Stochastic Simultaneous Optimistic Optimization

Michal Valko, Alexandra Carpentier, Rémi Munos

INRIA Lille - Nord Europe, France & University of Cambridge, UK
Setting

- **Goal:** Maximize $f : \mathcal{X} \rightarrow \mathbb{R}$ given a budget of n evaluations.
Setting

- **Goal:** Maximize $f: \mathcal{X} \to R$ given a budget of n evaluations.

- **Challenges:** f is *stochastic* and has *unknown smoothness*
Setting

▶ **Goal**: Maximize $f : \mathcal{X} \rightarrow R$ given a budget of n evaluations.

▶ **Challenges**: f is *stochastic* and has *unknown smoothness*

▶ **Protocol**: At round t, select state x_t, observe r_t such that

$$\mathbb{E}[r_t|x_t] = f(x_t).$$

After n rounds, return a state $x(n)$.
Setting

- **Goal:** Maximize $f : \mathcal{X} \rightarrow R$ given a budget of n evaluations.

- **Challenges:** f is **stochastic** and has **unknown smoothness**

- **Protocol:** At round t, select state x_t, observe r_t such that

\[
\mathbb{E}[r_t|x_t] = f(x_t).
\]

After n rounds, return a state $x(n)$.

- **Loss:** $R_n = \sup_{x \in \mathcal{X}} f(x) - f(x(n))$
Setting

- **Goal:** Maximize $f : \mathcal{X} \rightarrow \mathbb{R}$ given a budget of n evaluations.

- **Challenges:** f is *stochastic* and has *unknown smoothness*.

- **Protocol:** At round t, select state x_t, observe r_t such that

$$
\mathbb{E}[r_t | x_t] = f(x_t).
$$

After n rounds, return a state $x(n)$.

- **Loss:** $R_n = \sup_{x \in \mathcal{X}} f(x) - f(x(n))$
StoSOO operates on a given **hierarchical partitioning**

- For any h, \mathcal{X} is partitioned in K^h cells $(X_{h,i})_{0 \leq i \leq K^h - 1}$.

- K-ary tree T_∞ where depth $h = 0$ is the whole \mathcal{X}.

- StoSOO adaptively creates finer and finer partitions of \mathcal{X}.

- $x_{h,i} \in X_{h,i}$ is a specific state per cell where f is evaluated.
StoSOO adaptively creates finer and finer partitions of \mathcal{X}
StoSOO adaptively creates finer and finer partitions of \mathcal{X}
StoSOO adaptively creates finer and finer partitions of \mathcal{X}
StoSOO adaptively creates finer and finer partitions of \mathcal{X}

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
StoSOO adaptively creates finer and finer partitions of \mathcal{X}
StoSOO adaptively creates finer and finer partitions of \mathcal{X}.
Challenge 1: **Stochasticity**

- cannot evaluate the cell only once before splitting
- cannot return the highest x_t encountered as $x(n)$
Challenge 2: **Unknown smoothness**

Assumption about the function: f is **locally smooth** w.r.t. a semi-metric ℓ around one global maximum x^*:

$$\forall x \in \mathcal{X} : f(x^*) - f(x) \leq \ell(x, x^*)$$

"f does not decrease too fast around x^*"
Challenge 2: **Unknown smoothness**

What can we do if the smoothness is known?
Comparison

<table>
<thead>
<tr>
<th></th>
<th>Deterministic function</th>
<th>Stochastic function</th>
</tr>
</thead>
<tbody>
<tr>
<td>known smoothness</td>
<td>DOO</td>
<td>Zooming or HOO</td>
</tr>
<tr>
<td>unknown smoothness</td>
<td>DIRECT or SOO</td>
<td></td>
</tr>
</tbody>
</table>

Michal Valko – Stochastic Simultaneous Optimistic Optimization
Comparison

<table>
<thead>
<tr>
<th>Known Smoothness</th>
<th>Deterministic function</th>
<th>Stochastic function</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOO</td>
<td>Zooming or HOO</td>
<td></td>
</tr>
<tr>
<td>DIRECT or SOO</td>
<td>StoSOO</td>
<td></td>
</tr>
</tbody>
</table>

StoSOO this talk
The StoS00 Algorithm

How it works?

- StoS00 iteratively traverses and builds a tree over \mathcal{X}
How it works?

- StoS00 iteratively traverses and builds a tree over \mathcal{X}
- at each traversal it selects several nodes simultaneously
How it works?

- StoS00 iteratively traverses and builds a tree over \mathcal{X}
- at each traversal it selects several nodes *simultaneously*
- *simultaneous* selection to consider all the leaves that can lead to potentially optimal solution
How it works?

- selected nodes are either sampled or expanded
How it works?

- selected nodes are either **sampled** or **expanded**
- sample a leaf k times for a confident estimate of $f(x_{h,i})$
The StoSOO Algorithm

How it works?

- selected nodes are either *sampled* or *expanded*
- *sample* a leaf k times for a confident estimate of $f(x_{h,i})$
- after sampling a leaf k times, we *expand* it
How it works?

The selection is **optimistic**, based on confidence bounds
How it works?

- the selection is **optimistic**, based on confidence bounds
- return the deepest **expanded** node
Dealing with stochasticity

- evaluation of f at a point x_t returns a noisy estimate r_t,

$$\mathbb{E}[r_t | x_t] = f(x_t)$$
Dealing with stochasticity

- evaluation of f at a point x_t returns a **noisy estimate** r_t,

$$\mathbb{E}[r_t|x_t] = f(x_t)$$

- **approach**: sample each point several (k - parameter) times to obtain an accurate estimate before the node is expanded
Dealing with stochasticity

- evaluation of f at a point x_t returns a noisy estimate r_t,

$$\mathbb{E}[r_t|x_t] = f(x_t)$$

- approach: sample each point several (k - parameter) times to obtain an accurate estimate before the node is expanded

$$b_{h,j}(t) \overset{\text{def}}{=} \hat{\mu}_{h,j}(t) + \sqrt{\frac{\log(n^2/\delta)}{2T_{h,j}(t)}}$$

where $T_{h,j}(t)$ is the number of times (h,j) has been selected up to time t, and $\hat{\mu}_{h,j}(t)$ is the empirical average of rewards
Dealing with stochasticity

- evaluation of f at a point x_t returns a **noisy estimate** r_t,

\[
\mathbb{E}[r_t|x_t] = f(x_t)
\]

- **approach**: sample each point several (k - parameter) times to obtain an accurate estimate before the node is expanded

\[
b_{h,j}(t) \overset{\text{def}}{=} \hat{\mu}_{h,j}(t) + \sqrt{\frac{\log(n^2/\delta)}{2T_{h,j}(t)}}
\]

where $T_{h,j}(t)$ is the number of times (h,j) has been selected up to time t, and $\hat{\mu}_{h,j}(t)$ is the empirical average of rewards

- **optimistically** select the node with the highest b-value at each depth
Pseudocode of StoSOO

while \(t \leq n \) do
 Set \(b_{\text{max}} = -\infty \).
 for \(h = 0 \) to maximum depth do
 Among all leaves \((h,j) \in \mathcal{L}_t \) of depth \(h \), select \((h,i) \in \arg \max_{(h,j) \in \mathcal{L}_t} b_{h,j}(t) \)
 if \(b_{h,i}(t) \geq b_{\text{max}} \) then
 Sample state \(x_t = x_{h,i} \) and collect reward \(r_t \)
 if \(T_{h,i}(t) \geq k \) then
 Expand this node: add to \(\mathcal{T}_t \) the \(K \) children of \((h,i) \)
 Set \(b_{\text{max}} = b_{h,i}(t) \).
 Set \(t \leftarrow t + 1 \).
 end if
 end if
 end for
end while

Return the state corresponding to the deepest expanded node:

\[
x(n) = \arg \max_{x_{h,j} : (h,j) \in \mathcal{T}_n \setminus \mathcal{L}_n} h.
\]
Pseudocode of StoSOO

while $t \leq n$ do
 Set $b_{\text{max}} = -\infty$.
 for $h = 0$ to maximum depth do
 Among all leaves $(h, j) \in \mathcal{L}_t$ of depth h, select
 $(h, i) \in \text{arg max}_{(h,j) \in \mathcal{L}_t} b_{h,j}(t)$
 if $b_{h,i}(t) \geq b_{\text{max}}$ then
 Sample state $x_t = x_{h,i}$ and collect reward r_t
 if $T_{h,i}(t) \geq k$ then
 Expand this node: add to \mathcal{T}_t the K children of (h, i)
 Set $b_{\text{max}} = b_{h,i}(t)$.
 Set $t \leftarrow t + 1$.
 end if
 end if
 end for
end while

Return the state corresponding to the deepest expanded node:

$$x(n) = \arg \max_{x_{h,j} : (h,j) \in \mathcal{T}_n \setminus \mathcal{L}_n} h.$$
Pseudocode of StoSOO

while $t \leq n$ do

Set $b_{\text{max}} = -\infty$.

for $h = 0$ to maximum depth do

Among all leaves $(h, j) \in \mathcal{L}_t$ of depth h, select $(h, i) \in \arg\max_{(h,j) \in \mathcal{L}_t} b_{h,j}(t)$

if $b_{h,i}(t) \geq b_{\text{max}}$ then

Sample state $x_t = x_{h,i}$ and collect reward r_t

if $T_{h,i}(t) \geq k$ then

Expand this node: add to \mathcal{T}_t the K children of (h, i)

Set $b_{\text{max}} = b_{h,i}(t)$.

Set $t \leftarrow t + 1$.

end if

end if

end for

end while

Return the state corresponding to the deepest expanded node:

$$x(n) = \arg\max_{x_{h,j} : (h,j) \in \mathcal{T}_n \setminus \mathcal{L}_n} h.$$
Pseudocode of StoSOO

while $t \leq n$ do
 Set $b_{\text{max}} = -\infty$.
 for $h = 0$ to maximum depth do
 Among all leaves $(h, j) \in \mathcal{L}_t$ of depth h, select $(h, i) \in \arg\max_{(h, j) \in \mathcal{L}_t} b_{h,j}(t)$
 if $b_{h,i}(t) \geq b_{\text{max}}$ then
 Sample state $x_t = x_{h,i}$ and collect reward r_t
 if $T_{h,i}(t) \geq k$ then
 Expand this node: add to \mathcal{T}_t the K children of (h, i)
 Set $b_{\text{max}} = b_{h,i}(t)$.
 Set $t \leftarrow t + 1$.
 end if
 end if
 end for
end while

Return the state corresponding to the deepest expanded node:

$$x(n) = \arg\max_{x_{h,j} : (h, j) \in \mathcal{T}_n \setminus \mathcal{L}_n} h.$$
Pseudocode of StoSOO

while $t \leq n$ do
 Set $b_{\text{max}} = -\infty$.
 for $h = 0$ to maximum depth do
 Among all leaves $(h, j) \in \mathcal{L}_t$ of depth h, select $(h, i) \in \arg \max_{(h, j) \in \mathcal{L}_t} b_{h,j}(t)$
 if $b_{h,i}(t) \geq b_{\text{max}}$ then
 Sample state $x_t = x_{h,i}$ and collect reward r_t
 if $T_{h,i}(t) \geq k$ then
 Expand this node: add to \mathcal{T}_t the K children of (h, i)
 Set $b_{\text{max}} = b_{h,i}(t)$.
 Set $t \leftarrow t + 1$.
 end if
 end if
 end for
end while

Return the state corresponding to the deepest expanded node:

$$x(n) = \arg \max_{x_{h,j} : (h,j) \in \mathcal{T}_n \setminus \mathcal{L}_n} h.$$
Measure of complexity

For any $\varepsilon > 0$, write the set of ε-optimal states:

$$\mathcal{X}_\varepsilon \overset{\text{def}}{=} \{ x \in \mathcal{X}, f(x) \geq f^* - \varepsilon \}$$

Definition (near-optimality dimension)
Smallest constant d such that there exists $C > 0$, for all $\varepsilon > 0$, the packing number of \mathcal{X}_ε with ℓ-balls of radius $\nu \varepsilon$ is less than $C \varepsilon^{-d}$.
Measure of complexity

For any $\varepsilon > 0$, write the set of ε-optimal states:

$$\mathcal{X}_\varepsilon \overset{\text{def}}{=} \{ x \in \mathcal{X}, f(x) \geq f^* - \varepsilon \}$$

Definition (near-optimality dimension)

Smallest constant d such that there exists $C > 0$, for all $\varepsilon > 0$, the packing number of \mathcal{X}_ε with ℓ-balls of radius $\nu\varepsilon$ is less than $C\varepsilon^{-d}$.

- d depends both on the function and the metric
Measure of complexity

For any $\varepsilon > 0$, write the set of ε-optimal states:

$$\mathcal{X}_\varepsilon \overset{\text{def}}{=} \{ x \in \mathcal{X}, f(x) \geq f^* - \varepsilon \}$$

Definition (near-optimality dimension)

Smallest constant d such that there exists $C > 0$, for all $\varepsilon > 0$, the packing number of \mathcal{X}_ε with ℓ-balls of radius $\nu \varepsilon$ is less than $C\varepsilon^{-d}$.

- d depends both on the function and the metric
- functions with smaller d are easier to optimize
Measure of complexity

For any $\varepsilon > 0$, write the set of ε-optimal states:

$$X_\varepsilon \overset{\text{def}}{=} \{x \in X, f(x) \geq f^* - \varepsilon\}$$

Definition (near-optimality dimension)

Smallest constant d such that there exists $C > 0$, for all $\varepsilon > 0$, the packing number of X_ε with ℓ-balls of radius $\nu \varepsilon$ is less than $C\varepsilon^{-d}$.

- d depends both on the function and the metric
- functions with smaller d are easier to optimize
- $d = 0$ covers a large class of functions already
Measure of complexity: Examples

\[f(x^*) - f(x) = \Theta(||x^* - x||) \quad f(x^*) - f(x) = \Theta(||x^* - x||^2) \]

\[\ell(x, y) = ||x - y|| \rightarrow d = 0 \quad \ell(x, y) = ||x - y|| \rightarrow d = D/2 \]
\[\ell(x, y) = ||x - y||^2 \rightarrow d = 0 \]
StoS00 performs as if it knew the best possible semi-metric ℓ

$$f(x^*) - f(x) = \Theta(||x^* - x||) \quad f(x^*) - f(x) = \Theta(||x^* - x||^2)$$

$\ell(x, y) = ||x - y|| \rightarrow d = 0$

$\ell(x, y) = ||x - y|| \rightarrow d = D/2$

$\ell(x, y) = ||x - y||^2 \rightarrow d = 0$
Analysis

Main result

Theorem

Let d be the $\nu/3$-near-optimality dimension and C be the corresponding constant. If the assumptions hold, then the loss of StoSOO run with parameters k, h_{max}, and $\delta > 0$, after n iterations is bounded, with probability $1 - \delta$, as:

$$R_n \leq 2\varepsilon + w \left(\min \left(h(n) - 1, h_\varepsilon, h_{\text{max}} \right) \right)$$

where $\varepsilon = \sqrt{\log(nk/\delta)/(2k)}$ and $h(n)$ is the smallest $h \in \mathbb{N}$, such that:

$$C(k + 1)h_{\text{max}} \sum_{l=0}^{h} (w(l) + 2\varepsilon)^{-d} \geq n,$$

$h_\varepsilon = \arg \min \{ h \in \mathbb{N} : w(h+1) < \varepsilon \}$ and $\sup_{x \in X_{h,i}} \ell(x_{h,i}, x) \leq w(h)$
Exponential diameters and $d = 0$

Corollary

Assume that the diameters of the cells decrease exponentially fast, i.e., $w(h) = c \gamma^h$ for some $c > 0$ and $\gamma < 1$. Assume that the $\nu/3$-near-optimality dimension is $d = 0$ and let C be the corresponding constant. Then the expected loss of StoS00 run with parameters k, $h_{\text{max}} = \sqrt{n/k}$, and $\delta > 0$, is bounded as:

$$\mathbb{E}[R_n] \leq (2 + 1/\gamma)\epsilon + c\gamma \sqrt{n/k \min\{0.5/C,1\}^{-2}} + 2\delta.$$
Analysis

Exponential diameters and $d = 0$

Corollary

For the choice $k = n / \log^3(n)$ and $\delta = 1/\sqrt{n}$, we have:

$$\mathbb{E}[R_n] = O\left(\frac{\log^2(n)}{\sqrt{n}}\right).$$

This result shows that, surprisingly, StoSOO can achieve the same rate $\tilde{O}(n^{-1/2})$, up to a logarithmic factor, as the HOO or Stochastic DOO algorithms run with the best possible metric, although StoSOO does not require the knowledge of it.
The important case $d = 0$

Let a function in such space have upper- and lower envelope around x^* of the same order, i.e., there exists constants $c \in (0, 1)$, and $\eta > 0$, such that for all $x \in \mathcal{X}$:

$$\min(\eta, c\ell(x, x^*)) \leq f(x^*) - f(x) \leq \ell(x, x^*).$$ \hspace{1cm} (1)

Any function satisfying (1) lies in the gray area and possesses a lower- and upper-envelopes that are of same order around x^*.
Two-sine product function

\[f_1(x) = \frac{1}{2} \sin(13x) \cdot \sin(27x) \]
Two-sine product function

\[f_1(x) = \frac{1}{2} \sin(13x) \cdot \sin(27x) + \mathcal{N}_T(0.5, 0.1) \]
Two-sine product function

\[f_1(x) = \frac{1}{2} \sin(13x) \cdot \sin(27x) + \mathcal{N}_T(0.5, 0.1) \]
Garland function

\[f_2(x) = 4x(1 - x) \cdot \left(\frac{3}{4} + \frac{1}{4} \left(1 - \sqrt{|\sin(60x)|} \right) \right). \]
Garland function

\[f_2(x) = 4x(1 - x) \cdot (\frac{3}{4} + \frac{1}{4}(1 - \sqrt{|\sin(60x)|})). \]

Not Lipschitz for any \(L! \)
Garland function

\[f_2(x) = 4x(1 - x) \cdot \left(\frac{3}{4} + \frac{1}{4}(1 - \sqrt{|\sin(60x)|}) \right). \]

StoSOO’s performance for the garland function.
Left noised with \(\mathcal{N}_T(0, 0.01) \).
Right: Noised with \(\mathcal{N}_T(0, 0.1) \).
Conclusion

- StoSOO - a black-box stochastic function optimizer
- StoSOO does not need to know the smoothness
Conclusion

- StoSOO - a black-box stochastic function optimizer
- StoSOO does not need to know the smoothness
- Weak assumptions, efficient for low-dimensional problems
Conclusion

- StoS00 - a black-box stochastic function optimizer
- StoS00 does not need to know the smoothness
- Weak assumptions, efficient for low-dimensional problems
- Finite-time performance analysis for $d = 0$
Conclusion

- StoS00 - a black-box stochastic function optimizer
- StoS00 does not need to know the smoothness
- Weak assumptions, efficient for low-dimensional problems
- Finite-time performance analysis for $d = 0$
- Performance as good as with the best valid semi-metric
- Code: https://sequel.lille.inria.fr/Software/StoS00
Conclusion

- **StoSOO** - a black-box stochastic function optimizer
- **StoSOO** does not need to know the smoothness
- Weak assumptions, efficient for low-dimensional problems
- Finite-time performance analysis for $d = 0$
- Performance as good as with the best valid semi-metric
- **Code:** https://sequel.lille.inria.fr/Software/StoSoo
Thank you!

Supported by European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 270327 (project CompLACS).

Michal Valko
michal.valko@inria.fr
sequel.lille.inria.fr
Experiments

Noised two-sine product function: StoSOO vs. MATLAB

![Graph showing comparison between StoSOO and MATLAB fminbnd](image-url)

- **StoSOO**
- **Matlab fminbnd**

- Solution value vs. number of function evaluations

Michal Valko – Stochastic Simultaneous Optimistic Optimization
Experiments

When $d > 0$?

Example of a function with different order in the upper and lower envelopes, when $\ell(x, y) = |x - y|^{\alpha}$:

$$f(x) = 1 - \sqrt{x} + (-x^2 + \sqrt{x}) \cdot (\sin(1/x^2) + 1)/2$$

The lower-envelope behaves like a square root whereas the upper one is quadratic. There is no semi-metric of the form $|x - y|^{\alpha}$ for which $d < 3/2$.