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Stochastic Optimization with Unknown Smoothness

Setting

I Goal: Maximize f : X → IR given a budget of n evaluations.

I Challenges: f is stochastic and has unknown smoothness

I Protocol: At round t, select state xt , observe rt such that

E[rt |xt ] = f (xt).

After n rounds, return a state x(n).

I Loss: Rn = supx∈X f (x)− f (x(n))
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Stochastic Optimization with Unknown Smoothness

StoSOO operates on a given hierarchical partitioning

I For any h, X is partitioned in Kh cells (Xh,i )0≤i≤Kh−1.

I K -ary tree T∞ where depth h = 0 is the whole X .

h=0

h=2

h=1

I StoSOO adaptively creates finer and finer partitions of X .

I xh,i ∈ Xh,i is a specific state per cell where f is evaluated
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Stochastic Optimization with Unknown Smoothness

Challenge 1: Stochasticity

I cannot evaluate the cell only once before splitting

I cannot return the highest xt encountered as x(n)

Michal Valko – Stochastic Simultaneous Optimistic Optimization SequeL - 5/24



Stochastic Optimization with Unknown Smoothness

Challenge 2: Unknown smoothness
Assumption about the function: f is locally smooth w.r.t. a
semi-metric ` around one global maximum x∗:

∀x ∈ X : f (x∗)− f (x) ≤ `(x , x∗)

x∗ X

f (x∗) f

f(x∗)− ℓ(x, x∗)

“f does not decrease too fast around x∗”
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Stochastic Optimization with Unknown Smoothness

Challenge 2: Unknown smoothness

What can we do if the smoothness is known?
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Stochastic Optimization with Unknown Smoothness

Comparison

Deterministic
function

Stochastic
function

known
smoothness

DOO Zooming or HOO

unknown
smoothness

DIRECT or SOO

StoSOO
this talk
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The StoSOO Algorithm

How it works?

h=0

h=2

h=1

h=3

Partition:

I StoSOO iteratively traverses and builds a tree over X
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The StoSOO Algorithm

How it works?
h=0

h=2

h=1

h=3

Partition:

I StoSOO iteratively traverses and builds a tree over X

I at each traversal it selects several nodes simultaneously

I simultaneous selection to consider all the leaves that can
lead to potentially optimal solution
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The StoSOO Algorithm

How it works?

h=0

h=2

h=1

h=3

Partition:

I selected nodes are either sampled or expanded

I sample a leaf k times for a confident estimate of f (xh,i )

I after sampling a leaf k times, we expand it
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The StoSOO Algorithm

How it works?

h=0

h=2

h=1

h=3

Partition:

I the selection is optimistic, based on confidence bounds
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The StoSOO Algorithm

How it works?

h=0

h=2

h=1

h=3

Partition:

I the selection is optimistic, based on confidence bounds

I return the deepest expanded node
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The StoSOO Algorithm

Dealing with stochasticity

I evaluation of f at a point xt returns a noisy estimate rt ,

E[rt |xt ] = f (xt)

I approach: sample each point several (k - parameter) times to
obtain an accurate estimate before the node is expanded

bh,j(t)
def
= µ̂h,j(t) +

√
log(n2/δ)

2Th,j(t)

where Th,j(t) is the number of times (h, j) has been selected
up to time t, and µ̂h,j(t) is the empirical average of rewards

I optimistically select the node with the highest b-value at
each depth

Michal Valko – Stochastic Simultaneous Optimistic Optimization SequeL - 10/24



The StoSOO Algorithm

Dealing with stochasticity

I evaluation of f at a point xt returns a noisy estimate rt ,

E[rt |xt ] = f (xt)

I approach: sample each point several (k - parameter) times to
obtain an accurate estimate before the node is expanded

bh,j(t)
def
= µ̂h,j(t) +

√
log(n2/δ)

2Th,j(t)

where Th,j(t) is the number of times (h, j) has been selected
up to time t, and µ̂h,j(t) is the empirical average of rewards

I optimistically select the node with the highest b-value at
each depth

Michal Valko – Stochastic Simultaneous Optimistic Optimization SequeL - 10/24



The StoSOO Algorithm

Dealing with stochasticity

I evaluation of f at a point xt returns a noisy estimate rt ,

E[rt |xt ] = f (xt)

I approach: sample each point several (k - parameter) times to
obtain an accurate estimate before the node is expanded

bh,j(t)
def
= µ̂h,j(t) +

√
log(n2/δ)

2Th,j(t)

where Th,j(t) is the number of times (h, j) has been selected
up to time t, and µ̂h,j(t) is the empirical average of rewards

I optimistically select the node with the highest b-value at
each depth

Michal Valko – Stochastic Simultaneous Optimistic Optimization SequeL - 10/24



The StoSOO Algorithm

Dealing with stochasticity

I evaluation of f at a point xt returns a noisy estimate rt ,

E[rt |xt ] = f (xt)

I approach: sample each point several (k - parameter) times to
obtain an accurate estimate before the node is expanded

bh,j(t)
def
= µ̂h,j(t) +

√
log(n2/δ)

2Th,j(t)

where Th,j(t) is the number of times (h, j) has been selected
up to time t, and µ̂h,j(t) is the empirical average of rewards

I optimistically select the node with the highest b-value at
each depth

Michal Valko – Stochastic Simultaneous Optimistic Optimization SequeL - 10/24



The StoSOO Algorithm

Pseudocode of StoSOO
while t ≤ n do

Set bmax = −∞.
for h = 0 to maximum depth do

Among all leaves (h, j) ∈ Lt of depth h, select
(h, i) ∈ arg max(h,j)∈Lt bh,j(t)
if bh,i (t) ≥ bmax then

Sample state xt = xh,i and collect reward rt
if Th,i (t) ≥ k then

Expand this node: add to Tt the K children of (h, i)
Set bmax = bh,i (t).
Set t ← t + 1.

end if
end if

end for
end while
Return the state corresponding to the deepest expanded node:

x(n) = arg max
xh,j :(h,j)∈Tn\Ln

h.
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The StoSOO Algorithm
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Analysis

Measure of complexity

For any ε > 0, write the set of ε-optimal states:

Xε def
= {x ∈ X , f (x) ≥ f ∗ − ε}

Definition (near-optimality dimension)
Smallest constant d such that there exists C > 0, for all ε > 0, the
packing number of Xε with `-balls of radius νε is less than Cε−d .

I d depends both on the function and the metric

I functions with smaller d are easier to optimize

I d = 0 covers a large class of functions already
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Analysis

Measure of complexity: Examples

StoSOO performs as if it knew the best possible semi-metric `

f (x∗)− f (x) = Θ(||x∗ − x ||)

ε

ε

`(x , y) = ||x − y || → d = 0

f (x∗)− f (x) = Θ(||x∗ − x ||2)

ε

ε

`(x , y) = ||x−y || → d = D/2
`(x , y) = ||x − y ||2 → d = 0
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Analysis

Main result

Theorem

Let d be the ν/3-near-optimality dimension and C be the
corresponding constant. If the assumptions hold, then the loss of
StoSOO run with parameters k, hmax, and δ > 0, after n iterations
is bounded, with probability 1− δ, as:

Rn ≤ 2ε+ w (min (h(n)− 1, hε, hmax))

where ε =
√

log(nk/δ)/(2k) and h(n) is the smallest h ∈ N, such
that:

C(k + 1)hmax

h∑
l=0

(w (l) + 2ε)−d ≥ n,

hε = arg min{h ∈ N : w(h+1) < ε} and supx∈Xh,i `(xh,i , x) ≤ w(h)

Michal Valko – Stochastic Simultaneous Optimistic Optimization SequeL - 15/24



Analysis

Exponential diameters and d = 0

Corollary

Assume that the diameters of the cells decrease exponentially fast,
i.e., w(h) = cγh for some c > 0 and γ < 1. Assume that the
ν/3-near-optimality dimension is d = 0 and let C be the
corresponding constant. Then the expected loss of StoSOO run
with parameters k, hmax =

√
n/k, and δ > 0, is bounded as:

E[Rn] ≤ (2 + 1/γ)ε+ cγ
√

n/k min{0.5/C ,1}−2 + 2δ.
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Analysis

Exponential diameters and d = 0

Corollary

For the choice k = n/ log3(n) and δ = 1/
√

n, we have:

E[Rn] = O
( log2(n)√

n

)
.

This result shows that, surprisingly, StoSOO can achieve the same
rate Õ(n−1/2), up to a logarithmic factor, as the HOO or
Stochastic DOO algorithms run with the best possible metric,
although StoSOO does not require the knowledge of it.
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Analysis

The important case d = 0
Let a function in such space have upper- and lower envelope
around x∗ of the same order, i.e., there exists constants c ∈ (0, 1),
and η > 0, such that for all x ∈ X :

min(η, c`(x , x∗)) ≤ f (x∗)− f (x) ≤ `(x , x∗). (1)

f(x∗) f(x∗)− cℓ(x, x∗)

f(x∗)− ℓ(x, x∗)

f(x∗)− η

x∗

Any function satisfying (1) lies in the gray area and possesses a
lower- and upper-envelopes that are of same order around x∗.
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Experiments

Two-sine product function

f1(x) =
1
2 sin(13x) · sin(27x)
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Two-sine product function

f1(x) =
1
2 sin(13x) · sin(27x) +NT (0.5, 0.1)
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Experiments

Two-sine product function
f1(x) =

1
2 sin(13x) · sin(27x) +NT (0.5, 0.1)
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StoSOO (diamonds) vs.
Stochastic DOO with `1 (circles) and `2 (squares) on f1
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Experiments

Garland function

f2(x) = 4x(1− x) · (3
4 + 1

4(1−
√
| sin(60x)|)).
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Not Lipschitz for any L!
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Experiments

Garland function

f2(x) = 4x(1− x) · (3
4 + 1

4(1−
√
| sin(60x)|)).
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StoSOO’s performance for the garland function.
Left noised with NT (0, 0.01). Right: Noised with NT (0, 0.1).

Michal Valko – Stochastic Simultaneous Optimistic Optimization SequeL - 20/24



Experiments

Conclusion

I StoSOO - a black-box stochastic function optimizer

I StoSOO does not need to know the smoothness

I Weak assumptions, efficient for low-dimensional problems

I Finite-time performance analysis for d = 0

I Performance as good as as with the best valid semi-metric

I Code: https://sequel.lille.inria.fr/Software/StoSOO
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Experiments

Thank you!
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Experiments

Noised two-sine product function: StoSOO vs. MATLAB
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Experiments

When d > 0?

Example of a function with different order in the upper and lower
envelopes, when `(x , y) = |x − y |α:

f (x) = 1−√x + (−x2 +
√

x) · (sin(1/x2) + 1)/2

The lower-envelope behaves like a square root whereas the upper
one is quadratic. There is no semi-metric of the form |x − y |α for
which d < 3/2.
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