two experiments has then to be done. First, we can compare the level
of MoGo using the monothreaded or the multithreaded algorithms while allowing the same
number of simulations per move. All such experiments showed non significant differents
in the play level10. Second, we can compare the level using the same time per move (the
multithreaded version will then make more simulations per move). As UCT benefits from
the computational power increase, the multithreaded UCT is efficient (+100 ELO on CGOS
with 4 processors).

4 Results

We list in this section several experiment results who reflect characteristics of the algorithm.
All the tests are made by letting MoGo play against GnuGo 3.6 with default mode. Komi
are set to 7.5 points. In the tables, are given, the winning rate when MoGo plays black and
white are given along the number of games played in each color (between parenthesis). The
confidence interval is 95%.

4.1 Dependence of Time

The performance of our program depends on the given time (equally the number of sim-
ulations) for each move. Table 5 shows its level improves as this number increases. The
outstanding performance of MoGo on double-processors and quadri-processors also supports
this claim.

Seconds Winning Rate Winning rate Total
per move for Black Games for White Games Winning Rate

5 26% ± 12% (50) 26% ± 12% (50) 26% ± 8.7%
20 41% ± 6% (250) 42% ± 6% (250) 41.8% ± 4.4%
60 53% ± 7% (200) 50% ± 7% (200) 51.5% ± 5%

Table 5: Pure random mode with different times.

10we had only access to a 4 processors computer, the behavior can be very different with many more
processors.

INRIA

in
ria

-0
01

17
26

6,
 v

er
si

on
 3

 -
20

 D
ec

 2
00

6

Modification of UCT with Patterns in Monte-Carlo Go 19

4.2 Parametrized UCT

We parametrize the UCT implemented in our program by two new parameters, namely p
and FPU . First we add one coefficient p to formula UCB1-TUNED (1), which by default
is 1. This leads to the following formula: choose j that maximizes:

X̄j + p

√
log n

Tj(n)
min{1/4, Vj(nj)}

p decides the balance between exploration and exploitation. To be precise, the smaller
the p is, the deeper the tree is explored. According to our experiment shown in Table 6,
UCB1-TUNED is almost optimal in this sense.

p Winning Rate Winning rate Total
for Black Games for White Games Winning Rate

0.05 2% ± 4% (50) 4% ± 5% (50) 3% ± 3.4%
0.55 30% ± 13% (50) 36% ± 13% (50) 33% ± 9.4%
0.80 33% ± 9% (100) 39% ± 10% (50) 36% ± 6.7%
1.0 40% ± 8% (150) 38% ± 8% (150) 39% ± 5.6%
1.1 39% ± 8% (150) 41% ± 8% (150) 40% ± 5.6%
1.2 40% ± 8% (150) 44% ± 8% (150) 42% ± 5.7%
1.5 30% ± 13% (50) 26% ± 12% (50) 28% ± 9%
3.0 36% ± 13% (50) 24% ± 12% (50) 30% ± 9%
6.0 22% ± 11% (50) 18% ± 10% (50) 20% ± 8%

Table 6: Coefficient p decides the balance between exploration and exploitation. (Pure
random Mode)

The second is the first-play urgency (FPU) as explained in 3.4. Some results are shown
in Table 7. We believe that changing exploring order of non-visited nodes can bring further
improvement. We finally use 1.1 as the initiate FPU for MoGo on CGOS.

4.3 Results On CGOS

MoGo is ranked as the first program on 9× 9 Computer Go Server since August.

5 Conclusion

The success of MoGo shows the efficiency of UCT compared to alpha-beta search in the sense
that nodes are automatically studied with better order, especially in the case when search
time is too limited. We have discussed the advantages of UCT relevant to Computer-Go. It
is worthy to mention that a growing number of top level Go programs now use UCT.

RR n◦ 6062

in
ria

-0
01

17
26

6,
 v

er
si

on
 3

 -
20

 D
ec

 2
00

6

20 Sylvain Gelly, Yizao Wang, Rémi Munos & Olivier Teytaud

FPU Winning Rate Winning rate Total
for Black Games for White Games Winning Rate

1.4 37% ± 9% (100) 38% ± 10% (100) 37.5% ± 7%
1.2 46% ± 10% (100) 36% ± 10% (100) 41% ± 7%
1.1 45% ± 6% (250) 41% ± 6% (250) 43.4% ± 4.4%
1.0 49% ± 6% (300) 42% ± 6% (300) 45% ± 4%
0.9 47% ± 8% (150) 32% ± 8% (150) 40% ± 5.6%
0.8 40% ± 14% (50) 32% ± 13% (50) 36% ± 9.6%

Table 7: Influence of FPU (70000 simulations/move).

We have discussed improvements that could be made to UCT algorithm. In particular,
UCT does not help to choose a good ordering for non-visited moves, nor is it so effective for
little explored moves. We proposed some methods adjusting the first-play urgency to solve
this problem, and futher improvements are expected in this direction.

We have proposed the pattern-based (sequence-like) simulation which has improved sig-
nificantly the level of MoGo. We implemented 3 × 3 patterns in random simulations in
order to have more meaningful sequences. We believe that significant improvements can
still be made in this direction, for example by using larger patterns, perhaps automatically
generated ones. It is also possible to implement some sequence-forced patterns to improve
the quality of simulations.

We have also shown the possibilities of combining UCT with pruning techniques in order
to have a strong program on large Go board. Having had some encouraging results, we
believe firmly further improvements in this direction.

A straightforward parallelization of UCT on shared-memory computer is made and has
given some positive results. Parallelization on a cluster of computers can be interesting but
the way to achieve that is yet to be found.

Acknowledgments

We would like to thank Pierre-Arnaud Coquelin for the help during the development of
MoGo. We specially thank Rémi Coulom for sharing his experiences of programming Crazy-
Stone. We also appreciate the discussions on the Computer-Go mailing list.

References

[1] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine Learning, 47(2/3):235–256, 2002.

INRIA

in
ria

-0
01

17
26

6,
 v

er
si

on
 3

 -
20

 D
ec

 2
00

6

Modification of UCT with Patterns in Monte-Carlo Go 21

[2] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire. Gambling in a rigged casino:
the adversarial multi-armed bandit problem. In Proceedings of the 36th Annual Sym-
posium on Foundations of Computer Science, pages 322–331. IEEE Computer Society
Press, Los Alamitos, CA, 1995.

[3] B. Bouzy. Associating domain-dependent knowledge and monte carlo approaches within
a go program. Information Sciences, Heuristic Search and Computer Game Playing IV,
Edited by K. Chen, (4):247–257, 2005.

[4] B. Bouzy and T. Cazenave. Computer go: An AI oriented survey. Artificial Intelligence,
132(1):39–103, 2001.

[5] B. Bouzy and G. Chaslot. Bayesian generation and integration of k-nearest-neighbor
patterns for 19x19 go. In G. Kendall and Simon Lucas, editors, IEEE 2005 Symposium
on Computational Intelligence in Games, Colchester, UK, pages 176–181, 2005.

[6] B. Bruegmann. Monte carlo go. 1993.

[7] T. Cazenave. Abstract proof search. Computers and Games, Hamamatsu, 2000, pages
39–54, 2000.

[8] T. Cazenave and B. Helmstetter. Combining tactical search and monte-carlo in the
game of go. IEEE CIG 2005, pages 171–175, 2005.

[9] R. Coulom. Efficient selectivity and backup operators in monte-carlo tree search. In
P. Ciancarini and H. J. van den Herik, editors, Proceedings of the 5th International
Conference on Computers and Games, Turin, Italy, 2006, To appear.

[10] T. Graepel, M. Goutrié, M. Krüger, and R. Herbrich. Learning on graphs in the game
of go. Lecture Notes in Computer Science, 2130:347–352, 2001.

[11] A. Kishimoto and M. Müller. A general solution to the graph history interaction prob-
lem. Nineteenth National Conference on Artificial Intelligence (AAAI 2004), San jose,
CA, pages 644–649, 2004.

[12] L. Kocsis and C. Szepesvari. Bandit based monte-carlo planning. In 15th European
Conference on Machine Learning (ECML), pages 282–293, 2006.

[13] L. Kocsis, C. Szepesvári, and J. Willemson. Improved monte-carlo search. working
paper, 2006.

[14] M. Newborn. Computer Chess Comes of Age. Springer-Verlag, 1996.

[15] L. Ralaivola, L. Wu, and P. Baldi. Svm and pattern-enriched common fate graphs for
the game of go. ESANN 2005, pages 485–490, 2005.

[16] R. Sutton and A. Barto. Reinforcement learning: An introduction. MIT Press., Cam-
bridge, MA, 1998.

RR n◦ 6062

in
ria

-0
01

17
26

6,
 v

er
si

on
 3

 -
20

 D
ec

 2
00

6

Unité de recherche INRIA Futurs
Parc Club Orsay Université - ZAC des Vignes

4, rue Jacques Monod - 91893 ORSAY Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)

Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)
Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399

in
ria

-0
01

17
26

6,
 v

er
si

on
 3

 -
20

 D
ec

 2
00

6

	Introduction
	Previous Related Work
	Monte-Carlo Go
	Bandit Problem
	UCT: UCB1 for Tree Search

	Main Work
	Application of UCT for Computer-Go
	Improving simulation with domain knowledge
	UCT with pruning ideas
	Modification of exploring order for non-visited nodes
	Parallelization

	Results
	Dependence of Time
	Parametrized UCT
	Results On CGOS

	Conclusion

