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Université Paris-Est, Ecole des Ponts ParisTech, CERTIS
6 avenue Blaise Pascal, 77455 Marne-la-Vallée, France

&
Willow - ENS / INRIA

45 rue d’Ulm, 75005 Paris, France
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Abstract

Algorithms based on upper confidence bounds for balancing exploration and
exploitation are gaining popularity since they are easy to implement, efficient
and effective. This paper considers a variant of the basic algorithm for the
stochastic, multi-armed bandit problem that takes into account the empirical
variance of the different arms. In earlier experimental works, such algorithms
were found to outperform the competing algorithms. We provide the first anal-
ysis of the expected regret for such algorithms. As expected, our results show
that the algorithm that uses the variance estimates has a major advantage over
its alternatives that do not use such estimates provided that the variances of
the payoffs of the suboptimal arms are low. We also prove that the regret con-
centrates only at a polynomial rate. This holds for all the upper confidence
bound based algorithms and for all bandit problems except those special ones
where with probability one the payoff obtained by pulling the optimal arm is
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remi.munos@inria.fr (Rémi Munos), szepesva@cs.ualberta.ca (Csaba Szepesvári)
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larger than the expected payoff for the second best arm. Hence, although upper
confidence bound bandit algorithms achieve logarithmic expected regret rates,
they might not be suitable for a risk-averse decision maker. We illustrate some
of the results by computer simulations.

Key words: exploration-exploitation tradeoff, multi-armed bandits, Bernstein
inequality

1. Introduction and notations

In this paper we consider algorithms for stochastic multi-armed bandit prob-
lems. Bandit problems illustrate the fundamental difficulty of decision making
in the face of uncertainty: A decision maker must choose between following what
seems to be the best choice (“exploit”) or to test (“explore”) some alternative,
hoping to discover a choice that beats the current best choice.

The classical example of a bandit problem is deciding what treatment to
give each patient in a clinical trial when the effectiveness of the treatments are
initially unknown and the patients arrive sequentially [14]. These bandit prob-
lems became popular with the seminal paper of Robbins [13], after which they
have found applications in diverse fields, such as control, economics, statistics,
or learning theory.

Formally, a K-armed bandit problem (K ≥ 2) is specified by K real-valued
distributions, ν1, . . . , νK . In each time step a decision maker can select one of the
distributions to obtain a sample from it. The samples obtained are considered as
rewards. The distributions are initially unknown to the decision maker, whose
goal is to maximize the sum of the rewards received, or equivalently, to minimize
the regret which is defined as the loss compared to the total payoff that can be
achieved given full knowledge of the problem, i.e., when the arm giving the
highest expected reward is pulled all the time.

The name ‘bandit’ comes from imagining a gambler playing with K slot
machines. The gambler can pull the arm of any of the machines, which produces
a random payoff as a result: When arm k is pulled the random payoff is drawn
from νk. The payoffs are assumed to be independent of all previous payoffs.
Independence also holds across the arms. We will denote the payoff received
when the k-th arm is pulled the t-th time by Xk,t.

Since the payoff distributions are initially unknown, the gambler must use
exploratory actions to learn the utility of the individual arms. However, ex-
ploration has to be carefully controlled since excessive exploration may lead
to unnecessary losses. Hence, to play well the gambler must carefully balance
exploration and exploitation.

A gambler learning about the distributions of the arms’ payoffs can use
all past information to decide about his next action. Thus, designing a strat-
egy for the gambler means that we pick a mapping (“policy”) that maps the
space of possible histories that collects the sequences of decisions and outcomes,
∪t∈N+{1, . . . ,K}t × Rt, into the set {1, . . . ,K} (indexing the arms).
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Let us state the goal of this design problem formally. Let µk = E[Xk,1]
denote the expected reward of arm k. By definition, an optimal arm is an
arm having the largest expected reward. The expected payoff of such an arm
is the optimal expected reward: µ∗ = max1≤k≤K µk. Let Tk(t) denote the
number of times arm k is chosen by the policy during the first t plays and let
It ∈ 1, . . . , K be the index of the arm played at time t. The (cumulative) regret
of the gambler’s strategy up to time n is defined by

R̂n ,
n∑

t=1

Xk∗,t −
n∑

t=1

XIt,TIt (t),

where k∗ is the index of an optimal arm (when multiple optimal arms exist we
pick one such arm arbitrarily). The goal is to design a policy whose expected
(cumulative) regret, E[R̂n], is as small as possible. (Clearly, this is equivalent to
maximizing the total expected reward achieved up to time n.) Wald’s equation
implies that the expected regret satisfies

E[R̂n] ,
K∑

k=1

E[Tk(n)]∆k,

where ∆k = µ∗−µk is the expected loss of playing arm k. Hence, a policy that
aims at minimizing the expected regret should minimize the expected sampling
times of suboptimal arms.

Early papers studied stochastic bandit problems under Bayesian assumptions
(e.g., Gittins [8]). Lai and Robbins [11] studied bandit problems with parametric
uncertainties in a minimax framework. They introduced an algorithm that
follows what is now called the “optimism in the face of uncertainty principle”.
Their algorithm works by computing upper confidence bounds for all the arms
and then choosing the arm with the highest such bound. The upper confidence
bound of an algorithm is obtained by maximizing the expected payoff when
the parameters are varied within an appropriate confidence set. They proved
that the expected regret of their algorithm increases at most at a logarithmic
rate with the number of trials and that the algorithm achieves the smallest
possible regret up to some sub-logarithmic factor (for the considered family of
distributions). Agrawal [1] has shown how to construct upper confidence bound
algorithms that use the sample-means of the arms. More recently, Auer et al. [3]
considered the non-parametric case when all the knowledge the decision maker
has is that the rewards have bounded range, say they belong to [0, b]. They
have studied several policies, most notably UCB1 which constructs the Upper
Confidence Bound (UCB) for arm k at time t by adding the bias factor

√
2b2 log t

Tk(t− 1)
(1)

to its sample-mean. They proved that the expected regret of this algorithm
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satisfies

E[R̂n] ≤ 8


 ∑

k:µk<µ∗

b2

∆k


 log(n) + O(1). (2)

In the same paper they proposed UCB1-NORMAL, a policy specialized to the
case when the payoffs are normally distributed with unknown mean and vari-
ance. This algorithm estimates the arms’ variances to refine the bias factor.
Under the normality assumption they show that

E[R̂n] ≤ 8
∑

k:µk<µ∗

(
32σ2

k

∆k
+ ∆k

)
log(n) + O(1), (3)

where σ2
k denotes the variance of the kth arm.

Note that one major difference of this result and the previous one is that
the regret-bound for UCB1 scales with b2, while the regret bound for UCB1-
NORMAL scales with the variances of the arms. First, let us note that it
can be proven that the scaling behavior of UCB1’s regret-bound with b is not a
proof artifact: The expected regret indeed scales with2 Ω(b2) (see Proposition 1,
Section A.2). Since in many cases b is a conservative, a priori guess on the size
of the interval containing the rewards, it is more than desirable to lessen the
dependence of the algorithm on it. We see that UCB1-NORMAL achieves this
perfectly. However, the price is high: We have to assume that the payoffs are
normally distributed.

In the experimental section of their paper Auer et al. [3] introduced another
algorithm, called UCB1-Tuned. This algorithm, similarly to UCB1-NORMAL,
uses the empirical estimates of the variance in the bias sequence. However,
unlike UCB1-NORMAL, this algorithm is designed to work with any bounded
payoff distribution. The experiments of Auer et al. [3] indicate that the idea of
using empirical variance estimates works: UCB1-Tuned outperformed the other
algorithms in essentially all the experiments. The superiority of this algorithm
has been reconfirmed recently in the latest Pascal Challenge [4]. Intuitively,
algorithms using variance estimates should work better than ones that do not
use such estimates (like UCB1) when the variance of some suboptimal arm is
much smaller than b2. If this is the case then a “variance-aware” algorithm can
spot the suboptimal arms much faster, thereby reducing the regret suffered.

One purpose of this paper is to study such “variance-aware” algorithms. For
this we study the regret of UCB-V, which is a generic UCB-type algorithm that
use variance estimates in its bias sequence. In particular, the bias sequences of
UCB-V take the form

√
2Vk,Tk(t−1) ETk(t−1),t

Tk(t− 1)
+ c

3b ETk(t−1),t

Tk(t− 1)
,

2Through the paper, we will use the Landau notation: Ω(g) is a term asymptotically
bounded below by g up to constant factor, and Θ(g) is a term asymptotically bounded below
and above by g (up to constant factors).
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where Vk,s is the empirical variance estimate for arm k based on s samples,
E = E·,· (viewed as a function of (s, t)) is the so-called exploration function. A
typical choice for this function is Es,t = ζ log(t). With this choice the algorithm’s
behavior is controlled by the parameters ζ, c > 0.

Our first major contribution is a bound on the expected regret of UCB-V
with this choice of the exploration function that scales in an improved fashion
with b. In particular, in Theorem 4 we show that for c = 1 and ζ = 1.2,

E[R̂n] ≤ 10
∑

k:µk<µ∗

(
σ2

k

∆k
+ 2b

)
log(n). (4)

The main difference to the bound (2) is that b2 is replaced by σ2
k. However,

notice that b still appears in the bound, a major difference to the bound (3).
Although, this is unfortunate, it is possible to show that the dependence on b
is unavoidable (see Section A.1).

In order to prove the above result we will prove a novel tail bound on the
sample average of i.i.d. random variables with bounded support. Unlike previ-
ous similar bounds, this bound uses the empirical variance and thus it might be
of independent interest (Theorem 1).

Just like the result of Auer et al. [3], our regret bound also relies on the
analysis of the sampling times of suboptimal arms (Theorem 2). Compared to
the analysis by Auer et al. [3], the new result is significantly improved. Thanks
to this result, we obtain results on the expected regret for a wide class of explo-
ration functions (Theorem 3), leading to the main result already cited (Theo-
rem 4). In addition, for the “standard” logarithmic sequence we will give lower
limits on the tuning parameters such that if the tuning parameters are below
these limits the loss goes up considerably (Theorems 5 and 6).

The second major contribution of the paper is the analysis of the risk that the
regret of the studied algorithm is much higher than its expected value. To our
best knowledge, for this class of algorithms no such analysis existed previously.
We think that the concentration of regret results obtained can be important
in the analysis of algorithms that nest sequences of bandits, such as the UCT
algorithm proposed by Kocsis and Szepesvári [10], which recently was proven
to be very efficient in computer go (e.g., Gelly et al. [7]).

In order to analyze the risk, we study the (cumulative) pseudo-regret defined
by

Rn =
K∑

k=1

Tk(n)∆k.

Note that the expectation of the pseudo-regret and the regret are the same:3

E[Rn] = E[R̂n], (5)

3This is a standard result that can be shown using Wald’s identity exploiting that the
rewards coming from different arms are independent.
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but the randomness of the rewards influences the pseudo-regret only indirectly
(i.e., only through {Tk(n)}). In order to analyze the risk, in Sections 5.2 and 7
we develop high-probability bounds for the pseudo-regret. Similar results can
be obtained for the cumulative regret (see Remark 2 p.23).

Interestingly, this analysis revealed the following unexpected tradeoff: If
one aims for logarithmic expected regret (or, more generally, for subpolynomial
regret) then the regret will not concentrate exponentially fast around its mean
when with positive probability the optimal arm yields rewards smaller than
some suboptimal arm’s expected reward (Theorem 10). In order to explain
what happens let us consider the case of two arms that satisfy this condition.
Assume that the first arm is the optimal one: µ1 > µ2, ∆2 = µ1 − µ2 > 0.
Then the distribution of the pseudo-regret at time n will have two modes, the
first at Θ(log n) and the second at Ω(Θ2n). The second mode corresponds to
the case when the algorithm starts in an unlucky manner in the sense that the
rewards obtained when testing the first (optimal) arm are all small in an initial
phase. In this case the algorithm may get stuck with the suboptimal arm for
a long time. Hence, the probability mass associated with the second mode will
decay only polynomially with n and the decay-rate will depend on ∆2. (The
probability that the regret is above a threshold larger than the second mode
decays exponentially.) The decay rate of the mass in the second mode can be
increased by increasing exploration rate. However, then the expected regret
will increase. Our regret tail bound (Theorem 9) makes the dependence on the
algorithm’s parameters explicit in this tradeoff. The theoretical findings of this
part are illustrated in a series of experiments which are described in Section 6.

In the final part of the paper (Section 7) we consider a variant of the problem
when the time horizon is given a priori. As it turns out in this case a good
choice of the exploration function is to make it independent of the global time
index t: Es,t = Es. In particular, we show that with an appropriate choice
of Es = Es(β), for any 0 < β < 1, the algorithm achieves finite cumulative
regret with probability 1 − β (Theorem 11). Hence, we name this variant of
the algorithm PAC-UCB (“Probably approximately correct UCB”). Given a
finite time horizon, n, choosing β = 1/n then yields a logarithmic bound on
the regret that fails to hold at most with probability O(1/n). This should
be compared with the bound O(1/(log n)a), a > 0 obtained for the standard
choice Es,t = ζ log t in Corollary 1. Thus, knowing the horizon decreases the
risk significantly. We conjecture that the knowledge of the time horizon indeed
represents a significant advantage in this sense.

2. Notation

We let bxc denote the largest integer smaller or equal to x ∈ R and let dxe
denote the smallest integer larger than x. Further, for u, v reals, u ∧ v (u ∨ v)
denotes the minimum (resp., maximum) of u and v.
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3. The UCB-V algorithm

Let N denote the set of natural numbers including zero and let N+ denote
the set of positive integers. For any k ∈ {1, . . . , K} and t ∈ N, let Xk,t (resp.,
Vk,t) be the empirical estimate of the expected payoff (resp., variance) of arm
k:

Xk,t , 1
t

t∑

i=1

Xk,i and Vk,t , 1
t

t∑

i=1

(Xk,i −Xk,t)2,

where by convention Xk,0 , 0 and Vk,0 , 0. We recall that k∗ is the index of
an optimal arm:

k∗ ∈ argmax
k∈{1,...,K}

µk.

In the paper we will use the convention that quantities related to the optimal
arm will be denoted by putting ∗ in the upper index.

In the following, we assume that the rewards are bounded. In particular,
we make the simplifying assumption that all the rewards are almost surely in
[0, b] for some b > 0 known to the decision maker. (We loose generality only
because we assume that the bound b is the same for all the arms. However, our
results can be easily generalized to the case when these bounds differ between
the arms.) For easy reference we summarize our assumptions on the reward
sequence here:

Assumption A1 Let K > 2 and let ν1, . . . , νK be distributions over the
reals with support [0, b]. For 1 ≤ k ≤ K, let {Xk,t} ∼ νk be an i.i.d. se-
quence of random variables specifying the rewards for arm k.4 Assume that
the rewards of different arms are independent, i.e., for any t ≥ 1, the vectors
(X1,1, . . . , X1,t), . . . , (XK,1, . . . , XK,t) are independent. The decision maker does
not know the distributions of the arms, but knows b.

3.1. The algorithm
Let c ≥ 0. Let E = (Es,t)s≥0,t≥0 be nonnegative real numbers such that for

any fixed value of s ≥ 0 the function t 7→ Es,t is nondecreasing. We shall call
E (viewed as a function of (s, t)) the exploration function. For any arm k and
nonnegative integers s, t, introduce

Bk,s,t , Xk,s +

√
2Vk,s Es,t

s
+ c

3b Es,t

s
(6)

with the convention that 1/0 = +∞.

UCB-V policy:
At time t, play an arm maximizing Bk,Tk(t−1),t.

4The i.i.d. assumption can be relaxed, see e.g., Lai and Yakowitz [12].
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Let us summarize the main ideas underlying the algorithm. As long as an
arm is never chosen its bound is infinite. Hence, initially the algorithm tries
all the arms at least once (one by one). After this initial phase the arms will
be tried multiple times. The more an arm k has been tested, the closer the
bound (6) gets to the sample-mean, and hence, by the law of large numbers,
to the expected reward µk. So the procedure will hopefully tend to draw arms
having the largest expected rewards with an increasing frequency.

Nevertheless, since the obtained rewards are stochastic it might happen that
during the first draws the (unknown) optimal arm always gives low rewards.
This might make the sample-mean of this arm smaller than that of the other
arms. Hence an algorithm that only uses sample-means might get stuck with
not choosing the optimal arm any more. UCB policies (in general) prevent this
situation by using upper confidence bounds on the mean rewards. The confi-
dence level with which these bounds hold determine the amount of exploration
of the policy and ultimately the performance of the algorithm.

The UCB-V policy uses the function, E , to facilitate exploration. Indeed,
assuming that for any fixed s, Es,t increases without bounds in t, we see that if
an arm is not tried for a long time then after a while the last term of (6) will
start to dominate the other terms and will also dominate the bound associated
with the arms drawn very often. This will then allow the algorithm to draw this
arm again and thus the algorithm will have a chance to develop a better esti-
mate of the arm’s expected payoff. In particular, this holds for all the optimal
arms, too and will allow the algorithm to recover even when the optimal arm(s)
start in an unlucky way. We thus see that an appropriate choice of E encourages
exploration; hence it’s name. Naturally, an exploration function that tends to
dominate the sample-means will not give enough room for the observed payoffs
to influence the choices of the actions and as a result the algorithm might draw
suboptimal arms too often. Therefore E must be carefully chosen so as to bal-
ance exploration and exploitation. The major idea of upper-confidence bounds
algorithms is that E should be selected such that Bk,s,t is a high-probability
upper bound on the payoff of arm k. Then, if no confidence bound fails then a
suboptimal arm k can only be chosen if its confidence bound is larger than ∆k,
its expected payoff loss. Since the confidence intervals shrink with increasing
sample sizes the number of times the previous situation can happen is limited.
Further, by designing E such that the error probabilities decay fast enough, we
can make sure that the total error committed due to the failure of the confidence
intervals is not too large either.

In our algorithm, the actual form of the quantity Bk,s,t comes from a novel
tail bound on the sample average of i.i.d. random variables with bounded sup-
port. Unlike previous similar bounds (e.g., based on Bennett’s and Bernstein’s
inequalities) that used the true (but unknown) variance our bound uses the
empirical variance. The bound relies on the exponential concentration of the
empirical variance around the true variance.

Theorem 1. Let X1, . . . , Xt be i.i.d. random variables taking their values in
[0, b]. Let µ = E [X1] be their common expected value. Consider the empirical

8



mean Xt and variance Vt defined respectively by

Xt =
∑t

i=1 Xi

t
and Vt =

∑t
i=1(Xi −Xt)2

t
.

Then, for any t ∈ N and x > 0, with probability at least 1− 3e−x,

|Xt − µ| ≤
√

2Vtx

t
+

3bx

t
. (7)

Furthermore, introducing

β(x, t) = 3 inf
1<α≤3

( log t

log α
∧ t

)
e−x/α, (8)

where u∧ v denotes the minimum of u and v, we have for any t ∈ N and x > 0,
with probability at least 1− β(x, t)

|Xs − µ| ≤
√

2Vsx

s
+

3bx

s
(9)

holds simultaneously for s ∈ {1, 2, . . . , t}.

Proof. See Section A.3.

Remark 1. The uniformity in time is the only difference between the two as-
sertions of the previous theorem. When we use (9), the values of x and t will
be such that β(x, t) is of order of 3e−x, hence there will be no real price to pay
for writing a version of (7) that is uniform in time. In particular, this means
that if 1 ≤ S ≤ t is an integer-valued random variable then (9) still holds with
probability at least 1− β(x, t) and when in (9) s is replaced with S.

Note that (7) is useless for t ≤ 3 since its right-hand side (r.h.s.) is larger
than b. For any arm k, time t and integer 1 ≤ s ≤ t we may apply Theorem 1
to the rewards Xk,1, . . . , Xk,s, and obtain that with probability at least 1 −
3

∑∞
s=4 e−(c∧1)Es,t , we have µk ≤ Bk,s,t. Hence, by our previous remark, at time

t if E takes “sufficiently high values” then with high probability the expected
reward of arm k is upper bounded by Bk,Tk(t−1),t. The user of the generic
UCB-V policy has two ‘parameters’ to tune: the exploration function E and the
positive real number c.

There are essentially two types of exploration functions leading to inter-
esting properties of the resulting algorithms in terms of expected regret, high-
probability bounds on the regret and tunability with respect to the total number
of plays:

• the ones in which Es,t depends only on t (see Sections 4 and 5.2).

• the ones in which Es,t depends only on s (see Section 7).
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To understand why we do not consider Es,t depending on both s and t, recall
that in Es,t variable s plays the role of the number of pulls of an arm. Hence we
always have s < t. Further, for suboptimal arms we will hopefully have s ¿ t.
Normally, the contribution of s to the exploration function should be in the
same order as the contribution of t. Thus, when Es,t already depends on t, the
dependence on s will not alter the behavior (and hence the performance) of the
algorithm in a significant way.

3.2. Bounds for the sampling times of suboptimal arms
The natural way of bounding the regret of UCB policies is to bound the

number of times the suboptimal arms are drawn. In this section we derive such
bounds, generalizing and improving upon the previous analysis of Auer et al.
[3]. The improvement is a necessary step to get tight bounds in the case when
the exploration function scales logarithmically with t, i.e., for the class of most
interesting exploration functions.

Since all the statements here make use of Assumption A1, we will refrain
from citing it. Further, all the results in these sections are for algorithm UCB-V.

Theorem 2. The followings hold: (i) After K plays, each arm has been pulled
once. (ii) Pick an arm k and a time n ∈ N+. For any τ ∈ R and any integer
u > 1, it holds that

Tk(n) ≤
u +

n∑

t=u+K−1

(
1{∃s:u≤s≤t−1 s.t. Bk,s,t>τ} + 1{∃s∗:1≤s∗≤t−1 s.t. τ≥Bk∗,s∗,t}

)
.

(10)
Hence, also

E [Tk(n)] ≤ u +
n∑

t=u+K−1

t−1∑
s=u

P
(
Bk,s,t > τ

)

+
n∑

t=u+K−1

P
(∃s : 1 ≤ s ≤ t− 1 s.t. Bk∗,s,t ≤ τ

)
.

(11)

Further, it holds that

P
(
Tk(n) > u

) ≤
n∑

t=u+1

P
(
Bk,u,t > τ

)

+P
(∃s : 1 ≤ s ≤ n− u s.t. Bk∗,s,u+s ≤ τ

)
.

(12)

Note that even though the above statements hold for any arm, the bounds
are trivial for the optimal arms. Besides, (10) and (11) hold independently of
the form of the quantity Bk,s,t.

Proof. Part (i) is trivial since at the beginning each arm has an infinite UCB
value, which becomes finite as soon as the arm has been played once.
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Let us thus turn to the proof of Part (ii). To obtain (10), we note that

Tk(n)− u ≤
n∑

t=u+K−1

1{It=k;Tk(t)>u} =
n∑

t=u+K−1

Zk,t,u,

where
Zk,t,u = 1{It=k; u≤Tk(t−1); 1≤Tk∗ (t−1);Bk,Tk(t−1),t≥Bk∗,Tk∗ (t−1),t}

≤ 1{∃s:u≤s≤t−1 s.t. Bk,s,t>τ} + 1{∃s∗:1≤s∗≤t−1 s.t. τ≥Bk∗,s∗,t}.

Putting these inequalities together proves (10). Taking the expectation of both
sides of (10) and using a union bound, we obtain (11).

Finally, inequality (12) comes from a direct argument that uses that the
exploration function Es,t is a nondecreasing function with respect to t: In order
to prove this inequality consider an event such that the following statements
hold: { ∀t s.t. u + 1 ≤ t ≤ n we have Bk,u,t ≤ τ

∀s s.t. 1 ≤ s ≤ n− u we have Bk∗,s,u+s > τ
.

Then for any 1 ≤ s ≤ n− u and u + s ≤ t ≤ n it holds that

Bk∗,s,t ≥ Bk∗,s,u+s > τ ≥ Bk,u,t.

This implies that arm k will not be pulled the (u + 1)-th time. Therefore we
have proved by contradiction that

{
Tk(n) > u

} ⊂
({∃t : u + 1 ≤ t ≤ n s.t. Bk,u,t > τ

}

∪{∃s : 1 ≤ s ≤ n− u s.t. Bk∗,s,u+s ≤ τ
})

.
(13)

By taking probabilities of both sides and using a union-bound argument, we get
the announced result. ut

4. The expected regret of UCB-V

In this section, we assume that the exploration function does not depend on
s (still, E = (Et)t≥0 is a nondecreasing function of t). We will see that as far
as the expected regret is concerned, a natural choice for Et is the logarithmic
function and that the constant c in Bk,s,t should not be taken too small if one
does not want to suffer a polynomial regret instead of a logarithmic one. We
will derive bounds on the expected regret and conclude by specifying natural
constraints on c and Et.

4.1. Upper bounds on the expected regret
Theorem 3. We have

E[Rn] ≤
∑

k:∆k>0

{
1 + 8(c ∨ 1)

(
σ2

k

∆2
k

+
2b

∆k

)
En

+ne−En

(
24σ2

k

∆2
k

+ 4b
∆k

)
+

n∑

t=16En

β
(
(c ∧ 1)Et, t

)}
∆k,

(14)
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where we recall that β
(
(c ∧ 1)Et, t

)
is essentially of order e−(c∧1)Et (see (8) and

Remark 1).

Note that by (5) the theorem gives a bound on the expected regret, E
[
R̂n

]
.

We need the following Lemma that will be useful later, too:

Lemma 1. Let u =
⌈
8(c ∨ 1)

( σ2
k

∆2
k

+ 2b
∆k

)En

⌉
. Then for any s, t such that u ≤

s ≤ t ≤ n, t ≥ 2, it holds that

P(Bk,s,t > µ∗) ≤ 2e−s∆2
k/(8σ2

k+4b∆k/3). (15)

Note that for any suboptimal arm k the probability decays exponentially in s
for s large enough, independently of the value of t and n. Intuitively, this makes
sense as the main term in Bk,s,t is Xk,s, which estimates µk < µ∗.

Proof (of Lemma 1). From the definition of Bk,s,t (cf. (6)) we obtain

P(Bk,s,t > µ∗)

≤ P
(
Xk,s +

√
2Vk,sEt

s + 3bcEt

s > µk + ∆k

)

≤ P
(
Xk,s +

√
2[σ2

k+b∆k/2]Et

s + 3bcEt

s > µk + ∆k

)
+ P

(
Vk,s ≥ σ2

k + b∆k/2
)
.

In order to bound the second term note that Vk,s = 1/s
∑s

j=1(Xk,j − µk)2 −
(µk −Xk,s)2, hence P

(
Vk,s ≥ σ2

k + b∆k/2
) ≤ P(

∑s
j=1(Xk,j−µk)2

s − σ2
k ≥ b∆k/2

)
.

Let E ′n = (c∨1)En. In order to bound the first term note that since u ≤ s, t ≤ n
and thanks to the choice of u we have

√
2[σ2

k+b∆k/2]Et

s + 3bcEt

s ≤
√

[2σ2
k+b∆k]E′n

u + 3b
E′n
u

≤
√

[2σ2
k+b∆k]∆2

k

8[σ2
k+2b∆k]

+ 3b∆2
k

8[σ2
k+2b∆k]

= ∆k

2

[√
2σ2

k+b∆k

2σ2
k+4b∆k

+ 3b∆k

4σ2
k+8b∆k

]
≤ ∆k

2 ,

where the last inequality holds as it is equivalent to (x − 1)2 ≥ 0 with x =√
2σ2

k+b∆k

2σ2
k+4b∆k

. Hence,

P(Bk,s,t > µ∗)

≤ P(
Xk,s − µk > ∆k/2

)
+ P

(∑s
j=1(Xk,j−µk)2

s − σ2
k ≥ b∆k/2

)

≤ 2e−s∆2
k/(8σ2

k+4b∆k/3),

where in the last step we used Bernstein’s inequality (see (46)) twice. ut

Proof (of Theorem 3). Because Rn =
∑

k ∆kTk(n) it suffices to bound
E [Tk(n)], where k is the index of a suboptimal arm. Thus, pick such an in-
dex k. We use (11) to bound E [Tk(n)] with τ = µ∗ and u =

⌈
8
( σ2

k

∆2
k

+ 2b
∆k

)E ′n
⌉

12



with E ′n = (c ∨ 1)En, as in Lemma 1:

E [Tk(n)] ≤ u +
n∑

t=u+1

t−1∑
s=u

P
(
Bk,s,t > µ∗

)
+

n∑
t=u+1

t−1∑
s=1

P
(
Bk∗,s,t ≤ µ∗

)
.

(16)
Via the help of Lemma 1, the inner sum of the first double sum is bounded as
follows:

t−1∑
s=u

P(Bk,s,t > µ∗) ≤ 2
∞∑

s=u

e−s∆2
k/(8σ2

k+4b∆k/3) = 2
e−u∆2

k/(8σ2
k+4b∆k/3)

1− e−∆2
k/(8σ2

k+4b∆k/3)

≤
(

24σ2
k

∆2
k

+ 4b
∆k

)
e−u∆2

k/(8σ2
k+4b∆k/3) ≤

(
24σ2

k

∆2
k

+ 4b
∆k

)
e−E

′
n . (17)

Here we have used that 1−e−x ≥ 2x/3 that holds when 0 ≤ x ≤ 3/4. The other
term of (16) is bounded by using the uniform, empirical variance-estimate-based
deviation bound (9) of Theorem 1. Putting the so obtained bounds together we
get

E [Tk(n)] ≤ 1 + 8E ′n
(

σ2
k

∆2
k

+ 2b
∆k

)
+ ne−E

′
n

(
24σ2

k

∆2
k

+ 4b
∆k

)
+

∑n
t=u+1 β((c ∧ 1)Et, t).

This gives the announced result since by assumption u ≥ 16En. ut

In order to balance the terms in (14) the exploration function should be
chosen to be proportional to log t, yielding the following upper estimate of the
payoff of arm k provided that this arm was chosen s times up to time t:

Bk,s,t , Xk,s +

√
2ζVk,s log t

s
+ c

3bζ log t

s
. (18)

For this choice, the following theorem, the main result of this section, gives an
explicit bound on the expected regret:

Theorem 4. Let c = 1 and Et = ζ log t for ζ > 1. Then there exists a constant
cζ that depends on ζ only such that for n ≥ 2

E[Rn] ≤ cζ

∑

k:∆k>0

(
σ2

k

∆k
+ 2b

)
log n. (19)

For instance, for ζ = 1.2, the result holds with cζ = 10.

Proof. Inequality (19) follows directly from Theorem 3 once we bound the
four terms between the brackets in (14). To obtain the logarithmic regret, the
third term of (14) requires ζ ≥ 1 while the fourth term requires ζ > 1.

The proof of the numerical assertion is tedious. First it uses that

• b n is always a trivial upper bound on Rn,

13



• b (n− 1) is a trivial upper bound on Rn when n ≥ K (since in the first K
rounds, any optimal arm is drawn exactly once).

As a consequence, the numerical bound is non-trivial only for 20 log n < n−1, so
we only need to check the result for n > 91. For n > 91, we bound the constant
term of (14) using 1 ≤ log n

log 91 ≤ a1
2b
∆k

(log n), with a1 = 1/(2 log 91) ≈ 0.11.

The second term between the brackets in (14) is bounded by a2

( σ2
k

∆2
k

+ 2b
∆k

)
log n,

with a2 = 8 × 1.2 = 9.6. For the third term, we use that for n > 91, we have
24n−0.2 < a3 log n, with a3 = 24

910.2×log 91 ≈ 0.21. By tedious computations, the
fourth term can be bounded by a4

2b
∆k

(log n), with a4 ≈ 0.07. This gives the
desired result since a1 + a2 + a3 + a4 ≤ 10. ut

As promised, Theorem 4 gives a logarithmic bound on the expected regret
that has a linear dependence on the range of the reward contrary to bounds on
algorithms that do not take into account the empirical variance of the reward
distributions (see e.g. the bound (2) that holds for UCB1).

4.2. Lower limits on the bias sequence
The previous result is well complemented by the following result, which

essentially says that we should not use Et = ζ log t with ζ < 1.

Theorem 5. Consider Et = ζ log t and let n denote the total number of draws.
Whatever c is, if ζ < 1, then there exist some reward distributions (depending
on n) such that

• the expected number of draws of suboptimal arms using the UCB-V algo-
rithm is polynomial in the total number of draws

• the UCB-V algorithm suffers a polynomial loss.

Proof. We consider the following reward distributions:

• The distribution of the rewards of arm 1 is concentrated on 0 and 1 with
equal probabilities.

• The other arms provide a reward equal to 1
2 − εn deterministically.

Define b̃ , 3cbζ.
Notice that arm 1 is the optimal arm. After s plays of this arm, since we

necessarily have Vk,s ≤ 1/4, for any t ≤ n we have

B1,s,t = X1,s +
√

2V1,sζ log t
s + b̃ log t

s ≤ 1
2 +

(
X1,s − 1

2

)
+

√
ζ log n

2s + b̃ log n
s .

(20)
On the other hand, for any 0 ≤ s̃ ≤ t and arm k > 1, we have

Bk,s̃,t = 1
2 − εn + b̃ log t

s̃ ≥ 1
2 − εn. (21)

14



So the algorithm will continue to choose arm 1, i.e., will behave badly, as long
as for some s < n, we have B1,s,t < 1/2− εn. Now, we will choose εn and s so
that this happens with a non-negligible probability.

To do this, we need a lower bound on the deviations of X1,s from 1/2, which
is provided by the following lemma.

Lemma 2. Let Xs denote the mean of s independent Bernoulli random vari-
ables with parameter 1/2. There is a constant C > 0 such that for any s > 1
and any 1 ≤ κ ≤ s1/3/(8 log s),

P
(

Xs − 1
2
≤ −

√
κ log s

2s

)
≥ Cs−κ

√
κ log s

.

Proof (of Lemma 2). From Stirling’s formula

nne−n
√

2πn e1/(12n+1) < n! < nne−n
√

2πn e1/(12n), (22)

for ` such that (s + `)/2 ∈ {0, 1, . . . , s}, we have

P
(
Xs − 1

2 = − `
2s

)
=

(
1
2

)s( s
s+`
2

)

≥ (
1
2

)s ( s
e )s

√
2πse

1
12s+1

( s+`
2e )

s+`
2 ( s−`

2e )
s−`
2
√

π(s+`)
√

π(s−`)e
1

6(s+`) e
1

6(s−`)

= 1

(1+ `
s )

s+`
2 (1− `

s )
s−`
2

√
2s

π(s2−`2)e
1

12s+1− 1
6(s+`)− 1

6(s−`)

≥
√

2
πse−

s−`
2 log(1− `2

s2
)e−` log(1+ `

s )e−
1

6(s+`)− 1
6(s−`)

≥
√

2
πse−

`2
2s− `3

2s2
− 1

6(s+`)− 1
6(s−`) ,

(23)

where the last inequality uses log(1+ t) ≤ t for any t > 0. Let `0 =
√

2κs log s+√
s/(2κ log s). For ` such that

√
2κs log s ≤ ` ≤ `0, since `0 ≤ 2

√
2κs log s ≤

s2/3 and s ≥ 2, we have

P
(
Xs − 1

2 = − `
2s

) ≥
√

2
πse

− `20
2s−

`30
2s2

− 1
3(s−`0)

≥
√

2
πss−κe

−1− 1
4κ log s− 1

2− 1
3(s−s2/3)

≥ 1
30

√
2
ss−κ.

By summing the probabilities corresponding to
√

2κs log s ≤ ` ≤ `0, we obtain

P
(

Xs − 1
2
≤ −

√
κ log s

2s

)
≥ s−κ

30
√

κ log s
.

ut
Let ζ ′ = (1+ζ)/2 and κ > 1/(1−ζ) such that nζ′/κ is an integer larger than

(8ζ ′ log n)3 (for a fixed ζ < 1, such a κ exists as soon as n is sufficiently large).
We consider s = nζ′/κ so that from (20) and Lemma 2, we obtain

P
(

B1,s,t ≤ 1
2 − (

√
ζ ′ −√ζ)

√
log n

2nζ′/κ + b̃ log n

nζ′/κ

)
≥ C n−ζ′√

ζ′ log n
. (24)
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In view of (21), we take εn =
√

ζ′−√ζ
2

√
log n

2nζ′/κ −2b̃ log n

nζ′/κ such that with probabil-

ity at least C n−ζ′√
ζ′ log n

, we draw the optimal arm no more than s = nζ′/κ times.
Up to multiplicative constants, this leads to an expected number of draws of
suboptimal arms larger than (n− nζ′/κ) n−ζ′√

log n
≈ n1−ζ′√

log n
and an expected regret

larger than (n− nζ′/κ)εnn−ζ′ ≈ n1−ζ′−ζ′/(2κ) > n(1−ζ)/2−1/(2κ) up to logarith-
mic factors. Since the exponent is positive, we have obtained that polynomial
expected regret can occur as soon as ζ < 1. ut

So far we have seen that for c = 1 and ζ > 1 the algorithm achieves logarith-
mic regret, and that the constant ζ could not be taken below 1 (independently
of the value of c) without risking to suffer a polynomial regret. Now, let us
consider the last term, which is linear in the ratio Et/s, in Bk,s,t. The next
result shows that this term is also necessary to obtain a logarithmic regret:

Theorem 6. Consider Et = ζ log t. Independently of the value of ζ, if cζ < 1/3,
there exist probability distributions of the rewards such that the UCB-V algorithm
suffers a polynomial loss.

Proof. See Section A.4.

The construction used in the proof is a 2-armed bandit problem, where the
optimal arm has a Bernoulli payoff with a parameter ε adjusted to cζ and the
suboptimal arm deterministically gives a payoff of ε/2. The parameter ε is
chosen such that with a polynomially decaying probability it holds that the
optimal arm during its first O(log n) pulls always returns 0 and as a result it is
not pulled more than Ω(log n) times during the first n steps. This results in a
polynomial regret.

To conclude the above analysis, the natural choice for the bias sequence is

Bk,s,t , Xk,s +

√
2Vk,s log t

s
+

b log t

s
.

This choice corresponds to the critical exploration function Et = ζ log t with
ζ = 1 and to c = 1/3, that is, the minimal associated value of c in view of
the previous theorem. In practice, it would be unwise (or risk seeking) to use
smaller constants than these.

5. Risk bounds

Decision makers may care not only about a good expected return, but also
about the distribution of the return. One desired property of a good algorithm
is to guarantee high returns with high probability, alternatively to guarantee
that the probability of a large regret is small. Motivated by this, in the next
section we study the tail distribution of the regret of UCB1 (we also provide a
refined analysis of its expected regret), followed by a result in the subsequent
section that concerns the tail behavior of the regret of UCB-V. These results
are illustrated by computer experiments in Section 6.
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5.1. Risk bounds for UCB1
In this section we analyze the behavior of UCB1 in terms of the expected

regret, as well as the probability of a high regret when the bias factor depends
on an exploration coefficient ρ > 1. The upper bounds take the form:

Bk,s,t , Xk,s + b

√
ρ log t

s
. (25)

We remind that in the original version of UCB1, the exploration coefficient
was set to ρ = 2. We show in the next result that the expected regret is
E[Rn] = O(ρ log n), which exhibits a linear dependency w.r.t. the coefficient
ρ (the greater ρ the greater the exploration of all arms). Next, we provide an
upper bound on the probability of high (pseudo-) regret of the form P(Rn >
z) = O(z1−2ρ) (the greater ρ the thinner the tail on the pseudo-regret).

The user may thus choose a range of possible algorithms between an al-
gorithm (when setting ρ to a value close to 1) which yields low regret on the
average but which may be risky (high probability of obtaining less rewards than
expected), or an algorithm (when ρ is larger) which has a higher regret on the
average, but which is more secure, in the sense that the actual regret is more
concentrated around its expectation. Thus, the algorithm exhibits a tradeoff
between expected reward and risk.

Theorem 7. Let ρ > 1. The expected pseudo-regret for UCB1 defined by (25)
satisfies:

E[Rn] ≤
∑

k:∆k>0

[
4b2

∆k
ρ log(n) + ∆k

(
3
2

+
1

2(ρ− 1)

)]
. (26)

The proof parallels the proof of Theorem 3. We start with a Lemma that mimics
Lemma 1.

Lemma 3. Let n ≥ 2, k be index of some arm and u =
⌈(

2b
∆k

)2
ρ log n

⌉
. Then,

for any u ≤ s ≤ t ≤ n, we have

P
(
Bk,s,t > µ∗

) ≤ e−s∆2
k/(2b2) (27)

Proof (of Lemma 3). By the choice of u, s, t, we have b
√

ρ log(t)
s ≤ ∆k/2.

Therefore, P
(
Bk,s,t > µ∗

)
= P

(
Xk,s + b

√
ρ log(t)

s > µk + ∆k

) ≤ P
(
Xk,s >

µk + ∆k/2
) ≤ e−s∆2

k/(2b2), where we used Hoeffding’s inequality (cf. [9]). ut
Proof (of Theorem 7). Again, because Rn =

∑
k ∆kTk(n) it suffices to

bound E [Tk(n)], where k is the index of a suboptimal arm. Thus, pick such
an index k. We use (11) to bound E [Tk(n)] with τ = µ∗ and u as in Lemma 3:

E [Tk(n)] ≤ u +
n∑

t=u+1

t−1∑
s=u

P
(
Bk,s,t > µ∗

)
+

n∑
t=u+1

t−1∑
s=1

P
(
Bk∗,s,t ≤ µ∗

)
.

(28)
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Therefore, for any s ≥ u, P
(
Bk,s,t > µ∗

) ≤ e−u∆2
k/(2b2) ≤ n−2ρ and we deduce

that
∑n

t=u+1

∑t−1
s=u P

(
Bk,s,t > µ∗

) ≤ n2(1−ρ)/2. The first sum in (28) is thus
bounded by n2(1−ρ)/2 ≤ 1/2 whenever n ≥ 1.

For the second sum, we have P
(
Bk∗,s,t ≤ µ∗

) ≤ t−2ρ, again from Hoeffding’s
inequality. Thus

n∑
t=u+1

t−1∑
s=1

P
(
Bk∗,s,t ≤ µ∗

) ≤
n∑

t=u+1

t1−2ρ ≤
∫ ∞

u

t1−2ρdt =
u−2(ρ−1)

2(ρ− 1)

for ρ > 1. Thus (28) implies that E [Tk(n)] ≤ (
2b
∆k

)2
ρ log(n) + 3

2 + 1
2(ρ−1) holds

for all n ≥ 1. The bound on the expected regret follows. ut
Theorem 8. Assume that ρ > 1/2. Let vk = (2b/∆k)2, r0 =

∑
k ∆k(1 +

ρvk log n). Then, for any x ≥ 1, we have

P
(
Rn > r0x

) ≤
∑

k:∆k>0

{
n−2ρx+1 +

((1 + ρvk log n)x)−2ρ+1

2ρ− 1

}
. (29)

Proof. We have:

P
(
Rn > r0x

)
= P

( ∑

k:∆k>0

∆kTk(n) > x
∑

k:∆k>0

∆k(1 + ρvk log n)
)

≤
∑

k:∆k>0

P
(
Tk(n) > (1 + ρvk log n)x

)
.

Define uk = b(1 + ρvk log n)xc. Hence, P
(
Tk(n) > (1+ρvk log n)x

) ≤ P(Tk(n) >

uk

)
. We use (12) with u = uk and τ = µ∗ to bound P

(
Tk(n) > uk

)
:

P
(
Tk(n) > uk

) ≤
n∑

t=uk+1

P
(
Bk,uk,t > µ∗

)
+

n−uk∑
s=1

P
(
Bk∗,s,uk+s ≤ µ∗

)
. (30)

Since uk ≥ dρvk log ne, we can apply Lemma 3. This gives P
(
Bk,uk,t > µ∗

) ≤
e−uk∆2

k/(2b2), which can be further bounded by e−2xρ log n = n−2ρx since uk ≥
xρvk log n. Hence, the first sum in (30) is bounded by n−2ρx+1.

Now, Hoeffding’s inequality gives P
(
Bk∗,s,uk+s ≤ µ∗

) ≤ (uk + s)−2ρ. Thus
the second sum in (30) is bounded by

∑n−uk

s=1 P
(
Bk∗,s,uk+s ≤ µ∗

) ≤ ∑n−uk

s=1 (uk+

s)−2ρ ≤ ∫∞
uk

t−2ρdt = u1−2ρ
k

2ρ−1 ≤ ((1+vkρ log n)x)1−2ρ

2ρ−1 . Collecting the terms gives (29).
ut

The second term of (29) in Theorem 8 is only polynomial in x. In fact,
this bound cannot be improved in the sense that there exist distributions of the
rewards for which for some constant C > 0, for any z large enough, P

(
Rn >

z
) ≥ 1/(CzC). See Theorem 10 for the analogous statement for UCB-V.

Theorems 7 and 8 show that the more we explore (i.e. larger ρ is), the smaller
the tail of the regret is. However, this comes at the price of a larger expected
regret. The next section is devoted to proving similar results for UCB-V.
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5.2. Risk bounds for UCB-V
In this section we concentrate on the analysis of the concentration properties

of the pseudo-regret for UCB-V. As we will see in Remark 2 p.23, the concen-
tration properties of the regret follow from the concentration properties of the
pseudo-regret, hence there is no compromise in studying the pseudo-regret.

We still assume that the exploration function does not depend on s and that
E = (Et)t≥0 is nondecreasing.

Introduce

β̃n(t) , 3 min
α≥1, M∈N,

s0=0<s1<···<sM=n
s.t. sj+1≤α(sj+1)

M−1∑

j=0

e−
(c∧1)Esj+t+1

α . (31)

This function will appear naturally in the tail-bound of the pseudo-regret of
UCB-V. Although β̃n(t) has a complicated definition, up to second order loga-
rithmic terms it is of the order e−(c∧1)Et when Et = Θ(log t). This can be seen
by considering (disregarding rounding issues) the geometric grid sj = αj with α

close to 1 and noting that with Cα = (c∧1)/α, we have
∑

j:αj≤t e−Cα log(t+αj) =

Θ( log t
log αe−Cα log t) and

∑
j:αj>t e−Cα log(t+αj) = Θ(e−Cα log t).

One of the main results of the paper is the following tail-bound for the
pseudo-regret of UCB-V:

Theorem 9. Let

vk , 8(c ∨ 1)
(

σ2
k

∆2
k

+ 2b
∆k

)
and r0 ,

∑
k:∆k>0 ∆k

(
1 + vkEn

)
.

Then, for any x ≥ 1, we have

P
(
Rn > r0x

) ≤
∑

k:∆k>0

{
2ne−(c∨1)Enx + β̃n(bvkEnxc)

}
. (32)

Proof. The proof parallels the proof of Theorem 8. First note that

P
(
Rn > r0x

)
= P

{ ∑
k:∆k>0 ∆kTk(n) >

∑
k:∆k>0 ∆k(1 + vkEn)x

}

≤ ∑
k:∆k>0 P

{
Tk(n) > (1 + vkEn)x

}
.

(33)

We use (12) with τ = µ∗ and u = b(1 + vkEn)xc. Since u ≥ dvkEne we can apply
Lemma 1 to get P(Bk,u,t > µ∗) ≤ 2e−u∆2

k/(8σ2
k+4b∆k/3) ≤ 2e−(c∨1)Enx, where

the last inequality follows because u ≥ vkEnx. To bound the other probability
in (12), we use α ≥ 1 and the grid s0, . . . , sM of {1, . . . , n} realizing the minimum
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of (31) when t = u. Let Ij = {sj + 1, . . . , sj+1}. Then

P
(∃s : 1 ≤ s ≤ n− u s.t. Bk∗,s,u+s ≤ µ∗

)

≤
M−1∑

j=0

P
(∃s ∈ Ij s.t. Bk∗,s,sj+u+1 ≤ µ∗

)

≤
M−1∑

j=0

P
(∃s ∈ Ij s.t. s(Xk∗,s − µ∗) +

√
2sVsEsj+u+1 + 3bcEsj+u+1 ≤ 0

)

≤ 3
M−1∑

j=0

e−
(c∧1)Esj+u+1

α = β̃n(u) ≤ β̃n(bvkEnxc),

where the last line comes from (47) with the roles ′n’= sj+1, ‘t’ restricted to Ij

and ‘x’= (c ∧ 1)Esj+u+1/α. ut

In particular, when c = 1 and Et = ζ log t with ζ > 1, the last term dominates
the first in (32), and Theorem 9 leads to the following corollary, which essentially
says that for any z > γ log n with γ large enough,

P
(
Rn > z

) ≤ C
zζ ,

for some constant C > 0:

Corollary 1. Assume that c = 1 and Et = ζ log t, where ζ > 1. Then there
exist κ1 > 0 and κ2 > 0 that depend only on b, K, σ1, . . . , σK and ∆1, . . . , ∆K

such that for any ε > 0, n ≥ 3 and z > κ1 log n, it holds that

P
(
Rn > z

) ≤ (κ2ζ)ζ

ε

log(z/κ1)
zζ(1−ε)

.

Proof. It suffices to prove the result for ε ≤ 1/2, since for larger ε, the prop-
erty holds by possibly considering a twice larger constant κ2. For κ3 > 0 and
κ4 > 0 well chosen and depending only on θ , (b,K, σ1, . . . , σK , ∆1, . . . , ∆K),
Theorem 9 gives

P(Rn > κ3Enx) ≤ 2nKe−Enx + Kβ̃n(bκ4Enxc).

Defining x = z/(κ3En) and z′ = bκ4Enxc = bκ4/κ3zc, this rewrites into

P(Rn > z) ≤ 2nKe−z/κ3 + Kβ̃n(z′).

For κ1 , 2κ3, n ≥ 3 and z > κ1 log n, we have ne−z/κ3 ≤ e−z/κ1 so the first
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term of the r.h.s is upper bounded by

2Ke−z/κ1 ≤ 2K
log(z/κ1)
(z/κ1)ζ

sup
s>κ1 log 3

e−s/κ1
(s/κ1)ζ

log(s/κ1)

≤ 2K
log(z/κ1)
(z/κ1)ζ

sup
u>log 3

e−u uζ

log(log 3)

≤ 2K
log(z/κ1)
(z/κ1)ζ

ζζ

log(log 3)

≤ log(z/κ1)
zζ

(κ′2ζ)ζ

for an appropriate choice of κ′2 that depends only on θ. To upper bound β̃n(z′),
we consider a geometric grid with increment α = 1/(1 − ε) and split the sum
defining β̃n(z′) (cf. (31)) into two parts: for indexes j with sj ≤ z′ we use

e−
(c∧1)E

sj+z′+1
α ≤ e−

E
z′
α = (z′)−ζ(1−ε),

whereas for indexes j with sj > z′, we use e−
(c∧1)E

sj+z′+1
α ≤ e−

Esj
α ≤ e−jζ log α

α .
The first part of the sum has at most 1 + (log z′)/ log[1/(1− ε)] terms, which is
of order (log(z/κ1))/ε when ε ≤ 1/2. Let j0 be the smallest index with sj > z′.
We bound the second part of the sum as follows:

e−j0ζ(log α)/α

1−e−ζ(log α)/α ≤ 1
1−(1−ε)ζ(1−ε)

(
z′

1−ε

)ζ(1−ε) ≤ 2ζ(z′)ζ(1−ε)

1−√1−ε
≤ 2ζ+1(z′)ζ(1−ε)

ε ,

where the second to last inequality uses 2−ζ ≤ (1− ε)ζ(1−ε) ≤ (1− ε)1/2 which
holds since ζ > 1 and ε ≤ 1/2. Combining the bounds gives the final result. ut

Since the regret is expected to be of order log n the condition z = Ω(log n)
is not an essential restriction. Further, the regret concentration, although it
improves as ζ grows, is pretty slow. For comparison, remember that a zero-
mean martingale Mn with increments bounded by 1 would satisfy P(Mn > z) ≤
exp(−2z2/n). The slow concentration for UCB-V happens because the first
Ω(log(t)) choices of the optimal arm can be unlucky (yielding small rewards) in
which case the optimal arm will not be selected any more during the first t steps.
As a result, the distribution of the regret will be of a mixture form with a mode
whose position scales linearly with time and whose associated mass decays only
at a polynomial rate. The rate of this decay is in turn controlled by ζ. The
following result shows that the polynomial rate obtained in Corollary 1 cannot
be replaced by an exponential rate when there is a chance for the optimal arm
to be unlucky.5

5An entirely analogous result holds for UCB1.
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Theorem 10. Assume that the optimal arm is unique. Consider Et = ζ log t
with c ζ > 1. Let µ̃ = sup{v ∈ R : P(Xk∗,1 < v) = 0} be the essential infimum
of the optimal arm’s distribution and let k̃ be the index of a second best arm.
The followings hold:

1. If µ̃ > µk̃ then the pseudo-regret has exponentially small tails.
2. If, on the contrary, µ̃ < µk̃ then the pseudo-regret assumes a polynomial

tail only.

When there are multiple optimal arms and the minimum of the essential infi-
mums of the optimal arms’ payoffs is above the mean payoff of a second best
arm then the first part of the result continues to hold. On the other hand, when
the maximum of the essential infimums is below the mean payoff of a second
best arm then the second part continues to hold.

Proof. First consider the case when µ̃ > µk̃. Let µ′ be such that µk̃ < µ′ < µ̃
and let δk = µ′−µk. The bound on the tail probability of Rn is bounded in terms
of the tail-probabilities of Tk(n), where k ranges over the indexes of suboptimal
arms as in (33). Fix such a k. The tail of Tk(n) is bounded by using (12)
with τ = µ′ and where u =

⌈
8(c ∨ 1)

(σ2
k

δ2
k

+ 2b
δk

)En

⌉
. This value of τ makes the

last probability in (12) vanish. The first term is controlled as in the proof of
Theorem 9. Precisely, for v′k , 8(c ∨ 1)

(σ2
k

δ2
k

+ 2b
δk

)
, r′0 ,

∑
k:∆k>0 ∆k

(
1 + v′kEn

)

and any x ≥ 1 we have

P
(
Rn > r′0x

) ≤ 2elog(Kn)−(c∨1)Enx,

which proves that Rn has exponential tails in this case.
Now consider the case when µ̃ < µk̃. We prove the result for a special

distribution first and then argue that the general case follows along similar
lines. Consider the following payoff distributions:

• the optimal arm with index 1 concentrates its rewards on µ̃ and b such
that its expected reward is strictly larger than µk̃,

• all suboptimal arms are deterministic to the extent that they always pro-
vide a reward equal to µk̃.

Let q be any positive integer. Consider the event:

Γ =
{
X1,1 = X1,2 = . . . = X1,q = µ̃

}
.

Let c2 , 3bcζ and η , µk̃ − µ̃. On Γ we have for any t ≤ eηq/c2

B1,q,t = µ̃ + c2
log t

q ≤ µk̃.

Besides for any k > 1, 0 ≤ s ≤ t, we have

Bk,s,t = µk̃ + c2
log t

s > µk̃.
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This means that the optimal arm cannot be played more than q times during
the first eηq/c2 plays. Hence, Rn ≥ ∆k̃

(
eηq/c2 − q

)
. Now, take q large enough so

that eηq/c2 − q ≥ 1
2eηq/c2 so that Rn ≥ 1

2∆k̃ eηq/c2 . Further, let w > 0 be such
that n , ew−1eηq/c2 =

⌈
eηq/c2

⌉
. As w log n = eηq/c2 we get

P
(
Rn ≥ ∆k̃

2 w log n
) ≥ P(Γ) = P(X1,1 = µ̃)q =

(
1

w log n

)C

where C = c2
η log(1/p) and p = P(X1,1 = µ̃). Since w increases with q and the

inequality holds for any sufficiently large q (the threshold depends only on c2

and η), we have thus shown that the pseudo-regret cannot have a tail thinner
than polynomial.

The proof for the general case is essentially the same. The main difference is
that Γ has to be redefined as the event when X1,1, X1,2, . . . , X1,q are below µ′′

with µ̃ < µ′′ < µk̃, and when, for the second optimal arm, the empirical means
stay close to the associated expected mean µk̃. The rest of the proof, which
is omitted here in the interest of saving some space, follows the same steps as
above.

ut
Remark 2. Theorem 9 and Corollary 1 provide tail bounds for the pseudo-
regret, Rn =

∑K
k=1 Tk(n)∆k, instead of the regret,

R̂n =
n∑

t=1

Xk∗,t −
n∑

t=1

XIt,TIt (t).

The following considerations show that when the optimal arm is unique, similar
concentration bounds hold for the regret: Assume that c = 1 and Et = ζ log t
with ζ > 1. By slightly modifying the analysis in Theorem 9 and Corollary 1,
one can derive that there exists C ′′ > 0 such that for any z > C ′′ log n, with
probability at least 1−z−1, the number of draws of suboptimal arms is bounded
by Cz for some C > 0 (in this remark, the constants C, C ′ and C ′′ depend on
b, K, σ1, . . . , σK and ∆1, . . . , ∆K and may differ from line to line). So the
algorithm draws the optimal arm at least n−Cz times. This means that n−Cz
terms cancel out in the sum defining the regret. For the Cz remaining terms, one
can use Hoeffding’s inequality and union bounds to prove that with probability
1− Cz−1, for any suboptimal arm k,

∑Tk(n)
t=1 (Xk,t − µk)√

Tk(n)
≤ max

1≤s≤Cz

∑s
t=1(Xk,t − µk)√

s
≤ C ′

√
log z,

hence, by the Cauchy-Schwarz inequality

R̂n −Rn ≤ C ′
∑

k 6=k∗

√
Tk(n) log z ≤ C ′

√
K − 1

√
Cz log z.

Therefore, with probability at least 1 − z−1, we simultaneously have R̂n ≤
Rn + C ′

√
z log z and Rn ≤ Cz. Since

√
z log z = o(z), the regret R̂n has similar
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tails than the pseudo-regret Rn. Thus, we conclude that for z > C log n, with
probability at least 1− z−1, R̂n ≤ C ′z.

6. Numerical experiments

The purpose of this section is to illustrate the tail bounds obtained. For this
we ran some computer experiments with bandits with two arms: the payoff of
the optimal arm follows a Bernoulli distribution with expectation 0.5, while the
payoff of the suboptimal arm is deterministic and assumes a value p which is
slightly less than 0.5. This arrangement makes the job of the bandit algorithms
very hard: All algorithms learn the value of the suboptimal arm quickly (al-
though UCB1 will be very optimistic about this arm despite that all the payoffs
received are the same). Since the difference of 0.5 and p is kept very small, it
may take a lot of trials to identify the optimal arm. In particular, if the experi-
ments start in an unlucky way, the algorithms will keep choosing the suboptimal
arm, further delaying the time of recognizing the true identity of the optimal
arm. In all cases, 10, 000 independent runs were used to estimate the quantities
of interest and the algorithms were run for T = 220 ≈ 1, 000, 000 time steps.

We have run experiments with both UCB1 and UCB-V. In the case of UCB1
the exploration coefficient, ρ (cf. Equation (25)), was chosen to take the value
of 2, which can be considered as a typical choice. In the case of UCB-V we used
ζ = 1, c = 1, as a not too conservative choice (cf. Equation (18)). In both cases
we set b = 1. For the considered bandit problems the difference between UCB1
and UCB-V is the result of that in the case of UCB-V the upper confidence value
of the suboptimal arm will converge significantly faster to the true value than
the same value computed by UCB1 since the estimated variances will always
take the value of zero (the payoff is deterministic).

Fix α ≥ 0. Define the value at risk for the risk level α as the upper α-
percentile of the regret:

Rn(α) = inf{r : P(Rn ≥ r) ≤ α}.

Hence, Rn(α) is a lower bound on the loss that might happen with α probability.
Notice that the tail bounds of the previous section predict that the value at risk
can be excessively large for difficult bandit problems. In particular, the more
aggressive an algorithm is in optimizing the expected regret, the larger the value
at risk is.

Figures 1 and 2 compare the estimated value at risk as a function of time
for UCB1 and UCB-V for an easier (p = 0.48) and a more difficult problem
(p = 0.495). Note that UCB-V, having tighter confidence intervals, can be
considered as a more aggressive algorithm. For the figures the risk parameters
were chosen to be α = 0.01, 0.16 and 0.5 (the latter value corresponding to
the median). These figures also show the mean regret and (estimated) upper
percentiles of Gaussians fitted to the respective regret distributions. (The labels
of the percentile curves for the Gaussians are marked by pasting “(n)” after the
respective α-values. The percentiles were estimated by drawing 10, 000 values
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Figure 1: Value at risk as a function of time when the expected payoff of the suboptimal arm
is p = 0.48. The upper figure depicts results for UCB1, while the lower one depicts results for
UCB-V. Note the logarithmic scale of the time axis. For more details see the text.
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from the respective Gaussians.) If the regret is normally distributed, we can
expect a good match between the respective percentile curves.
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Figure 2: Value at risk as a function of time when the expected payoff of the suboptimal arm
is p = 0.495. The upper figure depicts results for UCB1, while the lower one figure depicts
results for UCB-V. For more details see the text.

As expected, in the case of the “easier” problem UCB-V outperforms UCB1
by a large margin except for the smallest value α (which partially confirms the
results on the scaling of the expected regret with the variance of the subopti-
mal arms). For UCB1, uniformly over time, the distribution of regret is well
approximated by Gaussians. In the case of UCB-V, we see that the Gaussian
approximation overestimates the tail. Actually, in this case the regret distribu-
tion is bimodal (figures for the difficult problem will be shown later), but the
r.h.s. mode has a very small mass (ca. 0.3% at the end of the experiment).
Note that by the end of the experiment the expected regret of UCB-V is ca.
120, while the expected regret of UCB1 is ca. 870. This task is already quite
challenging for both algorithms: They both have a hard time identifying the
optimal arm. Looking at the distributions (not shown) of how many times the
optimal arm is played, it turns out that UCB1 fails to shift the vast majority of
the probability mass to the optimal arm by the end of the experiment. At the
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same time, for UCB-V the shift happens at around T = 8, 192. Note that in the
initial (transient) phase both algorithms try both actions equally often (hence
in the initial phase the expected regret grows linearly). The main difference is
that UCB-V shrinks the confidence interval of the suboptimal arm much faster
and hence eventually suffers a much smaller regret.

On the more challenging problem, the performance of UCB-V deteriorates
considerably. Although the respective expected regrets of the algorithms are
comparable (1213 and 1195, respectively, for UCB-V and UCB1), the value at
risk of UCB-V for α = 0.16 and smaller is significantly larger than that for
UCB1.

In order to illustrate what “goes wrong” with UCB-V for 20 independent
runs we show in Figure 3 the time evolution of the proportion of time-steps when
the suboptimal arm is chosen. That is, the figure shows the time evolution of
Tbad(t)/t for 20 different runs, where Tbad(t) =

∑t
s=1 I{Is is the bad arm}. We see

that in quite a few runs the suboptimal arm is preferred for a long time, though
ultimately all curves converge to 0.
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Figure 3: Tbad(t)/t, the proportion of times of using the suboptimal arm in the first t time-
steps as a function of time for 20 independent runs. The bandit problem has parameter
p = 0.495 and the algorithm is UCB-V.

Based on Figure 3 one may suspect that the distribution of Tbad(t)/t is
bimodal. This is confirmed by Figure 4 which shows this distribution as a
function of time. Note that at around time T = 2, 048 (log2(T ) = 11) the
probability mass indeed becomes bimodal. At this time, the probability mass
is split into two with a larger mass shifting towards the (desired) mode with
value 0, while a smaller, but still substantial mass drifting towards 1. The mass
of this second mode is continuously decreasing, albeit at a slow rate. The slow
rate of this decay causes the large regret of UCB-V. A similar figure for UCB1
(not shown here) reveals that for UCB1 the distribution stays unimodal (up to
the precision of estimation), but the mode starts to drift (slowly) towards 0 as
late as at time T = 217.

In order to asses the rate of leakage of the probability mass from the right-
side mode, we plotted the estimated probability of selecting the suboptimal arm
more than α-fraction of the time (i.e., P(Tbad(t) ≥ αt)), as a function of time and
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Figure 4: The distribution of Tbad(t)/t, the frequency of using the suboptimal arm, plotted
against time. The bandit problem has parameter p = 0.495 and the algorithm is UCB-V.
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for various values of α, see Figure 5. The figure reinforces that in the initial
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Figure 5: The probability of choosing the suboptimal arm more than α-fraction of time plotted
against time and various values of α. Note that the experiment was continued up to T = 224

steps to show the beginning of the asymptotic phase.
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Figure 6: Distribution of the regret for UCB-V at time T1 = 16, 384 (l.h.s. figure) and
T2 = 524, 288 (r.h.s. figure). The bandit problem has parameter p = 0.495.

phase Tbad(t) is concentrated around 0.5t. At the time when the two modes
appear most of the mass drifts towards zero, though at the same time some
mass is drifting towards t as indicated by the large spread of P(Tbad(t) ≥ αt).
The fact that all curves are converging to each other reveals that the distribution
becomes rather concentrated around the two modes, located at 0 and t. As the
rate of convergence of the curves toward zero was hard to judge from the first
T = 220 steps (the transient phase hardly ends by this time), we continued the
experiment up to T = 224 time steps (the figure shows the results up to this
time). Plotting the same figure on a log-log scale (not shown here), it looks as
if asymptotically the curves followed a polynomial curve.
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To show that also the regret follows a bimodal distribution we plotted the
histogram of the regret at times T1 = 16, 384 and T2 = 524, 288, shown on the
left- and r.h.s. subfigures of Figure 6, respectively. The first time point, T1,
was selected so that the arm-choice distribution and hence also the regret dis-
tribution is still unimodal. However, already at this time the regret distribution
looks heavy tailed on the right. By time T2 the regret distribution is already
bimodal, with a substantial mass belonging to the right-side mode (based on the
previous figure, this mass is estimated to contain about 25% of the total mass).
Note that the left-side mode is close to zero, while the right-side mode is close
to ∆T2 = 0.005×T2 ≈ 2, 600, confirming that runs contributing to either of the
modes tend to stay with the mode from the very beginning of the experiments.
Hence, the distribution of the regret appears to be of a mixture Gaussians.

7. PAC-UCB

In this section, we consider the case when the exploration function does not
depend on t: Es,t = Es. We show that for an appropriate sequence (Es)s≥0 this
leads to a UCB algorithm which with high probability plays any suboptimal arm
only a few times. Hence, the algorithm is “Probably Approximately Correct”,
explaining the algorithm’s name. Note that in this setting, the quantity Bk,s,t

does not depend on the time t so in what follows we will write Bk,s instead of
Bk,s,t. Besides, in order to simplify the discussion, we take c = 1.

Theorem 11. Let β ∈ (0, 1). Consider a sequence (Es)s≥0 that takes values in
R ∪ {+∞} and satisfies Es ≥ 2 and

4K
∑

s≥7 e−Es ≤ β. (34)

Let k be the index of some suboptimal arm and let uk be the smallest integer
satisfying

uk

Euk
>

8σ2
k

∆2
k

+ 26b
3∆k

(35)

with the understanding that if no integer index satisfies this inequality then
uk = +∞. Then with probability at least 1− β it holds that no suboptimal arm
k is played more than uk times by PAC-UCB.

When Es takes only finite values the existence of a finite uk is guaranteed if
Es = o(s). Note that infinite values of Es are allowed only for technical reasons.
In particular, this will be needed when we apply this theorem in a finite horizon
setting in which case we will use Es = +∞ for s bigger than the horizon.

Proof. See Section A.5.

Let q > 1 be a fixed parameter. A typical choice for Es is

Es = log(Ksqβ−1) ∨ 2, (36)
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up to some additive constant ensuring that (34) holds. For this choice, Theo-
rem 11 implies that for some positive constant κ, with probability at least 1−β,
for any suboptimal arm k (i.e., ∆k > 0), the number of plays is bounded by

Tk,β , κ
( σ2

k

∆2
k

+ b
∆k

)
log

[
K

( σ2
k

∆2
k

+ b
∆k

)
β−1

]
.

Notice that this value is independent of the total number of plays. Hence, we
get the following upper bound on the pseudo-regret:

Rn =
∑K

k=1 Tk(n)∆k ≤
∑

k:∆k>0 Tk,β∆k. (37)

One should notice that the previous bound holds with an even set of probability
at least 1 − β. On the complementing event no small upper bound is possible:
there exist situations when with probability of at least Ω(β), the regret is of
order n, while (37) still holds with probability greater than 1 − β. Hence,
without any additional assumptions the following bound cannot be essentially
improved:

E[Rn] =
∑K

k=1 E[Tk(n)]∆k ≤ (1− β)
∑

k:∆k>0 Tk,β∆k + βn

As a consequence, if one is interested to have a bound on the expected regret at
some fixed time n, one should take β of order 1/n (up to possibly a logarithmic
factor):

Theorem 12. Let n ≥ 7. Consider the sequence Es = log[Kn(s + 1)]. For this
sequence, the PAC-UCB policy satisfies the followings:

• With probability at least 1− 4 log(n/7)
n , for any suboptimal arm k, the num-

ber of plays up to time n is bounded by 1 +
( 8σ2

k

∆2
k

+ 26b
3∆k

)
log(Kn2).

• The expected regret at time n satisfies

E[Rn] ≤ ∑
k:∆k>0

( 24σ2
k

∆k
+ 30b

)
log n. (38)

Proof. See Section A.6.

8. Open problem

When the time horizon n is known, one may want to choose the exploration
function E depending on the value of n. For instance, in view of Theorems 3
and 9, one may want to take c = 1 and a constant exploration function E ≡
3 log n. This choice ensures logarithmic expected regret and a nice concentration
property:

P
{

Rn > 24
∑

k:∆k>0

(
σ2

k

∆k
+ 2b

)
log n

}
≤ C

n . (39)

The behavior of this algorithm should be contrasted to the one with Es,t =
3 log t: The algorithm with constant exploration function Es,t = 3 log n concen-
trates its exploration phase at the beginning of the plays, and then switches to
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the exploitation mode. On the contrary, the algorithm that adapts to the time
horizon explores and exploits at any time during the interval [0, n]. However, in
view of Corollary 1 and Theorem 10, its regret satisfies

C
(log n)C ≤ P

{
Rn > 24

∑
k:∆k>0

(
σ2

k

∆k
+ 2b

)
log n

}
≤ C′

(log n)C′ ,

a significantly worse behavior than what is shown (39). The open question is:
is there an algorithm that does not need to know the time horizon and which
has a logarithmic expected regret and a concentration property similar to (39)?
We conjecture that the answer is no.

A. Proofs of the results

A.1. Lower bound for UCB-V
The aim of this section is to prove that both terms in (4) are unavoidable.

Precisely, we have the following result:

Theorem 13. Fix b and any constant C > 0. Then there is no algorithm that
would satisfy either

E[R̂n] ≤ C
∑

k:µk<µ∗ b log(n), (40)

or
E[R̂n] ≤ C

∑
k:µk<µ∗

σ2
k

∆k
log(n) (41)

uniformly for all reward distributions with support in [0, b].

Proof. We apply a lower bound developed by Lai and Robbins [11]. Let δa

be the Dirac distribution supported on a ∈ R. Let νp = (1 − p)δ0 + pδb be
a Bernoulli-like distribution parameterized by p ∈ (0, 1). Consider a bandit
policy. For (p1, p2) ∈ (0, 1)2 let Rn(p1, p2) denote the expected regret of this
policy when it is applied to a two-armed bandit problem in which the reward
distributions for the two arms are respectively νp1 and νp2 . If for some a > 0,
(p1, p2) ∈ (0, 1)2, Rn(p1, p2) = o(na) does not hold then the logarithmic regret
bounds, (40), (41), cannot hold. Therefore let us assume that Rn(p1, p2) =
o(na) holds for any a > 0 and (p1, p2) ∈ (0, 1)2. Then, from Lai and Robbins
[11], Theorem 1 we conclude that for any (p1, p2) ∈ (0, 1)2 with p1 > p2, we
have

lim inf
n→+∞

Rn(p1, p2)
log n

≥ b(p1 − p2)
p1 log(p1

p2
) + (1− p1) log( 1−p1

1−p2
)
.

Let Θ(p1, p2) denote the r.h.s. of this inequality. Let us consider p1 = (1 + δ)/2
and p2 = (1− δ)/2 with δ ∈ (0, 1). Then we have Θ(p1, p2) = b/ log[(1+ δ)/(1−
δ)]. Since the logarithmic term goes to 0 when δ goes to 0, there is no algorithm
which can satisfy (40) for all reward distributions in {νp : p ∈ (0, 1)}. Besides,
we have σ2

2 = b2(1− δ2)/4, ∆2 = bδ and

∆2

σ2
2

Θ(p1, p2) =
4δ

(1− δ2) log[(1 + δ)/(1− δ)]
.
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Since the last r.h.s. goes to infinity when δ goes to 1, there is no algorithm
which can satisfy (41) for all reward distributions in {νp : p ∈ (0, 1)}. ut

A.2. Lower bound for UCB1
Proposition 1. There exist arm rewards in [0, b] such that UCB1 (defined by
the bias factor (1)) has an expected regret E [Rn] = Ω(b2 log n), while UCB-V
with c = 1 and ζ = 1.2 satisfies E [Rn] ≤ 20b log n.

Proof. Consider the 2-armed deterministic bandit problem such that arm 1
yields the reward ∆, and arm 2 yields the reward 0. In this case, Theorem 4
gives the desired property of UCB-V. For UCB1, in order to obtain a lower
bound on the regret, we look for a lower bound on T2(n).

First consider the “balance equation”

∆ + b

√
2 log(n + 1)

n− p(n)
= b

√
2 log(n + 1)

p(n)
, (42)

where p(n) is considered as a function of n ≥ 1. Note that solving (42) yields

p(n) =
n

2


1−

√
1− 4

(√
1 + n∆2/(2b2 log(n + 1))− 1

n∆2/(2b2 log(n + 1))

)2


 .

Besides, we have the property that: p(n) ≥ 2b2

∆2 log(n + 1) − 4
√

2b3

∆3
(log(n+1))3/2

√
n

,

whose first term is dominant when n is large. Thus p(n) = Ω( b2

∆2 log(n + 1))
The intuition is that UCB1 works by keeping the upper bound B1,T1(n),n+1

of the first arm close to that of the second arm B2,T2(n),n+1 since the algorithm
chooses at each time step the arm that has the highest bound, which, as a
consequence, decreases its value.6 Thus we expect that T2(n) will be close to
p(n). For that purpose, let us prove the following result.

Lemma 4. At any time step n+1, if UCB1 chooses arm 1 then we have T2(n) ≥
p(n), otherwise we have T2(n) ≤ p(n). We deduce that for all n ≥ 3, T2(n) ≥
p(n− 1).

Proof (of Lemma 4). The fist part of the lemma comes from the fact that if
T2(n) < p(n), then T1(n) > n− p(n), thus

B2,T2(n),n+1 = b

√
2 log(n + 1)

T2(n)
> b

√
2 log(n + 1)

p(n)
= ∆ + b

√
2 log(n + 1)

n− p(n)

> ∆ + b

√
2 log(n + 1)

T1(n)
= B1,T1(n),n+1,

6The same holds for UCB-V. However, the corresponding “balance” equation for UCB-V
looks different.
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which implies that arm 2 is chosen. A similar reasoning holds in the other case.
Now, let us prove the second part of the lemma. The proof by contradiction:

Let n ≥ 3 be the first time when T2(n) < p(n − 1), and let n denote the first
such time. Thus T2(n− 1) ≥ p(n− 2) (note that this is also true if n = 3 since
T2(2) = 1 and p(1) ≤ 1/2). Thus T2(n− 1) ≤ T2(n) < p(n− 1) which, from the
first part of the proposition, implies that at time n, arm 2 is chosen. We deduce
that

p(n− 1) > T2(n) = T2(n− 1) + 1 ≥ p(n− 2) + 1.

This is impossible since the function x → p(x) has a slope bounded by 1/2 in
the domain [1,∞), thus p(n− 1) ≤ p(n− 2) + 1/2. ut

From the previous lemma, we deduce that T2(n) = Ω( b2

∆2 log n) and thus the
regret of UCB1 satisfies Rn = T2(n)∆ = Ω( b2

∆ log n). ut

A.3. Proof of Theorem 1
The result follows from a version of Bennett’s inequality which gives a high-

probability confidence interval for the mean of an i.i.d. sequence:

Lemma 5. Let U be a real-valued random variable such that almost surely U ≤
b′′ for some b′′ ∈ R. Let µ = E [U ], b′ , b′′−µ, and b′′+ = b′′∨0. Let U1, . . . , Un

be i.i.d. copies of U , U t = 1/t
∑t

s=1 Us. The following statements are true for
any x > 0:

• with probability at least 1− e−x, simultaneously for 1 ≤ t ≤ n,

t(U t − µ) ≤
√

2nE [U2] x + b′′+x/3, (43)

• with probability at least 1− e−x, simultaneously for 1 ≤ t ≤ n,

t(U t − µ) ≤
√

2nVar (U)x + b′x/3. (44)

Proof (of Lemma 5). Let v = (Var U)/(b′)2. To prove this inequality, we
use Result (1.6) of Freedman [6] to obtain that for any a > 0

P
(∃t : 0 ≤ t ≤ n and t(U t − µ)/b′ ≥ a

)
≤ ea+(a+nv) log[nv/(nv+a)].

In other words, introducing h(u) = (1 + u) log(1 + u) − u, with probability at
least 1− e−nvh[a/(nv)], simultaneously for 1 ≤ t ≤ n,

t(U t − µ) < ab′.

Consider a =
√

2nvx + x/3. To prove (44), it remains to check that

nvh[a/(nv)] ≥ x. (45)
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This can be done by introducing ϕ(r) = (1 + r + r2/6) log(1 + r + r2/6)− r −
2r2/3. For any r ≥ 0, we have ϕ′(r) = (1 + r/3) log(1 + r + r2/6) − r and
3ϕ′′(r) = log(1 + r + r2/6) − (r + r2/6)/(1 + r + r2/6), which is nonnegative
since log(1 + r′) ≥ r′/(1 + r′) for any r′ ≥ 0. The proof of (44) is finished since
ϕ(

√
2x/(nv)) ≥ 0 implies (45).

To prove (43), we need to modify the martingale argument underlying Freed-
man’s result. Precisely, let g(r) , (er − 1− r)/r2. Then we replace

E
[
eλ[U−EU−λg(λb′)Var U ]

]
≤ 1

by (see e.g., Audibert [2], Chap. 2: Inequality (8.2) and Remark 8.1)

E
[
eλ[U−EU−λg(λb′′)EU2]

]
≤ 1.

By following Freedman’s arguments, we get

P
(∃t : 0 ≤ t ≤ n and t(U t − µ) ≥ a

)

≤ min
λ>0

e−λa+λ2g(λb′′)nE[U2].

Now if b′′ ≤ 0, this minimum is upper bounded by

min
λ>0

e−λa+ 1
2 λ2nE[U2] = e

− a2

2nE[U2] ,

which leads to (43) when b′′ ≤ 0. When b′′ > 0, the minimum is reached for
λb′′ = log

( b′′a+nE[U2]
nE[U2]

)
. The computations then are similar to the one developed

to obtain (44). ut
Remark 3. Lemma 5 differs from the standard version of Bernstein’s inequality
in a few ways. The standard form of Bernstein’s inequality (using the notation
of this lemma) is as follows: for any w > 0,

P
(
Un − µ > w

) ≤ e
− nw2

2Var(U)+(2b′w)/3 . (46)

When this inequality is used to derive high-probability confidence interval, we
get

n(Un − µ) ≤
√

2nVar (U) x + 2 b′x
3 .

Compared with (44) we see that the second term here is larger by a multiplicative
factor of 2. This factor is saved thanks to the use of Bennett’s inequality.
Another difference is that Lemma 5 allows the time indices to vary in an interval.
This form follows from a martingale argument due to Freedman [6].

Proof (of Theorem 1). Given Lemma 5, the proof essentially reduces to an
application of the “square-root trick”. For the first part of the theorem, we will
prove the following result: for any x > 0 and n ∈ N, with probability at least
1− 3e−x, for any 0 ≤ t ≤ n,

|Xt − µ| <
√

2nVtx
t + 3bnx

t2 . (47)
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Note that this is slightly stronger than the first part of Theorem 1. We prove
this result since we need it in the proof of the second part of the Theorem.

First, notice that if we prove the theorem for random variables with b = 1
then the theorem follows for the general case by a simple scaling argument.

Let σ denote the standard deviation of X1: σ2 , Var X1, and introduce
V , E

[
(X1 −EX1)4

]
. Lemma 5, (44) with the choices Ui = Xi, Ui = −Xi, and

Lemma 5, (43) with the choice Ui = −(Xi−E[X1])2 yield that with probability
at least 1− 3e−x, for any 0 ≤ t ≤ n, we simultaneously have

|Xt − µ| ≤ σ
√

2nx
t + x

3t
(48)

and
σ2 ≤ Vt + (µ−Xt)2 +

√
2nV x

t . (49)

Let L , nx/t2. We claim that from (48) and (49), it follows that

σ ≤ √
Vt + 1.8

√
L. (50)

Since the random variable X1 takes its values in [0, 1], we necessarily have
σ ≤ 1/2. Hence, when 1.8

√
L ≥ 1/2 then (50) is trivially satisfied, so from now

on we may assume that 1.8
√

L ≤ 1/2, i.e., L ≤ (3.6)−2. Noting that V ≤ σ2,
plugging (48) into (49) for 0 ≤ t ≤ n we obtain

σ2 ≤ Vt + 2Lσ2 + 2L
3 σ
√

2L + L2

9 + σ
√

2L

≤ Vt +
√

Lσ
3.6 + 2

3×(3.6)2 σ
√

2L + L
9×(3.6)2 + σ

√
2L

≤ Vt + 1.77
√

Lσ + L
100 ,

or σ2 − 1.77
√

Lσ − (Vt + L
100 ) ≤ 0. The l.h.s. when viewed as a second order

polynomial in σ has a positive leading term, hence its larger root gives an upper
bound on σ: σ ≤ 1.77

2

√
L +

√
Vt + 0.8L ≤ √

Vt + 1.8
√

L, finishing the proof
of (50). Plugging (50) into (48), we obtain

|Xt − µ| ≤ √
2VtL +

[
1.8
√

2 + 1/3
]
L <

√
2VtL + 3L,

which, given the definition of L, proves (47), and thus the first part of Theorem 1.
Let us now consider the second part of the theorem: Fix t1 ≤ t2, t1, t2 ∈ N

and let α ≥ t2/t1. From (47) it follows that simultaneously for t ∈ {t1, . . . , t2}
we have with probability at least 1− 3e−x/α that

t|Xt − µ| <
√

2t2Vtx/α + 3x/α

≤
√

2tVtx + 3x.
(51)

To finish the proof we will use this inequality for a sequence of suitably
chosen intervals [t1, t2] that form a partition of [4, n]. (It suffices to consider a
partition of [4, n], because for 1−3e−x/α ≥ 0 the r.h.s. of (51) is always greater
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than 3. Thus, for t ≤ 3 inequality (51) holds with probability one.) For the
rigorous reasoning, introduce

β̄(x, n) , 3 inf
M∈N

s0=3<s1<···<sM=n,
s.t. sj+1≤α(sj+1)

M−1∑

j=0

e−x/α.

and let s0, . . . , sM be a grid realizing the above minimum. Then we have

P
(
∃t : 1 ≤ t ≤ n s.t. |Xt − µ| >

√
2Vtx

t
+

3x

t

)

≤
M−1∑

j=0

P
(∃t : sj < t ≤ sj+1 s.t. t|Xt − µ| >

√
2tVtx + 3x

)

≤ 3
M−1∑

j=0

e−x/α = β̄(x, n) ≤ β(x, n),

where the last inequality follows since s0, . . . , sM forms a complete geometric
grid of {3, 4, . . . , n} with step-size α. This finishes the proof of Theorem 1. ut

Remark 4. Any PAC empirical bound on |Xt − µ| leads to a corresponding
UCB policy. The tighter the bound is, the more efficient (in terms of expected
regret) the UCB policy is. Theorem 1 is essentially obtained by using Bernstein’s
inequality for both the empirical mean and variance. There is a small cost to
consider the variance when it is high. Indeed, in the worst case, the variance
is equal to b2/4, so that (47) leads to that with probability at least 1 − 3e−x,
|Xt − µ| < b

√
x
2t + 3bx

t . This inequality has to be compared with Hoeffding’s
inequality (the one used in UCB1), which, for the same level of confidence,

1 − 3e−x, reads |Xt − µ| < b
√

x−log 3
2t . This is much tighter than the former

inequality when x/t is not very small. Note that Theorem 1 (and therefore
UCB-V policy) can be (numerically) improved by using (48) and σ ≤ b/2. This
gives: for any t ∈ N and x > 0, with probability at least 1− 3e−x,

|Xt − µ| ≤
(√

2Vtx

t
+

3bx

t

)
∧

(
b

√
x

2t
+

bx

3t

)
,

and with probability at least 1− β(x, t), for any s ∈ {1, 2, . . . , t},

|Xs − µ| ≤
(√

2Vsx

s
+

3bx

s

)
∧

(
b

√
x

2s
+

bx

3s

)
.

Finally, the last term in Bk,s,t, which corresponds to the bx/s term in the
previous inequality, does play a role when the variance is very small. It cannot
be eliminated as can be seen by considering the case when X1 is a Bernoulli
of parameter λ/s with λ > 0. Indeed, in this case, sXs has the distribution
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Bin(s, λ/s), which converges in law to Poisson(λ) for s tending to infinity. Now,
it is known that there are no positive constants c1 and c2 such that the inequality
P(|Z − EZ| ≥ c1

√
xVar Z) ≤ c2e

−x holds for all Poisson distributions (because
of the left “tail” of the Poisson distributions).

Remark 5. One may also write a one-sided version of Theorem 1 taking into
account the previous remark, namely for any t ∈ N and x > 0, with probability
at least 1− 2e−x,

Xt − µ ≤
(√

2Vtx

t
+

3bx

t

)
∧

(
b

√
x

2t
+

bx

3t

)
, (52)

and with probability at least 1−2 inf
1<α≤3

(
log t
log α∧t

)
e−x/α, for any s ∈ {1, 2, . . . , t},

Xs − µ ≤
(√

2Vsx

s
+

3bx

s

)
∧

(
b

√
x

2s
+

bx

3s

)
. (53)

To prove (52), we use (49) and the one-sided version of (48), which holds si-
multaneously with probability 1− 2e−x. We claim that these inequalities imply
that either (50) holds or Xs−µ ≤ 0. In both cases, (52) follows. Inequality (53)
follows from a similar argument.

A.4. Proof of Theorem 6
We will prove the following, slightly stronger result.

Theorem 14. Consider Et = ζ log t. For any ζ > 0 and p ∈ (0, 1), if cζ <
p

−3 log(1−p) , there exist probability distributions of the rewards such that the mean
reward of the optimal arm is pb and the UCB-V algorithm suffers a polynomial
loss.

Theorem 14 implies Theorem 6 by letting p → 0.

Proof (of Theorem 14). For cζ < p
−3 log(1−p) , there exists ε ∈ (0, 1) such

that
cζ = ε2 p

−3 log(1− p)
(54)

Consider the following two-armed bandit problem: Let {X1,t} be an i.i.d. se-
quence with P(X1,t = b) = p = 1−P(X1,t = 0). Let {X2,t} be the deterministic
sequence given by X2,t = pbε. Arm 1 is then the optimal arm and its mean
reward is pb. Fix n ∈ N. Let T = dγ log ne with γ = −ε/ log(1 − p). We
consider large values of n for which n > T .
Claim: Consider an event when during the first T pulls the optimal arm always
returns 0. On such an event the optimal arm is not pulled more than T times
during the time interval [1, n], i.e., T1(n) ≤ T .
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Proof. The claim is proved by contradiction. Assume that on the considered
event, the optimal arm is pulled more than T times. Then, at some time t1 ≤ n,
the optimal arm is drawn for the (T +1)-th time, hence B1,T,t1 ≥ B2,T2(t1−1),t1 .
Now, since V1,T = 0 and X1,T = 0, we have

B1,T,t1 =
3cζb log(t1)

T
≤ 3cζb

γ
≤ pbε,

where in the last inequality we used (54) and the definition of γ. Further,
B2,T2(t1−1),t1 = pbε + 3cζ log(t1)/T2(t1 − 1) > pbε, hence we get the desired
contradiction. ut

Now observe that the probability of the event that the optimal arm returns
0 during its first T pulls is

(1− p)T ≥ (1− p)1+γ log n = (1− p)nγ log(1−p) = (1− p)n−ε.

Further, when this event holds the regret is at least (n−T )pb(1− ε). Thus, the
expected regret is at least (1− p)pb(1− ε)n1−ε(1− γ(log n)/n), which is indeed
polynomial in n since 1− ε > 0. ut

A.5. Proof of Theorem 11
Proof. Without the loss of generality (by a scaling argument), we may assume
that b = 1. We prove the theorem by first proving three claims.
Claim: Consider the event A on which

∀s ≥ 7 ∀k ∈ {1, . . . , K}





∣∣Xk,s − µk

∣∣ < σk

√
2Es

s + Es

3s

σk ≤
√

Vk,s + 1.8
√
Es

s√
Vk,s ≤ σk +

√
Es

2s

(55)

This event holds with probability at least 1− β.

Proof. The arguments that we will use to prove the first two inequalities are
similar to the ones used in the proof of Theorem 1. The main difference here
is that we want the third inequality to hold simultaneously with the first two
inequalities. We apply Lemma 5 with x = Es, n = s and different i.i.d. random
variables: Wi = Xk,i, Wi = −Xk,i, Wi = (Xk,i − µk)2 and Wi = −(Xk,i −
µk)2. We use that the second moment of the last two random variables satisfies
E[(Xk,1 − µk)4] ≤ σ2

k and that the empirical expectation of (Xk,i − µk)2 is
1
s

∑s
i=1(Xk,i − µk)2 = Vk,s + (Xk,s − µk)2.

We obtain that for any s ≥ 7 and k ∈ {1, . . . , K}, with probability at least
1− 4e−Es





∣∣Xk,s − µk

∣∣ < σk

√
2Es

s + Es

3s

σ2
k ≤ Vk,s + (Xk,s − µk)2 +

√
2σ2

kEs

s

Vk,s + (Xk,s − µk)2 ≤ σ2
k + σk

√
2Es

s + Es

3s ≤
(
σk +

√
Es

2s

)2
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As we have seen in Section A.3, the first two of these inequalities imply the first
two inequalities of (55). The last inequality of (55) is obtained by taking the
square root in the above third inequality.

Using an union bound, all these inequalities hold simultaneously with prob-
ability at least

1− 4
∑K

k=1

∑
s≥7 e−Es ≥ 1− β.

ut

Remember that Bk,s , Xk,s +
√

2Vk,sEs

s + 3Es

s . We have the following claim:
Claim: On the event A, for any s ≥ 1 and k ∈ {1, . . . ,K}, the following
inequalities hold:

µk ≤ Bk,s, (56)

Bk,s ≤ µk + 2σk

√
2Es

s
+

13Es

3s
(57)

Proof. Inequality (56) is obtained by plugging the second inequality of (55)
into the first one of (55) and by noting that since Es ≥ 2, (56) is trivial for
s ≤ 6. Introduce Ls = Es

s . To prove (57), we use the first and third inequalities
of (55) to obtain

Bk,s ≤ µk + σk

√
2Ls + Ls

3 +
√

2Ls

(
σk +

√
Ls/2

)
+ 3Ls

= µk + 2σk

√
2Ls + 13Ls

3 .

Once more, the inequality is trivial for s ≤ 6. ut
Claim: The choice of uk in Theorem 11 guarantees that

µk + 2σk

√
2Euk

uk
+ 13Euk

3uk
< µ∗. (58)

Proof. For the sake of compactness, for a moment we drop the arm indices,
so that (58) is equivalent to

2σ
√

2Eu

u + 13Eu

3u < ∆. (59)

Let r = u/Eu. Given that r ≥ 0, we have

(59) ⇔ r − 13
3∆ > 2σ

∆

√
2r

⇔ r > 13
3∆ and

(
r − 13

3∆

)2
> 8σ2

∆2 r

⇔ r > 13
3∆ and r2 − (

8σ2

∆2 + 26
3∆

)
r + 169

9∆2 > 0

This trivially holds when r > 8σ2

∆2 + 26
3∆ .

ut
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Let B = {∃k : Tk(∞) > uk} be the event that arm k is pulled more than uk

times. By adapting the argument used in the proof Theorem 2 to prove (13)
one can show that

B ⊂ {∃k s.t. Bk,uk
> τ

} ⋃ {∃s ≥ 1 s.t. Bk∗,s ≤ τ
}
.

Taking τ = µ∗ and using (58), (56) and (57), we get

B ⊂ {∃k s.t. Bk,uk
> µk + 2σk

√
2Euk

uk
+ 13Euk

3uk

} ⋃ {∃s ≥ 1 s.t. Bk∗,s ≤ µ∗
} ⊂ A,

where A denotes the complementer of A. Taking probabilities we get P(B) ≤
P(A) ≤ β, thus finishing the proof. ut

A.6. Proof of Theorem 12
Proof. Consider the following sequence Ẽs = log[Kn(s+1)] for s ≤ n and Ẽs =
∞ otherwise. For this sequence, the assumptions of Theorem 11 are satisfied
for β = 4 log(n/7)

n since
∑

7≤s≤n 1/(s + 1) ≤ log(n/7). Besides, to consider the
sequence (Ẽs)s≥0 instead of (Es)s≥0 does not modify the algorithm up to time
n. Therefore with probability at least 1− β, we have

Tk(n)−1
ETk(n)−1

≤ 8σ2
k

∆2
k

+ 26b
3∆k

,

hence
Tk(n) ≤ 1 +

( 8σ2
k

∆2
k

+ 26b
3∆k

)
log[KnTk(n)], (60)

which gives the first assertion.
For the second assertion, first note that since Rn ≤ n, (38) is non-trivial

only when 30 log n < n. So the bound is trivial when n ≤ 100. Besides, from
the first assertion of Theorem 2, we have Tk(n) = 1 if K ≥ n, in which case (38)
is trivial. For n > 100 and K < n, (60) gives

Tk(n) ≤ 1 +
( 8σ2

k

∆2
k

+ 26b
3∆k

)
log(n3) = 1 +

( 24σ2
k

∆2
k

+ 26b
∆k

)
log n,

hence

E[Tk(n)] ≤ 4 log(n/7) + 1 +
( 24σ2

k

∆2
k

+ 26b
∆k

)
log n ≤ ( 24σ2

k

∆2
k

+ 30b
∆k

)
log n.

ut
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