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Abstract

We consider a Kullback-Leibler-based algorithm for the stochastic multi-armed bandit prob-
lem in the case of distributions with finite supports (not necessarily known beforehand),
whose asymptotic regret matches the lower bound of Burnetas and Katehakis (1996). Our
contribution is to provide a finite-time analysis of this algorithm; we get bounds whose main
terms are smaller than the ones of previously known algorithms with finite-time analyses
(like UCB-type algorithms).

Keywords: Multi-armed bandit problem, finite-time analysis, Kullback-Leibler diver-
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1. Introduction

The stochastic multi-armed bandit problem, introduced by Robbins (1952), formalizes the
problem of decision-making under uncertainty, and illustrates the fundamental tradeoff that
appears between exploration, i.e., making decisions in order to improve the knowledge of
the environment, and exploitation, i.e., maximizing the payoff.

Setting. In this paper, we consider a multi-armed bandit problem with finitely many
arms indexed by A, for which each arm a ∈ A is associated with an unknown and fixed
probability distribution νa over [0, 1]. The game is sequential and goes as follows: at each
round t > 1, the player first picks an arm At ∈ A and then receives a stochastic payoff Yt
drawn at random according to νAt . He only gets to see the payoff Yt.
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For each arm a ∈ A, we denote by µa the expectation of its associated distribution νa
and we let a? be any optimal arm, i.e., a? ∈ argmax

a∈A
µa .

We write µ? as a short-hand notation for the largest expectation µa? and denote the gap of
the expected payoff µa of an arm a ∈ A to µ? as ∆a = µ? − µa. In addition, the number of
times each arm a ∈ A is pulled between the rounds 1 and T is referred to as NT (a),

NT (a)
def
=

T∑
t=1

I{At=a} .

The quality of a strategy will be evaluated through the standard notion of expected
regret, which we recall now. The expected regret (or simply regret) at round T > 1 is
defined as

RT
def
= E

[
Tµ? −

T∑
t=1

Yt

]
= E

[
Tµ? −

T∑
t=1

µAt

]
=
∑
a∈A

∆a E
[
NT (a)

]
, (1)

where we used the tower rule for the first equality. Note that the expectation is with
respect to the random draws of the Yt according to the νAt and also to the possible auxiliary
randomizations that the decision-making strategy is resorting to.

The regret measures the cumulative loss resulting from pulling sub-optimal arms, and
thus quantifies the amount of exploration required by an algorithm in order to find a best
arm, since, as (1) indicates, the regret scales with the expected number of pulls of sub-
optimal arms. Since the formulation of the problem by Robbins (1952) the regret has been
a popular criterion for assessing the quality of a strategy.

Known lower bounds. Lai and Robbins (1985) showed that for some (one-dimensional)
parametric classes of distributions, any consistent strategy (i.e., any strategy not pulling
sub-optimal arms more than in a polynomial number of rounds) will despite all asymptoti-
cally pull in expectation any sub-optimal arm a at least

E
[
NT (a)

]
>

(
1

K(νa, ν?)
+ o(1)

)
log(T )

times, where K(νa, ν
?) is the Kullback-Leibler (KL) divergence between νa and ν?; it mea-

sures how close distributions νa and ν? are from a theoretical information perspective.
Later, Burnetas and Katehakis (1996) extended this result to some classes of multi-

dimensional parametric distributions and proved the following generic lower bound: for a
given family P of possible distributions over the arms,

E
[
NT (a)

]
>

(
1

Kinf(νa, µ?)
+o(1)

)
log(T ) , where Kinf(νa, µ

?)
def
= inf

ν∈P:E(ν)>µ∗
K(νa, ν) ,

with the notation E(ν) for the expectation of a distribution ν. The intuition behind this
improvement is to be related to the goal that we want to achieve in bandit problems; it is
not detecting whether a distribution is optimal or not (for this goal, the relevant quantity
would be K(νa, ν

?)), but rather achieving the optimal rate of reward µ? (i.e., one needs to
measure how close νa is to any distribution ν ∈ P whose expectation is at least µ?).
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Known upper bounds. Lai and Robbins (1985) provided an algorithm based on the
KL divergence, which has been extended by Burnetas and Katehakis (1996) to an algorithm
based on Kinf ; it is asymptotically optimal since the number of pulls of any sub-optimal
arm a satisfies

E
[
NT (a)

]
6

(
1

Kinf(νa, µ?)
+ o(1)

)
log(T ) .

This result holds for finite-dimensional parametric distributions under some assumptions,
e.g., the distributions having a finite and known support or belonging to a set of Gaussian
distributions with known variance. Recently Honda and Takemura (2010a) extended this
asymptotic result to the case of distributions P with support in [0, 1] and such that µ∗ < 1;
the key ingredient in this case is that Kinf(νa, µ

?) is equal to

Kmin(νa, µ
?)

def
= inf

ν∈P:E(ν)>µ∗
K(νa, ν).

Motivation. All the results mentioned above provide asymptotic bounds only. How-
ever, any algorithm is only used for a finite number of rounds and it is thus essential to
provide a finite-time analysis of its performance. Auer et al. (2002) initiated this work by
providing an algorithm (UCB1) based on a Chernoff-Hoeffding bound; it pulls any sub-
optimal arm, till any time T , at most (8/∆2

a) log T + 1 + π2/3 times, in expectation. Al-
though this yields a logarithmic regret, the multiplicative constant depends on the gap
∆2
a = (µ? − µa)

2 but not on Kinf(νa, µ
?), which can be seen to be larger than ∆2

a/2 by
Pinsker’s inequality; that is, this non-asymptotic bound does not have the right depen-
dence in the distributions. (How much is gained of course depends on the specific families
of distributions at hand.) Audibert et al. (2009) provided an algorithm (UCB-V) that
takes into account the empirical variance of the arms and exhibited a strategy such that
E
[
NT (a)

]
6 10(σ2

a/∆
2
a + 2/∆a) log T for any time T (where σ2

a is the variance of arm a); it
improves over UCB1 in case of arms with small variance. Other variants include the MOSS
algorithm by Audibert and Bubeck (2010) and Improved UCB by Auer and Ortner (2010).

However, all these algorithms only rely on one moment (for UCB1) or two moments (for
UCB-V) of the empirical distributions of the obtained rewards; they do not fully exploit
the empirical distributions. As a consequence, the resulting bounds are expressed in terms
of the means µa and variances σ2

a of the sub-optimal arms and not in terms of the quantity
Kinf(νa, µ

?) appearing in the lower bounds. The numerical experiments reported in Filippi
(2010) confirm that these algorithms are less efficient than those based on Kinf .

Our contribution. In this paper we analyze aKinf -based algorithm inspired by the ones
studied in Lai and Robbins (1985); Burnetas and Katehakis (1996); Filippi (2010); it indeed
takes into account the full empirical distribution of the observed rewards. The analysis is
performed (with explicit bounds) in the case of Bernoulli distributions over the arms. Less
explicit but finite-time bounds are obtained in the case of finitely supported distributions
(whose supports do not need to be known in advance). Finally, we pave the way for handling
the case of general finite-dimensional parametric distributions. These results improve on
the ones by Burnetas and Katehakis (1996); Honda and Takemura (2010a) since finite-time
bounds (implying their asymptotic results) are obtained; and on Auer et al. (2002); Audibert
et al. (2009) as the dependency of the main term scales with Kinf(νa, µ

?). The proposed
Kinf -based algorithm is also more natural and more appealing than the one presented in
Honda and Takemura (2010a).
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Recent related works. Since our initial submission of the present paper, we got
aware of two papers that tackle problems similar to ours. First, a revised version of Honda
and Takemura (2010b, personal communication) obtains finite-time regret bounds (with
prohibitively large constants) for a randomized (less natural) strategy in the case of distri-
butions with finite supports (also not known in advance). Second, another paper at this
conference (Garivier and Cappé, 2011) also deals with the K–strategy which we study in
Theorem 3; they however do not obtain second-order terms in closed forms as we do and
later extend their strategy to exponential families of distributions (while we extend our
strategy to the case of distributions with finite supports). On the other hand, they show
how the K–strategy can be extended in a straightforward manner to guarantee bounds with
respect to the family of all bounded distributions on a known interval; these bounds are
suboptimal but improve on the ones of UCB-type algorithms.

2. Definitions and tools

Let X be a Polish space; in the next sections, we will consider X = {0, 1} or X = [0, 1].
We denote by P(X ) the set of probability distributions over X and equip P(X ) with the
distance d induced by the norm ‖ · ‖ defined by ‖ν‖ = supf∈L

∣∣∫
X f dν

∣∣, where L is the set
of Lipschitz functions over X , taking values in [−1, 1] and with Lipschitz constant smaller
than 1.

Kullback-Leibler divergence: For two elements ν, κ ∈ P(X ), we write ν � κ when
ν is absolutely continuous with respect to κ and denote in this case by dν/dκ the density
of ν with respect to κ. We recall that the Kullback-Leibler divergence between ν and κ is
defined as

K(ν, κ) =

∫
[0,1]

dν

dκ
log

dν

dκ
dκ if ν � κ; and K(ν, κ) = +∞ otherwise. (2)

Empirical distribution: We consider a sequence X1, X2, . . . of random variables taking
values in X , independent and identically distributed according to a distribution ν. For all
integers t > 1, we denote the empirical distribution corresponding to the first t elements of
the sequence by

ν̂t =
1

t

t∑
s=1

δXt .

Non-asymptotic Sanov’s Lemma: The following lemma follows from a straightforward
adaptation of Dinwoodie (1992, Theorem 2.1 and comments on page 372). Details of the
proof are provided in the extended version (Maillard et al., 2011) of the present paper.

Lemma 1 Let C be an open convex subset of P(X ) such that Λ(C) = inf
κ∈C
K(κ, ν) <∞ .

Then, for all t > 1, one has Pν
{
ν̂t ∈ C

}
6 e−tΛ(C) where C is the closure of C.

This lemma should be thought of as a deviation inequality. The empirical distribution
converges (in distribution) to ν. Now, if (and only if) ν is not in the closure of C, then
Λ(C) > 0 and the lemma indicates how unlikely it is that ν̂t is in this set C not containing
the limit ν. The probability of interest decreases at a geometric rate, which depends on
Λ(C).
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3. Finite-time analysis for Bernoulli distributions

In this section, we start with the case of Bernoulli distributions. Although this case is a
special case of the general results of Section 4, we provide here a complete and self-contained
analysis of this case, where, in addition, we are able to provide closed forms for all the terms
in the regret bound. Note however that the resulting bound is slightly worse than what
could be derived from the general case (for which more sophisticated tools are used). This
result is mainly provided as a warm-up.

3.1. Reminder of some useful results for Bernoulli distributions

We denote by B the subset of P
(
[0, 1]

)
formed by the Bernoulli distributions; it corresponds

to B = P
(
{0, 1}

)
. A generic element of B will be denoted by β(p), where p ∈ [0, 1] is the

probability mass put on 1. We consider a sequence X1, X2, . . . of independent and identically
distributed random variables, with common distribution β(p); for the sake of clarity we will
index, in this subsection only, all probabilities and expectations with p.

For all integers t > 1, we denote by p̂t =
1

t

t∑
s=1

Xt the empirical average of the first

t elements of the sequence.
The lemma below follows from an adaptation of Garivier and Leonardi (2011, Proposi-

tion 2).

Lemma 2 For all p ∈ [0, 1], all ε > 1, and all t > 1,

Pp

(
t⋃

s=1

{
s K
(
β
(
p̂s
)
, β(p)

)
> ε

})
6 2e

⌈
ε log t

⌉
e−ε .

In particular, for all random variables Nt taking values in {1, . . . , t},

Pp
{
Nt K

(
β
(
p̂Nt
)
, β(p)

)
> ε

}
6 2e

⌈
ε log t

⌉
e−ε .

Another immediate fact about Bernoulli distributions is that for all p ∈ (0, 1), the
mappings K · ,p : q ∈ (0, 1) 7→ K

(
β(p), β(q)

)
and Kp, · : q ∈ [0, 1] 7→ K

(
β(q), β(p)

)
are

continuous and take finite values. In particular, we have, for instance, that for all ε > 0
and p ∈ (0, 1), the set {

q ∈ [0, 1] : K
(
β(p), β(q)

)
6 ε
}

is a closed interval containing p. This property still holds when p ∈ {0, 1}, as in this case,
the interval is reduced to {p}.

3.2. Strategy and analysis

We consider the so-called K–strategy of Figure 1, which was already considered in the
literature, see Burnetas and Katehakis (1996); Filippi (2010). The numerical computation
of the quantities B+

a,t is straightforward (by convexity of K in its second argument, by using
iterative methods) and is detailed therein.

Before proceeding, we denote by σ2
a = µa(1− µa) the variance of each arm a ∈ A (and

take the short-hand notation σ?,2 for the variance of an optimal arm).
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Parameters: A non-decreasing function f : N→ R

Initialization: Pull each arm of A once

For rounds t+ 1, where t > |A|,

– compute for each arm a ∈ A the quantity

B+
a,t = max

{
q ∈ [0, 1] : Nt(a) K

(
β
(
µ̂a,Nt(a)

)
, β(q)

)
6 f(t)

}
,

where µ̂a,Nt(a) =
1

Nt(a)

∑
s6t:As=a

Ys ;

– in case of a tie, pick an arm with largest value of µ̂a,Nt(a);

– pull any arm At+1 ∈ argmax
a∈A

B+
a,t .

Figure 1: The K–strategy.

Theorem 3 When µ? ∈ (0, 1), for all non-decreasing functions f : N → R+ such that
f(1) > 1, the expected regret RT of the strategy of Figure 1 is upper bounded by the infimum,
as the (ca)a∈A describe (0,+∞), of the quantities

∑
a∈A

∆a

(
(1 + ca) f(T )

K
(
β(µa), β(µ?)

)+4e
T−1∑
t=|A|

⌈
f(t) log t

⌉
e−f(t)+

(1 + ca)
2

8 c2
a∆

2
a min

{
σ4
a, σ

?,4
}I{µa∈(0,1)}+3

)
.

For µ? = 0, its regret is null. For µ? = 1, it satisfies RT 6 2
(
|A| − 1

)
.

A possible choice for the function f is f(t) = log
(
(et) log3(et)

)
, which is non decreasing,

satisfies f(1) > 1, and is such that the second term in the sum above is bounded (by a
basic result about so-called Bertrand’s series). Now, as the constants ca in the bound are
parameters of the analysis (and not of the strategy), they can be optimized. For instance,
with the choice of f(t) mentioned above, taking each ca proportional to (log T )−1/3 (up to
a multiplicative constant that depends on the distributions νa) entails the regret bound∑

a∈A
∆a

log T

K
(
β(µa), β(µ?)

) + εT ,

where it is easy to give an explicit and closed-form expression of εT ; in this conference
version, we only indicate that εT is of order of (log T )2/3 but we do not know whether the
order of magnitude of this second-order term is optimal.

Proof We first deal with the case where µ? 6∈ {0, 1} and introduce an additional notation.
In view of the remark at the end of Section 3.1, for all arms a and rounds t, we let B−a,t be
the element in [0, 1] such that{

q ∈ [0, 1] : Nt(a) K
(
β
(
µ̂a,Nt(a)

)
, β(q)

)
6 f(t)

}
=
[
B−a,t, B

+
a,t

]
. (3)
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As (1) indicates, it suffices to bound NT (a) for all suboptimal arms a, i.e., for all arms such
that µa < µ?. We will assume in addition that µa > 0 (and we also have µa 6 µ? < 1); the
case where µa = 0 will be handled separately.

Step 1: A decomposition of the events of interest. For t > |A|, when At+1 = a,
we have in particular, by definition of the strategy, that B+

a,t > B+
a?,t. On the event{

At+1 = a
}
∩
{
µ? ∈

[
B−a?,t, B

+
a?,t

]}
∩
{
µa ∈

[
B−a,t, B

+
a,t

]}
,

we therefore have, on the one hand, µ? 6 B+
a?,t 6 B+

a,t and on the other hand, B−a,t 6 µa 6

µ?, that is, the considered event is included in
{
µ? ∈

[
B−a,t, B

+
a,t

]}
. We thus proved that

{
At+1 = a

}
⊆
{
µ? 6∈

[
B−a?,t, B

+
a?,t

]}
∪
{
µa 6∈

[
B−a,t, B

+
a,t

]}
∪
{
µ? ∈

[
B−a,t, B

+
a,t

]}
.

Going back to the definition (3), we get in particular the inclusion

{
At+1 = a

}
⊆

{
Nt(a

?) K
(
β
(
µ̂a?,Nt(a?)

)
, β(µ?)

)
> f(t)

}
∪
{
Nt(a) K

(
β
(
µ̂a,Nt(a)

)
, β(µa)

)
> f(t)

}
∪

({
Nt(a) K

(
β
(
µ̂a,Nt(a)

)
, β(µ?)

)
6 f(t)

}
∩
{
At+1 = a

})
.

Step 2: Bounding the probabilities of two elements of the decomposition. We
consider the filtration (Ft), where for all t > 1, the σ–algebra Ft is generated by A1, Y1, . . .,
At, Yt. In particular, At+1 and thus all Nt+1(a) are Ft–measurable. We denote by τa,1 the
deterministic round at which a was pulled for the first time and by τa,2, τa,3, . . . the rounds
t > |A|+ 1 at which a was then played; since for all k > 2,

τa,k = min
{
t > |A|+ 1 : Nt(a) = k

}
,

we see that
{
τa,k = t

}
is Ft−1–measurable. Therefore, for each k > 1, the random variable

τa,k is a (predictable) stopping time. Hence, by a well-known fact in probability theory (see,

e.g., Chow and Teicher 1988, Section 5.3), the random variables X̃a,k = Yτa,k , where k =
1, 2, . . . are independent and identically distributed according to νa. Since on

{
Nt(a) = k

}
,

we have the rewriting

µ̂a,Nt(a) = µ̃a,k where µ̃a,k =
1

k

k∑
j=1

X̃a,j ,

and since for t > |A| + 1, one has Nt(a) > 1 with probability 1, we can apply the second
statement in Lemma 2 and get, for all t > |A|+ 1,

P
{
Nt(a) K

(
β
(
µ̂a,Nt(a)

)
, β(µa)

)
> f(t)

}
6 2e

⌈
f(t) log t

⌉
e−f(t) .
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A similar argument shows that for all t > |A|+ 1,

P
{
Nt(a

?) K
(
β
(
µ̂a?,Nt(a?)

)
, β(µ?)

)
> f(t)

}
6 2e

⌈
f(t) log t

⌉
e−f(t) .

Step 3: Rewriting the remaining terms. We therefore proved that

E
[
NT (a)

]
6 1 + 4e

T−1∑
t=|A|

⌈
f(t) log t

⌉
e−f(t)

+

T−1∑
t=|A|

P

({
Nt(a) K

(
β
(
µ̂a,Nt(a)

)
, β(µ?)

)
6 f(t)

}
∩
{
At+1 = a

})

and deal now with the last sum. Since f is non decreasing, it is bounded by

T−1∑
t=|A|

P
(
Kt ∩

{
At+1 = a

})
where Kt =

{
Nt(a) K

(
β
(
µ̂a,Nt(a)

)
, β(µ?)

)
6 f(T )

}
.

Now,

T−1∑
t=|A|

P
(
Kt ∩

{
At+1 = a

})
= E

 T−1∑
t=|A|

I{
At+1=a

}IKt
 = E

∑
k>2

I{
τa,k6T

}IKτa,k−1

 .
We note that, since Nτa,k−1(a) = k − 1, we have that

Kτa,k−1 =

{
(k − 1) K

(
β
(
µ̃a,k−1

)
, β(µ?)

)
6 f(T )

}
.

All in all, since τa,k 6 T implies k 6 T − |A|+ 1 (as each arm is played at least once during
the first |A| rounds), we have

E

∑
k>2

I{
τa,k6T

}IKτa,k−1

 6 E

T−|A|+1∑
k=2

IKτa,k−1

 =

T−|A|+1∑
k=2

P
{

(k−1) K
(
β
(
µ̃a,k−1

)
, β(µ?)

)
6 f(T )

}
.

(4)

Step 4: Bounding the probabilities of the latter sum via Sanov’s lemma. For

each γ > 0, we define the convex open set Cγ =
{
β(q) ∈ B : K

(
β(q), β(µ?)

)
< γ

}
, which is

a non-empty set (since µ? < 1); by continuity of the mapping K · ,µ? defined after the state-

ment of Lemma 2 when µ? ∈ (0, 1), its closure is Cγ =
{
β(q) ∈ B : K

(
β(q), β(µ?)

)
6 γ

}
.

In addition, since µa ∈ (0, 1), we have that K
(
β(q), β(µa)

)
< ∞ for all q ∈ [0, 1]. In

particular, for all γ > 0, the condition Λ
(
Cγ
)
< ∞ of Lemma 1 is satisfied. Denoting this

value by

θa(γ) = inf

{
K
(
β(q), β(µa)

)
: β(q) ∈ B such that K

(
β(q), β(µ?)

)
6 γ

}
,

we get by the indicated lemma that for all k > 1,

P
{
K
(
β
(
µ̃a,k

)
, β(µ?)

)
6 γ

}
= P

{
β
(
µ̃a,k

)
∈ Cγ

}
6 e−k θa(γ) .
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Now, since (an open neighborhood of) β(µa) is not included in Cγ as soon as 0 < γ <
K
(
β(µa), β(µ?)

)
, we have that θa(γ) > 0 for such values of γ. To apply the obtained

inequality to the last sum in (4), we fix a constant ca > 0 and denote by k0 the following

upper integer part, k0 =

⌈
(1 + ca) f(T )

K
(
β(µa), β(µ?)

)⌉ , so that f(T )/k 6 K
(
β(µa), β(µ?)

)
/(1+ca) <

K
(
β(µa), β(µ?)

)
for k > k0, hence,

T−|A|+1∑
k=2

P
{

(k − 1) K
(
β
(
µ̃a,k−1

)
, β(µ?)

)
6 f(T )

}
6

T∑
k=1

P
{
K
(
β
(
µ̃a,k

)
, β(µ?)

)
6
f(T )

k

}

6 k0 − 1 +
T∑

k=k0

exp
(
−k θa

(
f(T )/k

))
.

Since θa is a non-increasing function,

T∑
k=k0

exp
(
−k θa

(
f(T )/k

))
6

T∑
k=k0

exp
(
−k θa

(
K
(
β(µa), β(µ?)

)
/(1 + ca)

))
6 Γa(ca) exp

(
−k0 θa

(
K
(
β(µa), β(µ?)

)
/(1 + ca)

))
6 Γa(ca),

where Γa(ca) =
[
1− exp

(
−θa

(
K
(
β(µa), β(µ?)

)
/(1 + ca)

))]−1
.

Putting all pieces together, we thus proved so far that

E
[
NT (a)

]
6 1 +

(1 + ca) f(T )

K
(
β(µa), β(µ?)

) + 4e
T−1∑
t=|A|

⌈
f(t) log t

⌉
e−f(t) + Γa(ca)

and it only remains to deal with Γa(ca).

Step 5: Getting an upper bound in closed form for Γa(ca). We will make
repeated uses of Pinsker’s inequality: for p, q ∈ [0, 1], one has K

(
β(p), β(q)

)
> 2 (p− q)2 .

In what follows, we use the short-hand notation Θa = θa
(
K
(
β(µa), β(µ?)

)
/(1 + ca)

)
and

therefore need to upper bound 1/
(
1−e−Θa

)
. Since for all u > 0, one has e−u 6 1−u+u2/2,

we get Γa(ca) 6
1

Θa

(
1−Θa/2

) 6
2

Θa
for Θa 6 1, and Γa(ca) 6

1

1− e−1
6 2 for Θa > 1. It

thus only remains to lower bound Θa in the case when it is smaller than 1.
By the continuity properties of the Kullback-Leibler divergence, the infimum in the

definition of θa is always achieved; we therefore let µ̃ be an element in [0, 1] such that

Θa = K
(
β(µ̃), β(µa)

)
and K

(
β(µ̃), β(µ?)

)
=
K
(
β(µa), β(µ?)

)
1 + c

;

it is easy to see that we have the ordering µa < µ̃ < µ?. By Pinsker’s inequality, Θa >
2
(
µ̃ − µa

)2
and we now lower bound the latter quantity. We use the short-hand notation

f(p) = K
(
β(p), β(µ?)

)
and note that the thus defined mapping f is convex and differentiable

on (0, 1); its derivative equals f ′(p) = log
(
(1−µ?)/(µ?)

)
+log

(
p/(1−p)

)
for all p ∈ (0, 1) and

9
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is therefore non positive for p 6 µ?. By the indicated convexity of f , using a sub-gradient
inequality, we get f

(
µ̃
)
− f(µa) > f ′(µa)

(
µ̃− µa

)
, which entails, since f ′(µa) < 0,

µ̃− µa >
f
(
µ̃
)
− f(µa)

f ′(µa)
=

ca
1 + ca

f(µa)

−f ′(µa)
, (5)

where the equality follows from the fact that by definition of µ, we have f
(
µ̃
)

= f(µa)/(1 +
ca). Now, since f ′ is differentiable as well on (0, 1) and takes the value 0 at µ?, a Taylor’s
equality entails that there exists a ξ ∈ (µa, µ

?) such that

−f ′(µa) = f ′(µ?)−f ′(µa) = f ′′(ξ)
(
µ?−µa) where f ′′(ξ) = 1/ξ+1/(1− ξ) = 1

/(
ξ(1− ξ)

)
.

Therefore, by convexity of τ 7→ τ(1− τ), we get that

1

−f ′(µa)
>

min
{
µa(1− µa), µ?(1− µ?)

}
µ? − µa

.

Substituting this into (5) and using again Pinsker’s inequality to lower bound f(µa), we
have proved

µ̃− µa > 2
ca

1 + ca

(
µ? − µa

)
min

{
µa(1− µa), µ?(1− µ?)

}
.

Putting all pieces together, we thus proved that

Γa(ca) 6 2 max

 (1 + ca)
2

8 c2
a

(
µ? − µa

)2 (
min

{
µa(1− µa), µ?(1− µ?)

})2 , 1

 ;

bounding the maximum of the two quantities by their sum concludes the main part of the
proof.

Step 6: For µ? ∈ {0, 1} and/or µa = 0. When µ? = 1, then µ̂a?,Nt(a?) = 1 for

all t > |A| + 1, so that B+
a?,t = 1 for all t > |A| + 1. Thus, the arm a is played after

round t > |A| + 1 only if B+
a,t = 1 and µ̂a,Nt(a) = 1 (in view of the tie-breaking rule of

the considered strategy). But this means that a is played as long as it gets payoffs equal
to 1 and is stopped being played when it receives the payoff 0 for the first time. Hence,
in this case, we have that the sum of payoffs equals at least T − 2

(
|A| − 1) and the regret

RT = E[Tµ? − (Y1 + . . .+ Yt)] is therefore bounded by 2
(
|A| − 1).

When µ? = 0, a Dirac mass over 0 is associated with all arms and the regret of all
strategies is equal to 0.

We consider now the case µ? ∈ (0, 1) and µa = 0, for which the first three steps go
through; only in the upper bound of step 4 we used the fact that µa > 0. But in this case,
we have a deterministic bound on (4). Indeed, since K

(
β(0), β(µ?)

)
= − logµ?, we have

kK
(
β(0), β(µ?)

)
6 f(T ) if and only if

k 6
f(T )

− logµ?
=

f(T )

K
(
β(µa), β(µ?)

) ,
which improves on the general bound exhibited in step 4.

10
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Remark 4 Note that Step 5 in the proof is specifically designed to provide an upper bound
on Γa(ca) in the case of Bernoulli distributions. In the general case, getting such an explicit
bound seems more involved.

4. A finite-time analysis in the case of distributions with finite support

Before stating and proving our main result, Theorem 10, we introduce the quantity Kinf

and list some of its properties.

4.1. Some useful properties of Kinf and its level sets

We now introduce the key quantity in order to generalize the previous algorithm to handle
the case of distributions with finite support. To that end, we introduce PF

(
[0, 1]

)
, the

subset of P
(
[0, 1]

)
that consists of distributions with finite support.

Definition 5 For all distributions ν ∈ PF
(
[0, 1]

)
and µ ∈ [0, 1), we define

Kinf(ν, µ) = inf
{
K(ν, ν ′) : ν ′ ∈ PF

(
[0, 1]

)
s.t. E(ν ′) > µ

}
,

where E(ν ′) =
∫

[0,1] x dν ′(x) denotes the expectation of the distribution ν ′.

We now remind some useful properties of Kinf . Honda and Takemura (2010b, Lemma 6)
can be reformulated in our context as follows.

Lemma 6 For all ν ∈ PF
(
[0, 1]

)
, the mapping Kinf(ν, · ) is continuous and non decreasing

in its argument µ ∈ [0, 1). Moreover, the mapping Kinf( · , µ) is lower semi-continuous on
PF
(
[0, 1]

)
for all µ ∈ [0, 1).

The next two lemmas bound the variation of Kinf , respectively in its first and second
arguments. (For clarity, we denote the expectations with respect to ν by Eν .) Their proofs
can be found in the extended version of the present conference paper (Maillard et al., 2011).
We denote by ‖ · ‖1 the `1–norm on P

(
[0, 1]

)
and recall that the `1–norm of ν−ν ′ corresponds

to twice the distance in variation between ν and ν ′.

Lemma 7 For all µ ∈ (0, 1) and for all ν, ν ′ ∈ PF
(
[0, 1]

)
, the following holds true.

– In the case when Eν
[
(1−µ)/(1−X)

]
> 1, then Kinf(ν, µ)−Kinf(ν

′, µ) 6Mν,µ ‖ν−ν ′‖1 ,
for some constant Mν,µ > 0.

– In the case when Eν
[
(1 − µ)/(1 − X)

]
6 1, the fact that Kinf(ν, µ) − Kinf(ν

′, µ) >
αKinf(ν, µ) for some α ∈ (0, 1) entails that

‖ν − ν ′‖1 >
1− µ

(2/α)
(
(2/α)− 1

) .
Lemma 8 We have that for any ν ∈ PF

(
[0, 1]

)
, provided that µ > µ − ε > E(ν), the

following inequalities hold true:

ε/(1− µ) > Kinf(ν, µ)−Kinf(ν, µ− ε) > 2ε2

Moreover, the first inequality is also valid when E(ν) > µ > µ− ε or µ > E(ν) > µ− ε.

11
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Level sets of Kinf : For each γ > 0 and µ ∈ (0, 1), we consider the set

Cµ,γ =
{
ν ′ ∈ PF

(
[0, 1]

)
: Kinf(ν

′, µ) < γ
}

=
{
ν ′ ∈ PF

(
[0, 1]

)
: ∃ ν ′µ ∈ PF

(
[0, 1]

)
s.t. E

(
ν ′µ
)
> µ and K

(
ν ′, ν ′µ

)
< γ

}
.

We detail a property in the following lemma, whose proof can be found in the extended
version of the present conference paper (Maillard et al., 2011).

Lemma 9 For all γ > 0 and µ ∈ (0, 1), the set Cµ,γ is a non-empty open convex set.
Moreover,

Cµ,γ ⊇
{
ν ′ ∈ PF

(
[0, 1]

)
: Kinf(ν

′, µ) 6 γ
}
.

4.2. The Kinf–strategy and a general performance guarantee

For each arm a ∈ A and round t with Nt(a) > 0, we denote by ν̂a,Nt(a) the empirical
distribution of the payoffs obtained till round t when picking arm a, that is,

ν̂a,Nt(a) =
1

Nt(a)

∑
s6t:As=a

δYs ,

where for all x ∈ [0, 1], we denote by δx the Dirac mass on x. We define the corresponding
empirical averages as

µ̂a?,Nt(a?) = E
(
ν̂a?,Nt(a?)

)
=

1

Nt(a)

∑
s6t:As=a

Ys .

We then consider the Kinf–strategy defined in Figure 2. Note that the use of maxima in the
definitions of the B+

a,t is justified by Lemma 6.
As explained in Honda and Takemura (2010b), the computation of the quantities Kinf

can be done efficiently in this case, i.e., when we consider only distributions with finite
supports. This is because in the computation of Kinf , it is sufficient to consider only
distributions with the same support as the empirical distributions (up to one point). Note
that the knowledge of the support of the distributions associated with the arms is not
required.

Theorem 10 Assume that ν? is finitely supported, with expectation µ? ∈ (0, 1) and with
support denoted by S?. Let a ∈ A be a suboptimal arm such that µa > 0 and νa is finitely
supported. Then, for all ca > 0 and all

0 < ε < min

{
∆a,

ca/2

1 + ca
(1− µ?)Kinf(νa, µ

?)

}
,

the expected number of times the Kinf–strategy, run with f(t) = log t, pulls arm a satisfies

E
[
NT (a)

]
6 1 +

(1 + ca) log T

Kinf(νa, µ?)
+

1

1− e−Θa(ca,ε)
+

1

ε2
log

(
1

1− µ∗ + ε

) T∑
k=1

(k+ 1)|S
?| e−kε

2

+
1

(∆a − ε)2
,

12
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Parameters: A non-decreasing function f : N→ R

Initialization: Pull each arm of A once

For rounds t+ 1, where t > |A|,

– compute for each arm a ∈ A the quantity

B+
a,t = max

{
q ∈ [0, 1] : Nt(a) Kinf

(
ν̂a,Nt(a), q

)
6 f(t)

}
,

where ν̂a,Nt(a) =
1

Nt(a)

∑
s6t:As=a

δYs ;

– in case of a tie, pick an arm with largest value of µ̂a,Nt(a);

– pull any arm At+1 ∈ argmax
a∈A

B+
a,t .

Figure 2: The strategy Kinf .

where

Θa(ca, ε) = θa

(
log T

k0
+

ε

1− µ?

)
with k0 =

⌈
(1 + ca) log T

Kinf(νa, µ?)

⌉
.

and for all γ > 0,

θa(γ) = inf
{
K(ν ′, νa) : ν ′ s.t. Kinf(ν

′, µ?) < γ
}
.

As a corollary, we get (by taking some common value for all ca) that for all c > 0,

RT 6
∑
a∈A

∆a
(1 + c) log T

Kinf(νa, µ?)
+ h(c) ,

where h(c) < ∞ is a function of c (and of the distributions associated with the arms),
which is however independent of T . As a consequence, we recover the asymptotic results of
Burnetas and Katehakis (1996); Honda and Takemura (2010a), i.e., the guarantee that

lim sup
T→∞

RT
log T

6
∑
a∈A

∆a

Kinf(νa, µ?)
.

Of course, a sharper optimization can be performed by carefully choosing the constants
ca, that are parameters of the analysis; similarly to the comments after the statement of
Theorem 3, we would then get a dominant term with a constant factor 1 instead of 1 + c
as above, plus an additional second-order term. Details are left to a journal version of this
paper.

Proof By arguments similar to the ones used in the first step of the proof of Theorem 3,
we have{

At+1 = a
}
⊆
{
µ? − ε < µ̂a,Nt(a)

}
∪
{
µ? − ε > B+

a?,t

}
∪
{
µ? − ε ∈

[
µ̂a,Nt(a), B

+
a,t

]}
;

13
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indeed, on the event
{
At+1 = a

}
∩
{
µ? − ε > µ̂a,Nt(a)

}
∩
{
µ? − ε 6 B+

a?,t

}
,

we have, µ̂a,Nt(a) 6 µ? − ε 6 B+
a?,t 6 B+

a,t (where the last inequality is by definition of the
strategy). Before proceeding, we note that{

µ? − ε ∈
[
µ̂a,Nt(a), B

+
a,t

]}
⊆
{
Nt(a) Kinf

(
ν̂a,Nt(a), µ

? − ε
)
6 f(t)

}
,

since Kinf is a non-decreasing function in its second argument and Kinf

(
ν,E(ν)

)
= 0 for all

distributions ν. Therefore,

E
[
NT (a)

]
6 1 +

T−1∑
t=|A|

P
{
µ? − ε < µ̂a,Nt(a) and At+1 = a

}
+

T−1∑
t=|A|

P
{
µ? − ε > B+

a?,t

}

+

T−1∑
t=|A|

P
{
Nt(a) Kinf

(
ν̂a,Nt(a), µ

? − ε
)
6 f(t) and At+1 = a

}
;

now, the two sums with the events “and At+1 = a” can be rewritten by using the stop-
ping times τa,k introduced in the proof of Theorem 3; more precisely, by mimicking the
transformations performed in its step 3, we get the simpler bound

E
[
NT (a)

]
6 1 +

T−|A|+1∑
k=2

P
{
µ? − ε < µ̃a,k−1

}
+

T−1∑
t=|A|

P
{
µ? − ε > B+

a?,t

}

+

T−|A|+1∑
k=2

P
{

(k − 1) Kinf

(
ν̃a,k−1, µ

? − ε
)
6 f(t)

}
, (6)

where the ν̃a,s and µ̃a,s are respectively the empirical distributions and empirical expecta-

tions computed on the first s elements of the sequence of the random variables X̃a,j = Yτa,j ,
which are i.i.d. according to νa.

Step 1: The first sum in (6) is bounded by resorting to Hoeffding’s inequality, whose
application is legitimate since µ? − µa − ε > 0;

T−|A|+1∑
k=2

P
{
µ? − ε < µ̃a,k−1

}
=

T−|A|∑
k=1

P
{
µ? − µa − ε < µ̃a,k − µa

}

6
T−|A|∑
k=1

e−2k(µ?−µa−ε)2 6
1

1− e−2(µ?−µa−ε)2
6

1

(µ? − µa − ε)2

where we used for the last inequality the general upper bounds provided at the beginning
of step 5 in the proof of Theorem 3.

Step 2: The second sum in (6) is bounded by first using the definition of B+
a?,t,

then, decomposing the event depending on the values taken by Nt(a
?); and finally using

the fact that on
{
Nt(a

?) = k
}

, we have the rewriting ν̂a,Nt(a) = ν̃a,k and µ̂a,Nt(a) = µ̃a,k ;

14
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more precisely,

T−1∑
t=|A|

P
{
µ? − ε > B+

a?,t

}
6

T−1∑
t=|A|

P
{
Nt(a

?) Kinf

(
ν̂a?,Nt(a?), µ

? − ε
)
> f(t)

}

=
T−1∑
t=|A|

t∑
k=1

P
{
Nt(a

?) = k and k Kinf

(
ν̃a?,k, µ

? − ε
)
> f(t)

}

6
T∑
k=1

T−1∑
t=|A|

P
{
k Kinf

(
ν̃a?,k, µ

? − ε
)
> f(t)

}
.

Since f = log is increasing, we can rewrite the bound, using a Fubini-Tonelli argument, as

T−1∑
t=|A|

P
{
µ? − ε > B+

a?,t

}
6

T∑
k=1

T−1∑
t=|A|

P
{
f−1

(
kKinf

(
ν̃a?,k, µ

? − ε
))

> t

}

6
T∑
k=1

E
[
f−1

(
kKinf

(
ν̃a?,k, µ

? − ε
))

I{
Kinf(ν̃a?,k, µ

?−ε)>0
}] .

Now, Honda and Takemura (2010a, Lemma 13) indicates that, since µ? − ε ∈ [0, 1),

sup
ν∈PF ([0,1])

Kinf

(
ν, µ? − ε

)
6 log

(
1/(1− µ? + ε)

) def
= Kmax ;

we define Q = Kmax/ε
2 and introduce the following sets (Vq)16q6Q:

Vq =
{
ν ∈ PF

(
[0, 1]

)
: (q − 1)ε2 < Kinf

(
ν, µ∗ − ε) 6 qε2

}
.

A peeling argument (and by using that f−1 = exp is increasing as well) entails, for all
k > 1,

E
[
f−1

(
kKinf

(
ν̃a?,k, µ

? − ε
))

I{
Kinf(ν̃a?,k, µ

?−ε)>0
}] (7)

=

Q∑
q=1

E
[
f−1

(
kKinf

(
ν̃a?,k, µ

? − ε
))

I{
ν̃a?,k∈Vq

}]

6
Q∑
q=1

P
{
ν̃a?,k ∈ Vq

}
f−1(kqε2) 6

Q∑
q=1

P
{
Kinf

(
ν̃a?,k, µ

? − ε
)
> (q − 1)ε2

}
f−1(kqε2) (8)

where we used the definition of Vq to obtain each of the two inequalities. Now, by Lemma 8,
when E

(
ν̃a?,k

)
< µ? − ε, which is satisfied whenever Kinf

(
ν̃a?,k, µ

? − ε
)
> 0, we have

Kinf

(
ν̃a?,k, µ

? − ε
)
6 Kinf

(
ν̃a?,k, µ

?
)
− 2ε2 6 K

(
ν̃a?,k, ν

?
)
− 2ε2 ,

where the last inequality is by mere definition of Kinf . Therefore,

P
{
Kinf

(
ν̃a?,k, µ

? − ε
)
> (q − 1)ε2

}
6 P

{
K
(
ν̃a?,k, ν

?
)
> (q + 1)ε2

}
.
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We note that for all k > 1, P
{
K
(
ν̃a?,k, ν

?
)
> (q + 1)ε2

}
6 (k + 1)|S

?| e−k(q+1)ε2 ,

where we recall that S? denotes the finite support of ν? and where we applied the method
of types; see, e.g., the extended version of the present paper (Maillard et al., 2011) for more
details about this standard inequality. Now, (8) then yields, via the choice f = log and
thus f−1 = exp, that

E
[
f−1

(
kKinf

(
ν̃a?,k, µ

? − ε
))

I{
Kinf(ν̃a?,k, µ

?−ε)>0
}] 6 Q∑

q=1

(k + 1)|S
?| e−k(q+1)ε2ekqε

2

︸ ︷︷ ︸
=Q (k+1)|S?| e−kε2

.

Substituting the value of Q, we therefore have proved that

T−1∑
t=|A|

P
{
µ? − ε > B+

a?,t

}
6

1

ε2
log

(
1

1− µ∗ + ε

) T∑
k=1

(k + 1)|S
?| e−kε

2
.

Step 3: The third sum in (6) is first upper bounded by Lemma 8, which states that

Kinf

(
ν̃a,k−1, µ

?
)
− ε/(1− µ?) 6 Kinf

(
ν̃a,k−1, µ

? − ε
)

for all k > 1, and by using f(t) 6 f(T ); this gives

T−|A|∑
k=1

P
{
k Kinf

(
ν̃a,k, µ

? − ε
)
6 f(t)

}

6
T−|A|∑
k=1

P
{
k Kinf

(
ν̃a,k, µ

?
)
6 f(T ) +

k ε

1− µ?

}
=

T−|A|∑
k=1

P
{
ν̃a,k ∈ Cµ?,γk

}
,

where γk = f(T )/k + ε/(1 − µ?) and where the set Cµ?,γk was defined in Section 4.1. For
all γ > 0, we then introduce

θa(γ) = inf
{
K(ν ′, νa) : ν ′ ∈ Cµ?,γ

}
= inf

{
K(ν ′, νa) : ν ′ ∈ Cµ?,γ

}
,

(where the second equality follows from the lower semi-continuity of K) and aim at bounding

P
{
ν̃a,k ∈ Cµ?,γ

}
.

As shown in Section 4.1, the set Cµ?,γ is a non-empty open convex set. If we prove that
θa(γ) is finite for all γ > 0, then all the conditions will be required to apply Lemma 1 and
get the upper bound

T−|A|∑
k=1

P
{
ν̃a,k ∈ Cµ?,γk

}
6

T−|A|∑
k=1

e−k θa(γk) .

To that end, we use the fact that νa is finitely supported. Now, either the probability of
interest is null and we are done; or, it is not null, which implies that there exists a possible
value of ν̃a,k that is in Cµ?,γ ; since this value is a distribution with a support included in
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the one of νa, it is absolutely continuous with respect to νa and hence, the Kullback-Leibler
divergence between this value and νa is finite; in particular, θa(γ) is finite.

Finally, we bound the θa(γk) for values of k larger than k0 =

⌈
(1 + ca) f(T )

Kinf(νa, µ?)

⌉
;

we have that for all k > k0, in view of the bound put on ε,

γk 6 γk0 =
f(T )

k0
+

ε

1− µ?
<
Kinf(νa, µ

?)

1 + ca
+

ca/2

1 + ca
Kinf(νa, µ

?) =
1 + ca/2

1 + ca
Kinf(νa, µ

?) . (9)

Since θa is non increasing, we have

T−|A|∑
k=1

e−k θa(γk) 6 k0 − 1 +

T−|A|∑
k=k0

e−k θa(γk0 ) 6 k0 − 1 +
1

1− e−Θa(ca,ε)
,

provided that the quantity Θa(ca, ε) = θa
(
γk0
)

is positive, which we prove now.
Indeed for all ν ′ ∈ Cµ?,γk0 , we have by definition and by (9) that

Kinf(ν
′, µ?)−Kinf(νa, µ

?) < γk0 −Kinf(νa, µ
?) < −

(
(ca/2)

/
(1 + ca)

)
Kinf(νa, µ

?) .

Now, in the case where Eνa
[
(1−µ?)/(1−X)

]
> 1, we have, first by application of Pinsker’s

inequality and then by Lemma 7, that

K
(
ν ′, νa

)
>
‖ν ′ − νa‖21

2
>

1

2M2
νa,µ?

(
Kinf(νa, µ

?)−Kinf(ν
′, µ?)

)2
>

c2
a

(
Kinf(νa, µ

?)
)2

8 (1 + ca)2M2
νa,µ?

;

since, again by Pinsker’s inequality, Kinf(νa, µ
?) > (µa − µ?)2/2 > 0, we have exhibited a

lower bound independent of ν ′ in this case. In the case where Eνa
[
(1 − µ?)/(1 −X)

]
6 1,

we apply the second part of Lemma 7, with αa = (ca/2)/(1 + ca), and get

K
(
ν ′, νa

)
>
‖ν ′ − νa‖21

2
>

1

2

(
1− µ?

(2/αa)
(
(2/αa)− 1

))2

> 0 .

Thus, in both cases we found a positive lower bound independent of ν ′, so that the infimum
over ν ′ ∈ Cµ?,γk0 of the quantities Kinf(ν

′, µ?), which precisely equals θa
(
γk0
)
, is also posi-

tive. This concludes the proof.

Conclusion. We provided a finite-time analysis of the (asymptotically optimal) Kinf–
strategy in the case of finitely supported distributions. The extension to the case of general
distributions (e.g., by histogram-based approximations of such general distributions) is left
for future work.
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I.H. Dinwoodie. Mesures dominantes et théorème de Sanov. Annales de l’Institut Henri
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