

Stochastic Simultaneous Optimistic Optimization

Michal Valko, Alexandra Carpentier, Rémi Munos INRIA Lille - Nord Europe, France & University of Cambridge, UK

SequeL – INRIA Lille

ICML 2013

Atlanta, GA, June 2013

• **Goal:** Maximize $f : \mathcal{X} \to R$ given a budget of *n* evaluations.

- **Goal:** Maximize $f : \mathcal{X} \to R$ given a budget of *n* evaluations.
- Challenges: f is <u>stochastic</u> and has <u>unknown smoothness</u>

- **Goal:** Maximize $f : \mathcal{X} \to R$ given a budget of *n* evaluations.
- Challenges: f is <u>stochastic</u> and has <u>unknown smoothness</u>
- **Protocol:** At round t, select state x_t , observe r_t such that

 $\mathbb{E}[r_t|x_t] = f(x_t).$

After *n* rounds, return a state x(n).

- **Goal:** Maximize $f : \mathcal{X} \to R$ given a budget of *n* evaluations.
- Challenges: f is <u>stochastic</u> and has <u>unknown smoothness</u>
- **Protocol:** At round t, select state x_t , observe r_t such that

 $\mathbb{E}[r_t|x_t] = f(x_t).$

After *n* rounds, return a state x(n).

• Loss:
$$R_n = \sup_{x \in \mathcal{X}} f(x) - f(x(n))$$

- **Goal:** Maximize $f : \mathcal{X} \to R$ given a budget of *n* evaluations.
- Challenges: f is <u>stochastic</u> and has <u>unknown smoothness</u>
- **Protocol:** At round t, select state x_t , observe r_t such that

 $\mathbb{E}[r_t|x_t] = f(x_t).$

After *n* rounds, return a state x(n).

• Loss:
$$R_n = \sup_{x \in \mathcal{X}} f(x) - f(x(n))$$

StoSOO operates on a given hierarchical partitioning

- For any h, \mathcal{X} is partitioned in K^h cells $(X_{h,i})_{0 \le i \le K^h 1}$.
- *K*-ary tree \mathcal{T}_{∞} where depth h = 0 is the whole \mathcal{X} .

- StoSOO adaptively creates finer and finer partitions of \mathcal{X} .
- ▶ $x_{h,i} \in X_{h,i}$ is a specific state per cell where f is evaluated

StoSOO adaptively creates finer and finer partitions of ${\cal X}$

Michal Valko - Stochastic Simultaneous Optimistic Optimization

SequeL - 4/24

			•	
· · · ·	۲	÷	۰	•
			•	
		•		
	•			

		•	•	
•	۲	+	۰	÷
			•	
	•			

Michal Valko - Stochastic Simultaneous Optimistic Optimization

.

Challenge 1: Stochasticity

- cannot evaluate the cell only once before splitting
- cannot return the highest x_t encountered as x(n)

Challenge 2: Unknown smoothness

Assumption about the function: f is locally smooth w.r.t. a semi-metric ℓ around one global maximum x^* :

Challenge 2: Unknown smoothness

What can we do if the smoothness is known?

Comparison

	Deterministic function	Stochastic function
known smoothness	DOO	Zooming or HOO
unknown smoothness	DIRECT or SOO	

Ínría

Comparison

	Deterministic function	Stochastic function
known smoothness	DOO	Zooming or HOO
unknown smoothness	DIRECT or SOO	StoSOO this talk

How it works?

StoSOO iteratively traverses and builds a tree over X

How it works?

- \blacktriangleright StoSOO iteratively traverses and builds a tree over ${\cal X}$
- > at each traversal it selects several nodes simultaneously

How it works?

nnía

- StoSOO iteratively traverses and builds a tree over \mathcal{X}
- > at each traversal it selects several nodes simultaneously
- simultaneous selection to consider all the leaves that can
 lead to potentially optimal solution

How it works?

selected nodes are either sampled or expanded

How it works?

selected nodes are either sampled or expanded

sample a leaf k times for a confident estimate of $f(x_{h,i})$

How it works?

- selected nodes are either sampled or expanded
- **sample** a leaf k times for a confident estimate of $f(x_{h,i})$
- after sampling a leaf k times, we expand it

How it works?

the selection is optimistic, based on confidence bounds

How it works?

- the selection is optimistic, based on confidence bounds
- return the deepest expanded node

Dealing with stochasticity

• evaluation of f at a point x_t returns a **noisy estimate** r_t ,

$$\mathbb{E}[r_t|x_t] = f(x_t)$$

Dealing with stochasticity

• evaluation of f at a point x_t returns a **noisy estimate** r_t ,

$$\mathbb{E}[r_t|x_t] = f(x_t)$$

approach: sample each point several (k - parameter) times to obtain an accurate estimate *before* the node is expanded

nía.

Dealing with stochasticity

• evaluation of f at a point x_t returns a **noisy estimate** r_t ,

$$\mathbb{E}[r_t|x_t] = f(x_t)$$

approach: sample each point several (k - parameter) times to obtain an accurate estimate *before* the node is expanded

$$b_{h,j}(t) \stackrel{\mathrm{def}}{=} \hat{\mu}_{h,j}(t) + \sqrt{rac{\log(n^2/\delta)}{2\,\mathcal{T}_{h,j}(t)}}$$

where $T_{h,j}(t)$ is the number of times (h, j) has been selected up to time t, and $\hat{\mu}_{h,j}(t)$ is the empirical average of rewards

Dealing with stochasticity

• evaluation of f at a point x_t returns a **noisy estimate** r_t ,

$$\mathbb{E}[r_t|x_t] = f(x_t)$$

approach: sample each point several (k - parameter) times to obtain an accurate estimate *before* the node is expanded

$$b_{h,j}(t) \stackrel{\mathrm{def}}{=} \hat{\mu}_{h,j}(t) + \sqrt{rac{\log(n^2/\delta)}{2T_{h,j}(t)}}$$

where $T_{h,j}(t)$ is the number of times (h, j) has been selected up to time t, and $\hat{\mu}_{h,j}(t)$ is the empirical average of rewards

 optimistically select the node with the highest *b*-value at each depth

while t < n do Set $b_{\max} = -\infty$. for h = 0 to maximum depth do Among all leaves $(h, j) \in \mathcal{L}_t$ of depth h, select $(h, i) \in \arg \max_{(h, i) \in \mathcal{L}_t} b_{h, j}(t)$ if $b_{h,i}(t) \geq b_{\max}$ then Sample state $x_t = x_{h,i}$ and collect reward r_t if $T_{h,i}(t) \geq k$ then Expand this node: add to \mathcal{T}_t the K children of (h, i)Set $b_{\max} = b_{h,i}(t)$. Set $t \leftarrow t + 1$. end if end if end for end while

$$x(n) = \underset{x_{h,j}:(h,j)\in\mathcal{T}_n\setminus\mathcal{L}_n}{\operatorname{arg\,max}}h.$$

while t < n do Set $b_{\max} = -\infty$. for h = 0 to maximum depth do Among all leaves $(h, j) \in \mathcal{L}_t$ of depth h, select $(h, i) \in \arg \max_{(h, i) \in \mathcal{L}_t} b_{h, j}(t)$ if $b_{h,i}(t) \geq b_{\max}$ then Sample state $x_t = x_{h,i}$ and collect reward r_t if $T_{h,i}(t) \geq k$ then Expand this node: add to \mathcal{T}_t the K children of (h, i)Set $b_{\max} = b_{h,i}(t)$. Set $t \leftarrow t + 1$. end if end if end for end while

$$x(n) = \underset{x_{h,j}:(h,j)\in\mathcal{T}_n\setminus\mathcal{L}_n}{\operatorname{arg\,max}}h.$$

while t < n do Set $b_{\max} = -\infty$. for h = 0 to maximum depth do Among all leaves $(h, j) \in \mathcal{L}_t$ of depth h, select $(h,i) \in \arg \max_{(h,i) \in \mathcal{L}_t} b_{h,j}(t)$ if $b_{h,i}(t) \geq b_{\max}$ then Sample state $x_t = x_{h,i}$ and collect reward r_t if $T_{h,i}(t) \geq k$ then Expand this node: add to \mathcal{T}_t the K children of (h, i)Set $b_{\max} = b_{h,i}(t)$. Set $t \leftarrow t + 1$. end if end if end for end while

$$x(n) = \underset{x_{h,j}:(h,j)\in\mathcal{T}_n\setminus\mathcal{L}_n}{\operatorname{arg\,max}}h.$$

while t < n do Set $b_{\max} = -\infty$. for h = 0 to maximum depth do Among all leaves $(h, j) \in \mathcal{L}_t$ of depth h, select $(h, i) \in \arg \max_{(h, i) \in \mathcal{L}_t} b_{h, j}(t)$ if $b_{h,i}(t) \geq b_{\max}$ then Sample state $x_t = x_{h,i}$ and collect reward r_t if $T_{h,i}(t) \geq k$ then Expand this node: add to \mathcal{T}_t the K children of (h, i)Set $b_{\max} = b_{h,i}(t)$. Set $t \leftarrow t + 1$. end if end if end for end while

$$x(n) = \underset{x_{h,j}:(h,j)\in\mathcal{T}_n\setminus\mathcal{L}_n}{\operatorname{arg\,max}}h.$$

while t < n do Set $b_{\max} = -\infty$. for h = 0 to maximum depth do Among all leaves $(h, j) \in \mathcal{L}_t$ of depth h, select $(h, i) \in \arg \max_{(h, i) \in \mathcal{L}_t} b_{h, j}(t)$ if $b_{h,i}(t) \geq b_{\max}$ then Sample state $x_t = x_{h,i}$ and collect reward r_t if $T_{h,i}(t) \geq k$ then Expand this node: add to \mathcal{T}_t the K children of (h, i)Set $b_{\max} = b_{h,i}(t)$. Set $t \leftarrow t + 1$. end if end if end for end while

$$x(n) = \underset{x_{h,j}:(h,j)\in\mathcal{T}_n\setminus\mathcal{L}_n}{\operatorname{arg\,max}}h.$$

Measure of complexity

For any $\varepsilon > 0$, write the set of ε -optimal states:

$$\mathcal{X}_{\varepsilon} \stackrel{\mathrm{def}}{=} \{ x \in \mathcal{X}, f(x) \geq f^* - \epsilon \}$$

Definition (near-optimality dimension)

Smallest constant *d* such that there exists C > 0, for all $\varepsilon > 0$, the packing number of $\mathcal{X}_{\varepsilon}$ with ℓ -balls of radius $\nu \varepsilon$ is less than $C\varepsilon^{-d}$.

Measure of complexity

For any $\varepsilon > 0$, write the set of ε -optimal states:

$$\mathcal{X}_{\varepsilon} \stackrel{\mathrm{def}}{=} \{ x \in \mathcal{X}, f(x) \geq f^* - \epsilon \}$$

Definition (near-optimality dimension)

Smallest constant *d* such that there exists C > 0, for all $\varepsilon > 0$, the packing number of $\mathcal{X}_{\varepsilon}$ with ℓ -balls of radius $\nu \varepsilon$ is less than $C\varepsilon^{-d}$.

d depends both on the function and the metric

Measure of complexity

For any $\varepsilon > 0$, write the set of ε -optimal states:

$$\mathcal{X}_{\varepsilon} \stackrel{\mathrm{def}}{=} \{ x \in \mathcal{X}, f(x) \geq f^* - \epsilon \}$$

Definition (near-optimality dimension)

Smallest constant *d* such that there exists C > 0, for all $\varepsilon > 0$, the packing number of $\mathcal{X}_{\varepsilon}$ with ℓ -balls of radius $\nu \varepsilon$ is less than $C\varepsilon^{-d}$.

- d depends both on the function and the metric
- functions with smaller d are easier to optimize

Measure of complexity

For any $\varepsilon > 0$, write the set of ε -optimal states:

$$\mathcal{X}_{\varepsilon} \stackrel{\mathrm{def}}{=} \{x \in \mathcal{X}, f(x) \geq f^* - \epsilon\}$$

Definition (near-optimality dimension)

Smallest constant *d* such that there exists C > 0, for all $\varepsilon > 0$, the packing number of $\mathcal{X}_{\varepsilon}$ with ℓ -balls of radius $\nu \varepsilon$ is less than $C\varepsilon^{-d}$.

- d depends both on the function and the metric
- functions with smaller d are easier to optimize
- d = 0 covers a large class of functions already

Measure of complexity: Examples

$$f(x^*) - f(x) = \Theta(||x^* - x||) \quad f(x^*) - f(x) = \Theta(||x^* - x||^2)$$

$$\ell(x,y) = ||x-y|| \to d = 0$$
 $\ell(x,y) = ||x-y|| \to d = D/2$
 $\ell(x,y) = ||x-y||^2 \to d = 0$

Measure of complexity: Examples

<code>StoSOO</code> performs as if it knew the best possible semi-metric ℓ

$$f(x^*) - f(x) = \Theta(||x^* - x||) \quad f(x^*) - f(x) = \Theta(||x^* - x||^2)$$

$$\ell(x, y) = ||x - y|| \to d = 0 \qquad \ell(x, y) = ||x - y|| \to d = D/2 \\ \ell(x, y) = ||x - y||^2 \to d = 0$$

1125

Main result

Theorem

Let d be the $\nu/3$ -near-optimality dimension and C be the corresponding constant. If the assumptions hold, then the loss of StoSOO run with parameters k, h_{max} , and $\delta > 0$, after n iterations is bounded, with probability $1 - \delta$, as:

$${{\it R}_{\it n}} \leq 2arepsilon + w\left({{
m min}\left({{\it h}({\it n}) - 1,{\it h}_arepsilon ,{\it h}_{{
m max}}}
ight)
ight)$$

where $\varepsilon = \sqrt{\log(nk/\delta)/(2k)}$ and h(n) is the smallest $h \in \mathbb{N}$, such that:

$$C(k+1)h_{\max}\sum_{l=0}^{h} (w(l)+2\varepsilon)^{-d} \ge n,$$

 $h_{\varepsilon} = \arg\min\{h \in \mathbb{N} : w(h+1) < \varepsilon\} \text{ and } \sup_{x \in X_{h,i}} \ell(x_{h,i},x) \leq w(h)$

Exponential diameters and d = 0

Corollary

Assume that the diameters of the cells decrease exponentially fast, i.e., $w(h) = c\gamma^h$ for some c > 0 and $\gamma < 1$. Assume that the $\nu/3$ -near-optimality dimension is d = 0 and let C be the corresponding constant. Then the expected loss of StoSOO run with parameters k, $h_{max} = \sqrt{n/k}$, and $\delta > 0$, is bounded as:

$$\mathbb{E}[R_n] \leq (2+1/\gamma)\varepsilon + c\gamma^{\sqrt{n/k}\min\{0.5/C,1\}-2} + 2\delta.$$

Exponential diameters and d = 0

Corollary

For the choice $k = n/\log^3(n)$ and $\delta = 1/\sqrt{n}$, we have:

$$\mathbb{E}[R_n] = O\Big(\frac{\log^2(n)}{\sqrt{n}}\Big).$$

This result shows that, surprisingly, StoSOO can achieve the same rate $\tilde{O}(n^{-1/2})$, up to a logarithmic factor, as the HOO or Stochastic DOO algorithms run with the best possible metric, although StoSOO does not require the knowledge of it.

The important case d = 0

Let a function in such space have upper- and lower envelope around x^* of the same order, i.e., there exists constants $c \in (0, 1)$, and $\eta > 0$, such that for all $x \in \mathcal{X}$:

Any function satisfying (1) lies in the gray area and possesses a lower- and upper-envelopes that are of same order around x^* .

Two-sine product function

Michal Valko - Stochastic Simultaneous Optimistic Optimization

SequeL - 19/24

Two-sine product function

Michal Valko - Stochastic Simultaneous Optimistic Optimization

SequeL - 19/24

Two-sine product function

nín

Garland function

$$f_{2}(x) = 4x(1-x) \cdot (\frac{3}{4} + \frac{1}{4}(1-\sqrt{|\sin(60x)|})).$$

0.2

-0.2

Michal Valko – Stochastic Simultaneous Optimistic Optimization

0.5 0.6

0.8 0.9

1

SequeL - 20/24

Garland function

$$f_2(x) = 4x(1-x) \cdot (\frac{3}{4} + \frac{1}{4}(1-\sqrt{|\sin(60x)|})).$$

Not Lipschitz for any L!

Garland function

$$f_2(x) = 4x(1-x) \cdot (\frac{3}{4} + \frac{1}{4}(1-\sqrt{|\sin(60x)|}))$$

StoSOO's performance for the garland function. Left noised with $\mathcal{N}_{\mathcal{T}}(0, 0.01)$. Right: Noised with $\mathcal{N}_{\mathcal{T}}(0, 0.1)$.

Conclusion

- StoSOO a black-box stochastic function optimizer
- StoSOO does not need to know the smoothness

- StoSOO a black-box stochastic function optimizer
- StoSOO does not need to know the smoothness
- Weak assumptions, efficient for low-dimensional problems

nría

- StoSOO a black-box stochastic function optimizer
- StoSOO does not need to know the smoothness
- Weak assumptions, efficient for low-dimensional problems
- Finite-time performance analysis for d = 0

- StoSOO a black-box stochastic function optimizer
- StoSOO does not need to know the smoothness
- Weak assumptions, efficient for low-dimensional problems
- Finite-time performance analysis for d = 0
- Performance as good as as with the best valid semi-metric
- ► Code: https://sequel.lille.inria.fr/Software/StoSOO

- StoSOO a black-box stochastic function optimizer
- StoSOO does not need to know the smoothness
- Weak assumptions, efficient for low-dimensional problems
- Finite-time performance analysis for d = 0
- Performance as good as as with the best valid semi-metric
- ► Code: https://sequel.lille.inria.fr/Software/StoSOO

Thank you!

Supported by European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 270327 (project CompLACS).

Michal Valko michal.valko@inria.fr sequel.lille.inria.fr

Noised two-sine product function: StoSOO vs. MATLAB

Michal Valko - Stochastic Simultaneous Optimistic Optimization

SequeL - 23/24

When d > 0?

Example of a function with different order in the upper and lower envelopes, when $\ell(x, y) = |x - y|^{\alpha}$:

$$f(x) = 1 - \sqrt{x} + (-x^2 + \sqrt{x}) \cdot (\sin(1/x^2) + 1)/2$$

The lower-envelope behaves like a square root whereas the upper one is quadratic. There is no semi-metric of the form $|x - y|^{\alpha}$ for which d < 3/2.

