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SETTING
STOSOO is a global function maximizer:

• Goal: Maximize f : X → IR given a budget of n evaluations.

• Challenges: f is stochastic and has unknown smoothness

• Protocol: At round t, select state xt, observe rt such that

E[rt|xt] = f(xt).

After n rounds, return a state x(n).

• Loss: Rn = supx∈X f(x)− f(x(n))

STOSOO operates on a given hierarchical partitioning of X :

• For any h, X is partitioned in Kh cells (Xh,i)0≤i≤Kh−1.

• K-ary tree T∞ where depth h = 0 is the whole X .

h=0

h=2

h=1

• STOSOO adaptively creates finer and finer partitions of X .

• xh,i ∈ Xh,i is a specific state per cell where f is evaluated
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Hierarchical optimistic optimization algorithms

ASSUMPTIONS
There exists a semi-metric ` onX (triangle inequality not required):

A1 Local smoothness of f : For all x ∈ X :

f(x∗)− f(x) ≤ `(x, x∗).

“f does not decrease too fast around x∗”

x∗ X

f (x∗) f

f(x∗)− ℓ(x, x∗)

A2 Bounded diameters and well-shaped cells: There ex-
ists a decreasing sequence w(h) > 0, such that for any
depth h ≥ 0 and for any cell Xh,i of depth h, we have
supx∈Xh,i

`(xh,i, x) ≤ w(h).Moreover, there exists ν > 0 such
that for any depth h ≥ 0, any cell Xh,i contains a `-ball of ra-
dius νw(h) centered in xh,i.

MEASURE OF COMPLEXITY
For any ε > 0, write the set of ε-optimal states:

Xε def
= {x ∈ X , f(x) ≥ f∗ − ε}

Definition 1 (near-optimality dimension). Smallest constant d such
that there exists C > 0, for all ε > 0, the packing number of Xε with `-
balls of radius νε is less than Cε−d.

Illustration:

f(x∗)− f(x) = Θ(||x∗ − x||)

ε

ε

`(x, y) = ||x− y|| =⇒ d = 0

f(x∗)− f(x) = Θ(||x∗ − x||2)

ε

ε

`(x, y) = ||x−y|| =⇒ d = D/2
`(x, y) = ||x− y||2 =⇒ d = 0

STOSOO ALGORITHM

Parameters: number of function evaluations n, maximum num-
ber of evaluations per node k > 0, maximum depth hmax, and
δ > 0.
Initialization:
T ← {◦[0, 0]} {root node}
t← 0 {number of evaluations}
m← 0 {number of leaf expansions}

while t ≤ n do
bmax ← −∞
for h = 0 to min(depth(T ), hmax) do

if t ≤ n then
For each leaf ◦[h, j] ∈ L, compute its b-value:
bh,j(t) = µ̂h,j(t) +

√
log(nk/δ)/(2Th,j(t))

Among leaves ◦[h, j] ∈ Lt at depth h, select

◦[h, i] ∈ arg max
◦[h,j]∈L

bh,j(t)

if bh,i(t) ≥ bmax then
if Th,i(t) < k then

Evaluate (sample) state xt = xh,i.
Collect reward rt (s.t. E[rt|xt] = f(xt)).
t← t+ 1

else {i.e. Th,i(t) ≥ k, expand this node}
Add the K children of ◦[h, i] to T
bmax ← bh,i(t)

end if
end if

end if
end for

end while
Output: The representative point with the highest µ̂h,j(n)
among the deepest expanded nodes:

x(n) = arg max
xh,j

µ̂h,j(n) s.t. h = depth(T \ L).

How it works?

• STOSOO iteratively traverses and builds a tree over X

• at each traversal it selects several nodes simultaneously

• the selection is optimistic, based on confidence bounds

• selected nodes are either sampled or expanded

• sample the node k times for a confident estimate of f(xh,i)

• returns the deepest expanded node

ANALYSIS
Main result:

Theorem 1. Let d be the ν/3-near-optimality dimension and C be
the corresponding constant. If the assumptions hold, then the loss of
STOSOO run with parameters k, hmax, and δ > 0, after n iterations is
bounded, with probability 1− δ, as:

Rn ≤ 2ε+ w (min (h(n)− 1, hε, hmax))

where ε =
√

log(nk/δ)/(2k) and h(n) is the smallest h ∈ N, such that:

C(k + 1)hmax

h∑
l=0

(w (l) + 2ε)
−d ≥ n,

and hε is defined as:

hε = arg min{h ∈ N : w(h+ 1) < ε}.

Exponential diameters and d = 0:

Corollary 1. Assume that the diameters of the cells decrease exponen-
tially fast, i.e., w(h) = cγh for some c > 0 and γ < 1. Assume that the
ν/3-near-optimality dimension is d = 0 and let C be the corresponding
constant. Then the expected loss of STOSOO run with parameters k,
hmax =

√
n/k, and δ > 0, is bounded as:

E[Rn] ≤ (2 + 1/γ)ε+ cγ
√
n/kmin{0.5/C,1}−2 + 2δ.

Corollary 2. For the choice k = n/ log3(n) and δ = 1/
√
n, we have:

E[Rn] = O
( log2(n)√

n

)
.
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This result shows that, surprisingly,
STOSOO can achieve the same rate
Õ(n−1/2), up to a logarithmic factor, as
the HOO or Stochastic DOO algorithms
run with the best possible metric, al-
though STOSOO does not require the
knowledge of it. STOSOO (diamonds)
vs. Stochastic DOO with `1 (circles) and
`2 (squares) on f1.

THE IMPORTANT CASE d = 0

Example 1: Functions f defined on [0, 1]D that are locally equiv-
alent to a polynomial of degree α around their maximum, i.e.,
f(x) − f(x∗) = Θ(‖x − x∗‖α) for some α > 0, where ‖ · ‖ is any
norm. The choice of semi-metric `(x, y) = ‖x − y‖α implies that
the near-optimality dimension d = 0. This covers already a large
class of functions.

Example 2: More generally, we consider a finite dimensional and
bounded space X , (e.g., Euclidean space [0, 1]D) with a finite dou-
bling constant. Let a function in such space have upper- and lower
envelope around x∗ of the same order, i.e., there exists constants
c ∈ (0, 1), and η > 0, such that for all x ∈ X :

min(η, c`(x, x∗)) ≤ f(x∗)− f(x) ≤ `(x, x∗). (1)

f(x∗) f(x∗)− cℓ(x, x∗)

f(x∗)− ℓ(x, x∗)

f(x∗)− η

x∗

Any function satisfying (1) lies in the gray area and possesses a
lower- and upper-envelopes that are of same order around x∗.

Example of a function with different order in the upper and lower
envelopes, when `(x, y) = |x− y|α:

f(x) = 1−√x+ (−x2 +
√
x) · (sin(1/x2) + 1)/2

The lower-envelope behaves like a square root whereas the upper
one is quadratic. The maximum number of `-balls with radius ε
that can pack Xε (i.e., Euclidean balls with radius ε1/α) is at most
of order ε1/2/ε1/α ≤ ε−3/2, since α ≤ 1/2 in order to satisfy the
assumption on f . We deduce that there is no semi-metric of the
form |x− y|α for which d < 3/2.

EXPERIMENTS
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Left: Two-sine product function f1(x) = 1
2 (sin(13x) · sin(27x)) + 0.5.

Right: Garland function: f2(x) = 4x(1−x)·( 3
4+ 1

4 (1−
√
| sin(60x)|)).
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STOSOO’s on f1. Left: Noised with NT (0, 0.01). Middle: Noised
with NT (0, 0.1). Right: Noised with NT (0, 1).
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STOSOO’s performance for the garland function. Left noised with
NT (0, 0.01). Right: Noised with NT (0, 0.1).

Code at: HTTPS://SEQUEL.LILLE.INRIA.FR/SOFTWARE/STOSOO


