
Fast gradient descent for drifting least squares regression, with
application to bandits

Nathaniel Korda ∗1, Prashanth L A †2 and Rémi Munos ‡2

1Oxford University, UNITED KINGDOM.
2INRIA Lille - Nord Europe, Team SequeL, FRANCE.

Abstract

Online learning algorithms require to often recompute least squares regression estimates of parameters. We
study improving the computational complexity of such algorithms by using stochastic gradient descent (SGD)
type schemes in place of classic regression solvers. We show that SGD schemes efficiently track the true solutions
of the regression problems, even in the presence of a drift. This finding coupled with an O(d) improvement in
complexity, where d is the dimension of the data, make them attractive for implementation in the big data settings.
In the case when strong convexity in the regression problem is guaranteed, we provide bounds on the error both
in expectation and high probability (the latter is often needed to provide theoretical guarantees for higher level
algorithms), despite the drifting least squares solution. As an example of this case we prove that the regret
performance of an SGD version of the PEGE linear bandit algorithm is worse than that of PEGE itself only by a
factor of O(log4 n). When strong convexity of the regression problem cannot be guaranteed, we investigate using
an adaptive regularisation. We make an empirical study of an adaptively regularised, SGD version of LinUCB in a
news article recommendation application, which uses the large scale news recommendation dataset from Yahoo!
front page. These experiments show a large gain in computational complexity and a consistently low tracking
error.

1 Introduction
Often in learning algorithms an unknown parameter must be estimated from data arriving sequentially in pairs,
(xn, yn). We consider settings where the points xn are chosen by a higher level algorithm and the outputs yn
satisfy the dynamics yn = xT

nθ
∗ + ξn, where ξn is i.i.d., zero-mean noise, and θ∗ is the unknown parameter (the

flow diagram, Fig. 1, illustrates this setting). Typically, in such cases an ordinary least squares (OLS) estimate is
used for θ∗, and finding this estimate is often the most computationally intensive part of the higher level algorithm.
The solution to the least squares regression problem is defined as

θ̂n = arg min
θ

{
Fn(θ) :=

1

2

n∑
i=1

(yi − θTxi)
2

}
. (1)

That θ̂n = Ā−1n b̄n, where Ān = n−1
∑n
i=1 xix

T
i and b̄n = n−1

∑n
i=1 xiyi, is well-known. Assuming that the

features xi evolve in a compact subset D of Rd, the complexity of solving (1) with the above approach is O(d2),
where the inverse of Ān is computed iteratively using the Sherman-Morrison lemma. Using the Strassen algorithm
or the Coppersmith-Winograd algorithm gives a complexity of O(d2.807) and O(d2.375) respectively. In addition,
there is an order O(d2n) complexity for computing Ān.

∗nathaniel.korda@eng.ox.ac.uk
†prashanth.la@inria.fr
‡remi.munos@inria.fr

1

ar
X

iv
:1

30
7.

31
76

v4
 [

cs
.L

G
]

 2
0

N
ov

 2
01

4

Unlike the traditional gradient descent (GD) setting where the pairs (xn, yn) are samples drawn from some
unknown joint probability distribution, we assume that the samples, xn, are chosen by a higher level learning
algorithm, and the problem is to find a good enough approximation to θ∗ for its purposes, given these non-i.i.d.
samples. This poses a new difficulty in applying GD schemes directly, and we outline two well-known solutions
to this problem in the following.

As illustrated in Fig. 1, the classic SGD algorithm operates by maintaining an iterate θn that is updated as
follows: Choose a random sample (xin , yin), where in is picked uniformly at random in {1, . . . , n} and update

θn = θn−1 + γn(yin − θT

n−1xin)xin , (2)

(The sequence of stepsizes γn is chosen in advance, see assumption (A4) below for details.) The complexity of
each iteration above is O(d), while traditional approaches giving the exact solution, such as using the Sherman-
Morrison lemma, incur a cost of at least O(d2) per iteration. We shall refer to SGD applied to our setting as
fOLS-GD (fast Online Least Squares - Gradient Descent).

Unlike previous works which analyse the above SGD algorithm in a batch setting, we consider a drifting least
squares setting. In particular, at each instant n, the SGD update is required to track the minimiser θ̂n of the function
Fn(·), as n increases. The practical advantage of such an approach is to replace the costly inversion of the Ān
matrix with an efficient iterative scheme. However, from a theoretical standpoint, fOLS-GD has to grapple with
the drift error, ‖θ̂n − θ̂n−1‖2, that accumulates with time.

Under a minimum eigenvalue assumption on the matrices Ān, we find that ordinary SGD is sufficient to
mitigate the effects of drift in θ̂n. In this case, we provide bounds both in expectation and in high probability
on the approximation error θn − θ̂n, where θn is the fOLS-GD iterate at instant n (see Theorem 1). Such bounds
are essential for giving theoretical guarantees when using fOLS-GD as a subroutine to replace the matrix inversion
approach to the regression problem in a higher level learning algorithm.

To cope with situations where the minimum eigenvalue assumption of the Ān matrix cannot be guaranteed by
the higher level algorithm we propose adding an adaptive regularisation: since our data is growing with time we
introduce a regularisation parameter, λn, that adapts to the sample size n as follows:

θ̃n := arg min
θ

1

2n

n∑
i=1

(yi − θTxi)
2 + λn ‖θ‖22 . (3)

This algorithm, which we henceforth refer to as fRLS-GD (fast Regularised online Least Squares - Gradient De-
scent), tracks the regression solutions, θ̃n and operates in a manner similar to fOLS-GD (see Fig. 1) except that we
factor in the regularisation parameter λn into the update rule:

θn = θn−1 + γn((yin − θT

n−1xin)xin − λnθn−1). (4)

Unlike fOLS-GD, the above algorithm will suffer a bias due to the adaptive regularisation and it is difficult to
provide bounds in theory owing to the bias error (see discussion after Eq. (10)). However, we demonstrate
empirically that fRLS-GD is able to consistently track the true RLS solutions, when used within a higher level
algorithm. The advantage, however, of using fRLS-GD in place of classic RLS solvers is that it results in significant
computational gains.

As examples of higher level learning algorithms using regression as a subroutine, we consider two linear
bandit algorithms. In a linear bandit problem the values xn represent actions taken by an agent and the values
yn = xT

nθ
∗ + ξn are interpreted as random rewards, with unknown parameter θ∗. At each time the agent can

choose to take any action x ∈ D, where D is some compact subset of Rd, and the agent’s goal is to maximise
the expected sum of rewards. This goal would be achieved by choosing xn = x∗ := arg minx{xTθ∗}, ∀n.
However, since one does not know θ∗ one needs to estimate it, and a tradeoff appears between sampling pairs
(xn, yn) that will improve the estimate, and gaining the best short term rewards possible by exploiting the current
information available. Typically the performance of a bandit algorithm is measured by its expected cumulative
regret: Rn =

∑n
i=1(x∗ − xi)Tθ∗.

First, we consider the PEGE algorithm for linear bandits proposed by Rusmevichientong and Tsitsiklis [2010].
This algorithm is designed for action sets D satisfying a strong convexity property (see assumption (A4)), and so

2

Choose xn Observe yn

Use θn to estimate θ̂n

θn
Pick random

sample in

Random Sampling

Update θn
using (2)

GD Update

θn+1

Figure 1: Estimating OLS θ̂n using online SGD within a higher-level machine learning algorithm

we can provide a computationally efficient variant of PEGE where the fOLS-GD iterate, θn, is used in place of the
OLS estimate, θ̂n, in each iteration n of PEGE. PEGE splits time into exploration and exploitation phases. During
the exploitation phases the algorithm acts greedily using OLS estimates of θ∗ calculated from data gathered during
the exploration phases. During the exploration phases data is gathered in such a way that the smallest eigenvalues
of Ān matrices are uniformly bounded for all n. The regret performance of this algorithm is O(dn1/2), and we
establish that our variant using fOLS-GD as a subroutine achieves an improvement of order O(d) in complexity,
while suffering a loss of only O(log4 n) in the regret performance.

Second, we consider the LinUCB algorithm proposed Li et al. [2010]. Here we investigate computationally
efficient variants of LinUCB. We begin by replacing the OLS estimate with an fRLS-GD iterate, and then compare
this to two other state-of-the-art OLS schemes from Johnson and Zhang [2013] and Roux et al. [2012]. The
LinUCB algorithm is designed for situations where at each time, n, the agent can choose only from a given, finite
subset of D. The algorithm then calculates an optimistic upper confidence bound (UCB) for the mean reward
associated with each feature, and then selects a feature greedily with respect to this UCB1.

LinUCB, however, cannot guarantee that the minimum eigenvalue of Ān matrices is uniformly bounded, and
so we apply fRLS-GD in place of fOLS-GD. Moreover, we devise a simple GD procedure for estimating the
confidence term of the UCB for each arm. The resulting LinUCB variant achieves an O(d) improvement in
complexity over regular LinUCB. From the numerical experiments, we observe that the fRLS-GD iterate as well
as SVRG Johnson and Zhang [2013] and SAG Roux et al. [2012] variants consistently track the true RLS solutions
in each iteration of LinUCB, while the runtime gains are significant.

Related work. SGD is a popular approach for optimizing a function given noisy observations, while incurring
low computational complexity. Non-asymptotic bounds in expectation for SGD schemes have been provided by
Bach and Moulines [2011]. In the machine learning community, several algorithms have been proposed for min-
imising the regret, for instance, Zinkevich [2003], Hazan and Kale [2011], Rakhlin et al. [2011] and these can be
converted to find the minimiser of a (usually convex) function. A closely related field is stochastic approximation
(SA), and concentration bounds for SA algorithms have been provided by Frikha and Menozzi [2012]. Adaptive
regularisation in the context of least squares regression has been analysed in Tarrès and Yao [2011]. For recent
algorithmic improvements to solving batch problems, the reader is referred to the works of Roux et al. [2012],
Shalev-Shwartz and Zhang [2012], Johnson and Zhang [2013].

In general, none of the schemes proposed above are directly applicable in our setting due to two difficulties:
(i) our data {(xi, yi)}ni=1 do not arrive from a distribution, but instead are chosen by a higher level algorithm, and
(ii) an efficient online scheme is required to track the solution of a least squares regression problem with a growing
data set, and thus a drifting target.
Earlier works solve one batch problem or a sequence of batch problems with data arriving from a distribution. On
the other hand, we consider a drifting regression setting and study low complexity SGD schemes. For a strongly
convex setting, we are able to provide theoretical guarantees, while for a non-strongly convex setting, we obtain
encouraging results empirically.

1Calculating the UCBs is in itself an NP-hard problem for all but simple decision sets. However, we alleviate this problem by considering
a setting where the sets of arms at each time instant is a finite subset of D.

3

2 Gradient Descent for Online Least Squares
In this section, we present the results for the fOLS-GD procedure outlined earlier. Recall that fOLS-GD tracks the
OLS estimate θ̂n := minθ

1
2

∑n
i=1(yi − θTxi)

2 as the samples (xi, yi) arrive sequentially (see Fig. 1) and updates
the parameter as follows: Fix θ0 arbitrarily and update

θn = θn−1 + γn(yin − θT

n−1xin)xin , (5)

where in ∼ U({1, . . . , n}). Here U(S) denotes the uniform distribution on the set S, and so the samples (xin , yin)
passed to (5) are chosen uniformly randomly from the set {(x1, y1), . . . , (xn, yn)}.

Results We make the following assumptions:
(A1)

∑
n γn =∞ and

∑
n γ

2
n <∞.

(A2) Boundedness of xn, i.e., supn ‖xn‖2 ≤ 1.
(A3) The noise {ξn} is i.i.d. and |ξn| ≤ 1,∀n.
(A4) For all n larger than some initial n0, λmin(Ān) ≥ µ, where λmin(·) denotes the smallest eigenvalue of a
matrix.
The first assumption is a standard one for the step sizes of SGD, and, more generally, stochastic approximation
schemes. While the next two assumptions are standard in the context of least squares, the last assumption is made
necessary due to the fact that we do not regularise the problem. Initially An may not invertible, and hence the
condition can only reasonably hold after some initial time n0.

In the following, we bound the approximation error ‖θn − θ̂n‖ of fOLS-GD, both in high probability as well
as in expectation.

Theorem 1. Under (A2)-(A4), with γn = c/(4(c+ n)) and µc/4 ∈ (2/3, 1), for any δ > 0 and n > n0,

E
(∥∥∥θn − θ̂n∥∥∥

2

)
≤ K1(n)√

n+ c
, and P

(∥∥∥θn − θ̂n∥∥∥
2
≤ K2(n)√

n+ c

)
≥ 1− δ, (6)

where

K1(n) =
‖θn0 − θ∗‖ ln(n0)

(n+ c)µc/4
+
√
h(n) +

√
2 +

√
µβn+c

µ
, K2(n) =

√
2Kµ,c log

1

δ
+K1(n),

Kµ,c = c2/ [16 (1− 2(1− 3µc/16))] , βn = max
(

128d log n log n2δ−1,
(
2 log n2δ−1

)2)
,

and h(k) = 2
[
1 + 2(‖θ0 − θ∗‖2 + log k)2

]
.

Proof Sketch In order to prove the bound in expectation, following the proof scheme of Frikha and Menozzi
[2012], we expand the error at time n into an initial error term, a (martingale) sampling error term, and a drift error
term as follows:

θn − θ̂n = θn − θ̂n−1 + θ̂n−1 − θ̂n = θn−1 − θ̂n−1 + θ̂n−1 − θ̂n + γn(yin − θT

n−1xin)xin

=
Πn

Πn0

(θn0 − θ∗)︸ ︷︷ ︸
Initial Error

+

n∑
k=1

[
γk

Πn

Πk
∆M̃k︸ ︷︷ ︸

Sampling Error

− Πn

Πk
(θ̂k − θ̂k−1)︸ ︷︷ ︸
Drift Error

]
,

where Πn :=
∏n
k=1

(
I − γkĀk

)
, and ∆M̃k is a martingale difference (see the Appendix A below for details).

The initial and sampling errors appear as in previous works on SGD (cf. Frikha and Menozzi [2012] and Bach
and Moulines [2011]), and can be treated similarly, except that here we can make all the constants explicit, using
the specific form of the update rule, and also that

∥∥ΠnΠ−1k
∥∥
2
≤ exp(Γn − Γk), where Γn :=

∑n
i=1 γi. In this

way, choosing the step sequence as in the Theorem statement, we derive the first and second terms of K1(n).

4

The drift error, however, is not present in previous works, and comes from the fact that the target of the
algorithm, θ̂n, is drifting over time. To control it we note that(

∇Fn(θ̂n) = 0 = ∇Fn−1(θ̂n−1)
)

=⇒
(
θ̂n−1 − θ̂n =

(
ξnA

−1
n−1 − (xT

n(θ̂n − θ∗))A−1n−1
)
xn

)
.

Thus it is controlled by the convergence of the least squares solution θ̂n to θ∗. Adapting a confidence ball result
from Dani et al. [2008], we derive the third term of K1.

Having bounded the mean error, we can bound separately the deviation of the error from its mean. To do
this, following Frikha and Menozzi [2012], we decompose ‖θn − θ̂n‖2 − E‖θn − θ̂n‖2 into a sum of martingale
differences as follows: LetHn denoting the sigma-field σ(i1, . . . , in).

‖θn − θ̂n‖2 − E‖θn − θ̂n‖2 =

n∑
i=1

gi − E[gi |Hi−1], (7)

where gi = E[‖θn − θ̂n‖2 |θi]. Next, we establish that the functions gi are Lipschitz continuous in the noise ξi,
with Lipschitz constants Li. Unlike in Frikha and Menozzi [2012] we use the exact form of the update to derive the
exact constants Li. The final step of the proof is to invoke a standard martingale concentration bound. A complete
proof is contained in the Appendix A.

Rates With the step-sizes specified in Theorem 1, we see that the initial error is forgotten exponentially faster
than the drift and sampling errors, which vanish at the rate O

(
n−1/2

)
. The rate derived in Theorem 1 matches

the asymptotically optimal convergence rate for SGD type schemes that do not involve a drifting target (see Ne-
mirovsky and Yudin [1983]).

Dependence on d The dependence of the rate derived above on the dimension d of xi is indirect, through the
strong convexity constant µ. For example, in the application to strongly-convex linear bandits in the next section,
after an initial d steps, the strong convexity constant is known and is of order µ = Ω(1/d), and so the derived rate
has a linear dependence on d.

Iterate Averaging Ensuring the optimal rate for fOLS-GD requires knowledge of the strong convexity constant
µ. In our application to linear bandits in the next section we know this constant. However, we can use Polyak
averaging together with the step size γn = cn−α to arrive at an optimal rate independent of the choice of c.

3 Strongly Convex Bandits with Online GD
Background for PEGE In this section, we assume thatD is a strongly convex set and the “best action” function,
denoted by G(θ) := arg minx∈D{θTx}, is assumed to be smooth in the unknown parameter θ that governs the
losses of the bandit algorithm (see (A5) below). PEGE of Rusmevichientong and Tsitsiklis [2010] is a well-known
algorithm in this setting. Recall from the introduction that it gathers data and computes least squares estimates
of θ∗ during exploration phases, between which it exploits the estimates during exploitation phases of growing
length. Since strong convexity in the regression problem is guaranteed by the algorithm we propose a variant of
PEGE which replaces the calculation of the least squares estimate with fOLS-GD (see Algorithm 1). Whereas,
after m exploration phases, PEGE has incurred a complexity of O(md3), our algorithm has incurred an improved
complexity of only O(md2).

Results We require the following extra assumptions from Rusmevichientong and Tsitsiklis [2010]:
(A4’) A basis {b1, . . . , bd} ∈ D for Rd is known to the algorithm.
(A5) The function G(θ) is J-Lipschitz.
The assumption (A5) is satisfied, for example, when D is the unit sphere. However it is not satisfied when D is
discrete. The main result that bounds the regret of fPEGE-GD is given below. The final bound is worse than that
for PEGE by only a factor of O(log4(n)):

5

Algorithm 1 fPEGE-GD

Input: Get a basis {b1, . . . , bd} ∈ D for Rd. Set c = 4d/(3λmin(
∑d
i=1 bib

T
i)) and θ0 = 0.

for m = 1, 2, . . . do
Exploration Phase
for n = (m− 1)d to md− 1 do

Choose arm xn = bn modmd and observe yn.
Update θ as follows: θn = θn−1 + c

n ((yj − θT
n−1xj)xj), where j ∼ U(1, . . . , n).

end for
Exploitation Phase
Find x = G(θmd) := arg minx∈D{θT

mdx}.
Choose arm x m times consecutively.

end for

Theorem 2. Let λPEGE := λmin(
∑d
i=1 bib

T
i). Under the assumptions (A2), (A3), (A4’), and (A5) and with

stepsize γn = c/(4(c + n)), where c/(4λPEGE) ∈ (2/3, 1), the cumulative regret Rn of fPEGE-GD is bounded
as follows:

Rn ≤ CK1(n)2d−1(‖θ∗‖2 + ‖θ∗‖−12)n1/2,

where C is a constant depending on λPEGE and J , and K1(n) = O(d log2(n)).

Proof. We have λmin(Ān) ≥ λmin

(
(n mod d)

∑d
i=1 bib

T
i

[(n mod d)+1]d

)
≥ λmin

(∑d
i=1 bib

T
i

)
/(2d) for all n > d. So, choosing c

as in the theorem statement, we can apply Theorem 1 to get:

E ‖θn − θ∗‖22 ≤ K1(n)2/(dn). (8)

Now to complete the proof we only need to reprove Lemma 3.6 of Rusmevichientong and Tsitsiklis [2010], which
states that for all n ≥ d, E ‖θ∗(G(θ∗)−G(θmd))‖2 ≤

K1(n)
dm‖θ∗‖2

:

‖θ∗(G(θ∗)−G(θmd))‖2 =
∥∥(θ∗ − θmd)TG(θ∗) + (G(θ∗)−G(θmd))

Tθmd + (θmd − θ∗)G(θmd)
∥∥
2

≤‖(θ∗ − θmd)T(G(θ∗)−G(θmd))‖2 ≤
2J ‖θ∗ − θmd‖22

‖θ∗‖2
,

where the second inequality we have used that G(θ) = G(aθ) for all a > 0, (A5), and Lemma 3.5 of Rus-
mevichientong and Tsitsiklis [2010].

The rest of the proof follows that of Theorem 3.1 of Rusmevichientong and Tsitsiklis [2010].

4 Online GD for Regularized Least Squares
Ideally an online algorithm would not need to satisfy an assumption such as (A4). Perhaps the most obvious way
to obviate (A4) is to regularise. In an offline setting the natural regularisation parameter would be λ/T for some
λ > 0, where T is the size of the batch. However in an online setting we envisage obtaining arbitrary amounts
of information, and so we need to regularize adaptively at each time step by λn (see (3)). As outlined earlier, the
fRLS-GD algorithm attempts to shadow the solutions θ̃n of the λn-regularised problem, using the following iterate
update:

θn = θn−1 + γn((yin − θT

n−1xin)xin − λnθn−1), (9)

where in ∼ U(1, . . . , n).

6

Discussion It is interesting to note that the analysis in Theorem 1 does not generalise to this setting. Following
the same argument as for the proof of Theorem 1 will lead to the iteration:

θn − θ̃n = Π̃n(θn0
− θ∗)︸ ︷︷ ︸

Initial Error

−
n∑
k=1

Π̃nΠ̃−1k (θ̃k − θ̃k−1)︸ ︷︷ ︸
Drift Error

+

n∑
k=1

γkΠ̃nΠ̃−1k ∆M̃k︸ ︷︷ ︸
Sampling Error

, (10)

where Π̃n :=
∏n
k=1

(
I − γk(Āk + λkI)

)
. Under the assumption that we have no control over the smallest eigen-

value of Āk, we can only upper bound the initial error by exp(−
∑n
k=1 γkλk). Therefore, in order that the initial

error go to zero we must have that
∑n
k=1 γkλk → ∞ as n → ∞. Taking a step size of the form γn = O(n−α)

therefore forces λn = Ω(n−(1−α)). However, examining the drift

θ̃n−1 − θ̃n =ξn(An−1 + (n− 1)λn−1I)−1xn − (xT

n(θ̃n − θ∗))(An−1 + (n− 1)λn−1I)−1xn

+ ((n− 1)λn−1 − nλn)(An−1 + (n− 1)λn−1I)−1θ̃n.

So when λn = Ω(n−(1−α)), then we find that θ̃n−1 − θ̃n = Ω(n−1), whenever α ∈ (0, 1). This, when plugged
into (10) results in only a constant bound on the error (note, α must be chosen in (1/2, 1) to ensure (A1) holds).
Unlike in the setting of Tarrès and Yao [2011], we do not assume that the data arrive from a distribution, and hence
the bias error is difficult to control.

5 Numerical Experiments
Background for LinUCB In this section the action sets Dn ⊂ D are finite, but possibly varying. A popular
algorithm for such settings is the LinUCB algorithm. This algorithm calculates UCBs for the mean reward obtained
by choosing each individual feature in Dn as follows:

∀x ∈ Dn, UCB(x) := xTθ̂n + κ
√
xTA−1n x,

where κ is a parameter set by the agent that can be understood to be controlling the rate of exploration the algorithm
performs. Having calculated the UCBs for all available features the agent then chooses the feature with the highest
UCB. LinUCB needs to compute online the inverse of the matrix A−1n in order to compute the UCBs for each iter-
ation of the algorithm, and so we propose improving the complexity by using an SGD scheme to approximate the
UCBs. Since LinUCB cannot guarantee strong convexity of the regression problem, we investigate experimentally
applying the regularised fRLS-GD in place of RLS solutions.

Tracking the UCBs While we can track the regularised estimates θ̃n using fRLS-GD as given above, to track
the UCBs we derive the analogous update rule for each feature x ∈ Dn:

φn = φn−1 + γn((n−1x− ((φn−1)Tx(in))x(in))), (11)

where in ∼ U(1, . . . , n). The UCB value corresponding to feature x is then set as follows:

UCB(x) := xTθn + κ
√
xTφn.

If the action sets Dn were fixed (say D1), then we take one step according to (11) for each arm x ∈ D1 in each
iteration n of LinUCB. The computational cost of this LinUCB variant is of order O(|D1|dn), as opposed to the
O(d2n) incurred by the vanilla LinUCB algorithm that directly calculates A−1n . This variant would give good
computational gains when |D1| � d. If the action sets change with time, then one can perform a batch update, i.e.,
run T steps according to (11) for each feature x ∈ Dn in iteration n of LinUCB. This would incur a computational
complexity of order O(KTdn), where K is an upper bound on |Dn| for all n, and result in good computational
gains when KT � d.

7

Algorithm 2 fLinUCB-GD
Initialisation: Set θ0, γk - the step-size sequence.
for n = 1, 2, . . . do

Approximate RLS
Observe article features x(1)n , . . . , x

(K)
n

Approximate θ̂n using fRLS-GD iterate θn (4)
UCB computation

for k = 1, . . . ,K do
Estimate confidence parameter φ(k)n using (11)

Set UCB(x
(k)
n) := θT

nx
(k)
n + κ

√
x
(k)
n

T

φ
(k)
n

end for
Choose article arg maxk=1,...,K UCB(x

(k)
n) and observe the reward.

end for

Figure 2: The Featured tab in Yahoo! Today module [Li et al., 2010]

Simulation Setup. We perform experiments on a news article recommendation platform provided for the ICML
exploration and exploitation challenge (Mary et al. [2012]). This platform is based on the user click log dataset
from the Yahoo! front page, provided under the Webscope program (Webscope [2011]). An algorithm for this
platform is required to repeatedly select a news article from a pool of articles and show them to users. Each
article-user pair is described in the dataset by a feature vector, which the algorithm can use to make its decisions.

We implement the LinUCB algorithm (popular for this setting) as well as three SGD variants. The first SGD
variant is based on fRLS-GD, while the other two variants are based on two recent approaches for accelerating the
convergence of SGD-type schemes. We describe these below.

fLinUCB-GD. This is described in Algorithm 2 and uses fRLS-GD in place of RLS.

fLinUCB-SVRG. This is similar to the above algorithm, except that the SGD scheme used is derived from John-
son and Zhang [2013]. The first scheme is derived from Johnson and Zhang [2013] and updates the parameter

as follows: Let fi,n(θ) := 1
2 (yi − θTxi)

2 + λn ‖θ‖22, Fn(θ) = 1
n

n−1∑
i=1

fi,n(θ) and θ̄n =
n−1∑
i=1

θi. Then,

θn = θn−1 − γn(f ′in(θn−1)− f ′in(θ̄n) + F ′n(θ̄n)), (12)

where in is picked uniformly at random in {1, . . . , n}.

fLinUCB-SAG. This is a variant that uses the SGD scheme proposed by Roux et al. [2012]. The updates here are
according to

θn = θn−1 −
γn
n

n∑
i=1

yn,i, where yn,i =

{
f ′i(θn−1) if i = in,
yn−1,i otherwise.

(13)

where in is picked uniformly at random in {1, . . . , n}.

8

Day-2 Day-4

0

0.5

1

1.5

·106

1.37 · 106

1.72 · 106

4,933 6,474
81,818 1.07 · 105

44,504 55,630

ru
nt

im
e

(m
s)

LinUCB fLinUCB-GD fLinUCB-SVRG fLinUCB-SAG

Figure 3: Runtimes (in ms) on two days of the dataset for LinUCB and its SGD variants

Remark 1. The last two SGD schemes presented above are shown to converge at a geometric rate for a single-
batch training problem, while SGD can converge only at O(1/n) rate. However, this rate acceleration comes at
an additional computational cost in comparison to regular SGD. Moreover, in a drifting least squares regression
setting that we consider in this paper, both these variants would still suffer from a drift error as discussed in Section
4 of the main paper and hence, obtaining a sub-linear rate of convergence is challenging even for these schemes.

We set the various parameters of the problem as well as SGD algorithms as follows:

Algorithm Parameters

fLinUCB-GD Regularisation parameter λn =
1

n1−α
, α = 0.6, stepsize γn =

1

100 + n

fLinUCB-SVRG Regularisation parameter λn =
1

n
, stepsize γn = 0.0005

fLinUCB-SAG Regularisation parameter λn =
1

n
, stepsize γn = 0.005

Results We use tracking error and runtimes as performance metrics for comparing the algorithms. The tracking
error is the difference in `2 norm between the SGD iterate θn and RLS solution θ̃n, at each instant n of the SGD
variant of LinUCB.

Figs. 4(a)–4(c) present the tracking error with day 2’s data file as input for fRLS-GD, SVRG and SAG variants
of LinUCB, respectively. It is evident that all the SGD schemes track the corresponding RLS solutions consistently.
Fig. 3 report the runtimes observed on two different data files corresponding to days 2 and 4 in October, 2009 (see
Webscope [2011]) of the dataset. It is evident that the SGD schemes result in significant computational gains in
comparison to classic RLS solvers (e.g. Sherman-Morrison lemma).

Finally, we observed that the SGD variants under best configurations achieved 75% of the regular LinUCB
CTR score. CTR score is the ratio of the number of clicks an algorithm gets to the total number of iterations it
completes, multiplied by 10000. Considering that the dataset contains very sparse features and also the fact that
the rewards are binary, with a reward of 1 occurring rarely, we believe LinUCB has not seen enough data to have
converged UCB values and hence the observed loss in CTR may not be conclusive.

9

0 1 2 3 4 5

·104

0

0.2

0.4

0.6

0.8

1

iteration n of flinUCB-GD

∥ ∥ ∥θ n−
θ̃ n

∥ ∥ ∥ 2

fRLS-GD

(a) Tracking error: fRLS-GD

0 1 2 3 4 5

·104

0

0.2

0.4

0.6

0.8

1

iteration n of flinUCB-SVRG

∥ ∥ ∥θ n−
θ̃ n

∥ ∥ ∥ 2

fRLS-SVRG

(b) Tracking error: fRLS-SVRG

0 1 2 3 4 5

·104

0

0.2

0.4

0.6

0.8

1

iteration n of flinUCB-SAG

∥ ∥ ∥θ n−
θ̃ n

∥ ∥ ∥ 2

fRLS-SAG

(c) Tracking error: fRLS-SAG

Figure 4: Performance evaluation of fast LinUCB variants using tracking error

10

6 Conclusions
We analysed online SGD schemes for the problem of drifting least squares regression problems in the context
of a higher level algorithm. In particular, when the higher level algorithm can guarantee strong convexity in the
data, we provided error bounds both in expectation and in high probability. Further, we derived an SGD variant of
PEGE linear bandit algorithm with a speed up of O(d) at the cost of only logarithmic factors in the regret. For the
non-strongly convex setting, we studied an adaptively regularised SGD scheme by combining it with LinUCB. The
empirical results of this algorithm on a large-scale news recommendation application are encouraging. However a
theoretical analysis of the adaptively regularised SGD scheme remains challenging, and is an interesting direction
for future work.

Acknowledgments The first author was gratefully supported by the EPSRC project, Autonomous Intelligent
Systems EP/I011587. The second and third authors would like to thank the European Community’s Seventh
Framework Programme (FP7/2007− 2013) under grant agreement no 270327 for funding the research leading to
these results.

Appendix

A Proof of Theorem 1
Let zn := θn − θ̂n denote the approximation error. Throughout this proof, we shall assume that n ≥ n0, in
accordance with assumption (A4). The proof involves the following steps:

Step 1 Proposition 1 bounds the deviation of zn from its mean in high probability;

Step 2 Proposition 2 bounds the mean of zn itself;

Step 3 the final step is to combine the above two propositions, with the step-sizes γn chosen as c/(4(c+ n)).

In the following, we describe each of the individual steps above in detail.

Step 1: High-probability bound

In the following proposition, we bound the deviation in high probability of the approximation error, zn := θn− θ̂n,
from its mean. The proof technique is similar to that used by Frikha and Menozzi [2012]. However, our analysis is
much simpler, we make all the constants explicit for the problem at hand, and we deal with the extra error incurred
as a result of the drifting target θ̂n.

Proposition 1. Let zn := θn − θ̂n. Then, under (A1)-(A3), for all n ≥ d, we have

P (‖zn‖2 − E ‖zn‖2 ≥ ε) ≤ exp

−ε2(2

n∑
i=n0+1

L2
i

)−1 ,

where L2
i := γ2i

∏n−1
j=i (1− 2µγj+1 (1− γj+1)).

Proof. Let Hi be the sigma field generated by the random variables i0, . . . , in and ξ1, . . . , ξn. We decompose
‖zn‖22 − E ‖zn‖

2
2 into a sum of martingale differences as follows:

‖zn‖2 − E ‖zn‖2 =

n∑
i=n0+1

E[‖zn‖2 |Hi]− E[‖zn‖2 |Hi−1]

=

n∑
i=n0+1

E[‖zn‖2 |θi]− E[E(‖zn‖2 |θi) |Hi−1] =

n∑
i=n0+1

Di, (14)

11

where Di
4
= gi − E[gi |Hi−1] and gi = E[‖zn‖2 |θi].

We now establish that the functions gi are Lipschitz continuous in the noise ξi, with Lipschitz constants Li.
We are interested in measuring the difference in the iterate θn at instant n, while starting from two different initial
values at instant i. To do this, let Θi

n(θ) denote the nth iterate, θn, given that at instant i, we set it to θ (i.e., θi = θ).
Then from the equalities

Θi
n(θ)−Θi

n(θ′) =
(
I − γnxinxTin

) [
Θi
n−1(θ)−Θi

n−1(θ′)
]

and (
I − γnxinxTin

)T (
I − γnxinxTin

)
=
(
I − 2γn(1− ‖xin‖22γn)xinx

T
in

)
,

using Jensen’s inequality, and Cauchy-Schwarz, we can deduce that

E
[
‖Θi

n(θ)−Θi
n(θ′)‖2 | Θi

n−1(θ),Θi
n−1(θ′)

]
≤
[
‖I − 2γn(1− γn)Ān−1‖2‖Θi

n−1(θ)−Θi
n−1(θ′)‖22

]1/2
Unrolling this iteration, and using the Tower property of conditional expectations, and assumption (A3), we find
that

E
[∥∥Θi

n(θ)−Θi
n(θ′)

∥∥
2

]
≤ ‖θ − θ′‖2

n∏
j=i+1

(1 + 2µγj(1− γj))
1
2 .

Finally we have∣∣∣E [∥∥∥θn − θ̂n∥∥∥
2
|θi−1, ξii = ξ

]
−E

[∥∥∥θn − θ̂n∥∥∥
2
|θi−1, ξii = ξ′

]∣∣∣
≤ E

[∥∥Θi
n (θ)−Θi

n (θ′)
∥∥
2

]
≤

γi n∏
j=i+1

(1 + 2µγj(1− γj))
1
2

 |ξ − ξ′| = Li|ξ − ξ′|.

The last step of the proof is to invoke a concentration bound for sum of martingale differences Di: First note
that

P (‖zn‖2 − E ‖zn‖2 ≥ ε) =P

(
n∑
i=1

Di ≥ ε

)
≤ exp(−λε)E

(
exp

(
λ

n∑
i=1

Di

))

= exp(−λε)E

(
exp

(
λ

n−1∑
i=1

Di

)
E
(
exp(λDn |Hn−1)

))
.

The first equality above follows from (14), while the inequality follows from Markov inequality. Since ξi are
bounded by (A2), we have the following property that holds for every 1-Lipschitz function g, we have

E (exp(λg(ξ1))) ≤ exp
(
λ2

2

)
.

Noting that gi is Lipschitz with constant Li, we apply the above inequality to obtain

E (exp(λDn |Hn−1)) ≤ exp
(
λ2L2

n

2

)
,

and so

P (‖zn‖2 − E ‖zn‖2 ≥ ε) ≤ exp(−λε) exp
(
αλ2

2

n∑
i=n0+1

L2
i

)
The claim follows by optimizing over λ in the above.

12

Step 2: Bound in expectation
The following proposition bounds the expected value of the approximation error zn. The proof differs from earlier
works on SGD techniques, as it involves a certain drift term that requires special attention.

Proposition 2. Let zn := θn − θ̂n. Then, under (A1)-(A3), for all n ≥ n0, we have

E ‖zn‖2 ≤ exp(−µ[Γn − Γn0]) ‖zn0‖2︸ ︷︷ ︸
initial error

+

(
n∑

k=n0+1

h(k)γ2k exp(−2µ(Γn − Γk))

)1/2

︸ ︷︷ ︸
sampling error

+

(
n∑

k=n0+1

exp (−2µ(Γn − Γk))
1

µ2(k − 1)2

)1/2

+

n∑
k=n0+1

exp (−µ(Γn − Γk))
∥∥∥θ̂k − θ∗∥∥∥

2

1

µ(k − 1)︸ ︷︷ ︸
drift error

.

where Γk :=
∑k
i=1 γi, h(k) := 2

[
σ2
ξ + 2(‖z0‖2 + Γk)2

]
, with σξ := Eξ[ξ2] < ∞ denoting the variance of the

noise.

Proof. As above, let fn(θ) := 1
2 (ξin − (θ− θ∗)Txin)2, Fn(θ) := Ein [fn(θ) | Hn], and ∆Mn+1 be the associated

martingale difference sequence, ∆Mn+1(θ) := F ′n(θ)−f ′n(θ). We find a recursion for zn = θn− θ̂n by extracting
a martingale difference from the process:

zn =θn − θ̂n−1 + θ̂n−1 − θ̂n = zn−1 − γn (F ′n(θn−1)−∆Mn) + (θ̂n−1 − θ̂n)

=zn−1 − γn
(
Ānzn−1 −∆Mn

)
+ (θ̂n−1 − θ̂n)

=
(
1− γnĀn

)
zn−1 + γn∆Mn + (θ̂n−1 − θ̂n)

=ΠnΠ−1n0
zn0
−

n∑
k=n0+1

ΠnΠ−1k (θ̂k − θ̂k−1) +

n∑
k=n0+1

γkΠnΠ−1k ∆Mk,

where Πn :=
∏n
k=1

(
I − γkĀk

)
. The third equality uses the fact that F ′n(θ̂n−1) = 0, By Jensen’s inequality, we

obtain

E ‖zn‖2 ≤
∥∥ΠnΠ−1n0

zn0

∥∥
2

+ E

∥∥∥∥∥
n∑

k=n0+1

ΠnΠ−1k (θ̂k+1 − θ̂k)

∥∥∥∥∥
2

+

(
n∑

k=n0+1

γ2kΠnΠ−1k E ‖∆Mk‖22

)1/2

(15)

Note that

ΠnΠ−1k ≤
n∏

j=k+1

(1− µγj) ≤ exp

log

 n∏
j=k+1

(1− µγj)

 ≤ exp (−µ(Γn − Γk)) , (16)

where Γn :=
∑n
i=1 γi. We now bound each of the terms in (15) as follows:

First term From (16) we see that
∥∥ΠnΠ−1n0

zn0

∥∥
2
≤ exp(−µ[Γn − Γn0

]) ‖zn0
‖2.

Second term Since θ̂n and θ̂n−1 are solutions to the least squares problems at instants n and n− 1, respectively,
we have

n∑
i=1

(yi − xT

i θ̂n)xi = 0 =

n−1∑
i=1

(yi − xT

i θ̂n−1)xi.

Simplifying the above, we obtain

An−1(θ̂n−1 − θ̂n) + (yn − xT

nθ̂n)xn = 0

13

⇔ θ̂n−1 − θ̂n = A−1n−1(xT

nθ̂n − (xT

nθ
∗ + ξn))xn

⇔ θ̂n−1 − θ̂n = ξnA
−1
n−1xn − (xT

n(θ̂n − θ∗))A−1n−1xn.
Therefore, we have

n∑
k=1

ΠnΠ−1k (θ̂k − θ̂k−1) =

n∑
k=1

ΠnΠ−1k A−1k−1xnξn −
n∑
k=1

ΠnΠ−1k (xT

n(θ̂k − θ∗))A−1k−1xn, (17)

So once again applying Jensen’s inequality, using that the noise ξn is zero mean and bounded by 1, and
assumptions (A1) and (A3), we have

E

∥∥∥∥∥
n∑
k=1

ΠnΠ−1k (θ̂k − θ̂k−1)

∥∥∥∥∥
2

≤

(
n∑

k=n0+1

(
ΠnΠ−1k

1

µ(k − 1)

)2
) 1

2

+

n∑
k=n0+1

ΠnΠ−1k

∥∥∥θ̂k − θ∗∥∥∥
2

1

µ(k − 1)
,

Last term The martingale difference (last term in (15)) is bounded as below:

E[‖∆Mn‖22] ≤ 2
(
E〈f ′in(θn−1), f ′in(θn−1)〉+ E〈F ′n(θn−1), F ′n(θn−1)〉

)
Using (A1) and (A2), a simple calculation shows that

E〈f ′in(θn−1), f ′in(θn−1)〉, E〈F ′n(θn−1), F ′n(θn−1)〉 ≤ n 1
2 + (1 + 2n

1
2 (1 + λ2n))E ‖zn‖2)

Now

E ‖zn‖2 =E

∥∥∥∥∥∥
[

n∏
k=n0+1

(I − γkxikxT

ik
)

]
z0 +

n∑
k=1

γk

 n∏
j=n0+k+1

(I − γjxijxT

ij)

 (ξkxik + λkθ
∗)

∥∥∥∥∥∥
2

≤ exp(−µ[Γn − Γn0
]) ‖zn0

‖2 +

(
n∑

k=n0+1

γ2k exp(−2(Γn − Γk))

) 1
2

n
1
2 + Γn ‖θ∗‖2 =: g(n).

and so E[‖∆Mn‖22] ≤ h(n) where h(n) = n
1
2 + (1 + 2n

1
2 (1 + λ2n))g(n).

Putting it all together, (15) simplifies to the following form:

E ‖zn‖2 ≤‖zn0
‖2 exp(−µ[Γn − Γn0

]) +

(
n∑

k=n0+1

exp (−2µ(Γn − Γk))
1

µ2(k − 1)2

) 1
2

+

n∑
k=n0+1

exp (−µ(Γn − Γk))
∥∥∥θ̂k − θ∗∥∥∥

2

1

µ(k − 1)
+

(
n∑

k=n0+1

h(k)γ2k exp(−2µ(Γn − Γk))

)1/2

.

Step 3: Derivation of Rates in Theorem 1

Proof. We first derive the high probability bound, fixing γn = κc/(c+n) (where κ ∈ (0, 1) and c > 0) in Theorem
1 as follows:

n∑
i=1

L2
i =

n∑
i=1

(
κc

c+ i

)2 n∏
j=i

(
1− 2µ

κc

c+ i

(
1− κc

c+ i

))

≤
n∑
i=1

(
κc

c+ i

)2

exp

−2µcκ(1− κ)

n∑
j=i

1

c+ i

≤ κ2c2

(n+ c)−2µcκ(1−κ)

∞∑
i=1

(i+ c)−2(1−µcκ(1−κ)).

14

We now find three regimes for the rate of convergence, based on the choice of c (We have used comparisons with
integrals to bound the summations):
(i)
∑n
i=1 L

2
i = O

(
(n+ c)−2µcκ(1−κ)

)
when µcκ(1− κ) ∈ (0, 1/2),

(ii)
∑n
i=1 L

2
i = O

(
(n+ c)−1 ln(n+ c)

)
when µcκ(1− κ) = 1/2, and

(iii)
∑n
i=1 L

2
i ≤ κ2c2

1−2(1−µcκ(1−κ)) (n+ c)−1 when µcκ(1− κ) ∈ (1/2, 1).
Thus, the optimal rate for the high probability bound from Theorem 1 with (µcκ(1− κ) > 1/2) is

P (‖zn‖2 − E ‖zn‖2 ≥ ε) ≤ exp
(
−ε

2(n+ c)

2Kµ,c

)
,

where Kµ,c := κ2c2/ (1− 2(1− µcκ(1− κ))).
Under the same choice of stepsize, we now bound the different error terms in Theorem 2. The initial error (first

term in Theorem 2) is bounded by ‖z0‖2 n−µcκ. The sampling error (second term in Theorem 2) is bounded as
follows:(

n∑
k=1

h(k)γ2k exp(−2µ(Γn − Γk))

)1/2

≤

(
c2n−2µcκ

n∑
k=1

h(k)(k + c)−2(1−µcκ)

) 1
2

≤
√
h(n)

n+ c
. (18)

For bounding the drift error (third and fourth terms in Theorem 2), we require the following lemma:

Lemma 3. Under (A1)-(A3), we have for any δ > 0,
∥∥∥θ̂n − θ∗∥∥∥

2
≤
√
βn/(nµ) with probability 1 − δ, where

βn = max
(

128d log n log n2δ−1,
(
2 log n2δ−1

)2)
.

Proof. Follows from Theorem 5 of Dani et al. [2008] and (A3).

Using the above lemma, we bound the drift error as follows:(
n∑

k=n0+1

exp (−2µ(Γn − Γk))
1

µ2(k − 1)2

) 1
2

+

n∑
k=n0+1

exp (−µ(Γn − Γk))
∥∥∥θ̂k − θ∗∥∥∥

2

1

µ(k − 1)

≤

(
2(k + c)−2µcκ

n∑
k=2

(n+ c)2µcκ−2µ−2

) 1
2

+ 2(n+ c)−µcκ
n∑
k=1

(k + c)µcκ−
3
2µ−3/2

√
βk+c

≤ 1

µ
√
n+ c

(
√

2 +

√
βn+c
µ

)
,

Thus, we have the following rate for the bound in expectation:

E ‖zn‖2 ≤
(
‖z0‖2 ln(n0)

(n+ c)µcκ
+
h(n+ c)√
n+ c

)
. (19)

Choosing κ = 1/4 we, the claim follows from (18) and (19).

References
Francis Bach and Eric Moulines. Non-asymptotic analysis of stochastic approximation algorithms for machine

learning. Advances in Neural Information Processing Systems (NIPS), 2011.

Varsha Dani, Thomas P Hayes, and Sham M Kakade. Stochastic linear optimization under bandit feedback. In
Proceedings of the 21st Annual Conference on Learning Theory (COLT), pages 355–366, 2008.

15

Noufel Frikha and Stphane Menozzi. Concentration Bounds for Stochastic Approximations. Electron. Commun.
Probab., 17:1–15, 2012.

Elad Hazan and Satyen Kale. Beyond the regret minimization barrier: an optimal algorithm for stochastic strongly-
convex optimization. Journal of Machine Learning Research, 19:421–436, 2011.

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance reduction. In
Advances in Neural Information Processing Systems (NIPS), pages 315–323, 2013.

Lihong Li, Wei Chu, John Langford, and Robert E Schapire. A contextual-bandit approach to personalized news
article recommendation. In Proceedings of the 19th international conference on World wide web, pages 661–
670. ACM, 2010.

J. Mary, Aurlien Garivier, L. Li, R. Munos, O. Nicol, R. Ortner, and P. Preux. ICML Exploration and Exploitation
3 - New Challenges, 2012.

AS Nemirovsky and DB Yudin. Problem complexity and method efficiency in optimization, 1983.

Alexander Rakhlin, Ohad Shamir, and Karthik Sridharan. Making gradient descent optimal for strongly convex
stochastic optimization. arXiv preprint arXiv:1109.5647, 2011.

Nicolas Le Roux, Mark Schmidt, and Francis Bach. A stochastic gradient method with an exponential convergence
rate for finite training sets. arXiv preprint arXiv:1202.6258, 2012.

Paat Rusmevichientong and John N. Tsitsiklis. Linearly parameterized bandits. Math. Oper. Res., 35(2):395–411,
May 2010.

Shai Shalev-Shwartz and Tong Zhang. Stochastic dual coordinate ascent methods for regularized loss minimiza-
tion. arXiv preprint arXiv:1209.1873, 2012.

Pierre Tarrès and Yuan Yao. Online learning as stochastic approximation of regularization paths. arXiv preprint
arXiv:1103.5538, 2011.

Yahoo! Webscope. Yahoo! webscope dataset ydata-frontpage-todaymodule-clicks-v2 0, 2011. URL "http:
//research.yahoo.com/Academic_Relations".

Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In Proceedings of
the 20th International Conference on Machine Learning, pages 928–925, 2003.

16

"http://research.yahoo.com/Academic_ Relations"
"http://research.yahoo.com/Academic_ Relations"

	1 Introduction
	2 Gradient Descent for Online Least Squares
	3 Strongly Convex Bandits with Online GD
	4 Online GD for Regularized Least Squares
	5 Numerical Experiments
	6 Conclusions
	A Proof of Theorem ??

