Stochastic Simultaneous Optimistic Optimization

Michal.Valko@inria.fr, A.Carpentier@statslab.cam.ac.uk, and Rémi.Munos@inria.fr

SETTING

STOSOO is a global function maximizer:

- Goal: Maximize $f: \mathcal{X} \rightarrow \mathbb{R}$ given a budget of n evaluations.
- Challenges: f is stochastic and has unknown smoothness
- Protocol: At round t, select state x_{t}, observe r_{t} such that $\mathbb{E}\left[r_{t} \mid x_{t}\right]=f\left(x_{t}\right)$.
After n rounds, return a state $x(n)$
- Loss: $R_{n}=\sup _{x \in \mathcal{X}} f(x)-f(x(n))$

STOSOO operates on a given hierarchical partitioning of \mathcal{X} :

- For any h, \mathcal{X} is partitioned in K^{h} cells $\left(X_{h, i}\right)_{0 \leq i \leq K^{h}-1}$.
- K-ary tree \mathcal{T}_{∞} where depth $h=0$ is the whole \mathcal{X}.

- StoSOO adaptively creates finer and finer partitions of \mathcal{X}.

- $x_{h, i} \in X_{h, i}$ is a specific state per cell where f is evaluated

COMPARISON
deterministic stochastic known smoothness DOO Zooming or HOO unknown smoothness DIRECT or SOO STOSOO

Hierarchical optimistic optimization algorithms

ASSUMPTIONS

There exists a semi-metric ℓ on \mathcal{X} (triangle inequality not required):
A1 Local smoothness of f : For all $x \in \mathcal{X}$:
$f\left(x^{*}\right)-f(x) \leq \ell\left(x, x^{*}\right)$.
" f does not decrease too fast around $x^{* "}$

Bounded diameters and well-shaped cells: There exists a decreasing sequence $w(h)>0$, such that for any depth $h \geq 0$ and for any cell $\mathcal{X}_{h, i}$ of depth h, we have $\sup _{x \in X_{h, i}} \ell\left(x_{h, i}, x\right) \leq w(h)$. Moreover, there exists $\nu>0$ such that for any depth $h \geq 0$, any cell $\mathcal{X}_{h, i}$ contains a ℓ-ball of radius $\nu w(h)$ centered in $x_{h, i}$.

MEASURE OF COMPLEXITY

For any $\varepsilon>0$, write the set of ε-optimal states:

$$
\mathcal{X}_{\varepsilon} \stackrel{\text { def }}{=}\left\{x \in \mathcal{X}, f(x) \geq f^{*}-\epsilon\right\}
$$

Definition 1 (near-optimality dimension). Smallest constant d such that there exists $C>0$, for all $\varepsilon>0$, the packing number of $\mathcal{X}_{\varepsilon}$ with ℓ balls of radius $\nu \epsilon$ is less than $C \varepsilon^{-d}$.

Illustration:

$f\left(x^{*}\right)-f(x)=\Theta\left(\left\|x^{*}-x\right\|\right) \quad f\left(x^{*}\right)-f(x)=\Theta\left(\left\|x^{*}-x\right\|^{2}\right)$
$\ell(x, y)=\|x-y\| \Longrightarrow d=0 \quad \ell(x, y)=\|x-y\| \Longrightarrow d=D / 2$ $\ell(x, y)=\|x-y\|^{2} \Longrightarrow d=0$

StoSOO Algorithm

Parameters: number of function evaluations n, maximum number of evaluations per node $k>0$, maximum depth $h_{\text {max }}$, and $\delta>0$.

Initialization:

$\mathcal{T} \leftarrow\{0[0,0]\}\{$ root node $\}$
$t \leftarrow 0$ \{number of evaluations
$m \leftarrow 0$ \{number of leaf expansions
while $t \leq n$ do
for $h=0$ to $\min \left(\operatorname{depth}(\mathcal{T}), h_{\max }\right)$ do if $t \leq n$ then

For each leaf o $h, j] \in \mathcal{L}$, compute its b-value
$b_{h, j}(t)=\hat{\mu}_{h, j}(t)+\sqrt{\log (n k / \delta) /\left(2 T_{h, j}(t)\right)}$
Among leaves $\circ[h, j] \in \mathcal{L}_{t}$ at depth h, select
$\circ[h, i] \in \underset{\sim}{\arg \max } b_{h, j}(t)$
$\circ[h, j] \in \mathcal{L}$
if $b_{h, i}(t) \geq b_{\text {max }}$ then
if $T_{h, i}(t)<k$ then
Evaluate (sample) state $x_{t}=x_{h, i}$. Collect reward r_{t} (s.t. $\mathbb{E}\left[r_{t} \mid x_{t}\right]=f\left(x_{t}\right)$) $t \leftarrow t+1$
else \{i.e. $T_{h, i}(t) \geq k$, expand this node Add the K children of $\circ[h, i]$ to \mathcal{T} $b_{\text {max }} \leftarrow b_{h, i}(t)$ end if
end if
end if
end for
end while
Output: The representative point with the highest $\hat{\mu}_{h, j}(n)$ among the deepest expanded nodes:
$x(n)=\underset{x_{h, j}}{\arg \max } \hat{\mu}_{h, j}(n)$ s.t. $h=\operatorname{depth}(\mathcal{T} \backslash \mathcal{L})$

How it works?

- StoSOO iteratively traverses and builds a tree over \mathcal{X}
- at each traversal it selects several nodes simultaneously
- the selection is optimistic, based on confidence bounds
- selected nodes are either sampled or expanded
- sample the node k times for a confident estimate of $f\left(x_{h, i}\right)$
- returns the deepest expanded node

ANALYSIS

Main result:

Theorem 1. Let d be the $\nu / 3$-near-optimality dimension and C be the corresponding constant. If the assumptions hold, then the loss of STOSOO run with parameters $k, h_{\max }$, and $\delta>0$, after n iterations is bounded, with probability $1-\delta$, as:

$$
R_{n} \leq 2 \varepsilon+w\left(\min \left(h(n)-1, h_{\varepsilon}, h_{\max }\right)\right)
$$

where $\varepsilon=\sqrt{\log (n k / \delta) /(2 k)}$ and $h(n)$ is the smallest $h \in \mathbb{N}$, such that:

$$
C(k+1) h_{\max } \sum_{l=0}^{h}(w(l)+2 \varepsilon)^{-d} \geq n,
$$

and h_{ε} is defined as:
$h_{\varepsilon}=\arg \min \{h \in \mathbb{N}: w(h+1)<\varepsilon\}$.

Exponential diameters and $d=0$:
Corollary 1. Assume that the diameters of the cells decrease exponentially fast, i.e., $w(h)=c \gamma^{h}$ for some $c>0$ and $\gamma<1$. Assume that the $\nu / 3$-near-optimality dimension is $d=0$ and let C be the corresponding constant. Then the expected loss of STOSOO run with parameters k $h_{\max }=\sqrt{n / k}$, and $\delta>0$, is bounded as:
$\mathbb{E}\left[R_{n}\right] \leq(2+1 / \gamma) \varepsilon+c \gamma^{\sqrt{n / k}} \min \{0.5 / C, 1\}-2+2 \delta$.
Corollary 2. For the choice $k=n / \log ^{3}(n)$ and $\delta=1 / \sqrt{n}$, we have:

$$
\mathbb{E}\left[R_{n}\right]=O\left(\frac{\log ^{2}(n)}{\sqrt{n}}\right)
$$

This result shows that, surprisingly, STOSOO can achieve the same rate $\tilde{O}\left(n^{-1 / 2}\right)$, up to a logarithmic factor, as the HOO or Stochastic DOO algorithms run with the best possible metric, although StoSOO does not require the knowledge of it. STOSOO (diamonds) vs. Stochastic DOO with ℓ_{1} (circles) and h_{2} (squares) on f_{1}

THE IMPORTANT CASE $d=0$

Example 1: Functions f defined on $[0,1]^{D}$ that are locally equivalent to a polynomial of degree α around their maximum, i.e., $f(x)-f\left(x^{*}\right)=\Theta\left(\left\|x-x^{*}\right\|^{\alpha}\right)$ for some $\alpha>0$, where $\|\cdot\|$ is any norm. The choice of semi-metric $\ell(x, y)=\|x-y\|^{\alpha}$ implies that the near-optimality dimension $d=0$. This covers already a large class of functions.

Example 2: More generally, we consider a finite dimensional and bounded space \mathcal{X}, (e.g., Euclidean space $[0,1]^{D}$) with a finite doubling constant. Let a function in such space have upper- and lower envelope around x^{*} of the same order, i.e., there exists constants $c \in(0,1)$, and $\eta>0$, such that for all $x \in \mathcal{X}$:

$$
\min \left(\eta, c \ell\left(x, x^{*}\right)\right) \leq f\left(x^{*}\right)-f(x) \leq \ell\left(x, x^{*}\right)
$$

Any function satisfying (1) lies in the gray area and possesses a lower- and upper-envelopes that are of same order around x^{*}.

Example of a function with different order in the upper and lower envelopes, when $\ell(x, y)=|x-y|^{\alpha}$:

$$
f(x)=1-\sqrt{x}+\left(-x^{2}+\sqrt{x}\right) \cdot\left(\sin \left(1 / x^{2}\right)+1\right) / 2
$$

The lower-envelope behaves like a square root whereas the upper one is quadratic. The maximum number of ℓ-balls with radius ε that can pack $\mathcal{X}_{\varepsilon}$ (i.e., Euclidean balls with radius $\varepsilon^{1 / \alpha}$) is at most of order $\varepsilon^{1 / 2} / \varepsilon^{\varepsilon / \alpha} \leq \varepsilon^{-3 / 2}$, since $\alpha \leq 1 / 2$ in order to satisfy the assumption on f. We deduce that there is no semi-metric of the form $|x-y|^{\alpha}$ for which $d<3 / 2$.

EXPERIMENTS

WWN

Left: Two-sine product function $f_{1}(x)=\frac{1}{2}(\sin (13 x) \cdot \sin (27 x))+0.5$. Right: Garland function: $f_{2}(x)=4 x(1-x) \cdot\left(\frac{3}{4}+\frac{1}{4}(1-\sqrt{|\sin (60 x)|})\right)$.

StoSOO's on f_{1}. Left: Noised with $\mathcal{N}_{T}(0,0.01)$. Middle: Noised with $\mathcal{N}_{T}(0,0.1)$. Right: Noised with $\mathcal{N}_{T}(0,1)$.

STOSOO's performance for the garland function. Left noised with $\mathcal{N}_{T}(0,0.01)$. Right: Noised with $\mathcal{N}_{T}(0,0.1)$

Code at: HTTPS:/ /SEQUEL.LILLE.INRIA.FR/SOFTWARE/STOSOO

