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Résumé

Les algorithmes réalisant le compromis exploration-exploitation à base de bornes
supérieures des récompenses deviennent de plus en plus populaire en raison de
leur succès pratiques récents Dans ce travail, nous considérons une variante de
l’algorithme de base pour le problème du bandit à plusieurs bras. Cette variante,
qui prend en compte les variances empiriques des récompenses obtenues sur les
différents bras, a amélioré nettement les résultats obtenus précédemment. Le but
de ce rapport est de fournir une explication rigoureuse de ces découvertes. Par
ailleurs, nous clarifions les choix des paramètres de l’algorithme, et analysons la
concentration du regret. Nous prouvons que de dernier est concentré seulement si
la distribution des récompenses du bras optimal suit une hypothèse non triviale,
ou quand l’algorithme est modifié de manière à explorer plus.
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Abstract. Algorithms based on upper-confidence bounds for balancing
exploration and exploitation are gaining popularity since they are easy
to implement, efficient and effective. This paper considers a variant of
the basic algorithm for the stochastic, multi-armed bandit problem that
takes into account the empirical variance of the different arms. In ear-
lier experimental works, such algorithms were found to outperform the
competing algorithms.
The paper provides a first analysis of the expected regret of such algo-
rithms and of the concentration of the regret of upper confidence bounds
algorithm. As expected, these analyses of the regret suggest that the al-
gorithm that use the variance estimates can have a major advantage over
its alternatives that do not use such estimates when the variances of the
payoffs of the suboptimal arms are low. This work, however, reveals that
the regret concentrates only at a polynomial rate. This holds for all the
upper confidence bound based algorithms and for all bandit problems
except those rare ones where with probability one the payoffs coming
from the optimal arm are always larger than the expected payoff for the
second best arm.
Hence, although upper confidence bound bandit algorithms achieve log-
arithmic expected regret rates, a risk-averse decision maker may prefer
some alternative algorithm. The paper also illustrates some of the results
with computer simulations.

1 Introduction and notations

In this paper we consider algorithms for stochastic multi-armed bandit problems.
Bandit problems illustrate the fundamental difficulty of decision making in the
face of uncertainty: A decision maker must choose between following what seems



to be the best choice (“exploit”) or to explore some alternative hoping to discover
a choice that is even better than the current best choice.

The classical example of a bandit problem is deciding what treatment to give
each patient in a clinical trial when patients arrive sequentially and the effec-
tiveness of the treatments are initially unknown (Thompson, 1933). Multi-armed
bandit problems became popular with the seminal paper of Robbins (Robbins,
1952), after which they have found applications in diverse fields, such as control,
economics, statistics, or learning theory.

Formally, a K-armed bandit problem (K ≥ 2) is specified by K distributions,
ν1, . . . , νK . The decision maker initially does not know these distributions, but
can sample from them one by one. The samples are considered as rewards. The
goal of the decision maker is to maximize the sum of the rewards, or, what is
equivalent, to minimize his regret, i.e., the loss as compared to the total payoff
that can be obtained given full knowledge of the problem.

The name ‘bandit’ comes from imagining a gambler playing with K slot
machines. The gambler can pull the arm of any of the machines, which as a result
produces a random payoff. If arm k is pulled the random payoff is drawn from νk.
Thus payoff is assumed to be independent of all previous payoffs. Independence
also holds across the arms. We will denote the payoff received when the k-th
arm is pulled the t-th time by Xk,t.

Since the payoff distributions are initially unknown, the gambler must use
exploratory actions to learn the utility of the individual arms. However, explo-
ration has to be carefully controlled since excessive exploration may lead to
unnecessary losses. Hence, an efficient bandit algorithm must carefully balance
exploration and exploitation.

A gambler learning about the distributions of the arms’ payoffs can use all
past information to decide about its next action. Designing a strategy for the
gambler means that we pick a mapping (“policy”) that maps the space of possible
histories, ∪t∈N+{1, . . . ,K}t × Rt, into the set {1, . . . , K} (indexing the arms).

Let us formalize now the goal of the design problem. For this let µk = E[Xk,1]
denote the expected reward of arm k. By definition, an optimal arm is an arm
having the largest expected reward. We will use k∗ to denote the index of such
an arm (we do not assume that the optimal arm is unique). Let the optimal
expected reward be µ∗ = max1≤k≤K µk. Further, let Tk(t) denote the number of
times arm k is chosen by the policy during the first t plays and let It ∈ 1, . . . ,K
denote the index of the arm arm played at time t. The (cumulative) regret at
time n is defined by

R̂n ,
∑n

t=1 Xk∗,t −
∑n

t=1 XIt,TIt (t).

Hence, the goal of the decision maker can be formalized as the problem of
minimizing the expected (cumulative) regret of the policy, E[R̂n]. Clearly, this
is equivalent to maximizing the total expected reward achieved up to time n.
Wald’s equation implies that the expected regret satisfies

E[R̂n] ,
∑K

k=1 E[Tk(n)]∆k,



where ∆k = µ∗ − µk is the expected loss of playing arm k. Hence, an algorithm
that aims at minimizing the expected regret should minimize the expected sam-
pling times of suboptimal arms.

Early papers studied stochastic bandit problems under Bayesian assump-
tions (e.g., (Gittins, 1989)). Lai and Robbins (Lai & Robbins, 1985) studied
bandit problems with parametric uncertainties in a minimax framework. They
introduced an algorithm that follows what is now called the “optimism in the
face of uncertainty principle”. The algorithm works by computing upper confi-
dence bounds for all the arms and then choosing the arm with the highest such
bound. The upper confidence bound of an algorithm is obtained by maximizing
the expected payoff when the parameters are varied within an appropriate con-
fidence set. They proved that the expected regret of their algorithm increases
at most at a logarithmic rate with the number of trials and that the algorithm
achieves the smallest possible regret up to some sub-logarithmic factor (for the
considered family of distributions). Agrawal has shown how to construct upper
confidence bound algorithms that use the sample-means of the arms (Agrawal,
1995). More recently, Auer et al. considered the case when the rewards come
from a bounded support, say [0, b], but otherwise the reward distributions are
unconstrained (Auer et al., 2002). They have studied several policies, most no-
tably UCB1 which constructs the Upper Confidence Bound (UCB) for arm k at
time t by adding the bias factor

√
2b2 log t

Tk(t− 1)
(1)

to its sample-mean. In this paper the authors proved that the expected regret
of this algorithm satisfies

E[R̂n] ≤ 8
(∑

k:µk<µ∗
b2

∆k

)
log(n) + O(1). (2)

In the same paper they propose UCB1-NORMAL, that is restricted to the case
when the payoffs are normally distributed with unknown mean and variance.
This algorithm estimates the variance of the arms and uses these estimates to
refine the bias factor. Under the normality assumption they show that

E[R̂n] ≤ 8
∑

k:µk<µ∗

(
32σ2

k

∆k
+ ∆k

)
log(n) + O(1), (3)

where µk denotes the mean payoff for arm k (as before), while σ2
k denotes the

arm’s variance.
Note that one major difference of this result and the previous one is that

the regret-bound for UCB1 scales with b2, while the regret bound for UCB1-
NORMAL scales with the variances of the arms. First, let us note that it can
be proven that the scaling behavior of the regret-bound with b is not a proof
artifact: The expected regret indeed scales with Ω(b2) (see Proposition 1, Section
A.1). Since in many cases b is just a conservative, a priori guess on the size
of the interval containing the rewards, it is more than desirable to lessen the



dependence of the algorithm on it. We see that UCB1-NORMAL achieves this
perfectly. However, the price is high: We have to assume that the payoffs are
normally distributed.

In the experimental section of their paper Auer et al. introduced another algo-
rithm, called UCB1-Tuned. This algorithm, similarly to UCB1-NORMAL uses
the empirical estimates of the variance in the bias sequence. However, unlike
UCB1-NORMAL, this algorithm is designed to work with any bounded payoff
distribution. The experiments of Auer et al. indicate that the idea of using em-
pirical variance estimates works: UCB1-Tuned has been shown to outperform the
other algorithms considered in the paper in essentially all the experiments. The
superiority of this algorithm has been reconfirmed recently in the latest Pascal
Challenge (Auer et al., 2006). Intuitively, algorithms using variance estimates
should work better than ones that do not use such estimates (like UCB1) when
the variance of some suboptimal arm is much smaller than b2. If this is the case
a “variance-aware” algorithm can spot the suboptimal arms after a few trials,
thereby reducing the regret suffered.

In this paper we study the regret of UCB-V, which is a generic UCB-type
algorithm that use variance estimates in the bias sequence. In particular, the
bias sequences of UCB-V take the form

√
2Vk,Tk(t−1)ETk(t−1),t

Tk(t− 1)
+ c

3bETk(t−1),t

Tk(t− 1)
,

where Vk,s is the empirical variance estimate for arm k based on s samples,
E = E·,· (viewed as a function of (s, t)) is a so-called exploration function. A
typical choice for this function is Es,t = ζ log(t), where ζ, c > 0 are tuning
parameters that can be used to control the behavior of the algorithm.

The first major contribution of the paper (Theorem 4) is a bound on the ex-
pected regret of UCB-V that scales in an improved fashion with b. In particular,
we show that for a particular settings of the parameters of the algorithm,

E[R̂n] ≤ 10
∑

k:µk<µ∗

(
σ2

k

∆k
+ 2b

)
log(n).

The main difference to the bound (2) is that b2 is replaced by σ2
k. However, notice

that b still appears in the bound, which is a major difference to the bound (3).
Although, this is unfortunate, it is possible to show that the dependence on b is
unavoidable.

In order to prove the above result we will prove a novel tail bound on the
sample average of i.i.d. random variables with bounded support. Unlike previous
similar bounds, this bound uses the empirical variance and thus it might be of
independent interest (Theorem 1).

Just like as it was done in the work of Auer et al., our regret bound also relies
on the analysis of the sampling times of suboptimal arms (Theorem 2). However,
compared to the analysis of (Auer et al., 2002), the new result is significantly
improved. Thanks to this result. we obtain results on the expected regret for



a wide class of exploration functions (Theorem 3), leading to the main result
already cited (Theorem 4). In addition, for the “standard” logarithmic sequence
we will give lower limits on the tuning parameters: If the tuning parameters are
below these limits the loss goes up considerably (Theorems 5,6).

The second major contribution of the paper is the probabilistic analysis of
the risk that the regret of the studied algorithm is much higher than its expected
value. To our best knowledge, for this class of algorithms no such analysis existed
previously. The concentration of regret results obtained are potentially important
in the analysis of algorithms that nest sequences of bandits, such as the UCT
algorithm proposed in (Kocsis & Szepesvári, 2006), which recently was proven
to be very efficient in computer go (e.g., (Gelly & Silver, 2007)).

In order to analyze the risk, we will study the (cumulative) pseudo-regret
defined by

Rn =
∑K

k=1 Tk(n)∆k.

Note that the expectation of the pseudo-regret and the regret are the same:
E[Rn] = E[R̂n], but the the randomness of the rewards influences the pseudo-
regret only indirectly (i.e., through {Tk(n)}). In order to analyze the risk, in
Sections 5 and 6 we develop high probability bounds for the pseudo-regret. Sim-
ilar results can be obtained for the cumulative regret (see Remark 2 p.19).

Interestingly, our analysis revealed some tradeoffs that we did not expect:
As it turns out, if one aims for logarithmic expected regret (or, more generally,
for subpolynomial regret) then the regret does not necessarily concentrate ex-
ponentially fast around its mean (Theorem 10). In fact, this is always the case
when with positive probability the optimal arm yields a reward smaller than the
expected reward of some suboptimal arm. Take for example two arms satisfying
this condition. Let the first arm be the optimal one: µ1 > µ2, ∆2 = µ1−µ2 > 0.
Then the distribution of the pseudo-regret at time n will have two modes, one
at Ω(log n) and the other at Ω(∆2n). The probability mass associated with this
second mass will decay polynomially with n where the rate of decay depends
on ∆2. Above the second mode the distribution decays exponentially. By in-
creasing the exploration rate the situation can be improved. Our risk tail bound
(Theorem 9) makes the dependence of the risk on the algorithm’s parameters ex-
plicit. Of course, increasing exploration rate increases the expected regret, hence
the tradeoff between the expected regret and the risk of achieving much worse
than the expected regret. The theoretical findings of this part of the paper are
illustrated in a series of experiments, described in Section 5.1.

In the final part of the paper (Section 6) we consider a variant of the prob-
lem when the time-horizon is given a priori. As it turns out in this case a good
choice of the exploration function is to make it independent of the global time
index t: Es,t = Es. In particular, we show that with an appropriate choice of
Es = Es(β), for any 0 < β < 1, the algorithm achieves finite cumulative re-
gret with probability 1 − β (Theorem 11). Hence, we name this variant of the
algorithm PAC-UCB (“Probably approximately correct UCB”). Given a finite
time-horizon, n, choosing β = 1/n then yields a logarithmic bound on the regret
that fails to hold at most with probability O(1/n). This should be compared with



the bound O(1/ log(n)a), a > 0 obtained for the standard choice Es,t = ζ log t in
Corollary 1. Hence, we conjecture that knowing the time horizon might represent
a significant advantage.

2 The UCB-V algorithm

Let N denote the set of natural numbers including zero and let N+ denote the
set of positive integers. For any k ∈ {1, . . . ,K} and t ∈ N, let Xk,t and Vk,t be
the respective empirical estimates of the mean payoff and variance of arm k:

Xk,t , 1
t

∑t
i=1 Xk,i and Vk,t , 1

t

∑t
i=1(Xk,i −Xk,t)2,

where by convention Xk,0 , 0 and Vk,0 , 0. We recall that an optimal arm is
any arm that has the best expected reward

k∗ ∈ argmax
k∈{1,...,K}

µk.

We denote quantities related to the optimal arm by putting ∗ in the upper index.
In the following, we assume that the rewards are bounded. Without loss of

generality, we may assume that all the rewards are almost surely in [0, b], with
b > 0. For easy reference we summarize our assumptions on the reward sequence
here:

Assumption A1 Let K > 2, ν1, . . . , νK distributions over reals with support
[0, b]. For 1 ≤ k ≤ K, let {Xk,t} ∼ νk be an i.i.d. sequence of random variables
specifying the rewards for arm k.4 Assume that the rewards of different arms
are independent of each other, i.e., for any k, k′, 1 ≤ k < k′ ≤ K, t ∈ N+,
the collection of random variables, (Xk,1, . . . , Xk,t) and (Xk′,1, . . . , Xk′,t), are
independent of each other. Decision maker does not the distributions of the
arms, but knows b.

2.1 The algorithm

Let c ≥ 0. Let E = (Es,t)s≥0,t≥0 be nonnegative real numbers such that for
any fixed value of s ≥ 0 the function t 7→ Es,t is nondecreasing. We shall call
E (viewed as a function of (s, t)) the exploration function. For any arm k and
nonnegative integers s, t, introduce

Bk,s,t , Xk,s +

√
2Vk,sEs,t

s
+ c

3bEs,t

s
(4)

with the convention 1/0 = +∞.

UCB-V policy:
At time t, play an arm maximizing Bk,Tk(t−1),t.

4 The i.i.d. assumption can be relaxed, see e.g., (Lai & Yakowitz, 1995).



Let us summarize the main ideas underlying the algorithm. As long as an
arm is never chosen its bound is infinite. Hence, initially the algorithm tries all
the arms at least once (one by one). Then, the more an arm k has been tested,
the closer the bound (4) gets to the sample-mean, and hence, by the law of large
numbers, to the expected reward µk. So the procedure will hopefully tend to
draw more often arms having the largest expected rewards.

Nevertheless, since the obtained rewards are stochastic it might happen that
during the first draws the (unknown) optimal arm always gives low rewards.
This might make the sample-mean of this arm smaller than that of the other
arms and hence an algorithm that only uses sample-means might get stuck with
not choosing the optimal arm any more. The UCB-V policy uses the exploration
function, E , to prevent this situation. Indeed, assuming that for any fixed s,
Es,t increases without bounds in t we see that after a while the last term of (4)
will start to dominate the two other terms and will also dominate the bound
associated with the arms drawn very often. This will allow the algorithm to
draw the optimal arm again, giving it a chance to develop a better estimate of
the mean. We thus see that an appropriate choice of E encourages exploration;
hence it’s name. Naturally, an exploration function that tends to dominate the
sample-means will not give enough room for the observed payoffs to influence
the choices of the actions – the algorithm might draw suboptimal arms too
often. Therefore E must be carefully chosen so as to balance exploration and
exploitation. The major idea of upper-confidence bounds algorithms is that E
should be selected such that Bk,s,t is a high probability upper bound on the
payoff of arm k. Then if no confidence bound fails then a suboptimal arm can
only be chosen if its confidence bound is larger than its payoff difference to
the optimal arm. Since confidence intervals shrink with increasing sample sizes
the number of times the previous situation can happen is limited. Further, by
designing E such that the error probabilities decay fast enough, we can make
sure that the total error committed due to the failure of the confidence intervals
is not too large either.

In our algorithm, the actual form of the exploration function comes from
the following novel tail bound on the sample average of i.i.d. random variables
with bounded support. The novelty of this bound is that, unlike previous similar
bounds (e.g., Bennett’s and Bernstein’s inequalities), it involves the empirical
variance.

Theorem 1. Let X1, . . . , Xt be i.i.d. random variables taking their values in
[0, b]. Let µ = E [X1] be their common expected value. Consider the empirical
mean Xt and variance Vt defined respectively by

Xt =
∑t

i=1 Xi

t
and Vt =

∑t
i=1(Xi −Xt)2

t
.

Then, for any t ∈ N and x > 0, with probability at least 1− 3e−x,

|Xt − µ| ≤
√

2Vtx

t
+

3bx

t
. (5)



Furthermore, introducing

β(x, t) = 3 inf
1<α≤3

( log t

log α
∧ t

)
e−x/α, (6)

we have for any t ∈ N and x > 0, with probability at least 1− β(x, t)

|Xs − µ| ≤
√

2Vsx

s
+

3bx

s
(7)

holds simultaneously for s ∈ {1, 2, . . . , t}.

Proof. See Section A.2.

Remark 1. The uniformity in time is the only difference between the two asser-
tions of the previous theorem. When we use (7), the values of x and t will be
such that β(x, t) is of order of 3e−x, hence there will be no real price to pay for
writing a version of (5) that is uniform in time. In particular, this means that
if 1 ≤ S ≤ t is a random variable then (5) still holds with probability at least
1− β(x, t) and when s is replaced with S.

Note that (5) is useless for t ≤ 3 since its right-hand side (r.h.s.) is larger
than b. For any arm k, time t and integer 1 ≤ s ≤ t we may apply Theorem
1 to the rewards Xk,1, . . . , Xk,s, and obtain that with probability at least 1 −
3

∑∞
s=4 e−(c∧1)Es,t , we have µk ≤ Bk,s,t. Hence, by our previous remark at time

t if E takes “sufficiently high values” then with high probability the expected
reward of arm k is upper bounded by Bk,Tk(t−1),t. The user of the generic UCB-V
policy has two parameters to tune: the exploration function E and the positive
real number c.

A cumbersome technical analysis (not reproduced here) shows that there are
essentially two types of exploration functions leading to interesting properties of
the resulting algorithms in terms of expected regret, PAC bounds on the regret
and adaptivity with respect to the total number of plays:

– the ones in which Es,t depends only on t (see Sections 3 and 5).
– the ones in which Es,t depends only on s (see Section 6).

2.2 Bounds for the sampling times of suboptimal arms

The natural way of bounding the regret of UCB policies is to bound the num-
ber of times suboptimal arms are drawn. In this section we derive such bounds,
generalizing and improving upon the previous analysis of (Auer et al., 2002).
The improvement is a necessary step to get tight bounds for exploration func-
tions scaling logarithmically with t, which represent the most interesting class
of exploration functions.

Since all the statements here make use of Assumption A1, we will refrain
from citing it. Further, all the results in these sections are for algorithm UCB-V.



Theorem 2. (i) After K plays, each arm has been pulled once. (ii) Let arm k
and time n ∈ N+ be fixed. For any τ ∈ R and any integer u > 1, we have

Tk(n) ≤ u +
∑n

t=u+K−1

(
1{∃s:u≤s≤t−1 s.t. Bk,s,t>τ}

+1{∃s∗:1≤s∗≤t−1 s.t. τ≥Bk∗,s∗,t}
)
,

(8)

hence

E [Tk(n)] ≤ u +
∑n

t=u+K−1

∑t−1
s=u P

(
Bk,s,t > τ

)
+

∑n
t=u+K−1 P

(∃s : 1 ≤ s ≤ t− 1 s.t. Bk∗,s,t ≤ τ
)
.

(9)

Besides we have

P
(
Tk(n) > u

)
≤ ∑n

t=u+1 P
(
Bk,u,t > τ

)
+ P

(∃s : 1 ≤ s ≤ n− u s.t. Bk∗,s,u+s ≤ τ
)
.

(10)

Note that even though if the above statements hold for any arm, naturally
they provide useful bounds only for suboptimal arms.

Proof. The first assertion is trivial since at the beginning each arm has an infinite
UCB value, which becomes finite as soon as the arm has been played once.

To obtain (8), we note that

Tk(n)− u ≤
n∑

t=u+K−1

1{It=k;Tk(t)>u} =
n∑

t=u+K−1

Zk,t,u,

where

Zk,t,u = 1{It=k; u≤Tk(t−1); 1≤Tk∗ (t−1);Bk,Tk(t−1),t≥Bk∗,Tk∗ (t−1),t}
≤ 1{∃s:u≤s≤t−1 s.t. Bk,s,t>τ} + 1{∃s∗:1≤s∗≤t−1 s.t. τ≥Bk∗,s∗,t}

Taking the expectation of both sides of (8) and using a union bound, we obtain
(9).

Finally, (10) comes from a more direct argument that uses that the explo-
ration function ξs,t is a nondecreasing function with respect to t, which is devel-
oped next: Consider an event such that the following statements hold:

{∀t : u + 1 ≤ t ≤ n s.t. Bk,u,t ≤ τ,
∀s : 1 ≤ s ≤ n− u s.t. Bk∗,s,u+s > τ.

.

Then for any 1 ≤ s ≤ n− u and u + s ≤ t ≤ n

Bk∗,s,t ≥ Bk∗,s,u+s > τ ≥ Bk,u,t.

This implies that arm k will not be pulled a (u + 1)-th time. Therefore we have
proved by contradiction that

{
Tk(n) > u

} ⊂
({∃t : u + 1 ≤ t ≤ n s.t. Bk,u,t > τ

}

∪{∃s : 1 ≤ s ≤ n− u s.t. Bk∗,s,u+s ≤ τ
})

.
(11)

By taking probabilities of both sides gives the announced result.



3 Expected regret of UCB-V

In this section, we assume that the exploration function does not depend on
s (still, E = (Et)t≥0 is a nondecreasing function of t). We will see that as far
as the expected regret is concerned, a natural choice for Et is the logarithmic
function and that c should not be taken too small if one does not want to suffer
polynomial regret instead of logarithmic one. We derive bounds on the expected
regret and conclude by specifying natural constraints on c and Et.

3.1 Upper bound on the expected regret

Theorem 3. We have

E[Rn] ≤
∑

k:∆k>0

{
1 + 8(c ∨ 1)En

(
σ2

k

∆2
k

+
2b

∆k

)

+ne−En

(
24σ2

k

∆2
k

+ 4b
∆k

)
+

n∑

t=16En

β
(
(c ∧ 1)Et, t

)}
∆k,

(12)

where we recall that β
(
(c ∧ 1)Et, t

)
is essentially of order e−(c∧1)Et (see (6) and

Remark 1).

Proof. Let E ′n = (c ∨ 1)En. We use Equation (9) where we choose u to be the
smallest integer larger than 8

( σ2
k

∆2
k

+ 2b
∆k

)E ′n and we choose τ = µ∗.
This choice of u guarantees that for any u ≤ s < t and t ≥ 2,

√
2[σ2

k + b∆k/2]Et

s
+ 3bc

Et

s
≤

√
[2σ2

k + b∆k]E ′n
u

+ 3b
E ′n
u

≤
√

[2σ2
k+b∆k]∆2

k

8[σ2
k+2b∆k]

+ 3b∆2
k

8[σ2
k+2b∆k]

= ∆k

2

[√
2σ2

k+b∆k

2σ2
k+4b∆k

+ 3b∆k

4σ2
k+8b∆k

]
≤ ∆k

2 ,

(13)

where the last inequality holds as it is equivalent to (x − 1)2 ≥ 0 for x =√
2σ2

k+b∆k

2σ2
k+4b∆k

.

For any s ≥ u and t ≥ 2, we have

P(Bk,s,t > µ∗) ≤ P(
Xk,s +

√
2Vk,sEt

s + 3bc
Et

s
> µk + ∆k

)

≤ P(
Xk,s +

√
2[σ2

k+b∆k/2]Et

s + 3bcEt

s > µk + ∆k

)
+ P

(
Vk,s ≥ σ2

k + b∆k/2
)

≤ P(
Xk,s − µk > ∆k/2

)
+ P

(∑s
j=1(Xk,j−µk)2

s − σ2
k ≥ b∆k/2

)

≤ 2e−s∆2
k/(8σ2

k+4b∆k/3),
(14)

where in the last step we used Bernstein’s inequality (see (42)) twice. Summing
up these probabilities we obtain

t−1∑
s=u

P(Bk,s,t > µ∗) ≤ 2
∞∑

s=u

e−s∆2
k/(8σ2

k+4b∆k/3) = 2
e−u∆2

k/(8σ2
k+4b∆k/3)

1− e−∆2
k/(8σ2

k+4b∆k/3)

≤
(

24σ2
k

∆2
k

+ 4b
∆k

)
e−u∆2

k/(8σ2
k+4b∆k/3) ≤

(
24σ2

k

∆2
k

+ 4b
∆k

)
e−E

′
n , (15)



where we have used that 1 − e−x ≥ 2x/3 for 0 ≤ x ≤ 3/4. By using (7) of
Theorem 1 to bound the other probability in (9), we obtain that

E [Tk(n)] ≤ 1 + 8E ′n
(

σ2
k

∆2
k

+ 2b
∆k

)
+ ne−E

′
n

(
24σ2

k

∆2
k

+ 4b
∆k

)
+

∑n
t=u+1 β((c ∧ 1)Et, t),

which gives the announced result since by assumption u ≥ 16En.

In order to balance the terms in (12) the exploration function should be
chosen to be proportional to log t, yielding the following upper estimate of the
payoff of arm k that was chosen s times up to time t:

Bk,s,t , Xk,s +

√
2ζVk,s log t

s
+ c

3b log t

s
. (16)

For this choice, the following theorem, the main result of this section, gives an
explicit bound on the expected regret:

Theorem 4. Let c = 1 and Et = ζ log t for ζ > 1. Then there exists a constant
cζ depending only on ζ such that for n ≥ 2

E[Rn] ≤ cζ

∑

k:∆k>0

(
σ2

k

∆k
+ 2b

)
log n. (17)

For instance, for ζ = 1.2, the result holds with cζ = 10.

Proof. The first part follows directly from Theorem 3. The numerical assertion
is tedious. It consists in bounding the four terms between brackets in (12). First
it uses that

– bn is always a trivial upper bound on Rn,
– b(n − 1) is a trivial upper bound on Rn when n ≥ K (since in the first K

rounds, you draw exactly once the optimal arm).

As a consequence, the numerical bound is non-trivial only for 20 log n < n − 1,
so we only need to check the result for n > 91. For n > 91, we bound the
constant term using 1 ≤ log n

log 91 ≤ a1
2b
∆k

(log n), with a1 = 1/(2 log 91) ≈ 0.11.

The second term between the brackets in (12) is bounded by a2

( σ2
k

∆2
k

+ 2b
∆k

)
log n,

with a2 = 8 × 1.2 = 9.6. For the third term, we use that for n > 91, we have
24n−0.2 < a3 log n, with a3 = 24

910.2×log 91 ≈ 0.21. By tedious computations, the
fourth term can be bounded by a4

2b
∆k

(log n), with a4 ≈ 0.07. This gives the
desired result since a1 + a2 + a3 + a4 ≤ 10.

AS promised, Theorem 4 gives a logarithmic bound on the expected regret
that has a linear dependence on the range of the reward contrary to bounds on
algorithms that do not take into account the empirical variance of the reward
distributions (see e.g. the bound (2) that holds for UCB1).



3.2 Lower limits on the bias sequence

The previous result is well complemented by the following result, which essen-
tially says that we should not use Et = ζ log t with ζ < 1.

Theorem 5. Consider Et = ζ log t and let n denote the total number of draws.
Whatever c is, if ζ < 1, then there exist some reward distributions (depending
on n) such that

– the expected number of draws of suboptimal arms using the UCB-V algorithm
is polynomial in the total number of draws

– the UCB-V algorithm suffers a polynomial loss.

Proof. We consider the following reward distributions:

– arm 1 concentrates its rewards on 0 and 1 with equal probability.
– the other arms always provide a reward equal to 1

2 − εn.

Define b̃ , 3cbζ.
Notice that arm 1 is the optimal arm. After s̃ plays of this arm, since we

necessarily have Vk,s̃ ≤ 1/4, for any t ≤ n we have

B1,s̃,t = X1,s̃ +
√

2V1,s̃ζ log t
s̃ + b̃ log t

s̃

≤ 1
2 +

(
X1,s̃ − 1

2

)
+

√
ζ log n

2s̃ + b̃ log n
s̃ .

(18)

On the other hand, for any 0 ≤ s ≤ t, we have

B2,s,t = 1
2 − εn + b̃ log t

s ≥ 1
2 − εn. (19)

So the algorithm will behave badly if with non-negligible probability, for some
s̃ ¿ n, we have B1,s̃,t < 1/2− εn.

To help us choosing s̃ and εn, we need a lower bound on the deviation of
X1,s̃ − 1/2. This is obtained through Stirling’s formula

nne−n
√

2πn e1/(12n+1) < n! < nne−n
√

2πn e1/(12n). (20)

This, for ` such that (s̃ + `)/2 ∈ N, leads to:

P
(
X1,s̃ − 1

2 = − `
2s̃

)

=
(

1
2

)s̃( s̃
s̃+`
2

)

≥ (
1
2

)s̃ ( s̃
e )s̃

√
2πs̃e

1
12s̃+1

( s̃+`
2e )

s̃+`
2 ( s̃−`

2e )
s̃−`
2
√

π(s̃+`)
√

π(s̃−`)e
1

6(s̃+`) e
1

6(s̃−`)

= 1

(1+ `
s̃ )

s̃+`
2 (1− `

s̃ )
s̃−`
2

√
2s̃

π(s̃2−`2)e
1

12s̃+1− 1
6(s̃+`)− 1

6(s̃−`)

≥
√

2
πs̃

(
1− `2

s̃2

)− s̃
2
(

1− `
s̃

1+ `
s̃

) `
2
e−

1
6(s̃+`)− 1

6(s̃−`)

≥
√

2
πs̃e−

`2
2s̃− 1

6(s̃+`)− 1
6(s̃−`) .

(21)



Let bxc be the largest integer smaller or equal to x. Introduce a parameter, κ. By
summing b√s̃c well chosen probabilities, i.e., the largest probabilities P

(
X1,s̃ −

1
2 = − `

2s̃

)
for ` ≥ √

2κs̃ log s̃, we get that for some positive constant C > 0,

P
(

X1,s̃ − 1
2 ≤ −

√
κ log s̃

2s̃

)
≥ Cs̃−κ. (22)

Let ζ ′ ∈]ζ; 1[ such that nζ′/κ is an integer number. We consider s̃ = nζ′/κ so
that from (18), we obtain

P
(

B1,s̃,t ≤ 1
2 − (

√
ζ ′ −√ζ)

√
log n

2nζ′/κ + b̃ log n

nζ′/κ

)
≥ Cn−ζ′ . (23)

In view of (19), we take εn =
√

ζ′−√ζ
2

√
log n

2nζ′/κ such that with probability at

least Cn−ζ′ , we draw the optimal arm no more than s̃ = nζ′/κ times. Up to
multiplicative constants, this leads to an expected number of draws of suboptimal
arms larger than (n − nζ′/κ)n−ζ′ ≈ n1−ζ′ and an expected regret larger than
(n − nζ′/κ)εnn−ζ′ ≈ n1−ζ′ ≈ n1−ζ′−ζ′/κ up to a logarithmic factor. Taking κ
sufficiently large, for ζ < 1, there exists ζ ′ ∈]ζ; 1[ such that 1 − ζ ′ − ζ ′/κ > 0,
so that we have obtained that polynomial expected regret can occur as soon as
ζ < 1.

So far we have seen that for c = 1 and ζ > 1 the algorithm achieves logarith-
mic regret, and that the constant ζ could not be taken below 1 (independently of
the value of c) without risking to suffer a polynomial regret. Now, let us consider
the last term, which is linear in the ratio Et/s, in Bk,s,t. The next result shows
that this term is also necessary to obtain a logarithmic regret:

Theorem 6. Consider Et = ζ log t. Independently of the value of ζ, if cζ < 1/6,
there exist probability distributions of the rewards such that the UCB-V algorithm
suffers a polynomial loss.

Proof. See Section A.3.

To conclude the above analysis, the natural choice for the bias sequence is

Bk,s,t , Xk,s +

√
2Vk,s log t

s
+

b log t

2s
.

This choice corresponds to the critical exploration function Et = log t and to
c = 1/6, that is, the minimal associated value of c in view of the previous
theorem. In practice, it would be unwise (or risk seeking) to use smaller constants
in front of the last two terms.

4 Risk bounds

Often decision makers are not satisfied with a good expected return. A stronger
requirement is that the algorithms should give guaranteed returns with high



probability. With such a guarantee the decision maker is guaranteed to avoid
unnecessarily high risks involving potentially huge losses. Hence the interest in
studying the distributional properties of the regret. In the next section we provide
tail bounds for the regret of UCB1 (we also provide a refined analysis of its
expected regret), followed by a result in the subsequent section that concerns the
tail behavior of UCB-V. These results are illustrated by computer experiments
in Section 5.1.

4.1 Risk bounds for UCB1

In this section, we analyze the behavior of UCB1 in terms of the expected regret
and the probability of high regret when the bias factor depends on a exploration
coefficient α > 1. The upper bounds take the form:

Bk,s,t , Xk,s + b

√
α log t

s
. (24)

We remind that in the original version of UCB1, the exploration coefficient
was set to α = 2. We show in the next result that the expected regret is E[Rn] =
O(α log(n)), which exhibits a linear dependency w.r.t. the coefficient α (the
greater α the greater the exploration of all arms). Next, we provide an upper
bound on the probability of high (pseudo-) regret of the form P(Rn > z) =
O(z1−2α) (the greater α the thinner the tail on the pseudo-regret).

The user may thus choose a range of possible algorithms between an algo-
rithm (when setting α to a value close to 1) which yields low regret on the
average but which may be risky (high probability of obtaining less rewards than
expected), or an algorithm (when α is larger) which has a higher regret on the
average, but which is more secure, in the sense that the actual regret is more
concentrated around its expectation. Thus, the algorithm exhibits a tradeoff
between expected reward and risk.

Theorem 7. Let α > 1. The expected pseudo-regret for UCB1 defined by (24)
satisfies:

E[Rn] ≤
∑

k:∆k>0

[4b2

∆k
α log(n) + ∆k

(3
2

+
1

2(α− 1)
)]

. (25)

Proof. For any sub-optimal arm k, let u denote the smallest integer larger than(
2b
∆k

)2
α log(n). Thus, for any u ≤ s < t ≤ n, we have b

√
α log(t)

s ≤ ∆k/2. From
(9) with τ = µ∗, it comes

E [Tk(n)] ≤ u +
∑n

t=u+1

∑t−1
s=u P

(
Bk,s,t > µ∗

)

+
∑n

t=u+1

∑t−1
s=1 P

(
Bk∗,s,t ≤ µ∗

)
.

(26)

Now, for s ≥ u, P
(
Bk,s,t > µ∗

)
= P

(
Xk,s + b

√
α log(t)

s > µk + ∆k

) ≤ P(
Xk,s >

µk + ∆k/2
) ≤ e−s∆2

k/(2b2) ≤ e−u∆2
k/(2b2) ≤ n−2α, where we used the Chernoff-

Hoeffding bound. We deduce that:
∑n

t=u+1

∑t−1
s=u P

(
Bk,s,t > µ∗

) ≤ n2(1−α)/2.



The first sum of probabilities in (26) is thus bounded by n2(1−α)/2 ≤ 1/2 when-
ever n ≥ 1.

For the second sum, we have P
(
Bk∗,s,t ≤ µ∗

) ≤ t−2α from the Chernoff-
Hoeffding bound. Thus

∑n
t=u+1

∑t−1
s=1 P

(
Bk∗,s,t ≤ µ∗

) ≤ ∑n
t=u+1 t1−2α ≤ ∫∞

u
t1−2αdt =

u−2(α−1)

2(α−1) for α > 1.

Thus (26) implies that E [Tk(n)] ≤ (
2b
∆k

)2
α log(n) + 3

2 + 1
2(α−1) holds for all

n ≥ 1. The bound on the expected regret follows.

Theorem 8. Let ∆min , mink:∆k>0 ∆k. The pseudo-regret for UCB1 defined
by (24) satisfies, for any z ≥ 4K b2

∆min
α log(n):

P
(
Rn > z

) ≤
∑

k:∆k>0

{
e−z

∆k
4Kb2 + z1−2α (K∆k)2α−1

2α− 1

}
. (27)

Since the second term is dominant, we thus have P
(
Rn > z

)
= O(z1−2α).

Proof. We have:

P
(
Rn > z

)
= P

( ∑

k:∆k>0

∆kTk(n) > z
) ≤ P(

max
k:∆k>0

∆kTk(n) > z/K
)

≤
∑

k:∆k>0

P
(
Tk(n) > z/(K∆k)

)
(28)

Notice that from the condition on z, we have z/(K∆k) ≥ (
2b
∆k

)2
α log(n). Define

uk to be the smallest integer larger than z/(K∆k). We start by providing an
upper bound on P

(
Tk(n) > uk

)
.

Applying (10) with uk and τ = µ∗, it comes that

P
(
Tk(n) > uk

) ≤
n∑

t=uk+1

P
(
Bk,uk,t > µ∗

)
+

n−uk∑
s=1

P
(
Bk∗,s,uk+s ≤ µ∗

)
. (29)

From the condition on z, we have b
√

α log(n)
uk

≤ ∆k/2, thus P
(
Bk,uk,t > µ∗

) ≤
P
(
Xk,uk

> µk +∆k/2
) ≤ e−uk∆2

k/(2b2). Since α > 1 we have n ≤ euk

(
∆k
2b

)2

. Thus
the first sum of probabilities in (29) is bounded by e−uk(∆k/(2b))2 .

Now, P
(
Bk∗,s,uk+s ≤ µ∗

) ≤ (uk + s)−2α from the Chernoff-Hoeffding bound.
Thus the second sum of probabilities in (29) is bounded by

∑n−uk

s=1 P
(
Bk∗,s,uk+s ≤

µ∗
) ≤ ∑n−uk

s=1 (uk + s)−2α ≤ ∫∞
uk

t−2αdt = u1−2α
k

2α−1 . Thus,

P
(
Tk(n) > uk

) ≤ e−uk

(
∆k
2b

)2

+
u1−2α

k

2α− 1
.

We deduce that P
(
Tk(n) > z

K∆k

) ≤ e−z
∆k

4Kb2 + z1−2α (K∆k)2α−1

2α−1 , and (27)
follows from (28).



Theorem 8 shows that the regret has at least polynomial tails. In fact, this
result cannot be improved to the extent that there exist distributions of the
rewards for which for some constant C > 0, for any z large enough, P

(
Rn >

z
) ≥ 1/(CzC). This can be proved by a simple adaptation of the arguments

used in the proof of Theorem 10.
Theorems 7 and 8 show that the more we explore (i.e. larger α is), the smaller

the tails of the regret is. However, the price of this extra exploration is a larger
expected regret. In the next section, a similar tradeoff between expected rewards
and risk is obtained for the UCB-V algorithm.

5 Risk bounds for UCB-V

In this section we concentrate on the analysis of the concentration properties of
the pseudo-regret for UCB-V. As we will see in Remark 2 p.19, the concentration
properties of the regret follow from the concentration properties of the pseudo-
regret, hence there is no compromise in studying the pseudo-regret.

We still assume that the exploration function does not depend on s and that
E = (Et)t≥0 is nondecreasing.

Introduce

β̃n(t) , 3 min
α≥1 M∈N

s0=0<s1<···<sM=n
s.t. sj+1≤α(sj+1)

M−1∑

j=0

e−
(c∧1)Esj+t+1

α . (30)

We have seen in the previous section that to obtain logarithmic expected
regret, it is natural to take a logarithmic exploration function. In this case, and
also when the exploration function goes to infinity faster than the logarithmic
function, the complicated sum in (30), up to second order logarithmic terms, is
of the order of e−(c∧1)Et . This can be seen by considering (disregarding rounding
issues) the geometric grid sj = αj with α is close to 1. Let bxc still denote the
largest integer smaller or equal to x. The next theorem provides a bound for the
tails of the pseudo-regret.

Theorem 9. Let

vk , 8(c ∨ 1)
(

σ2
k

∆2
k

+ 4b
3∆k

)
, r0 ,

∑
k:∆k>0 ∆k

(
1 + vkEn

)
.

Then, for any x ≥ 1, we have

P
(
Rn > r0x

) ≤
∑

k:∆k>0

{
2ne−(c∨1)Enx + β̃n(bvkEnxc)

}
, (31)

where we recall that β̃n(t) is essentially of order e−(c∧1)Et (see (30)).



Proof. First note that

P
(
Rn > r0x

)
= P

{ ∑
k:∆k>0 ∆kTk(n) >

∑
k:∆k>0 ∆k(1 + vkEn)x

}

≤ ∑
k:∆k>0 P

{
Tk(n) > (1 + vkEn)x

}
.

Let E ′n = (c ∨ 1)En. We use (10) with τ = µ∗ and u = b(1 + vkEn)xc ≥ vkEnx.
From (14), we have P(Bk,u,t > µ∗) ≤ 2e−u∆2

k/(8σ2
k+4b∆k/3) ≤ 2e−E

′
nx. To bound

the other probability in (10), we use α ≥ 1 and the grid s0, . . . , sM of {1, . . . , n}
realizing the minimum of (30) when t = u. Let Ij = {sj + 1, . . . , sj+1}. Then

P
(∃s : 1 ≤ s ≤ n− u s.t. Bk∗,s,u+s ≤ µ∗

) ≤
M−1∑

j=0

P
(∃s ∈ Ij s.t. Bk∗,s,sj+u+1 ≤ µ∗

)

≤
M−1∑

j=0

P
(∃s ∈ Ij s.t. s(Xk∗,s − µ∗) +

√
2sVsEsj+u+1 + 3bcEsj+u+1 ≤ 0

)

≤ 3
M−1∑

j=0

e−
(c∧1)Esj+u+1

α = β̃n(u) ≤ β̃n(bvkEnxc),

which gives the desired result.

When En ≥ log n, the last term is the leading term. In particular, when c = 1
and Et = ζ log t with ζ > 1, Theorem 9 leads to the following corollary, which
essentially says that for any z > γ log n with γ large enough,

P
(
Rn > z

) ≤ C
zζ ,

for some constant C > 0:

Corollary 1. When c = 1 and Et = ζ log t with ζ > 1, there exist κ1 > 0 and
κ2 > 0 depending only on b, K, (σk)k∈{1,...,K}, (∆k)k∈{1,...,K} satisfying that for
any ε > 0 there exists Γε > 0 (tending to infinity when ε goes to 0) such that for
any n ≥ 2 and any z > κ1 log n

P
(
Rn > z

) ≤ κ2
Γε log z
zζ(1−ε)

Proof. For κ3 > 0 and κ4 > 0 well chosen and depending only on b, K,
(σk)k∈{1,...,K}, (∆k)k∈{1,...,K}, Theorem 9 can be written as

P(Rn > κ3Enx) ≤ 2nKe−Enx + Kβ̃n(z′),

where z′ = bκ4Enxc. Considering x = z/(κ3En), we obtain

P(Rn > z) ≤ 2nKe−z/κ3 + Kβ̃n(z′).

For κ1 , 2κ3 and z > κ1 log n, the first term of the r.h.s is bounded with
2Ke−z/(2κ3), which can be bounded with κ2

log z
zζ for appropriate choice of κ2



(depending only on b, K, (σk)k∈{1,...,K}, (∆k)k∈{1,...,K}). To upper bound β̃n(z′)
(see defintion in (30)), we consider a geometric grid of step α = 1/(1 − ε), and
cut the sum in β̃n in two parts: for the j’s for which sj ≤ z′, we use

e−
(c∧1)E

sj+z′+1
α ≤ e−

E
z′
α = (z′)−ζ(1−ε),

whereas for the j’s for which sj ≤ t, e−
(c∧1)E

sj+z′+1
α ≤ e−

Esj
α ≤ e−j log α

α . The
first sum on j’s has at most 1+(log z′)/ log[1/(1−ε)] terms, whereas the second
sum on j’s is of order of its first term since it is geometrically decreasing. This
finishes the proof.

Since the regret is expected to be of order log n the condition z = Ω(log n)
is not an essential restriction. Further, the regret concentration, although in-
creases with increasing ζ, is pretty slow. For comparison, remember that a
zero-mean martingale Mn with increments bounded by 1 would satisfy P(Mn >
z) ≤ exp(−2z2/n). The slow concentration for UCB-V happens because the first
Ω(log(t)) choices of the optimal arm can be unlucky (yielding small rewards)
in which case the optimal arm will not be selected any more during the first t
steps. Hence, the distribution of the regret will be of a mixture form with a mode
whose position scales linearly with time and whose decays only at a polynomial
rate, which is controlled by ζ.5 This reasoning relies crucially on that the choices
of the optimal arm can be unlucky. Hence, we have the following result:

Theorem 10. Consider Et = ζ log t with cζ > 1. Let k̃ denote the second opti-
mal arm. If the essential infimum of the optimal arm is strictly larger than µk̃,
then the pseudo-regret has exponentially small tails. Inversely, if the essential
infimum of the optimal arm is strictly smaller than µk, then the pseudo-regret
has only polynomial tail.

Proof. Let µ̃ be the essential infimum of the optimal arm. Assume that µ̃ > µk̃.
Then there exists µ′ such that µk̃ < µ′ < µ̃. For any arm k, introduce δk =
µ′ − µk. Let us use (10) with τ = µ′ and where u is the smallest integer larger
than 8

(σ2
k

δ2
k

+ 2b
δk

)E ′n. This value of τ makes the last probability in (10) vanish.
The first term is controlled as in the proof of Theorem 9. Precisely, we obtain
for v′k , 8(c ∨ 1)

(σ2
k

δ2
k

+ 2b
δk

)
, r′0 ,

∑
k:∆k>0 ∆k

(
1 + v′kEn

)
and any x ≥ 1

P
(
Rn > r′0x

) ≤ 2elog(Kn)−(c∨1)Enx,

which proves that Rn has exponential tails in this case.
On the contrary, when µ̃ < µk̃, we consider the following reward distributions:

– the optimal arm concentrates its rewards on µ̃ and b such that its expected
reward is strictly larger than µk̃,

– all suboptimal arms are deterministic to the extent that they always provide
a reward equal to µk̃.

5 Note that entirely analogous results hold for UCB1.



Let q be any positive integer. Consider the event:

Γ =
{
X1,1 = X1,2 = . . . = X1,q = µ̃

}
.

Let c2 , 3bcζ and η , µk̃ − µ̃. On this event, we have for any t ≤ eηq/c2

B1,q,t = µ̃ + c2
log t

q ≤ µk̃.

Besides for any 0 ≤ s ≤ t, we have

B2,s,t = µk̃ + c2
log t

s > µk̃.

This means that the optimal arm cannot be played more than q times during the
first eηq/c2 plays. This gives a regret and a pseudo-regret of at least ∆k̃

(
eηq/c2 −

q
)
. Now consider q large enough in order to have eηq/c2 − q ≥ 1

2eηq/c2 . Let w > 0
such that ew−1eηq/c2 is an integer larger than eηq/c2 . Consider n = ew−1eηq/c2 .
We have

P
(
Rn ≥ ∆k̃

2 w log n
) ≥ P(Γ ) = P(X1,1 = µ̃)q = 1/(w log n)C

for some constant C > 0 depending only on c2, η and P(X1,1 = µ̃). So the
pseudo-regret cannot have thinner tails than polynomial ones.

Now in the general case, when µ̃ < µk̃ but without specific reward distribu-
tions. One can also prove the regret has no thinner tails than polynomial ones.
The proof is essentially the same but more cumbersome. For instance, instead
of considering an event on which X1,1 = X1,2 = . . . = X1,q = µ̃, we consider
an event on which X1,1, X1,2, . . . , X1,q are below µ′′ with µ̃ < µ′′ < µk̃, and
on which, for the second optimal arm, the empirical means stay close to the
associated expected mean µk̃.

Remark 2. In Theorem 9 and Corollary 1, we have considered the pseudo-regret:
Rn =

∑K
k=1 Tk(n)∆k instead of the regret R̂n ,

∑n
t=1 Xk∗,t −

∑n
t=1 XIt,TIt (t).

Our main motivation for this was to provide formulae and assumptions which
are as simple as possible. The following computations show that when the opti-
mal arm is unique, one can obtain similar concentration bounds for the regret:
Consider the interesting case when c = 1 and Et = ζ log t with ζ > 1. By slightly
modifying the analysis in Corollary 1, one can derive that there exists κ1 > 0
such that for any z > κ1 log n, with probability at least 1− z−1, the number of
draws of suboptimal arms is bounded by Cz for some C > 0. This means that
the algorithm draws an optimal arm at least n− Cz times. Now, if the optimal
arm is unique, then n−Cz terms cancel out in sum defining the regret. For the
Cz terms that remain, one can use standard Bernstein inequalities and union
bounds to prove that with probability 1− Cz−1, R̂n ≤ Rn + C ′

√
z holds. Since

the bound on the pseudo-regret is of order z (Corollary 1), a similar bound holds
for the regret.



5.1 Illustration of the risk bounds

The purpose of this section is to illustrate the tail bounds obtained. For this
we ran some computer experiments with bandits with two arms: the payoff of
the optimal arm follows a Bernoulli distribution with expectation 0.5, while the
payoff of the suboptimal arm is deterministic and assumes a value p which is
slightly less than 0.5. This arrangement makes the job of the bandit algorithms
very hard: All algorithms learn the value of the suboptimal arm quickly (although
UCB1 will be very optimistic about this arm despite that all the payoffs received
are the same). Since the difference of 0.5 and p is kept very small, it takes a lot of
trials to identify the optimal arm and in particular to achieve this, the algorithm
has to try the optimal arm many times. If the experiments start in an unlucky
way, the algorithms will have the tendency to choose the suboptimal arm, further
delaying the time of recognizing the true identity of the optimal arm. In all cases,
10, 000 independent runs were used to estimate the quantities of interest and the
algorithms were run for T = 220 ≈ 1, 000, 000 time steps.

We have run experiments with both UCB1 and UCB-V. In the case of UCB1
the exploration coefficient, α (cf. Equation (24)), was chosen to take the value
of 2, which can be considered as a typical choice. In the case of UCB-V we used
ζ = 1, c = 1, as a not too conservative choice (cf. Equation (16)). In both cases
we set b = 1. For the considered bandit problems the difference between UCB1
and UCB-V is the result of that in the case of UCB-V the upper confidence value
of the suboptimal arm will converge significantly faster to the true value than
the same value computed by UCB1 since the estimated variances will always
take the value of zero (the payoff is deterministic).

Fix α ≥ 0. Define the value at risk for the risk level α as the upper α-percentile
of the regret:

Rn(α) = inf{r : P(Rn ≥ r) ≤ α}.
Hence, Rn(α) is a lower bound on the loss that might happen with α probability.
Notice that the tail bounds of the previous section predict that the value at risk
can be excessively large for difficult bandit problems. In particular, the more
aggressive an algorithm is in optimizing the expected regret, the larger the value
at risk is.

Figures 1 and 2 compare the estimated value at risk as a function of time for
UCB1 and UCB-V for an easier (p = 0.48) and a more difficult problem (p =
0.495). Note that UCB-V, having tighter confidence intervals, can be considered
as a more aggressive algorithm. For the figures the risk parameters were chosen
to be α = 0.5, 0.16 and 0.5 (the latter value corresponding to the median).
These figures also show the mean regret. The figures also show the value at
risk estimated by drawing 10,000 samples of a Gaussian distribution fitted to
the regret distribution at each time step, for both algorithms. (These curves are
labeled by pasting “(n)” after the α value.) If the regret is normally distributed,
we can expect a good match across the value-at-risk measurements.

As expected, in the case of the “easy” problem UCB-V outperforms UCB1 by
a large margin (which partially confirms the results on the scaling of the expected
regret with the variance of the suboptimal arms). For UCB1 the distribution of
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Fig. 1. Value at risk as a function of time when the expected payoff of the suboptimal
arm is p = 0.48. The left-hand side (l.h.s.) figure depicts results for UCB1, while the
right-hand side (r.h.s.) figure depicts results for UCB-V. Note the logarithmic scale of
the time axis. For more details see the text.

regret is well approximated by a Gaussian at all time steps. In the case of UCB-
V, we see that the Gaussian approximation overestimates the tail. Actually, in
this case the regret distribution is bimodal (figures for the difficult problem will
be shown later), but the r.h.s. mode has a very small mass (ca. 0.3% at the end
of the experiment). Note that by the end of the experiment the expected regret
of UCB-V is ca. 120, while the expected regret of UCB1 is ca. 870. This task
is already quite challenging for both algorithms: They both have a hard time
identifying the optimal arm. Looking at the distributions (not shown) of how
many times the optimal arm is played, it turns out that UCB1 fails to shifts
the vast majority of the probability mass to the optimal arm by the end of the
experiment. At the same time, UCB-V shifts this happens at around T = 8, 192.
Note that in their initial (transient) phase both algorithms try both actions
equally often (hence in the initial phase the expected regret grows linearly). The
main difference is that UCB-V shrinks the confidence interval of the suboptimal
arm much faster and hence eventually suffers a much smaller regret.

On the more challenging problem, the performance of UCB-V deteriorates
considerably. Although the respective expected regrets of the algorithms are
comparable (1213 and 1195, respectively, for UCB-V and UCB1), the value at
risk for α close to zero for UCB-V is significantly larger than that for UCB1.

In order to illustrate what “goes wrong” with UCB-V we plotted the time
evaluation of the proportion of time when the suboptimal arm is chosen as a
function of time for 20 independent runs. That is, by introducing Tbad(t) =∑t

s=1 I{Is is the bad arm}, the figure shows the time evolution of Tbad(t)/t for 20
different runs. The result is shown in Figure 3. We see that quite a few runs tend
to prefer the suboptimal arm as time goes by, although ultimately the curves for
all runs converge towards 0.

In order to get a better picture of the distribution of picking the wrong arm,
we plotted this distribution as a function of time (Figure 4). Note that at around
time T = 2, 048 (log2(T ) = 11) the probability mass becomes bimodal. At this
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Fig. 2. Value at risk as a function of time when the expected payoff of the suboptimal
arm is p = 0.495. The l.h.s. figure depicts results for UCB1, while the r.h.s. figure
depicts results for UCB-V. For more details see the text.
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Fig. 3. Tbad(t)/t, the proportion of time of using the suboptimal arm in the first t time-
steps as a function of time for 20 independent runs. The bandit problem has parameter
p = 0.495 and the algorithm is UCB-V.

time, a larger mass is shifted towards the (desired) mode with value 0, while a
smaller, but still substantial mass is drifting towards 1. The mass of this second
mode is continuously decreasing, although at a slow rate. The slow rate of this
drift causes the large regret of UCB-V. A similar figure for UCB1 (not shown
here) reveals that for UCB1 the distribution stays unimodal (up to the precision
of estimation) and the mode starts to drift (slowly) towards 0 as late as at time
T = 217.

In order to asses the rate of leakage of the probability mass from the right-
side mode, we plotted the estimated probability of selecting the suboptimal arm
more than α-fraction of the time (i.e., P(Tbad(t) ≥ αt)), as a function of time
and for various values of α, see Figure 5. The figure reinforces that in the initial
phase Tbad(t) is concentrated around 0.5t. At the time when the two modes
appear most of the mass starts to drift towards zero, though at the same time
some mass is drifting towards t as indicated by the divergence of P(Tbad(t) ≥ αt)
away from zero. That all curves are converging to each other reveals that the
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Fig. 4. The distribution of Tbad(t)/t, the frequency of using the suboptimal arm, plot-
ted against time. The bandit problem has parameter p = 0.495 and the algorithm is
UCB-V.
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Fig. 5. The probability of choosing the suboptimal arm more than α-fraction of time
plotted against time and various values of α. Note that the experiment was continued
up to T = 224 steps to show the beginning of the asymptotic phase.

distribution becomes rather concentrated around the two modes, located at 0
and t. As the rate of convergence of the curves toward zero was hard to judge
from the first T = 220 steps (the transient phase hardly ends by this time), we
continued the experiment up to T = 224 time steps (the figure shows the results
up to this time). Plotting the same figure on a log-log scale, it looks as if in the
asymptotic phase these curves followed a polynomial curve.

To show that the regret also follows a bimodal distribution we plotted the
histogram of the regret at times T1 = 16, 384 and T2 = 524, 288, shown on the
left- and r.h.s. subfigures of Figure 6, respectively. The first time point, T1, was
selected so that the arm-choice distribution and hence also the regret distribution
is still unimodal. However, already at this time the regret distribution looks
heavy tailed on the right. By time T2 the regret distribution is already bimodal,
with a substantial mass belonging to the right-side mode (based on the previous
figure, this mass is estimated to be about 25% of the total mass). Note that



the left-side mode is close to zero, while the right-side mode is close to ∆T2 =
0.005 × T2 ≈ 2, 600, confirming that runs contributing to either of the modes
tend to stay with the mode from the very beginning of the experiments. Hence,
the distribution of the regret appears to be of a mixture Gaussians.
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Fig. 6. Distribution of the regret for UCB-V at time T1 = 16, 384 (l.h.s. figure) and
T2 = 524, 288 (r.h.s. figure). The bandit problem has parameter p = 0.495.

6 PAC-UCB

In this section, we consider the case when the exploration function does not
depend on t: Es,t = Es. We show that for an appropriate sequence (Es)s≥0 this
leads to an UCB algorithm which play any suboptimal arm only a few times, with
high probability. Hence, the algorithm is “Probably Approximately Correct”,
hence the name of it. Note that in this setting, the quantity Bk,s,t does not
depend on the time t so we will simply write Bk,s. Besides, in order to simplify
the discussion, we take c = 1.

Theorem 11. Let β ∈ (0, 1). Consider a sequence (Es)s≥0 satisfying Es ≥ 2 and

4K
∑

s≥7 e−Es ≤ β. (32)

Consider uk the smallest integer such that

uk

Euk
>

8σ2
k

∆2
k

+ 26b
3∆k

. (33)

With probability at least 1 − β, the PAC-UCB policy plays any suboptimal arm
k at most uk times.



Proof. See Section A.4.

Let q > 1 be a fixed parameter. A typical choice for Es is

Es = log(Ksqβ−1) ∨ 2, (34)

up to some additive constant ensuring that (32) holds. For this choice, Theo-
rem 11 implies that for some positive constant κ, with probability at least 1−β,
for any suboptimal arm k (i.e., ∆k > 0), the number of plays is bounded by

Tk,β , κ
( σ2

k

∆2
k

+ b
∆k

)
log

[
K

( σ2
k

∆2
k

+ b
∆k

)
β−1

]
.

Notice that this is independent of the total number of plays! This directly leads
to the following upper bound on the regret of the policy at time n

∑K
k=1 Tk(n)∆k ≤

∑
k:∆k>0 Tk,β∆k. (35)

One should notice that the previous bound holds with probability at least 1− β
and on the complement set no small upper bound is possible: one can find a
situation in which with probability of order β, the regret is of order n (even if
(35) holds with probability greater than 1− β). More formally, this means that
the following bound cannot be essentially improved (unless putting additional
assumptions):

E[Rn] =
∑K

k=1 E[Tk(n)]∆k ≤ (1− β)
∑

k:∆k>0 Tk,β∆k + βn

As a consequence, if one is interested to have a bound on the expected regret at
some fixed time n, one should take β of order 1/n (up to possibly a logarithmic
factor):

Theorem 12. Let n ≥ 7. Consider the sequence Es = log[Kn(s + 1)]. For this
sequence, the PAC-UCB policy satisfies

– with probability at least 1− 4 log(n/7)
n , for any suboptimal arm k, the number

of plays up to time n is bounded by 1 +
( 8σ2

k

∆2
k

+ 26b
3∆k

)
log(Kn2).

– the expected regret at time n satisfies

E[Rn] ≤ ∑
k:∆k>0

( 24σ2
k

∆k
+ 30b

)
log(n/3). (36)

Proof. See Section A.5.

7 Open problem

When the time horizon n is known, one may want to choose the exploration
function E depending on the value of n. For instance, in view of Theorems 3 and 9,
one may want to take c = 1 and a constant exploration function E ≡ 3 log n. This
choice ensures logarithmic expected regret and a nice concentration property:

P
{

Rn > 24
∑

k:∆k>0

(
σ2

k

∆k
+ 2b

)
log n

}
≤ C

n . (37)



The behavior of this algorithm should be contrasted to the one with Es,t =
3 log t. Indeed, the algorithm with constant exploration function Es,t = 3 log n
concentrates its exploration phase at the beginning of the plays, and then switches
to the exploitation mode. On the contrary, the algorithm which adapts to the
time horizon explores and exploits at any time during the interval [0;n]. However,
in view of Theorem 10, it satisfies only

P
{

Rn > 24
∑

k:∆k>0

(
σ2

k

∆k
+ 2b

)
log n

}
≤ 1

C(log n)C .

which is significantly worse than (37). The open question is: is there an algorithm
that adapts to time horizon which has a logarithmic expected regret and a
concentration property similar to (37)? We conjecture that the answer is no.

A Proofs of the results

A.1 Lower bound for UCB1

Proposition 1. There exists arm rewards in [0, b] such that UCB1 (defined by
the bias factor (1)) has an expected regret E [Rn] = Ω(b2 log(n)).

Proof. Consider the 2-armed deterministic bandit problem such that arm 1 yields
the reward ∆, and arm 2 the reward 0. In order to obtain a lower bound on the
regret, we derive a lower bound on T2(n).

First consider the “balance equation”

∆ + b

√
2 log(n + 1)

n− p(n)
= b

√
2 log(n + 1)

p(n)
, (38)

where p(n) is considered as a function of n ≥ 1. Note that solving (38) yields

p(n) =
n

2


1−

√
1− 4

(√
1 + n∆2/(2b2 log(n + 1))− 1

n∆2/(2b2 log(n + 1))

)2


 .

Besides, we have the property that: p(n) ≥ 2b2

∆2 log(n + 1) − 4
√

2b3

∆3
(log(n+1))3/2

√
n

,

whose first term is dominant when n is large. Thus p(n) = Ω( b2

∆2 log(n + 1))
The intuition is that UCB1 works by keeping the upper bound B1,T1(n),n+1

of the first arm close to that of the second arm B2,T2(n),n+1 since the algorithm
chooses at each time step the arm that has the highest bound, which decreases
as a consequence its value. Thus we expect that T2(n) will be close to p(n). For
that purpose, let us prove the following result.

Lemma 1. At any time step n+1, if UCB1 chooses arm 1 then we have T2(n) ≥
p(n), otherwise we have T2(n) ≤ p(n). We deduce that for all n ≥ 3, T2(n) ≥
p(n− 1).



Proof. The fist part of the lemma comes from the fact that if T2(n) < p(n), then
T1(n) > n− p(n), thus

B2,T2(n),n+1 = b

√
2 log(n + 1)

T2(n)
> b

√
2 log(n + 1)

p(n)
= ∆ + b

√
2 log(n + 1)

n− p(n)

> ∆ + b

√
2 log(n + 1)

T1(n)
= B1,T1(n),n+1,

which implies that arm 2 is chosen. A similar reasoning holds in the other case.
Now the second part of the lemma is proven by contradition. Assume there

exists n ≥ 3 such that T2(n) < p(n − 1), and let n denote the first such time.
Thus T2(n − 1) ≥ p(n − 2) (note that this is also true if n = 3 since T2(2) = 1
and p(1) ≤ 1/2). Thus T2(n− 1) ≤ T2(n) < p(n− 1) which, from the first part
of the proposition, implies that at time n, arm 2 is chosen. We deduce that

p(n− 1) > T2(n) = T2(n− 1) + 1 ≥ p(n− 2) + 1.

This is impossible since the function x → p(x) has a slope bounded by 1/2 in
the domain [1,∞), thus p(n− 1) ≤ p(n− 2) + 1/2.

From the previous lemma, we deduce that T2(n) = Ω( b2

∆2 log(n)) and thus
the regret Rn = T2(n)∆ = Ω( b2

∆ log(n)), which proves the proposition.

A.2 Proof of Theorem 1

The result follows from a version of Bennett’s inequality which gives a high
probability confidence interval for the mean of an i.i.d. sequence:

Lemma 2. Let U be a real-valued random variable such that almost surely U ≤
b′′ for some b′′ ∈ R. Let µ = E [U ], b′ , b′′ − µ, and b′′+ = b′′ ∨ 0. Let U1, . . . , Un

be i.i.d. copies of U , U t = 1/t
∑t

s=1 Us. The following statements are true for
any x > 0:

– with probability at least 1− e−x, simultaneously for 1 ≤ t ≤ n,

t(U t − µ) ≤
√

2nE [U2] x + b′′+x/3, (39)

– with probability at least 1− e−x, simultaneously for 1 ≤ t ≤ n,

t(U t − µ) ≤
√

2nVar (U)x + b′x/3. (40)

Proof (Proof of Lemma 2). Let v = (Var U)/(b′)2. To prove this inequality, we
use Result (1.6) of Freedman (Freedman, 1975) to obtain that for any a > 0

P
(∃t : 0 ≤ t ≤ n and t(U t − µ)/b′ ≥ a

)
≤ ea+(a+nv) log[nv/(nv+a)].



In other words, introducing h(u) = (1 + u) log(1 + u) − u, with probability at
least 1− e−nvh[a/(nv)], simultaneously for 1 ≤ t ≤ n,

t(U t − µ) < ab′

Consider a =
√

2nvx + x/3. To prove (40), it remains to check that

nvh[a/(nv)] ≥ x. (41)

This can be done by introducing ϕ(r) = (1 + r + r2/6) log(1 + r + r2/6) − r −
2r2/3. For any r ≥ 0, we have ϕ′(r) = (1 + r/3) log(1 + r + r2/6) − r and
3ϕ′′(r) = log(1 + r + r2/6) − (r + r2/6)/(1 + r + r2/6), which is nonnegative
since log(1 + r′) ≥ r′/(1 + r′) for any r′ ≥ 0. The proof of (40) is finished since
ϕ(

√
2x/(nv)) ≥ 0 implies (41).

To prove (39), we need to modify the martingale argument underlying Freed-
man’s result. Precisely, let g(r) , (er − 1− r)/r2, we replace

E
[
eλ[U−EU−λg(λb′)Var U ]

]
≤ 1

by (see e.g., (Audibert, 2004, Chap. 2: Inequality (8.2) and Remark 8.1))

E
[
eλ[U−EU−λg(λb′′)EU2]

]
≤ 1.

By following Freedman’s arguments, we get

P
(∃t : 0 ≤ t ≤ n and t(U t − µ) ≥ a

)

≤ min
λ>0

e−λa+λ2g(λb′′)nE[U2].

Now if b′′ ≤ 0, this minimum is upper bounded with

min
λ>0

e−λa+ 1
2 λ2nE[U2] = e

− a2

2nE[U2] ,

which leads to (39) when b′′ ≤ 0. When b′′ > 0, the minimum is reached for λb′′ =
log

( b′′a+nE[U2]
nE[U2]

)
and then the computations are similar to the one developed to

obtain (40).

Remark 3. Lemma 2 differs from the standard version of Bernstein’s inequality
in a few ways. The standard form of Bernstein’s inequality (using the notation
of this lemma) is as follows: for any w > 0,

P
(
Un − µ > w

) ≤ e
− nw2

2Var(U)+(2b′w)/3 . (42)

When this inequality is used to derive high-probability confidence interval, we
get

n(Un − µ) ≤
√

2nVar (U)x + 2 b′x
3 .

Compared with (40) we see that the second term here is larger by a multiplicative
factor of 2. This factor is saved thanks to the use of Bennett’s inequality. Another
difference is that Lemma 2 allows the time indices to vary in an interval. This
form follows from a martingale’s argument due to Freedman (Freedman, 1975).



Given Lemma 2, the proof of Theorem 1 essentially reduces to an application
of the “square-root trick”. For the first part of the theorem, we will prove a result
slightly stronger since it will be useful to obtain the second part of Theorem 1:
for any x > 0 and n ∈ N, with probability at least 1− 3e−x, for any 0 ≤ t ≤ n,

|Xt − µ| <
√

2nVtx
t + 3bnx

t2 . (43)

First, notice that if we prove the theorem for random variables with b = 1 then
the theorem follows for the general case by a simple scaling argument.

Let σ denote the standard deviation of X1: σ2 , Var X1, and introduce
V , E

[
(X1 − EX1)4

]
. Lemma 2, (40) with the choices Ui = Xi, Ui = −Xi, and

Lemma 2, (39) with the choice Ui = −(Xi −E[X1])2 yield that with probability
at least 1− 3e−x, for any 0 ≤ t ≤ n, we simultaneously have

|Xt − µ| ≤ σ
√

2nx
t + x

3t
(44)

and
σ2 ≤ Vt + (µ−Xt)2 +

√
2nV x

t . (45)

Let L , nx/t2. We claim that from (44) and (45), it follows that

σ ≤ √
Vt + 1.8

√
L. (46)

Since the random variable X1 takes its values in [0, 1], we necessarily have
σ ≤ 1/2. Hence, when 1.8

√
L ≥ 1/2 then (46) is trivially satisfied, so from now

on we may assume that 1.8
√

L ≤ 1/2, i.e., L ≤ (3.6)−2. Noting that V ≤ σ2, by
plugging (44) into (45) we obtain for any 0 ≤ t ≤ n

σ2 ≤ Vt + 2Lσ2 + 2L
3 σ
√

2L + L2

9 + σ
√

2L

≤ Vt +
√

Lσ
3.6 + 2

3×(3.6)2 σ
√

2L + L
9×(3.6)2 + σ

√
2L

≤ Vt + 1.77
√

Lσ + L
100 ,

or σ2 − 1.77
√

Lσ − (Vt + L
100 ) ≤ 0. The l.h.s. when viewed as a second order

polynomial in σ has a positive leading term, hence its larger root gives an upper
bound on σ: σ ≤ 1.77

2

√
L+

√
Vt + 0.8L ≤ √

Vt +1.8
√

L, which finished the proof
of (46). Plugging (46) into (44), we obtain

|Xt − µ| ≤ √
2VtL +

[
1.8
√

2 + 1/3
]
L <

√
2VtL + 3L,

which, given the definition of L, ends the proof of (43), and thus the proof of
the first part of Theorem 1.

Let us now consider the second part of the theorem: Fix t1 ≤ t2, t1, t2 ∈ N,
let α ≥ t2/t1. From (43), with probability at least 1−3e−x/α, for t ∈ {t1, . . . , t2},
we have

t|Xt − µ| <
√

2t2Vtx/α + 3x/α
≤ √

2tVtx + 3x.
(47)



To finish the proof, we use the previous inequality for well chosen intervals
[t1; t2] forming a partition of [3; n]. This last interval starts from 4 since (47) is
trivial for t < 4. Precisely, introduce

β̄(x, n) , 3 min
M∈N

s0=3<s1<···<sM=n
s.t. sj+1≤α(sj+1)

M−1∑

j=0

e−x/α.

and let s0, . . . , sM be the grid realizing the above minimum. We have

P
(∃t : 1 ≤ t ≤ n s.t. |Xt − µ| >

√
2Vtx

t + 3x
t

)

≤ ∑M−1
j=0 P

(∃t : sj < t ≤ sj+1 s.t.
t|Xt − µ| > √

2tVtx + 3x
)

≤ 3
∑M−1

j=0 e−x/α

= β̄(x, n)
≤ β(x, n),

where the last inequality comes from the use of a geometric grid of step α and
a complete grid {3, 4, . . . , n}. This ends the proof of Theorem 1.

A.3 Proof of Theorem 6

We want to prove that if cζ < 1/6 then there exists a bandit problem such that
UCB-V suffers a polynomial loss.

Let ε be a number in the (0, 1) interval to be chosen later. Consider the
following two-armed bandit problem: Let {X1t} be an i.i.d. Bernoulli sequence
with P(X1t = 1) = ε. Let {X2t} be the deterministic sequence given by X2t =
ε/2. Thus, µ∗ = µ1 = E [X11] = ε > ε/2 = E [X21] = µ2, i.e., the first arm is the
optimal one. Note that b = 1.

Since cζ < 1/6, we have δ , 1/6 − cζ > 0. Hence we can choose ε in (0, 1)
such that

log(1/(1−ε))
ε < 1−3δ

1−6δ . (48)

Indeed, such a value exists since limε→0 log(1/(1− ε))/ε = 1 and (1− 3δ)/(1−
6δ) > 1. Let γ = (1− 3δ)/ log(1/(1− ε)). Note that γ > 0. The following claim
holds then:
Claim: Fix n ∈ N and consider an event when during the first T = dγ log ne
pulls the optimal arm always returns 0. On such an event the optimal arm is not
pulled more than T times during the time interval [1, n], i.e., T1(n) ≤ T .

Proof. Note that on the considered event V1t = 0, X1t = 0 and hence

B1,T1(t−1),t = 3cζ log(t)/T1(t− 1).

Further,
B2,T2(t−1),t = ε/2 + 3cζ log(t)/T2(t− 1) ≥ ε/2.



Let t1 be the time t when arm one is pulled the T -th time. If t1 ≥ n then the
claim holds. Hence, assume that t1 < n. In the next time step, t = t1 + 1, we
have T1(t− 1) = T , hence

B1,T1(t−1),t = 3c ζ log(t)
T

≤ 3c ζ log(n)
T

≤ 3c ζ
γ

= (1− 6δ) log(1/(1−ε))
2(1−3δ)

< ε
2 ,

where the last step follows by (48). Since ε/2 ≤ B2,T2(t−1),t it follows that the
algorithm chooses arm 2 at time step t1 + 1 and T1(t) = T . Since the same
argument can be repeated for t1 + 2, t1 + 3, . . . , n, the claim follows.

Now observe that the probability of the event that the optimal arm returns
0 during its first T pulls is

(1− ε)T ≥ (1− ε)γ log n = nγ log(1−ε) = n−(1−3δ).

Further, when this event holds the regret is at least (n − T )ε/2. Thus, the
expected regret is at least

ε
2n1−(1−3δ)(1− γ(log n)/n) = ε

2n3δ(1− γ(log n)/n),

thus finishing the proof.

A.4 Proof of Theorem 11

Without loss of generality (by a scaling argument), we may assume that b = 1.
Consider the event A on which

∀s ≥ 7 ∀k ∈ {1, . . . , K}





∣∣Xk,s − µk

∣∣ < σk

√
2Es

s + Es

3s

σk ≤
√

Vk,s + 1.8
√
Es

s√
Vk,s ≤ σk +

√
Es

2s

(49)

Let us show that this event holds with probability at least 1− β.

Proof. To prove the first two inequalities, the arguments are similar to the ones
used in the proof of Theorem 1. The main difference here is that we want the third
inequality to simultaneously hold. We apply Lemma 2 with x = Es, n = s and
different i.i.d. random variables: Wi = Xk,i, Wi = −Xk,i, Wi = (Xk,i−µk)2 and
Wi = −(Xk,i − µk)2. We use that the second moment of the last two random
variables satisfies E[(Xk,1 − µk)4] ≤ σ2

k and that the empirical expectation of
(Xk,i − µk)2 is

1
s

∑s
i=1(Xk,i − µk)2 = Vk,s + (Xk,s − µk)2.



We obtain that for any s ≥ 7 and k ∈ {1, . . . , K}, with probability at least
1− 4e−Es





∣∣Xk,s − µk

∣∣ < σk

√
2Es

s + Es

3s

σ2
k ≤ Vk,s + (Xk,s − µk)2 +

√
2σ2

kEs

s

Vk,s + (Xk,s − µk)2 ≤ σ2
k + σk

√
2Es

s + Es

3s ≤
(
σk +

√
Es

2s

)2

As we have seen in Section A.2, the above first two inequalities give the first two
inequalities of (49). Finally, taking the square root in the above third inequality
gives the last inequality of (49).

Using an union bound, all these inequalities hold simultaneously with prob-
ability at least

1− 4
∑K

k=1

∑
s≥7 e−Es ≥ 1− β.

¥

Remember that Bk,s , Xk,s +
√

2Vk,sEs

s + 3Es

s . Now let us prove that on the
event A, for any s ≥ 1 and k ∈ {1, . . . , K}, we have µk ≤ Bk,s and

Bk,s ≤ µk + 2σk

√
2Es

s + 13Es

3s
(50)

Proof. The inequality µk ≤ Bk,s is obtained by plugging the second inequality
of (49) in the first one of (49) and by noting that since Es ≥ 2, the inequality is
trivial for s ≤ 6. Introduce Ls = Es

s . To prove (50), we used the first and third
inequalities of (49) to obtain

Bk,s ≤ µk + σk

√
2Ls + Ls

3 +
√

2Ls

(
σk +

√
Ls/2

)
+ 3Ls

= µk + 2σk

√
2Ls + 13Ls

3 .

Once more, the inequality is trivial for s ≤ 6.

¥
Now let us prove that the choice of uk in Theorem 11 guarantees that

µk + 2σk

√
2Euk

uk
+ 13Euk

3uk
< µ∗. (51)

Proof. For the sake of lightening the notation, let us drop for a moment the k
indices, so that (51) is equivalent to

2σ
√

2Eu

u + 13Eu

3u < ∆. (52)

Let r = u/Eu. We have

(52) ⇔ r − 13
3∆ > 2σ

∆

√
2r

⇔ r > 13
3∆ and

(
r − 13

3∆

)2
> 8σ2

∆2 r

⇔ r > 13
3∆ and r2 − (

8σ2

∆2 + 26
3∆

)
r + 169

9∆2 > 0

This trivially holds for r > 8σ2

∆2 + 26
3∆ .



By adapting the argument leading to (11), we obtain
{∃k : Tk(∞) > uk

}

⊂
({∃k s.t. Bk,uk

> τ
} ∪ {∃s ≥ 1 s.t. Bk∗,s ≤ τ

})
.

Taking τ = µ∗ and using (51),we get
{∃k : Tk(∞) > uk

}

⊂
({∃k s.t. Bk,uk

> µk + 2σk

√
2Euk

uk
+ 13Euk

3uk

}

∪{∃s ≥ 1 s.t. Bk∗,s ≤ µ∗
})

⊂ A.

So we have proved that

P
(∃k : Tk(∞) > uk

) ≤ P(A) ≤ β,

which is the desired result.

A.5 Proof of Theorem 12

Consider the following sequence E ′s = log[Kn(s + 1)] for s ≤ n and E ′s = ∞
otherwise. For this sequence, the assumptions of Theorem 11 are satisfied for β =
4 log(n/7)

n since
∑

7≤s≤n 1/(s + 1) ≤ log(n/7). Besides, to consider the sequence
(E ′s)s≥0 instead of (Es)s≥0 does not modify the algorithm up to time n. Therefore
with probability at least 1− β, we have

Tk(n)−1
ETk(n)−1

≤ 8σ2
k

∆2
k

+ 26b
3∆k

,

hence
Tk(n) ≤ 1 +

( 8σ2
k

∆2
k

+ 26b
3∆k

)
log[KnTk(n)], (53)

which gives the first assertion.
For the second assertion, first note that since Rn ≤ n, (36) is useful only

when 30(K − 1) log(n/3) < n. So the bound is trivial when n ≤ 100 or when
K ≥ n/50. For n > 100 and K < n/50, (53) gives

Tk(n) ≤ 1 +
( 8σ2

k

∆2
k

+ 26b
3∆k

)
log[n3/50] ≤ ( 24σ2

k

∆2
k

+ 26b
∆k

)
log(n/3),

hence

E[Tk(n)] ≤ 4 log(n/7) +
( 24σ2

k

∆2
k

+ 26b
∆k

)
log(n/3) ≤ ( 24σ2

k

∆2
k

+ 30b
∆k

)
log(n/3).
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