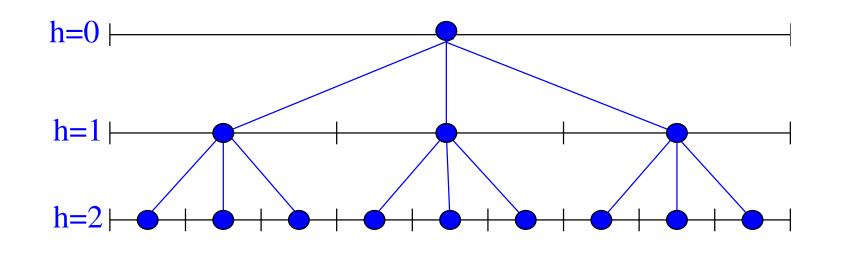
STOCHASTIC SIMULTANEOUS OPTIMISTIC OPTIMIZATION

MICHAL.VALKO@INRIA.FR, A.CARPENTIER@STATSLAB.CAM.AC.UK, AND RÉMI.MUNOS@INRIA.FR

SETTING	STOSOO ALGORITHM	The important case $d = 0$
STOSOO is a global function maximizer:	Parameters: number of function evaluations <i>n</i> , maximum num-	Example 1: Functions f defined on $[0,1]^D$ that are locally equiv-
• Goal: Maximize $f : \mathcal{X} \to \mathbb{R}$ given a budget of <i>n</i> evaluations.	ber of evaluations per node $k > 0$, maximum depth h_{\max} , and $\delta > 0$.	alent to a polynomial of degree α around their maximum, i.e., $f(x) - f(x^*) = \Theta(x - x^* ^{\alpha})$ for some $\alpha > 0$, where $ \cdot $ is any
 Challenges: f is <u>stochastic</u> and has <u>unknown smoothness</u> 	Initialization: $\mathcal{T} \leftarrow \{\circ[0,0]\}$ {root node}	norm. The choice of semi-metric $\ell(x, y) = x - y ^{\alpha}$ implies that the near-optimality dimension $d = 0$. This covers already a large
• Protocol: At round t , select state x_t , observe r_t such that	$t \leftarrow 0$ {number of evaluations}	class of functions.
$\mathbb{E}[r_t x_t] = f(x_t).$	$m \leftarrow 0$ {number of leaf expansions} while $t \le n$ do	Example 2: More generally, we consider a finite dimensional and
After n rounds, return a state $x(n)$.	$b_{\max} \leftarrow -\infty$ for $h = 0$ to min(depth(\mathcal{T}), h_{\max}) do	bounded space \mathcal{X} , (e.g., Euclidean space $[0, 1]^D$) with a finite doubling constant. Let a function in such space have upper- and lower
• Loss: $R_n = \sup_{x \in \mathcal{X}} f(x) - f(x(n))$	if $t \le n$ then For each leaf $\circ[h, j] \in \mathcal{L}$, compute its <i>b</i> -value:	envelope around x^* of the same order, i.e., there exists constants $c \in (0, 1)$, and $\eta > 0$, such that for all $x \in \mathcal{X}$:
STOSOO operates on a given hierarchical partitioning of \mathcal{X} :	$b_{h,j}(t) = \hat{\mu}_{h,j}(t) + \sqrt{\log(nk/\delta)/(2T_{h,j}(t))}$ Among leaves $\circ[h, j] \in \mathcal{L}_t$ at depth <i>h</i> , select	$\min(\eta, c\ell(x, x^*)) \le f(x^*) - f(x) \le \ell(x, x^*). \tag{1}$
	$\circ[h,i] \in \arg\max b_{h,i}(t)$	$f(x^*) = c\ell(x, x^*)$

- For any h, \mathcal{X} is partitioned in K^h cells $(X_{h,i})_{0 \le i \le K^h 1}$.
- *K*-ary tree \mathcal{T}_{∞} where depth h = 0 is the whole \mathcal{X} .



• STOSOO adaptively creates finer and finer partitions of X.

		•		· · • • ·		٥	· • ·		•	· · · · ·	
• • •	• •		٥	· ©					۲	• • •	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
						•			•		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

• $x_{h,i} \in X_{h,i}$ is a specific state per cell where *f* is evaluated

COMPARISON

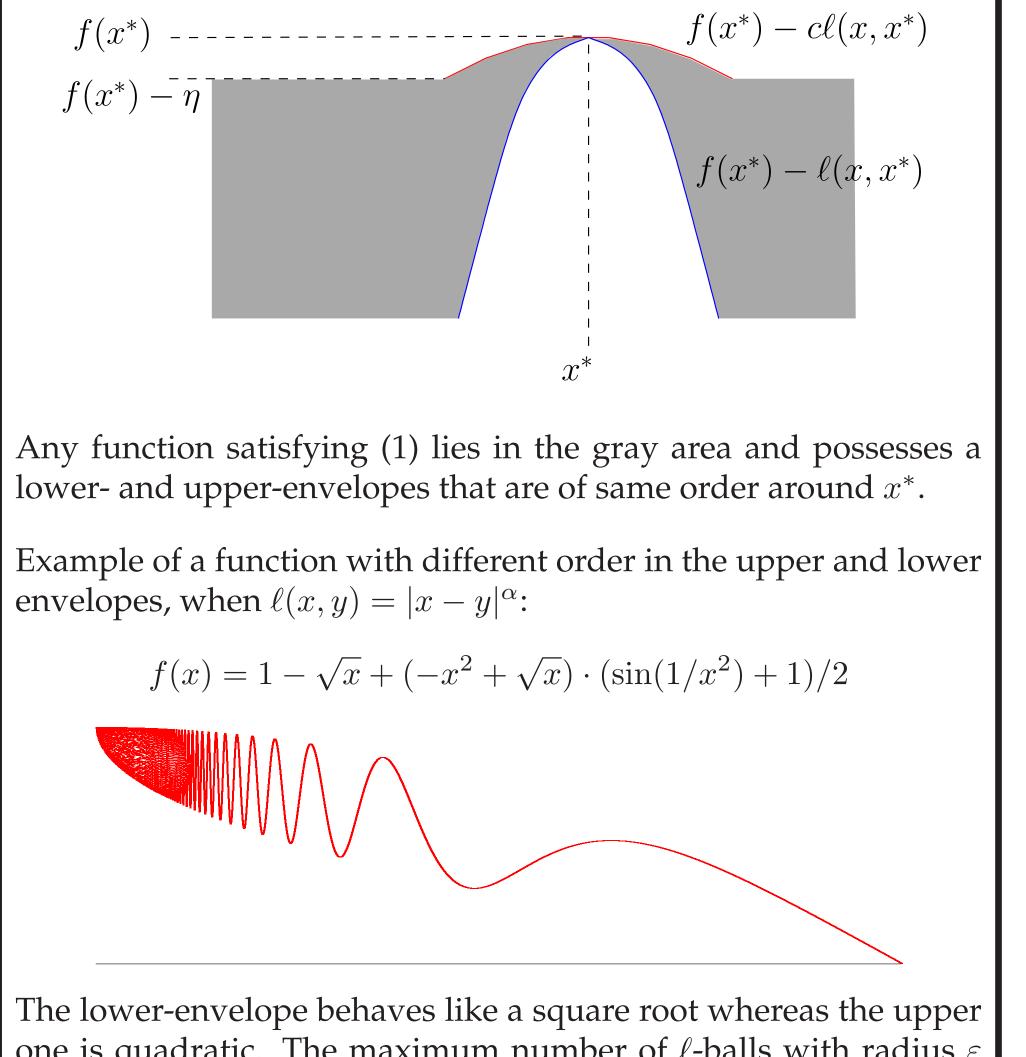
	deterministic	stochastic
known smoothness	DOO	Zooming or HOO
unknown smoothness	DIRECT or SOO	StoSOO

Hierarchical optimistic optimization algorithms

```
Lon, j(c)
                                             \circ [h,j] \in \mathcal{L}
         if b_{h,i}(t) \ge b_{\max} then
            if T_{h,i}(t) < k then
                Evaluate (sample) state x_t = x_{h,i}.
                Collect reward r_t (s.t. \mathbb{E}[r_t|x_t] = f(x_t)).
                t \leftarrow t + 1
            else {i.e. T_{h,i}(t) \ge k, expand this node}
                Add the K children of \circ[h, i] to \mathcal{T}
                b_{\max} \leftarrow b_{h,i}(t)
            end if
         end if
      end if
   end for
end while
Output: The representative point with the highest \hat{\mu}_{h,j}(n)
among the deepest expanded nodes:
             x(n) = \arg \max \hat{\mu}_{h,j}(n) \text{ s.t. } h = \operatorname{depth}(\mathcal{T} \setminus \mathcal{L}).
```

How it works?

- STOSOO iteratively traverses and builds a tree over \mathcal{X}
- at each traversal it selects several nodes **simultaneously**
- the selection is **optimistic**, based on confidence bounds
- selected nodes are either **sampled** or **expanded**
- sample the node k times for a confident estimate of $f(x_{h,i})$



one is quadratic. The maximum number of ℓ -balls with radius ε that can pack $\mathcal{X}_{\varepsilon}$ (i.e., Euclidean balls with radius $\varepsilon^{1/\alpha}$) is at most of order $\varepsilon^{1/2}/\varepsilon^{1/\alpha} \leq \varepsilon^{-3/2}$, since $\alpha \leq 1/2$ in order to satisfy the assumption on f. We deduce that there is no semi-metric of the form $|x - y|^{\alpha}$ for which d < 3/2.

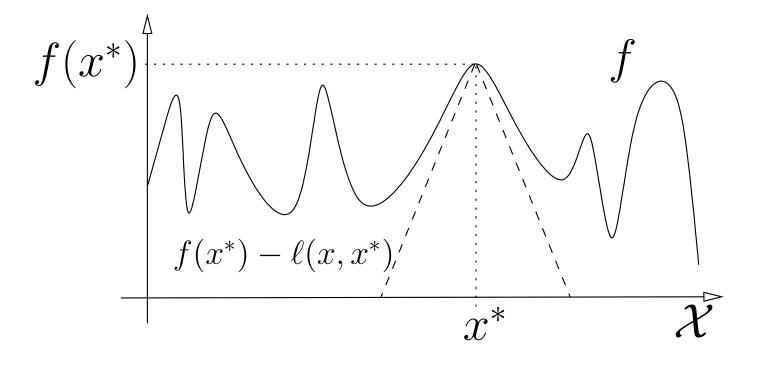
ASSUMPTIONS

There exists a semi-metric ℓ on \mathcal{X} (triangle inequality not required):

A1 Local smoothness of f: For all $x \in \mathcal{X}$:

 $f(x^*) - f(x) \le \ell(x, x^*).$

"*f* does not decrease too fast around x^* "



A2 Bounded diameters and well-shaped cells: There exists a decreasing sequence w(h) > 0, such that for any depth $h \geq 0$ and for any cell $\mathcal{X}_{h,i}$ of depth h, we have $\sup_{x \in X_{h,i}} \ell(x_{h,i}, x) \le w(h)$. Moreover, there exists $\nu > 0$ such that for any depth $h \ge 0$, any cell $\mathcal{X}_{h,i}$ contains a ℓ -ball of radius $\nu w(h)$ centered in $x_{h,i}$.

MEASURE OF COMPLEXITY

For any $\varepsilon > 0$, write the set of ε -optimal states:

$$\mathcal{X}_{\varepsilon} \stackrel{\text{def}}{=} \{ x \in \mathcal{X}, f(x) \ge f^* - \epsilon \}$$

• returns the deepest **expanded** node

ANALYSIS

Main result:

Theorem 1. Let d be the $\nu/3$ -near-optimality dimension and C be the corresponding constant. If the assumptions hold, then the loss of **STOSOO** run with parameters k, h_{max} , and $\delta > 0$, after n iterations is bounded, with probability $1 - \delta$, as:

 $R_n \le 2\varepsilon + w \left(\min \left(h(n) - 1, h_{\varepsilon}, h_{\max} \right) \right)$

where $\varepsilon = \sqrt{\log(nk/\delta)/(2k)}$ and h(n) is the smallest $h \in \mathbb{N}$, such that:

$$C(k+1)h_{\max}\sum_{l=0}^{h} \left(w\left(l\right)+2\varepsilon\right)^{-d} \ge n$$

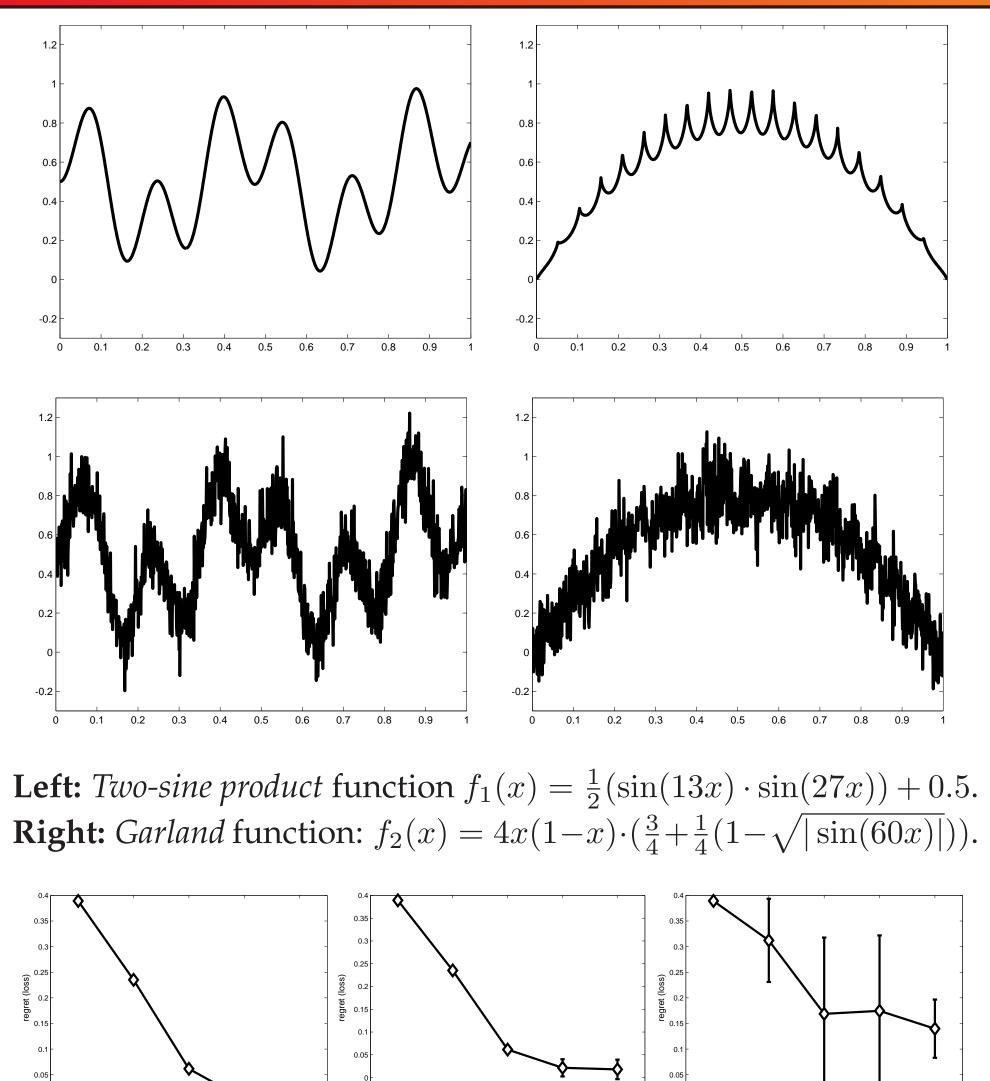
and h_{ε} is defined as:

 $h_{\varepsilon} = \arg\min\{h \in \mathbb{N} : w(h+1) < \varepsilon\}.$

Exponential diameters and d = 0:

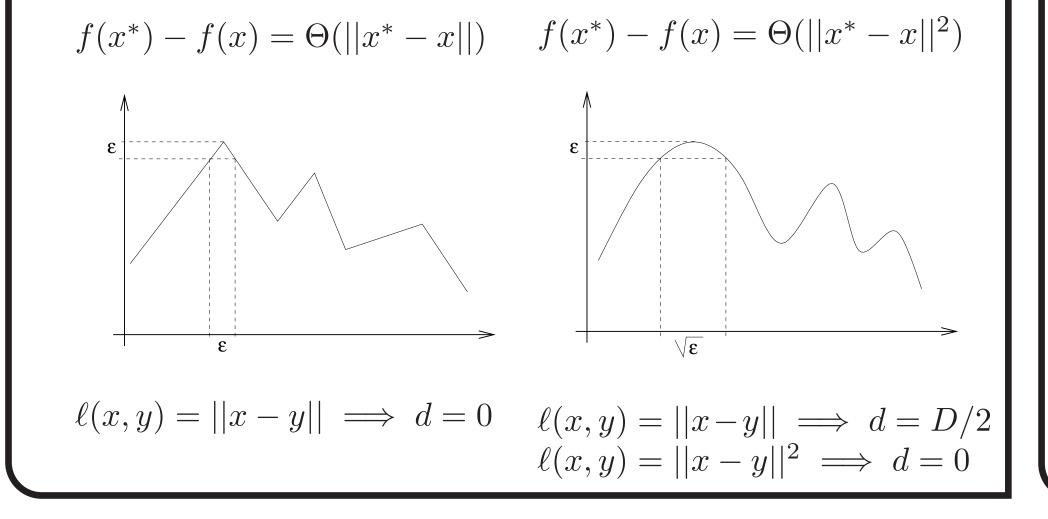
Corollary 1. Assume that the diameters of the cells decrease exponentially fast, i.e., $w(h) = c\gamma^h$ for some c > 0 and $\gamma < 1$. Assume that the $\nu/3$ -near-optimality dimension is d = 0 and let C be the corresponding constant. Then the expected loss of STOSOO run with parameters k, $h_{\max} = \sqrt{n/k}$, and $\delta > 0$, is bounded as:

EXPERIMENTS



Definition 1 (near-optimality dimension). Smallest constant d such that there exists C > 0, for all $\varepsilon > 0$, the packing number of $\mathcal{X}_{\varepsilon}$ with ℓ balls of radius $\nu \epsilon$ is less than $C \varepsilon^{-d}$.

Illustration:



 $\mathbb{E}[R_n] \le (2+1/\gamma)\varepsilon + c\gamma^{\sqrt{n/k}\min\{0.5/C,1\}-2} + 2\delta.$

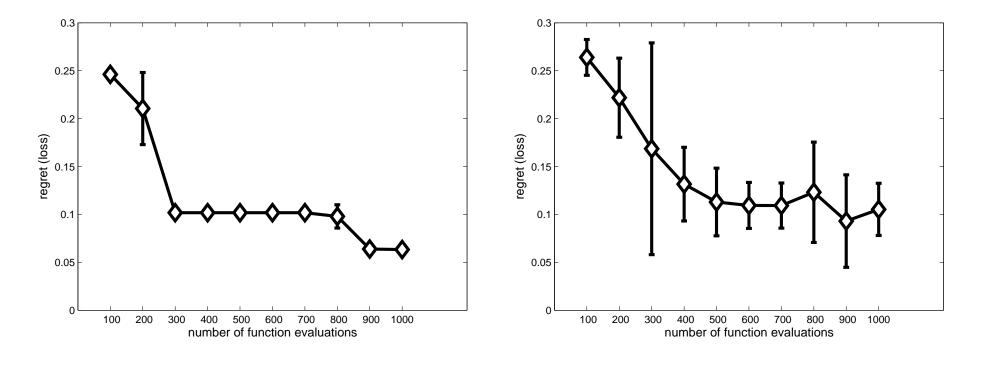
Corollary 2. For the choice $k = n/\log^3(n)$ and $\delta = 1/\sqrt{n}$, we have:

 $\mathbb{E}[R_n] = O\Big(\frac{\log^2(n)}{\sqrt{n}}\Big).$

50 100 500 number of function evaluations

This result shows that, surprisingly, STOSOO can achieve the same rate $O(n^{-1/2})$, up to a logarithmic factor, as the HOO or Stochastic DOO algorithms run with the best possible metric, although STOSOO does not require the knowledge of it. STOSOO (diamonds) vs. Stochastic DOO with ℓ_1 (circles) and ℓ_2 (squares) on f_1 .

STOSOO's on f_1 . Left: Noised with $\mathcal{N}_T(0, 0.01)$. Middle: Noised with $\mathcal{N}_T(0, 0.1)$. **Right**: Noised with $\mathcal{N}_T(0, 1)$.



STOSOO's performance for the garland function. Left noised with $\mathcal{N}_T(0, 0.01)$. **Right**: Noised with $\mathcal{N}_T(0, 0.1)$.

Code at: HTTPS://SEQUEL.LILLE.INRIA.FR/SOFTWARE/STOSOO