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Stochastic Optimization with Unknown Smoothness

Setting

» Goal: Maximize f : X — R given a budget of n evaluations.
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» Protocol: At round t, select state x;, observe r; such that
E[rt’Xt] = f(Xt).

After n rounds, return a state x(n).
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Stochastic Optimization with Unknown Smoothness

StoS00 operates on a given hierarchical partitioning
» For any h, X is partitioned in K" cells (Xh,i)o<i<kh—1-

> K-ary tree To, where depth h = 0 is the whole X.

» StoS00 adaptively creates finer and finer partitions of X.

> xpi € Xp,iis a specific state per cell where f is evaluated
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StoS00 adaptively creates finer and finer partitions of X’
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Stochastic Optimization with Unknown Smoothness

Challenge 1: Stochasticity

» cannot evaluate the cell only once before splitting

» cannot return the highest x; encountered as x(n)
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Stochastic Optimization with Unknown Smoothness

Challenge 2: Unknown smoothness

Assumption about the function: f is locally smooth w.r.t. a
semi-metric ¢ around one global maximum x*:

Vx € X f(x*) — f(x) < l(x,x¥)

f ()

“f does not decrease too fast around x*”

. Crzia—~

Michal Valko — Stochastic Simultaneous Optimistic Optimization



Stochastic Optimization with Unknown Smoothness

Challenge 2: Unknown smoothness

What can we do if the smoothness is known?
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Stochastic Optimization with Unknown Smoothness

Comparison
Deterministic Stochastic
function function
known DOO Zooming or HOO
smoothness

unknown | DIRECT or SOO

smoothness
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Stochastic Optimization with Unknown Smoothness

Comparison
Deterministic Stochastic
function function
known DOO Zooming or HOO
smoothness

unknown | DIRECT or SOO StoSOO

smoothness this talk
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The StoS00 Algorithm

How it works?
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> StoS00 iteratively traverses and builds a tree over X
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How it works?
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> StoS00 iteratively traverses and builds a tree over X

> at each traversal it selects several nodes simultaneously
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The StoS00 Algorithm

How it works?
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» StoS00 iteratively traverses and builds a tree over X
> at each traversal it selects several nodes simultaneously

» simultaneous selection to consider all the leaves that can
lead to potentially optimal solution
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The StoS00 Algorithm

How it works?
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> selected nodes are either sampled or expanded
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The StoS00 Algorithm

How it works?
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> selected nodes are either sampled or expanded
» sample a leaf k times for a confident estimate of f(xp ;)

» after sampling a leaf k times, we expand it
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The StoS00 Algorithm

How it works?
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> the selection is optimistic, based on confidence bounds
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The StoS00 Algorithm

How it works?
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> the selection is optimistic, based on confidence bounds

» return the deepest expanded node
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The StoS00 Algorithm

Dealing with stochasticity

» evaluation of f at a point x; returns a noisy estimate r;,

E[re|xe] = f(xt)
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The StoS00 Algorithm

Dealing with stochasticity

» evaluation of f at a point x; returns a noisy estimate r;,

E[re|xe] = f(xt)

» approach: sample each point several (k - parameter) times to
obtain an accurate estimate before the node is expanded

log(n?/9)

def A
bpj(t) = funy(t) + 2T ()
7.,

where Tj j(t) is the number of times (h, j) has been selected
up to time t, and fip j(t) is the empirical average of rewards
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The StoS00 Algorithm

Dealing with stochasticity

» evaluation of f at a point x; returns a noisy estimate r;,
Elre|xe] = f(xt)

» approach: sample each point several (k - parameter) times to
obtain an accurate estimate before the node is expanded

by (1) % finj(t) + Ic;gT(:j(/g)

where Tj j(t) is the number of times (h, j) has been selected
up to time t, and fip j(t) is the empirical average of rewards

» optimistically select the node with the highest b-value at
each depth
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The StoS00 Algorithm

Pseudocode of StoSOO

while t < n do
Set bpax = —0.
for h =0 to maximum depth do
Among all leaves (h,j) € L, of depth h, select
(h, i) € argmax, jycr, bn(t)
if by i(t) > bmax then
Sample state x; = x4 ; and collect reward r;
if Tm,’(f) > k then
Expand this node: add to 7; the K children of (h, i)
Set bmax = bn,i(t).
Set t + t+1.
end if
end if
end for
end while
Return the state corresponding to the deepest expanded node:
x(n)= argmax h.
xpj:(hJ)ETA\Ln
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The StoS00 Algorithm
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Analysis

Measure of complexity

For any € > 0, write the set of e-optimal states:

XY i e X f(x) > — e}

Definition (near-optimality dimension)

Smallest constant d such that there exists C > 0, for all € > 0, the
packing number of X, with (-balls of radius ve is less than Ce~9.
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Analysis

Measure of complexity

For any € > 0, write the set of e-optimal states:

XY i e X f(x) > — e}

Definition (near-optimality dimension)

Smallest constant d such that there exists C > 0, for all € > 0, the
packing number of X, with (-balls of radius ve is less than Ce~9.

» d depends both on the function and the metric
» functions with smaller d are easier to optimize

» d = 0 covers a large class of functions already
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Analysis

Measure of complexity: Examples

F(x*) = F(x) = O(|Ix* = x||) f(x*) = f(x) = O|Ix* = x||?)

- ‘%‘

Ux,y)=lIx=yll=d=0 ((x,y)=||x—y|| = d=D/2
Ux,y)=|x=ylP—d=0
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Analysis

Measure of complexity: Examples

StoS00 performs as if it knew the best possible semi-metric ¢

F(x*) = F(x) = O(|[x* = x||) f(x") = f(x) = O|Ix* = x||*)
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Analysis

Main result

Theorem

Let d be the v/3-near-optimality dimension and C be the
corresponding constant. If the assumptions hold, then the loss of
StoS00 run with parameters k, hmax, and 6 > 0, after n iterations
is bounded, with probability 1 — 9, as:

Ry, < 2e 4+ w(min (h(n) — 1, he, hmax))

where ¢ = \/log(nk/0)/(2k) and h(n) is the smallest h € N, such
that:

h
k+1 maxz +2€)_d2n7
I=
he = argmin{h € N: w(h+1) < e} and sup,cx, . €(xni,x) < w(h)
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Analysis

Exponential diameters and d = 0

Corollary

Assume that the diameters of the cells decrease exponentially fast,
i.e., w(h) = cy" for some ¢ > 0 and v < 1. Assume that the

v /3-near-optimality dimension is d =0 and let C be the
corresponding constant. Then the expected loss of StoS00 run
with parameters k, hmax = \/n/k, and 6 > 0, is bounded as:

E[R,] < (24 1/7)e + C,y\/n/k min{0.5/C,1}-2 | o5
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Analysis

Exponential diameters and d = 0

Corollary

For the choice k = n/log3(n) and 6 = 1/\/n, we have:

E[R,] = O(IOi%”))

This result shows that, surprisingly, StoS00 can achieve the same
rate O(n~1/2), up to a logarithmic factor, as the HOO or
Stochastic DOO algorithms run with the best possible metric,
although StoS00 does not require the knowledge of it.
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Analysis

The important case d =0

Let a function in such space have upper- and lower envelope
around x* of the same order, i.e., there exists constants ¢ € (0, 1),
and 1 > 0, such that for all x € X

min(n, cl(x, x*)) < f(x*) — f(x) < €(x,x¥). (1)

f@*) — cl(z, x*)

[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*

T

Any function satisfying (1) lies in the gray area and possesses a
lower- and upper-envelopes that are of same order around x*.
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Experiments

Two-sine product function

f(x) = %sin(13x) -sin(27x)
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Experiments

Two-sine product function
f(x) = %sin(13x) -sin(27x) + N7(0.5,0.1)
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regret (loss)

0.1F
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. . . . .
10 50 100 500 1000
number of function evaluations

StoS00 (diamonds) vs.
Stochastic DOO with ¢; (circles) and > (squares) on f;
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Experiments

Garland function

f(x) =4x(1 —x) - (% + %(1 — 4/ sin(60x)|)).
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Experiments

Garland function

flx) = 4x(1 —x) - (3 + 3(1 — v/[sin(60x)])).

Not Lipschitz for any L!
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Experiments

Garland function
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StoS00's performance for the garland function.
Left noised with N'7-(0,0.01). Right: Noised with N'7(0,0.1).
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Performance as good as as with the best valid semi-metric
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Code: HTTPS://SEQUEL.LILLE.INRIA.FR/SOFTWARE/STOSOO
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Experiments

Noised two-sine product function: StoS00 vs. MATLAB

soution value
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Experiments

When d > 07

Example of a function with different order in the upper and lower
envelopes, when ¢(x,y) = |x — y|*:

f(x) =1— x4 (=x* + v/x) - (sin(1/x?) +1)/2

The lower-envelope behaves like a square root whereas the upper
one is quadratic. There is no semi-metric of the form |x — y|* for
which d < 3/2.
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