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SENSITIVITY ANALYSIS USING ITÔ–MALLIAVIN CALCULUS
AND MARTINGALES, AND APPLICATION TO STOCHASTIC

OPTIMAL CONTROL∗

EMMANUEL GOBET† AND RÉMI MUNOS†

Abstract. We consider a multidimensional diffusion process (Xα
t )0≤t≤T whose dynamics de-

pends on a parameter α. Our first purpose is to write as an expectation the sensitivity ∇αJ(α) for
the expected cost J(α) = E(f(Xα

T )), in order to evaluate it using Monte Carlo simulations. This
issue arises, for example, from stochastic control problems (where the controller is parameterized,
which reduces the control problem to a parametric optimization one) or from model misspecifications
in finance. Previous evaluations of ∇αJ(α) using simulations were limited to smooth cost functions
f or to diffusion coefficients not depending on α (see Yang and Kushner, SIAM J. Control Optim.,
29 (1991), pp. 1216–1249). In this paper, we cover the general case, deriving three new approaches
to evaluate ∇αJ(α), which we call the Malliavin calculus approach, the adjoint approach, and the
martingale approach. To accomplish this, we leverage Itô calculus, Malliavin calculus, and martin-
gale arguments. In the second part of this work, we provide discretization procedures to simulate
the relevant random variables; then we analyze their respective errors. This analysis proves that the
discretization error is essentially linear with respect to the time step. This result, which was already
known in some specific situations, appears to be true in this much wider context. Finally, we provide
numerical experiments in random mechanics and finance and compare the different methods in terms
of variance, complexity, computational time, and time discretization error.
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1. Introduction. We consider a d-dimensional stochastic differential equation
(SDE) defined by

Xt = x +

∫ t

0

b(s,Xs, α) ds +

q∑
j=1

∫ t

0

σj(s,Xs, α) dW j
s ,(1.1)

where α is a parameter (taking values in A ⊂ Rm) and (Wt)0≤t≤T is a standard
Brownian motion in Rq on a filtered probability space (Ω,F , (Ft)0≤t≤T ,P), with the
usual assumptions on the filtration (Ft)0≤t≤T .

We first aim at evaluating the sensitivity w.r.t. α of the expected cost

J(α) = E (f(XT )) ,(1.2)

for a given terminal cost f and for a fixed time T . The sensitivity of more general func-

tionals including instantaneous costs like E
( ∫ T

0
g(t,Xt)dt+f(XT )

)
=

∫ T

0
E(g(t,Xt))dt+

E(f(XT )) will follow by discretizing the integral and applying the sensitivity estimator
for each time.

This evaluation is a typical issue raised in various applications. A first example is
the analysis of the impact on the expected cost J(α) of a misspecification of a stochas-
tic model (defined by a SDE with coefficients b̄(t, x) and (σ̄j(t, x))1≤j≤q). The issue
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may be formulated by setting b(t, x, α) = b̄(t, x) +
∑m

i=1 αiφi(t, x) (and analogously
for (σj(t, x, α))1≤j≤q), then computing the sensitivities at the point α = 0. In finance,
misspecifications in option pricing procedures usually concern the diffusion coefficients
(σ̄j(t, x))1≤j≤q (the volatility of the assets). There are also some connections with the
so-called model risk problem (see Cvitanić and Karatzas [CK99]).

Stochastic control is another field requiring sensitivity analysis. For instance,
if the controlled SDE is defined by dXt = b̄(t,Xt, ut) dt +

∑q
j=1 σ̄j(t,Xt, ut)dW

j
t ,

the problem is to find the maximal value of E(f(XT )) among the admissible policies
(ut)0≤t≤T . In low dimensions (say 1 or 2), numerical methods based on the dynamic
programming principle can be successfully implemented (see Kushner and Dupuis
[KD01] for some references), but they become inefficient in higher dimensions. Alter-
natively, one can use policy search algorithms (see [BB01] and references therein). It
consists in seeking a good policy in a feedback form using a parametric representa-
tion, that is, ut = u(t,Xt, α): in that case, one puts b(t, x, α) = b̄(t, x, u(t, x, α)) and
σj(t, x, α) = σ̄j(t, x, u(t, x, α)). The policy function u(t, x, α) can be parameterized
through a linear approximation (a linear combination of basis functions) or through a
nonlinear one (e.g., with neural networks, see Rumelhart and McClelland [RM86] or
Haykin [Hay94] for general references). Then, one might use a standard parametric
optimization procedure such as the stochastic gradient method or other stochastic
approximation algorithms (see Polyak [Pol87]; Benveniste, Metivier, and Priouret
[BMP90]; Kushner and Yin [KY97]), which require sensitivity estimations of J(α)
w.r.t. α, such as ∇αJ(α). This gradient is the quantity we will focus on in this paper.

Since the setting is a priori multidimensional, we propose a Monte Carlo approach
for the numerical computations. The evaluation of J(α) is standard and has been
widely studied. For an introduction to numerical approximations of SDEs, we refer
the reader to Kloeden and Platen [KP95], for instance. To our knowledge, there are
three different approaches to compute ∇αJ(α) in our context:

1. The resampling method (see Glasserman and Yao [GY92], L’Ecuyer and Per-
ron [LP94] for instance), which consists in computing different values of J(α)
for some close values of the parameter α and then forming some appropri-
ate differences to approximate the derivatives. However, not only is it costly
when the dimension of the parameter α is large, but it also provides biased
estimators.

2. The pathwise method (proposed in our context by Yang and Kushner [YK91]),
which consists in putting the gradient inside the expectation, involving ∇f
and ∇αXT . Then, ∇αJ(α) is expressed as an expectation (see Proposition 1.1
below) and Monte Carlo methods can be used. One limitation of this method
is that the cost function f has to be smooth.

3. The so-called likelihood method or score method (introduced by Glynn [Gly86,
Gly87], Reiman and Weiss [RW86]; see also Broadie and Glasserman [BG96]
for applications to the computation of Greeks in finance), in which the gra-
dient is rewritten as E(f(XT )H) for some random variable H. There is no
uniqueness in this representation, since we can add to H any random variables
orthogonal to XT . Unlike the pathwise method, this method is not limited
to smooth cost functions. Usually, H is equal to ∇α(log(p(α,XT ))), where
p(α, .) is the density w.r.t. the Lebesgue measure of the law of XT . This
has some strong limitations in our context since this quantity is generally
unknown. However, Yang and Kushner [YK91] provide explicit weights H,
under the restrictions that α concerns only b (and not σj) and that the diffu-
sion coefficient is elliptic, using the Girsanov theorem (see Proposition 2.6).
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A first purpose of this work is to handle more general situations where both
coefficients defining the SDE (1.1) depend on α. To address this issue, we provide
three new approaches to express the sensitivity of J(α) with respect to α.

1. The first one is an extension of the likelihood approach method to the case
of diffusion coefficients depending on α. It uses a direct integration-by-parts
formula of the Malliavin calculus. This idea has been used recently in a
financial context in the paper by Fournié et al. [FLL+99] to compute option
prices’ sensitivities. These techniques have also been used efficiently by the
first author to derive asymptotic properties of statistical procedures when we
estimate parameters defining a SDE (see [Gob01b, Gob02]). Actually, our
true contribution concerns essentially a situation where ellipticity is replaced
by a weaker (but standard) nondegeneracy condition, which addresses random
mechanics problems or portfolio optimization problems in finance.

2. The second approach is rather different from previous methods. Indeed, we
initially focus on the adjoint point of view (see Bensoussan [Ben88] or Peng
[Pen90]) to finally derive new formulae, involving again some integration-by-
parts formula, but written in a simple way (using only Itô’s calculus). In
stochastic control problems, adjoint processes are related to backward SDEs
(see Yong and Zhou [YZ99], e.g.), and their simulation is an extremely difficult
and costly task. Here, we circumvent this difficulty since we only need to
express them as explicit conditional expectations, which is feasible.

3. The third approach follows from martingale arguments applied to the ex-
pected cost and leads to an original representation, which appears to be
surprisingly simple.

To compare these new methods with the previous ones, we will measure in sec-
tion 5, on the one hand, the variance of the random variables involved in the resulting
formulae for ∇αJ(α), and on the other hand, the computational time. Surprisingly,
the three methods that we propose behave similarly in terms of variance, but the
most efficient in terms of computational time is certainly the martingale approach
(see Tables 5.1, 5.2, 5.3, 5.4, and 5.5).

Another element of comparison is the influence of the time step h, which is used
to approximately simulate the random variables. The analysis of these discretization
errors is the second significant part of this work. The relevant random variables are
essentially written as the product of the cost function f(XT ) by a random variable
H, and simulations are based on Euler schemes. Although H has a complex form,
we first propose an approximation algorithm and then we analyze the induced error
w.r.t. the time step h. This part of the paper is original: previous results in the
literature concern the approximation of E(f(XT )) (see Bally and Talay [BT96a]) or
more generally of some smooth functionals of X (see Kohatsu-Higa and Pettersson
[KHP00], [KHP02]). Here, regarding the techniques, we improve estimates given in
[KHP00] since we do not need to add a small perturbation to the processes. Our
multidimensional framework also raises extra difficulties compared to [KHP02], and
we develop specific localization techniques that are interesting for themselves.

Outline of the paper. In the following, we make some assumptions and define
the notations which will be used throughout the paper. We also recall the pathwise
approach in Proposition 1.1. In section 2, after giving some standard facts on the
Malliavin calculus, we develop our three approaches to computing the sensitivity of
J(α) w.r.t. α: these are the so-called Malliavin calculus approach (Propositions 2.5
and 2.8), the adjoint approach (Theorem 2.11), and the martingale approach (The-
orem 2.12). In section 3, we provide simulation procedures to compute ∇αJ(α) by
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the usual Monte Carlo approach using the methods developed before and analyze the
influence of the time step h used for Euler-type schemes. A significant part of the
paper covers these analyses which have never been developed before in the literature.
The approximation results are stated in Theorems 3.1, 3.2, 3.4, and 3.5, while their
proofs are postponed to section 4. Finally, numerical experiments in section 5 illus-
trate the developed methods: we compare the computational time, the complexity,
the variance, and the time discretization error of the estimators on many examples
borrowed from finance and control.

Assumptions. In our applications, the parameter is a priori multidimensional,
but since in the following we will look at sensitivities w.r.t. α coordinatewise, it is not
a restriction to assume that the parameter space A is a subset of R (m = 1).

The process defined in (1.1) depends on the parameter α, but we deliberately
omit this dependence in the notation. Furthermore, the initial condition X0 = x is
fixed throughout the paper. We note σj , the jth column vector of σ.

To study the sensitivity of J (defined in (1.2)) w.r.t. α, we may assume that
coefficients are smooth enough: in what follows, k is an integer greater than 2.

Assumption (Rk). The functions b and σ are of class C1 w.r.t. the variables
t, x, α, and for some η > 0, the following Hölder continuity condition holds:

sup
(t,x,α,α′)∈[0,T ]×Rd×A×A

|g(t, x, α) − g(t, x, α′)|
|α− α′|η < ∞

for g = ∂αb and g = ∂ασ. Furthermore, for any α ∈ A, the functions b(·, ·, α),
σ(·, ·, α), ∂αb(·, ·, α), and ∂ασ(·, ·, α) are of class C�k/2�,k w.r.t. (t, x); the functions
∂αb and ∂ασ are uniformly bounded in (t, x, α), and the derivatives of b, σ, ∂αb, and
∂ασ w.r.t. (t, x) are uniformly bounded as well.

Note that b and σ may be unbounded. We do not assert that the assumption
above is the weakest possible, but it is sufficient for our purpose. At several places,
the diffusion coefficient will be required to be uniformly elliptic, in the following sense.

Assumption (E). σ is a squared matrix (q = d) such that the matrix σσ∗ satisfies
a uniform ellipticity condition:

∀(t, x) ∈ [0, T ] × Rd, [σσ∗](t, x, α) ≥ µmin Id

for a real number µmin > 0.
Notation.
• Sensitivity estimators. To clarify the connection between our methods and

the estimators H which are derived, we will write HPath.
T for the pathwise

approach (Proposition 1.1), HMall.Ell.
T (resp., HMall.Gen.

T ) for the Malliavin
calculus approach in the elliptic case (resp., in the general case) (Propo-

sitions 2.5 and 2.8), Hb,Adj.
T and Hσ,Adj.

T for the adjoint approach (Theo-
rem 2.11), and HMart.

T for the martingale approach (Theorem 2.12). The
subscript T refers to the time in the expected cost (1.2). Their approxima-
tions using some discretization procedure with N time steps will be denoted
HPath.,N

T , HMall.Ell.,N
T , and so on.

• Differentiation. As usual, derivatives w.r.t. α will be simply denoted with
a dot, for instance, ∂αJ = J̇ . If no ambiguity is possible, we will omit to
write explicitly the parameter α in b, σj · · · . We adopt the following usual
convention on the gradients: if ψ : Rp2 �→ Rp1 is a differentiable function,
its gradient ∇xψ(x) = (∂x1ψ(x), . . . , ∂xp2

ψ(x)) takes values in Rp1 ⊗Rp2 . At
many places, ∇xψ(x) will simply be denoted ψ′(x).
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• Linear algebra. The rth column of a matrix A will be denoted Ar (or Ar,t if A
is a time dependent matrix), and the rth element of a vector a will be denoted
ar (or ar,t if a is a time dependent vector). A∗ stands for the transpose of A.
For a matrix A, the matrix obtained by keeping only the last r rows (resp.,
the last r columns) will be denoted ΠR

r (A) (resp., ΠC
r (A)). For i ∈ {1, . . . , d},

we set ei = (0 · · · 0 1 0 · · · 0)∗, where 1 is the ith coordinate.
• Constants. We will keep the same notation K(T ) for all finite, nonnegative,

and nondecreasing functions: they do not depend on x, the function f , or
further discretization steps h, but they may depend on the coefficients b(·)
and σ(·). The generic notation K(x, T ) stands for any function bounded by
K(T )(1 + |x|Q) for Q ≥ 0.

When a function g(s, x, α) is evaluated at x = Xα
s , we may sometimes use the

short notation gs if no ambiguity is possible. For instance, (1.1) may be written as

Xt = x +
∫ t

0
bsds +

∑q
j=1

∫ t

0
σj,sdW

j
s .

Other processes related to (Xt)0≤t≤T . To the diffusion X under (R2), we
may associate its flow, i.e., the Jacobian matrix Yt := ∇xXt, the inverse of its flow
Zt = Yt

−1, and the pathwise derivative of Xt w.r.t. α, which we denote Ẋt (see Kunita
[Kun84]). These processes solve

Yt = Id +

∫ t

0

b′s Ys ds +

q∑
j=1

∫ t

0

σ′
j,s Ys dW

j
s ,(1.3)

Zt = Id −
∫ t

0

Zs(b
′
s −

q∑
j=1

(σ′
j,s)

2) ds−
q∑

j=1

∫ t

0

Zsσ
′
j,s dW

j
s ,(1.4)

Ẋt =

∫ t

0

(
ḃs + b′s Ẋs

)
ds +

q∑
j=1

∫ t

0

(
σ̇j,s + σ′

j,s Ẋs

)
dW j

s .(1.5)

Actually, since the process (Ẋt)0≤t≤T satisfies a linear equation, it can also simply
be written using Yt and Zt (apply Theorem 56 from p. 271 of Protter [Pro90]):

Ẋt = Yt

∫ t

0

Zs

⎡
⎣
⎛
⎝ḃs −

q∑
j=1

σ′
j,sσ̇j,s

⎞
⎠ ds +

q∑
j=1

σ̇j,sdW
j
s

⎤
⎦ .(1.6)

If f is continuously differentiable with an appropriate growth condition (in order
to apply the Lebesgue differentiation theorem), one immediately obtains the following
result (see also Yang and Kushner [YK91]), which we call the pathwise approach.

Proposition 1.1. Assume (R2). One has J̇(α) = E
(
HPath.

T

)
with

HPath.
T = f ′(XT )ẊT .

Hence, the gradient can still be written as an expectation, which is crucial for a
Monte Carlo evaluation. One purpose of the paper is to extend this result to the case
of nondifferentiable functions, by essentially writing J̇(α) = E (f(XT )H) for some
random variable H.

In what follows, we will make two types of assumption on f .
Assumption (H). f is a bounded measurable function.
Actually, the above boundedness property of f is not important, since in what

follows, we essentially use the fact that the random variable f(XT ) belongs to any
Lp. However, this assumption simplifies the analysis.
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Assumption (H′). f is a bounded measurable function and satisfies the following
continuity estimate for p0 > 1:

∫ T

0

‖f(XT ) − f(Xt)‖Lp0

T − t
dt < +∞.

This Lp-smoothness assumption of f(XT ) − f(Xt) is obviously satisfied for uni-
formly Hölder functions with exponent β, but also for some nonsmooth functions,
such as the indicator function of a domain.

Proposition 1.2. Let D be a domain of Rd: suppose that either it has a compact
and smooth boundary (say, of class C2; see [GT77]), or it is a convex polyhedron
(D = ∩I

i=1Di, where (Di)1≤i≤I are half-spaces). Assume (E), (R2), and bounded
coefficients b and σ. Then, the function f = 1D satisfies the assumption (H′) (for
any p0 > 1).

Proof. Since ‖f(XT ) − f(Xt)‖pLp ≤ E|1D(XT ) − 1D(Xt)| ≤ P(XT ∈ D,Xt /∈
D) + P(XT /∈ D,Xt ∈ D), we only need to prove that P(XT ∈ D,Xt /∈ D) ≤
K(T )(T − t)β with β > 0. Now, recall the standard exponential inequality P(‖Xu −
x‖ ≥ δ) ≤ K(T ) exp(−c δ

2

u ) (with c > 0) available for u ∈]0, T ] and δ ≥ 0 (see, e.g.,
Lemma 4.1 in [Gob00]). Combining this with the Markov property, it follows that

P(XT ∈ D,Xt /∈ D) ≤ K(T )E(1Xt /∈D exp(−cd
2(Xt,D

c)
(T−t) )). Then, a direct estimation

of the above expectation using in particular a Gaussian upper bound for the density
of the law of Xt (see Friedman [Fri64]) yields easily the required estimate with β = 1

2
(see Lemma 2.8 in [Gob01a] for details).

2. Sensitivity formulae. In this section, we present three different approaches
to evaluate J̇(α). Before this, we introduce the Malliavin calculus material necessary
to our computations.

2.1. Some basic results on the Malliavin calculus. The reader may refer
to Nualart [Nua95] (section 2.2 for the case of diffusion processes) for a detailed
exposition of this section.

Put H = L2([0, T ],Rq): we will consider elements of H written as a row vector.

For h(.) ∈ H, denote by W (h) the Wiener stochastic integral
∫ T

0
h(t) dWt.

Let S denote the class of random variables of the form F = f(W (h1), . . . ,W (hN )),
where f is a C∞-function with derivatives having a polynomial growth, (h1, . . . , hN ) ∈
HN and N ≥ 1. For F ∈ S, we define DF = (DtF := (D1

tF, . . . ,D
q
tF ))t∈[0,T ], its

derivative, as the H-valued random variable given by DtF =
∑N

i=1 ∂xif(W (h1), . . . ,
W (hN )) hi(t). The operator D is closable as an operator from Lp(Ω) to
Lp(Ω,H), for any p ≥ 1. Its domain is denoted by D1,p w.r.t. the norm ‖F‖1,p =

[E|F |p + E(‖DF‖pH)]
1/p

. We can define the iteration of the operator D in such a way
that for a smooth random variable F , the derivative DkF is a random variable with
values on H⊗k. As in the case k = 1, the operator Dk is closable from S ⊂ Lp(Ω) into

Lp(Ω;H⊗k), p ≥ 1. If we define the norm ‖F‖k,p = [E|F |p +
∑k

j=1 E(‖DjF‖pH⊗j )]
1/p,

we denote its domain by Dk,p. Finally, set Dk,∞ = ∩p≥1Dk,p and D∞ = ∩k,p≥1Dk,p.
One has the following chain rule property.

Proposition 2.1. Fix p ≥ 1. For f ∈ C1
b (Rd,R) and F = (F1, . . . , Fd)

∗ a
random vector whose components belong to D1,p, f(F ) ∈ D1,p and for t ≥ 0, one has



1682 EMMANUEL GOBET AND RÉMI MUNOS

Dt(f(F )) = f ′(F )DtF, with the notation

DtF =

⎛
⎜⎝

DtF1

...
DtFd

⎞
⎟⎠ ∈ Rd ⊗ Rq.

We now introduce δ, the Skorohod integral, defined as the adjoint operator of D.
Definition 2.2. δ is a linear operator on L2([0, T ]×Ω,Rq) with values in L2(Ω)

such that
1. the domain of δ (denoted by Dom(δ)) is the set of processes u ∈ L2([0, T ] ×

Ω,Rq) such that
∣∣E( ∫ T

0
DtF · ut dt

)∣∣ ≤ c(u) ‖F‖L2 for any F ∈ D1,2.
2. if u belongs to Dom(δ), then δ(u) is the element of L2(Ω) characterized by

the integration-by-parts formula

∀F ∈ D1,2, E
(
F δ(u)

)
= E

(∫ T

0

DtF · ut dt

)
.(2.1)

In the following proposition, we outline a few properties of the Skorohod integral.
Proposition 2.3.

1. The space of weakly differentiable H-valued variables D1,2(H) belongs to Dom(δ).
2. If u is an adapted process belonging to L2([0, T ] × Ω,Rq), then the Skorohod

integral and the Itô integral coincide: δ(u) =
∫ T

0
ut dWt.

3. If F belongs to D1,2, then for any u ∈ Dom(δ) such that E(F 2
∫ T

0
‖ut‖2 dt) <

+∞, one has

δ(F u) = F δ(u) −
∫ T

0

DtF · ut dt,(2.2)

whenever the right-hand side above belongs to L2(Ω).
Concerning the solution of SDEs, it is well known that under (Rk) (k ≥ 2) for any

t ≥ 0, the random variable Xt (resp., Yt, Zt, and Ẋt) belongs to Dk,∞ (resp., Dk−1,∞).
Furthermore, one has the following estimates: E

(
sup0≤t≤T ‖Dr1,...,rk′Ut‖p

)
≤ K(T, x)

for Ut = Xt with 1 ≤ k′ ≤ k or Ut = Yt, Zt, Ẋt with 1 ≤ k′ ≤ k − 1. Besides, DsXt is
given by

DsXt = Yt Zsσ(s,Xs) 1s≤t.(2.3)

Finally, we recall some standard results related to the integration-by-parts for-
mulae. The Malliavin covariance matrix of a smooth random variable F is defined
by

γF =

∫ T

0

DtF [DtF ]∗ dt.(2.4)

Proposition 2.4. Let γ̄ be a multi-index, F be a random variable in Dk1,∞

such that det(γF ) is almost surely positive with 1/det(γF ) ∈ ∩p≥1L
p and G belongs

to Dk2,∞. Then for any smooth function g with polynomial growth, provided that k1

and k2 are large enough (depending on γ̄), there exists a random variable Hγ̄(F,G)
in any Lp such that

E[∂γ̄g(F )G] = E[g(F )Hγ̄(F,G)].
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Moreover, for any arbitrary event A we have

‖Hγ̄(F,G)1A‖Lp ≤ C‖[γF ]−11A‖p3

Lq3‖F‖p1

k1,q1
‖G‖k2,q2

for some constants C, p1, p3, q1, q2, q3 depending on p and γ̄.
Proof. See Propositions 3.2.1 and 3.2.2 in Nualart [Nua98, pp. 160–161] when

A = Ω. For any other event A, see Proposition 2.4 from Bally and Talay [BT96a].

The construction of Hγ̄(F,G) is based on the equality (2.1) and involves iterated
Skorohod integrals. We do not really need to make it explicit at this stage.

2.2. First approach: Direct Malliavin calculus computations. Here, the
guiding idea is to start from Proposition 1.1 and apply results like Proposition 2.4 to
get J̇(α) = E(f(XT )H). Nevertheless, there are several ways to do this, depending
on whether the diffusion coefficient is elliptic (see also [FLL+99] in that situation) or
not.

2.2.1. Elliptic case. Consider first that the assumption (E) is fulfilled.
Proposition 2.5. Assume (R2), (E), and (H). One has J̇(α) = E

(
HMall.Ell.

T

)
,

where

HMall.Ell.
T =

1

T
f(XT )δ

(
[σ−1

· Y· ZT ẊT ]∗
)

belongs to ∩p≥1L
p.

Proof. We can consider that f is smooth, the general case being obtained us-
ing an L2-approximation of f with some smooth and compactly supported func-
tions. As a consequence of (2.3) and Assumption (E), DtXT is invertible for any
t ∈ [0, T ]: thus, for such t, using the chain rule (Proposition 2.1), one gets that
f ′(XT ) = Dt(f(XT ))σ−1

t Yt ZT . Integrating in time over [0, T ] and using Proposi-

tion 1.1, one gets that J̇(α) = 1
T

∫ T

0
dt E(Dt(f(XT ))σ−1

t Yt ZT ẊT ). An application
of the relation (2.1) completes the proof of Proposition 2.5 (the Lp-estimates follow
from Proposition 2.4).

When the parameter enters the drift coefficient only, the laws of (Xt)0≤t≤T for
two different values of α are equivalent owing to the Girsanov theorem. Exploiting
this possible change of measure directly, a simplified expression for J̇(α) can be found:
this is the likelihood ratio method or score method from Kushner and Yang [YK91].

Proposition 2.6. Assume (R2), (E), and (H). Suppose that the parameter of
interest α is not in the diffusion coefficient. Then, one has

J̇(α) = E

(
f(XT )

∫ T

0

[σ−1
t ḃt]

∗dWt

)
.

Proof. Instead of using the Girsanov theorem, we leverage the particular form

of ẊT given in (1.6) to prove this. Indeed, f ′(XT )ẊT = f ′(XT )YT

∫ T

0
Ztḃtdt =∫ T

0
dt Dt(f(XT ))[σ−1

t ḃt], and the result follows using (2.1).

2.2.2. General nondegenerate case. There are many situations where the
ellipticity Assumption (E) is too stringent and cannot be fulfilled. To illustrate this,
let us rewrite the SDE in the following way, splitting its structure into two parts:

dXt =

(
dSt

dVt

)
=

(
bS(t,Xt, α)
bV (t,Xt, α)

)
dt +

(
σS(t,Xt, α)
σV (t,Xt, α)

)
dWt.(2.5)
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Here, (St)t≥0 is (d − r)-dimensional, (Vt)t≥0 r-dimensional, and the dimension of
W is arbitrary. The cost function of interest may involve only the value of VT :
J(α) = E(f(VT )). Note that considering r = d reduces to the previous situation. We
now give two examples that motivate the statement of Proposition 2.7 below.

(a) In random mechanics (see Krée and Soize [KS86]), the pair position/velocity

dXt =

(
dxt

dvt

)
=

(
vtdt
· · ·

)
cannot satisfy an ellipticity condition, but

weaker assumptions such as hypoellipticity are more realistic.
(b) For portfolio optimization in finance (for a recent review, see, e.g., Rung-

galdier [Run02]), r usually equals 1. (St)t≥0 describes the dynamic of the
risky assets, while (Vt)t≥0 is the wealth process, corresponding to the value
of a self-financed portfolio invested in a nonrisky asset with instantaneous
return r(t, St) and in the assets (St)t≥0 w.r.t. the strategy (ξt = {ξi(t,Xt) :
1 ≤ i ≤ d− 1})t≥0: dVt = ξ(t,Xt) · dSt + (Vt − ξ(t,Xt) · St)r(t, St)dt (see e.g.
Karatzas and Shreve [KS98]). It is clear that the resulting diffusion coefficient

for the whole process Xt =

(
St

Vt

)
cannot satisfy an ellipticity condition.

Nevertheless, requiring that the matrix σV σ
∗
V (t, x) satisfy an ellipticity type

condition is not very restricting in that framework.

We set γT for the Malliavin covariance matrix of VT : γT =
∫ T

0
DtVT [DtVT ]∗ dt.

This allows to reformulate Assumption (E) as the following.
Assumption (E′). det(γT ) is almost surely positive and for any p ≥ 1, one has

‖1/det(γT )‖Lp < +∞.

We now bring together standard results related to Assumption (E′).
Proposition 2.7. Assumption (E′) is fulfilled in the following situations.
1. Hypoelliptic case (with r = d) under (R∞). The Lie algebra generated by the

vector fields ∂t +A0(t, x) := ∂t +
∑d

i=1(b− 1
2

∑q
j=1 σ

′
jσj)i(t, x)∂xi , Aj(t, x) :=∑d

i=1 σi,j(t, x)∂xi
for 1 ≤ j ≤ q spans Rd+1 at the point (0, X0):

dim span Lie(∂t + A0, Aj , 1 ≤ j ≤ q)(0, X0) = d + 1.

2. Partially elliptic case (with r ≥ 1) under (R2). For a real number µmin > 0,
one has

∀x ∈ Rd, [σV σ
∗
V ](T, x, α) ≥ µmin Id.

Proof. The statement 1 is standard and we refer to Cattiaux and Mesnager
[CM02] for a recent account on the subject. The statement 2 is also standard: see,
for instance, the arguments in Nualart [Nua98, pp. 158–159].

Now, we are in a position to give a sensitivity formula under (E′).
Proposition 2.8. Assume (R2), (E′), and (H). One has J̇(α) = E

(
HMall.Gen.

T

)
where

HMall.Gen.
T = f(VT ) δ

(
V̇ ∗
T γ

−1
T D·VT

)
belongs to ∩p≥1L

p.
Proof. Assumption (E′) validates (see Nualart [Nua98, Proposition 3.2.1]) the

following computations, adapted from the ones used for Proposition 2.5. The chain
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rule property yields f ′(VT ) =
∫ T

0
Dt(f(VT ))[DtVT ]∗γ−1

T dt, and thus E(f ′(VT )V̇T ) =

E(
∫ T

0
Dt(f(VT ))[DtVT ]∗γ−1

T V̇T dt). Proposition 2.8 now follows from (2.1).

Proposition 2.8 is also valid under (E) in the case r = d, but the formula in
Proposition 2.5 is actually a bit simpler to implement.

2.3. A second approach based on the adjoint point of view.

2.3.1. Another representation of the sensitivity of J(α). If we set u(t, x) =
E
(
f(XT )|Xt = x

)
, omitting to indicate the dependence w.r.t. α, we have that J(α)

defined in (1.2) equals u(0, X0). Under smoothness assumptions on b and σ and the
nondegeneracy hypothesis on the infinitesimal generator of (Xt)t≥0, it is well known
(see Cattiaux and Mesnager [CM02]) that u is the smooth solution of the partial
differential equation (PDE)

⎧⎪⎨
⎪⎩

∂tu(t, x) +

d∑
i=1

bi(t, x)∂xiu(t, x) +
1

2

d∑
i,j=1

[σσ∗]i,j(t, x)∂2
xi,xj

u(t, x) = 0 for t < T,

u(T, x) = f(x).

Our purpose is to give another expression for J̇(α) of Proposition 1.1. The idea is
simple: it consists in formally differentiating the PDE above w.r.t. α and in reinter-
preting the derivative as an expectation. This is now stated and justified rigorously.

Lemma 2.9. Assume (R3), (E), and (H). One has

J̇(α) =

∫ T

0

E

⎛
⎝ d∑

i=1

ḃi,t∂xi
u(t,Xt) +

1

2

d∑
i,j=1

˙[σσ∗]i,j,t∂
2
xi,xj

u(t,Xt)

⎞
⎠ dt.

Proof. This is a standard fact that under (R3) and (E), u is twice differentiable
w.r.t. x (see the arguments of Lemma 2.10 below, where the proof is sketched). The
technical difficulty in the following computations comes from the possible explosion of
derivatives of u for t close to T , when f is nonsmooth. For this reason, we first prove
useful uniform estimates: for any multi-index γ̄ with |γ̄| ≤ 2, any smooth random
variable G ∈ D2,∞ and any parameters α and α′, one has

sup
t∈[0,T [

|E[G ∂γ̄
xu(t,Xα′

t )]| ≤ K(T, x)
‖f‖∞
T

|γ̄|
2

‖G‖|γ̄|,p′ .(2.6)

Indeed, for t ≥ T/2, first apply Proposition 2.4: then, use |u(t, x)| ≤ ‖f‖∞ com-

bined with some specific estimates for ‖Hγ̄(Xα′

t , G)‖Lp ≤ K(T,x)

t
|γ̄|
2

‖G‖|γ̄|,p′ available

under the ellipticity condition (E) (see Theorem 1.20 and Corollary 3.7 in Kusuoka
and Stroock [KS84], or section 4.1. in [Gob00] for a brief review). For t ≤ T/2,
note that using the Markov property, one has ∂γ̄

xu(t, x) = ∂γ̄
xE

(
u(T+t

2 , Xt,x
T+t

2

)
)

=∑
1≤|γ′|≤|γ̄| E

(
∂γ′

x u(T+t
2 , Xt,x

T+t
2

)Gγ′

T+t
2

)
with Gγ′

T+t
2

∈ D2+|γ′|−|γ̄|,∞ and (Xt,y
s )s≥t stand-

ing for the process starting from y at time t. Again applying the integration-by-parts

formula with the elliptic estimates gives |∂γ̄
xu(t, x)| ≤ K(T,x)

[T+t
2 −t]

|γ̄|
2

‖f‖∞ and (2.6) follows
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since T+t
2 − t ≥ T

4 . Now, for ε ∈ R, the difference J(α + ε) − J(α) equals

E
(
f(Xα+ε

T ) − f(Xα
T )

)
= E

(
u(T,Xα+ε

T ) − u(0, Xα+ε
0 )

)
=

∫ T

0

E

(
∂tu(t,Xα+ε

t ) +

d∑
i=1

bi(t,X
α+ε
t , α + ε)∂xiu(t,Xα+ε

t )

+
1

2

d∑
i,j=1

[σσ∗]i,j(t,X
α+ε
t , α + ε)∂2

xi,xj
u(t,Xα+ε

t )

⎞
⎠ dt

=

∫ T

0

E

(
d∑

i=1

(bi(t,X
α+ε
t , α + ε) − bi(t,X

α+ε
t , α))∂xi

u(t,Xα+ε
t )

+
1

2

d∑
i,j=1

([σσ∗]i,j(t,X
α+ε
t , α + ε) − [σσ∗]i,j(t,X

α+ε
t , α))∂2

xi,xj
u(t,Xα+ε

t )

⎞
⎠ dt,

where at the last equality we used the PDE solved by u to remove the term ∂tu. Now,
divide by ε and take its limit to 0: the result follows owing to the uniform estimates
(2.6).

Note that the formulation of Lemma 2.9 is strongly related to a form of the
stochastic maximum principle (the Pontryagin principle) for optimal control problems:
the processes ([∂xiu(t,Xt)]i)0≤t<T and ([∂2

xi,xj
u(t,Xt)]i,j)0≤t<T are the so-called ad-

joint processes (see Bensoussan [Ben88] for convex control domains, or more generally
Peng [Pen90]) and solve backward SDEs. Usually in these problems, the function f is
smooth. Here, since the law of Xt has a smooth density w.r.t. the Lebesgue measure,
we can remove the regularity condition on f .

Note also that Lemma 2.9 remains valid under a hypoellipticity hypothesis (con-
dition 1 in Proposition 2.7). However, the derivation of tractable formulae below relies
strongly on the ellipticity property.

2.3.2. Transformation using Itô–Malliavin integration-by-parts formu-
lae. The aim of this section is to transform the expression for J̇(α) in terms of
explicit quantities. To remove the nonexplicit terms ∂xi

u and ∂2
xi,xj

u, we may use
some integration-by-parts formulae, but here, to keep more tractable expressions, we
are going to derive Bismut-type formulae, i.e., involving only Itô integrals instead of
Skorohod integrals (see Bismut [Bis84]; Elworthy, Le Jan, and Li [EJL99]; and ref-
erences therein), using a martingale argument (see also Thalmaier [Tha97] or, more
recently, Picard [Pic02]). In the cited references, this approach has been used to com-
pute estimates of the gradient of u. Here, we extend it to support higher derivatives.
The basic tool is given by the following lemma.

Lemma 2.10. Assume (R2), (E), and (H) and define Mt = u′(t,Xt)Yt for t < T .
Then M = (Mt)0≤t<T is an R1 ⊗ Rd-valued martingale.

Proof. First, we justify that u is continuously differentiable w.r.t x under (R2)
and (E). If f is smooth, this is clear (even without (E)), but (2.10) below also shows
that under (E), u′ can be expressed without the derivative of f . This easily leads
to our assertion (see the proof of Proposition 3.2 in [FLL+99]). Now, the Markov
property ensures that (u(t,X0,x

t ))0≤t<T is a martingale for any x ∈ Rd. Hence, its
derivative w.r.t. x (i.e., (Mt)0≤t<T ) is also a martingale (see Arnaudon and Thalmaier
[AT98]).
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We now state a theorem which, if combined with Lemma 2.9, leads to an alter-
native representation for J̇(α).

Theorem 2.11. Assume (R3) and (E).

Under (H), one has

∫ T

0

E
( d∑
i=1

ḃi,t∂xi
u(t,Xt)

)
dt = E(Hb,Adj.

T ),(2.7)

where Hb,Adj.
T = f(XT )

∫ T

0

dt ḃt ·
Z∗
t

T − t

∫ T

t

[σ−1
s Ys]

∗ dWs belongs to
⋂

p≥1 Lp.

Under (H′), one has

∫ T

0

E
( d∑
i,j=1

˙[σσ∗]i,j,t∂
2
xi,xj

u(t,Xt)
)
dt = E(Hσ,Adj.

T ),(2.8)

where

Hσ,Adj.
T =

∫ T

0

dt

d∑
i,j=1

˙[σσ∗]i,j,t[f(XT ) − f(Xt)]

(
2ej

T − t
·
[
Z∗
t

∫ T

T+t
2

[σ−1
s Ys]

∗dWs

]

× 2ei

T − t
·
[
Z∗
t

∫ T+t
2

t

[σ−1
s Ys]

∗dWs

]
+

2ei

T − t
·
{
∇x

[
Z∗
t

∫ T+t
2

t

[σ−1
s Ys]

∗dWs

]
Zte

j

})

belongs to
⋂

p<p0
Lp.

Proof. Equality (2.7). First, Clark and Ocone’s formula [Nua95, p. 42]
gives u(τ,Xτ ) = u(t,Xt) +

∫ τ

t
E(Ds[u(τ,Xτ )]|Fs)dWs for 0 ≤ t ≤ τ < T . Using (2.3)

and the martingale property of Lemma 2.10, we get E(Ds[u(τ,Xτ )]|Fs) =
E(u′(τ,Xτ )YτZsσs|Fs) = u′(s,Xs)σs. Hence, it gives an explicit form to the pre-
dictable representation theorem:

∀ 0 ≤ t ≤ τ ≤ T u(τ,Xτ ) = u(t,Xt) +

∫ τ

t

u′(s,Xs)σsdWs(2.9)

(the case τ = T is obtained by passing to the limit). Note that this representation
holds under (R2). Since (u′(t,Xt)Yt)0≤t<T is a martingale, we obtain that

u′(t,Xt)Yt = E

(
1

T − t

∫ T

t

u′(s,Xs)Ys ds|Ft

)

= E

(
1

T − t

[∫ T

t

u′(s,Xs)σsdWs

][∫ T

t

[σ−1
s Ys]

∗dWs

]∗

|Ft

)

= E

(
f(XT ) − u(t,Xt)

T − t

[∫ T

t

[σ−1
s Ys]

∗dWs

]∗

|Ft

)

= E

(
f(XT )

T − t

[∫ T

t

[σ−1
s Ys]

∗dWs

]∗

|Ft

)
,(2.10)
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where for the third equality we used (2.9) with τ = T and u(T,XT ) = f(XT ). Now
the proof of (2.7) is straightforward.

Equality (2.8). Note that a slight modification of the preceding arguments (namely,
integrating over [t, (T + t)/2] instead of [t, T ] and applying (2.9) with τ = (t + T )/2)

leads to ∂xiu(t,Xt) = E
(
u
(
T+t

2 , XT+t
2

)
2ei

T−t ·
[
Z∗
t

∫ T+t
2

t
[σ−1

s Ys]
∗dWs

]
|Ft

)
. Differentiat-

ing w.r.t. x on both sides and using (2.10) yields

(∂xiu)′(t,Xt)Yt = E

(
u′

(
T + t

2
, XT+t

2

)
YT+t

2

2ei

T − t
·
[
Z∗
t

∫ T+t
2

t

[σ−1
s Ys]

∗dWs

]
|Ft

)

+E

(
u

(
T + t

2
, XT+t

2

)
2ei

T − t
· ∇x

{[
Z∗
t

∫ T+t
2

t

[σ−1
s Ys]

∗dWs

]}
|Ft

)

= E

(
[f(XT ) − f(Xt)]

2

T − t

[∫ T

T+t
2

[σ−1
s Ys]

∗dWs

]∗
2ei

T − t
·
[
Z∗
t

∫ T+t
2

t

[σ−1
s Ys]

∗dWs

]

+[f(XT ) − f(Xt)]
2ei

T − t
· ∇x

{[
Z∗
t

∫ T+t
2

t

[σ−1
s Ys]

∗dWs

]}
|Ft

)

(note that the f(Xt) terms have no contribution in the expectation). Rearranging
this last expression leads to (2.8).

The Lp-estimates can be justified using the generalized Minkowski inequality and
standard estimates from the stochastic calculus:

(2.11)

‖Hb,Adj.
T ‖Lp ≤

∫ T

0

‖f‖∞
T − t

∥∥∥∥∥ḃ(t,Xt) · Z∗
t

∫ T

t

[σ−1
s Ys]

∗dWs

∥∥∥∥∥
Lp

dt ≤ K(T, x)

∫ T

0

‖f‖∞√
T − t

dt,

‖Hσ,Adj.
T ‖Lp ≤ K(T, x)

∫ T

0

‖f(XT ) − f(Xt)‖Lp′

T − t
dt

for p < p′ < p0.

Remark 2.1. The f(Xt) terms in Hσ,Adj.
T seem to be crucial to ensure its Lp

integrability: numerical experiments in section 5 illustrate this fact.

2.4. A third approach using martingales. We emphasize the dependence on
α of the expected cost by denoting u(α, t, x) = E(f(Xα

T )|Xα
t = x): hence, J(α) =

u(α, 0, X0). From the estimates proved in Lemma 2.9, this is a differentiable func-

tion w.r.t. α and one has |u̇(α, t, x)| ≤ K(T, x)‖f‖∞ and |u′(α, t, x)| ≤ K(T,x)√
T−t

‖f‖∞.

Furthermore, using Theorem 2.11 and the Lp-estimates (2.11) under (H′), one gets

|u̇(α, t, x)| ≤ K(T, x)

[
‖f‖∞

√
T − t +

∫ T

t

‖f(Xt,x
T ) − f(Xt,x

s )‖Lp′

T − s
ds

]

for p′ < p0. Consequently, if we put g(r) = E (u̇(α, r,Xr)), we easily obtain |g(r)| ≤
K(T, x)[‖f‖∞

√
T − r +

∫ T

r
‖f(XT )−f(Xs)‖Lp0

T−s ds] and thus, limr→T g(r) = 0. For any

0 ≤ r ≤ s ≤ T , one has E(u(α, r,Xr)) = E(u(α, s,Xs)) = 1
T−r

∫ T

r
E(u(α, s,Xs)) ds
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using the Markov property; hence, by differentiation w.r.t. α, one gets

(2.12)

E
(
u̇(α, r,Xr)

)
=

1

T − r

∫ T

r

ds E
(
u̇(α, s,Xs) + u′(α, s,Xs)Ẋs − u′(α, r,Xr)Ẋr

)
=

1

T − r

∫ T

r

ds E
(
u̇(α, s,Xs) + u′(α, s,Xs)[Ẋs − YsZrẊr]

)
,

where we used at the last equality the martingale property of Mt = u′(α, t,Xt)Yt

between t = s and t = r (see Lemma 2.10).

Now, put h(r) = 1
T−r

∫ T

r
ds E

(
u′(α, s,Xs)[Ẋs − YsZrẊr]

)
: one has derived the

following integral equation:

g(t) =
1

T − t

∫ T

t

g(s) ds + h(t).(2.13)

Before solving it, we express h(r) using only f : for this, we use the predictable
representation (2.9), which immediately gives

h(r) =
1

T − r
E

(
(f(XT ) − f(Xr))

∫ T

r

[σ−1
s (Ẋs − YsZrẊr)]

∗dWs

)
.(2.14)

Note again that the term with f(Xr) has no contribution and is put only to justify
that |h(r)| ≤ K(T, x)‖f(XT )−f(Xr)‖Lp0 (use the Burkholder–Davis–Gundy inequal-
ities and straightforward upper bounds for ‖Ẋs−YsZrẊr‖Lq ≤ K(T, x)

√
s− r), from

which we deduce that the integral
∫ T

0
h(t)
T−t dt is convergent because of (H′). To solve

the integral equation above, note that [ 1
T−t

∫ T

t
g(s) ds]′ = − h(t)

T−t , and thus by integra-

tion, we have 1
T−t

∫ T

t
g(s) ds = C −

∫ T

t
h(r)
T−rdr. The constant C equals 0 since both

integrals in the previous equality converge to 0 when t goes to T (use limt→T g(t) = 0
and (H′)). Plug this new equality into (2.13), use (2.14), and take t = 0 (with Ẋ0 = 0)
to get the following representation for J̇(α): this is the main result of this section.

Theorem 2.12. Assume (R2), (E), and (H′). Then, one has J̇(α) = E(HMart.
T )

with

HMart.
T =

f(XT )

T

∫ T

0

[σ−1
s Ẋs]

∗dWs

+

∫ T

0

dr
[f(XT ) − f(Xr)]

(T − r)2

∫ T

r

[σ−1
s (Ẋs − YsZrẊr)]

∗dWs.(2.15)

Furthermore, the random variable HMart.
T belongs to

⋂
p<p0

Lp.
This method is called the martingale approach because it is based on the equality

(2.12), which is a consequence of the martingale property of

[u̇(α, s,Xs) + u′(α, s,Xs)Ẋs]0≤s<T .

Proof. What remains to be proved is the Lp estimate of HMart.
T : this can be easily

obtained by combining Minkowski’s inequality, Hölder’s inequality, Assumption (H′),
and standard stochastic calculus inequalities as before.
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Remark 2.2. When the parameter is not involved in the diffusion coefficient,
it is easy to see that the improved estimate ‖Ẋs − YsZrẊr‖Lq ≤ K(T, x)(s − r) is
available: thus, this allows us to remove f(Xr) terms in the expression of HMart.

T

without changing the finiteness of the Lp-norm of the new HMart.
T . In other words,

only Assumption (H) is needed.

Besides, when α is only in the drift coefficient and these f(Xr) terms are sup-
pressed, this representation coincides with that of Theorem 2.11. Indeed, let us write

Pr =
∫ T

r
[σ−1

s (Ẋs − YsZrẊr)]
∗dWs =

∫ T

r
[σ−1

s Ẋs]
∗dWs − [ZrẊr]

∗ ∫ T

r
[σ−1

s Ys]
∗dWs :=

P1,r − P2,r, where P1,r =
∫ T

0
[σ−1

s Ẋs]
∗dWs − [ZrẊr]

∗ ∫ T

0
[σ−1

s Ys]
∗dWs and P2,r =∫ r

0
[σ−1

s Ẋs]
∗dWs − [ZrẊr]

∗ ∫ r

0
[σ−1

s Ys]
∗dWs. From the fact that ZrẊr =

∫ r

0
Zsḃsds

(see (1.6)), one gets dP2,r = [Zr ḃr]
∗(

∫ r

0
[σ−1

t Yt]
∗dWt)dr, hence P2,r is of bounded

variation. P1,r is also of bounded variation, since ZrẊr is. Thus, one obtains

dPr = −ḃr · Z∗
r (

∫ T

r
[σ−1

t Yt]
∗dWt)dr: furthermore, since PT = 0, one has ‖Pr‖Lp ≤

K(T, x)(T − r)3/2. Using an integration-by-parts formula in (2.15) finally completes

our assertion: HMart.
T = f(XT )

(
1
T P0+

∫ T

0
Pr

(T−r)2 dr
)

= f(XT )
(
−
∫ T

0
dPr

(T−r)

)
= Hb,Adj.

T .

Consequently, this martingale approach does not provide any new elements when
the parameter is not in the diffusion coefficient. On the contrary, if σ depends on α,
the representation with the adjoint point of view is different from the martingale one
(see numerical experiments). However, we must admit that this martingale approach
remains somewhat mysterious to us.

3. Monte Carlo simulation and analysis of the discretization error. In
this section, we discuss the numerical implementation of the formulae derived in this
paper to compute the sensitivity of J(α) w.r.t. α. These formulae are written as
expectations of some functionals of the process (Xt)0≤t≤T and related ones: a stan-
dard way to proceed consists in drawing independent simulations, approximating the
functional using Euler schemes, and averaging independent samples of the resulting
functional to get an estimation of the expectation (see section 5).

Here, we focus on the impact of the time step h = T/N (N is the number of
discretization times in the regular mesh of the interval [0, T ]) in the simulation of the
functional: it is well known that for the evaluation of E(f(XT )), the discretization
error using an Euler scheme is of order h (see Bally and Talay [BT96a] for measurable
functions f , or Kohatsu-Higa and Pettersson [KHP02] if f is a distribution and for
more general discretization schemes). We recall that the error on the processes (called
the strong error) is much easier to analyze than the one on the expectations (the weak
error): the first one is essentially of order

√
h (see [KP95]) but this is not relevant for

the current issues.

Besides, the quantity of interest here has a more complex structure that is es-
sentially E(f(XT )H), where H is one of the random variables resulting from our
computations. In general, H involves Itô or Skorohod integrals: our first purpose
is to give some approximation procedure to simulate these weights using only the
increments of the Brownian motion computed along the regular mesh with time
step h.

Our second purpose is to analyze the error induced by this discretization pro-
cedure: generally speaking, the weak error is still at most linear w.r.t. h, as for
E(f(XT )). The proofs are quite intricate and we postpone them to section 4. For
the sake of clarity, we assume (R∞), that is, b and σ of class C∞, but approximation
results only depend on a finite number of coefficients’ derivatives.
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Approximation procedure. We consider a regular mesh of the interval [0, T ],
with N discretization times ti = ih, where h = T/N is the time step. Denote
φ(t) = sup{ti : ti ≤ t}. The processes we need to simulate are essentially (Xt)0≤t≤T ,

(Yt)0≤t≤T , (Zt)0≤t≤T , (Ẋt)0≤t≤T , and we approximate them using a standard Euler
scheme as follows:

(3.1)

XN
t = x +

∫ t

0

b(φ(s), XN
φ(s)) ds +

q∑
j=1

∫ t

0

σj(φ(s), XN
φ(s)) dW

j
s ,

(3.2)

Y N
t = Id +

∫ t

0

b′(φ(s), XN
φ(s)) Y

N
φ(s) ds +

q∑
j=1

∫ t

0

σ′
j(φ(s), XN

φ(s)) Y
N
φ(s) dW

j
s ,

(3.3)

ZN
t = Id −

∫ t

0

ZN
φ(s)(b

′ −
q∑

j=1

(σ′
j)

2)(φ(s), XN
φ(s)) ds−

q∑
j=1

∫ t

0

ZN
φ(s)σ

′
j(φ(s), XN

φ(s)) dW
j
s ,

ẊN
t =

∫ t

0

(
ḃ(φ(s), XN

φ(s)) + b′(φ(s), XN
φ(s)) Ẋ

N
φ(s)

)
ds

+

q∑
j=1

∫ t

0

(
σ̇j(φ(s), XN

φ(s)) + σ′
j(φ(s), XN

φ(s)) Ẋ
N
φ(s)

)
dW j

s .(3.4)

Note that only the increments (W j
ti+1

− W j
ti ; 1 ≤ j ≤ q)0≤i≤N−1 of the Brownian

motion are needed to get values of XN , ZN , Y N , ẊN at times (ti)0≤i≤N .

3.1. Pathwise approach.
Theorem 3.1. Assume (R∞). Then, one has∣∣∣J̇(α) − E

(
f ′(XN

T )ẊN
T

)∣∣∣ ≤ C(T, x, f)h,

under either one of the two following assumptions on f and X:
(A1) f is of class C4

b : one may put C(T, x, f) = K(T, x)
∑

1≤|α|≤4 ‖∂αf‖∞ in that
case.

(A2) f is continuously differentiable with a bounded gradient and the nondegeneracy
condition (E′) holds: in that case, C(T, x, f) may be set to

K(T, x)‖f ′‖∞‖1/det(γT )‖qLp

for some positive numbers p and q.
Note that in the case (A1), only three additional derivatives of the function f ′ are

required to get the order 1 w.r.t. h: this is a slight improvement compared to results
in Talay and Tubaro [TL90], where four derivatives are needed.

3.2. Malliavin calculus approach.

3.2.1. Elliptic case. One needs to define the approximation for the random
variable HMall.Ell.

T := δ
(
[σ−1(·, X·) Y· ZT ẊT ]∗

)
involved in Proposition 2.5. Basic
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algebra using the equality (2.2) gives

HMall.Ell.
T =

d∑
i=1

δ
(
[σ−1(·, X·) Y·]

∗
i [ZT ẊT ]i

)

=

d∑
i=1

[ZT ẊT ]i

∫ T

0

[σ−1(s,Xs) Ys]
∗
i dWs −

d∑
i=1

∫ T

0

Ds([ZT ẊT ]i)[σ
−1(s,Xs) Ys]i ds.

The new quantities involved are DsZj,k,T and DsẊk,T . We now indicate how to

simulate them. The R2d-valued process (Xt

Ẋt
)t≥0 forms a new stochastic differential

equation (see (1.5)): we denote the flow of this extended system by Ŷt and its inverse
by Ẑt. As we did for Yt and Zt, we can define their Euler scheme (as in (3.2) and
(3.3)), which we denote Ŷ N

t and ẐN
t . The Malliavin derivative of this system follows

from (2.3). Hence, one has

DsẊT = ΠR
d

⎛
⎝ŶT Ẑs

⎛
⎝ ... σj(s,Xs)

...
... σ̇j(s,Xs) + σ′

j(s,Xs) Ẋs

...

⎞
⎠

⎞
⎠ ,(3.5)

and we naturally approximate it by

[DsẊT ]N = ΠR
d

⎛
⎝Ŷ N

T ẐN
s

⎛
⎝ ... σj(s,X

N
s )

...
... σ̇j(s,X

N
s ) + σ′

j(s,X
N
s ) ẊN

s

...

⎞
⎠

⎞
⎠ .(3.6)

The same approach can be developed for the cth column of the transpose of
ZT , since ( Xt

(Zt
∗)c

)t≥0 forms a new SDE (see (1.4)): the associated flow and its inverse,

respectively denoted Ŷ c
t and Ẑc

t , enable us to derive a simple expression for Ds[(Zt
∗)c]

analogously to (3.5) and (3.6). As a consequence, one gets

Ds([ZT ẊT ]i) = 1s≤T

∑
j

Aβ(j,i),TBβ(j,i),s,(3.7)

where Aβ(j,i),T and Bβ(j,i),s are given by some appropriate coordinates of the processes

ŶT , (Ŷ c
T )1≤c≤d on one hand; and Ẑs, (Ẑc

s)1≤c≤d, σj(s,Xs), σ̇j(s,Xs), σ
′
j(s,Xs), Ẋs,

Zs on the other hand; in order to keep things clear, we do not develop their expression
further (we refer to a technical report [GM03] for full details). Finally, we approximate
HMall.Ell.

T by

HMall.Ell.,N
T =

d∑
i=1

[ZN
T ẊN

T ]i

∫ T

0

[σ−1(φ(s), XN
φ(s)) Y

N
φ(s)]

∗
i dWs

−
d∑

i=1

∫ T

0

⎛
⎝∑

j

AN
β(j,i),TB

N
β(j,i),φ(s)

⎞
⎠ [σ−1(φ(s), XN

φ(s)) Y
N
φ(s)]i ds,

which can be simulated using only the Brownian increments as before. We now state
that the approximation above converges at order 1 w.r.t. the time step.

Theorem 3.2. Assume (R∞), (E), and (H). For some q ≥ 0, one has∣∣∣J̇(α) − E

(
f(XN

T )HMall.Ell.,N
T

)∣∣∣ ≤ K(T, x)
‖f‖∞
T q

h.
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Remark 3.1. Instead of basing the computations of Malliavin derivatives for
different adapted processes U , (DtiUtj )0≤i≤j≤N , on the equality (2.3), an alternative
approach would be to derive equations solved by (DtiUt)ti≤t≤T and then approximate
them with a discretization scheme (for each ti). However, this approach would require
essentially O(N2) operations, instead of O(N) in our case.

3.2.2. General nondegenerate case. Denote by 0d1,d2
the d1×d2 matrix with

0 for each element. Simple algebra yields that V̇ ∗
T γ

−1
T DsVT is equal to

V̇ ∗
T γ

−1
T ΠR

r (YTZsσ(s,Xs)) = (01,d−rV̇
∗
T )

(
0d−r,d−r 0d−r,r

0r,d−r γ−1
T

)
YTZsσ(s,Xs)

=

d∑
i=1

Fi[(Zsσ(s,Xs))
∗]i,

where

Fi =

(
Y ∗
T

(
0d−r,d−r 0d−r,r

0r,d−r γ−1
T

)(
0d−r,1

V̇T

))
i

=
∑
j

Uκ(i,j),T (γ−1
T )β(i,j),γ(i,j),

with the random variables (Uκ(i,j),T )i,j being expressed as a product of coordinates

of YT and V̇T . As before, we do not develop their expression to keep the formulae
easy to manipulate, and we refer to [GM03] for more details.

Hence, the random variable of interest in Proposition 2.8, i.e., HMall.Gen.
T , is

δ
(
V̇ ∗
T γ

−1
T D·VT

)
=

d∑
i=1

Fi

∫ T

0

[(Zsσ(s,Xs))
∗]∗i dWs −

d∑
i=1

∫ T

0

DsFi[(Zsσ(s,Xs))
∗]ids.

By the chain rule, the Malliavin derivative of Fi is related to that of Uκ(i,j),T (i.e.,

coordinates of YT and V̇T ) and that of (γ−1
T )β(i,j),γ(i,j): the latter can be expressed in

terms of γ−1
T and DsγT (see Lemma 2.1.6 in Nualart [Nua95, p. 89]) and we obtain

HMall.Gen.
T =

∑
i,j

Uκ(i,j),T (γ−1
T )β(i,j),γ(i,j)

∫ T

0

[(Zsσ(s,Xs))
∗]∗i dWs(3.8)

−
∑
i,j

(γ−1
T )β(i,j),γ(i,j)

∫ T

0

DsUκ(i,j),T [(Zsσ(s,Xs))
∗]ids(3.9)

+
∑
i,j,k,l

Uκ(i,j),T (γ−1
T )β(i,j),k(γ

−1
T )l,γ(i,j)

∫ T

0

Ds(γk,l,T )[(Zsσ(s,Xs))
∗]ids.(3.10)

Analogously to the elliptic case, the integrals above may be discretized. Furthermore,
the random variables Uκ(i,j),T may be approximated by UN

κ(i,j),T , defined by the same

product of coordinates of Y N
T and V̇ N

T as the one defining Uκ(i,j),T . Its weak derivative
can be computed as in (3.7): indeed, with the same arguments, one may prove that

DsUκ(i,j),T = 1s≤T

∑
k

Ûκ(i,j,k),T Ǔβ(i,j,k),s,(3.11)

where (Ûκ(i,j,k),T )i,j,k (resp., (Ǔβ(i,j,k),s)i,j,k) are appropriate real values (resp., vec-
tors) at time T (resp., at time s) of some extended systems of SDEs. Then, the
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natural approximation is

[DsUκ(i,j),T ]N = 1s≤T

∑
k

ÛN
κ(i,j,k),T Ǔ

N
β(i,j,k),s.(3.12)

Actually, what differs from the elliptic case are the Malliavin covariance matrix γT
and its weak derivative. Even if γT =

∫ T

0
ΠR

r (YTZsσ(s,Xs))[Π
R
r (YTZsσ(s,Xs))]

∗ds
is almost surely invertible with an inverse in any Lp, a naive approximation may not
satisfy these invertibility properties: for this reason, we add a small perturbation in
its discretization as follows:

γN
T =

∫ T

0

ΠR
r (Y N

T ZN
φ(s)σ(φ(s), XN

φ(s)))[Π
R
r (Y N

T ZN
φ(s)σ(φ(s), XN

φ(s)))]
∗ds +

T

N
Id.

(3.13)

This allows us to state the following result.
Lemma 3.3. Assume (R∞) and (E′). Then, for any p ≥ 1, one has for some

positive numbers p1 and q1: ‖1/det(γN
T )‖Lp ≤ K(T, x)‖1/det(γT )‖q1Lp1 with a constant

K(T, x) independent of N .
Proof. It is easy to check that ‖γN

T −γT ‖Lp ≤ K(T, x)
√
h (use Lemma 4.3 below).

Moreover, the eigenvalues of γN
T are all greater than h; hence det(γN

T ) ≥ hr, and one
deduces

E(det(γN
T )−p) = E

(
det(γN

T )−p1det(γN
T )≤ 1

2det(γT )

)
+ E

(
det(γN

T )−p1det(γN
T )> 1

2det(γT )

)
≤ h−rpP

(
det(γT ) − det(γN

T )

det(γT )
≥ 1

2

)
+ 2pE(det(γT )−p)

≤ h−rp2q‖ |det(γT ) − det(γN
T )|q‖Lp1‖det(γT )−q‖Lp2 + 2pE(det(γT )−p)

where p1 and p2 are conjugate numbers. Take q = 2rp to get the result.
To deal with the weak derivative of γT , one needs to rewrite

γk,l,T =
∑
i′

Aε(k,l,i′),T

∫ T

0

Bη(k,l,i′),udu,

where Aε(k,l,i′),T (resp., Bη(k,l,i′),u) are products of coordinates of YT (resp., Zu and
σ(u,Xu)). As for (3.7), the Malliavin derivative of Aε(k,l,i′),T and Bη(k,l,i′),u can be
expressed as

DsAε(k,l,i′),T = 1s≤T

∑
j′

Cε(k,l,i′,j′),TDε(k,l,i′,j′),s,

DsBη(k,l,i′),u = 1s≤u

∑
j′

Eη(k,l,i′,j′),uFη(k,l,i′,j′),s.

Hence, for s ≤ T , one has

Dsγk,l,T =
∑
i′,j′

Cε(k,l,i′,j′),T

(∫ T

0

Bη(k,l,i′),udu

)
Dε(k,l,i′,j′),s

+
∑
i′,j′

Aε(k,l,i′),TFη(k,l,i′,j′),s

∫ T

s

Eη(k,l,i′,j′),udu,(3.14)
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which can be approximated by

[Dsγk,l,T ]N =
∑
i′,j′

CN
ε(k,l,i′,j′),T

(∫ T

0

BN
η(k,l,i′),φ(u)du

)
DN

ε(k,l,i′,j′),s

+
∑
i′,j′

AN
ε(k,l,i′),T FN

η(k,l,i′,j′),s

∫ T

s

EN
η(k,l,i′,j′),φ(u)du.(3.15)

We now turn to the global approximation of the weight HMall.Gen.
T :

(3.16)

HMall.Gen.,N
T =

∑
i,j

UN
κ(i,j),T [(γN

T )−1]β(i,j),γ(i,j)

∫ T

0

[(ZN
φ(s)σ(φ(s), XN

φ(s)))
∗]∗i dWs

−
∑
i,j

[(γN
T )−1]β(i,j),γ(i,j)

∫ T

0

[Dφ(s)Uκ(i,j),T ]N [(ZN
φ(s)σ(φ(s), XN

φ(s)))
∗]ids(3.17)

+
∑
i,j,k,l

UN
κ(i,j),T [(γN

T )−1]β(i,j),k[(γ
N
T )−1]l,γ(i,j)

∫ T

0

[Dφ(s)(γk,l,T )]N [(ZN
φ(s)σ(φ(s), XN

φ(s)))
∗]ids.(3.18)

We are now in a position to state the following approximation result.
Theorem 3.4. Assume (R∞), (E′), and (H). For some positive numbers p and

q, one has:∣∣J̇(α) − E(f(V N
T )HMall.Gen.,N

T )
∣∣ ≤ K(T, x)‖f‖∞‖1/det(γT )‖qLph.

In the hypoelliptic case (case 1) in Proposition 2.7), note that the weak approx-
imation result above holds true under a nondegeneracy condition stated only at the
initial point (0, X0), which is a significant improvement compared to [BT96a] (or more
recently in [TZ04]), where the condition was stated in the whole space.

3.3. Adjoint approach. To approximate Hb,Adj.
T and Hσ,Adj.

T from Theorem 2.11,
we propose the following natural estimates:

(3.19)

Hb,Adj.,N
T = f(XN

T )h

N−1∑
k=0

ḃ(tk, X
N
tk

) ·
ZN
tk

∗

T − tk

∫ T

tk

[σ−1(φ(s), XN
φ(s)) Y

N
φ(s)]

∗ dWs,

Hσ,Adj.,N
T = h

N−1∑
k=0

d∑
i,j=1

˙[σσ∗]i,j(tk, X
N
tk

)[f(XN
T ) − f(XN

tk
)]

×
(

2ej

T − tk
·
[
ZN
tk

∗
∫ T

φ(
T+tk

2 )

[σ−1(φ(s), XN
φ(s))Y

N
φ(s)]

∗dWs

]

× 2ei

T − tk
·
[
ZN
tk

∗
∫ φ(

T+tk
2 )

tk

[σ−1(φ(s), XN
φ(s))Y

N
φ(s)]

∗dWs

]

+
2ei

T − tk
·
{
∇x

[
ZN
tk

∗
∫ φ(

T+tk
2 )

tk

[σ−1(φ(s), XN
φ(s))Y

N
φ(s)]

∗dWs

]
ZN
tk
ej

})
.(3.20)
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Derivatives ∇xY
N
φ(s) and ∇xZ

N
tk

are obtained by a direct differentiation in (3.2) and

(3.3): we do not make the equations explicit; they coincide with those of the Euler
procedure applied to ∇xYt and ∇xZt defined in (1.3) and (1.4).

These approximations also induce a discretization error in the computation of
J̇(α) of order 1 w.r.t. h.

Theorem 3.5. Assume (R∞), (E), and (H). For some p ≥ 0, one has

∣∣∣J̇(α) − E

(
Hb,Adj.,N

T + Hσ,Adj.,N
T

)∣∣∣ ≤ K(T, x)
‖f‖∞
T p

h.

The proof is postponed to section 4.4.

3.4. Martingale approach. The natural approximation of HMart.
T defined in

Theorem 2.12 may be given by

HMart.,N
T =

f(XN
T )

T

∫ T

0

[σ−1(φ(s), XN
φ(s))Ẋ

N
φ(s)]

∗dWs +

∫ T

0

dr
[f(XN

T ) − f(XN
φ(r))]

(T − φ(r))2

×
∫ T

φ(r)

[σ−1(φ(s), XN
φ(s))(Ẋ

N
φ(s) − Y N

φ(s)Z
N
φ(r)Ẋ

N
φ(r))]

∗dWs.

Unfortunately, we have not been able to analyze the approximation error J̇(α) −
E(HMart.,N

T ) under the fairly general assumption (H′). Indeed, an immediate issue to

handle would be to quantify the quality of the approximation of
∫ T

0
dr E

( [f(XT )−f(Xr)]
(T−r)2∫ T

r
[σ−1

s (Ẋs−YsZrẊr)]
∗dWs

)
by its Riemann sum, which seems to be far from obvious

under (H′).

4. Proof of the results on the discretization error analysis. This sec-
tion is devoted to the proof of section 3’s theorems analyzing the discretization
error.

The trick to prove these estimates for E(f(XT )) usually relies on the Markov
property: one decomposes the error using the PDE solved by the function (t, x) �→
E(f(Xx

T−t)) (see Bally and Talay [BT96a]), but this makes no sense in our situa-
tion. Another way to proceed consists in cleverly using the duality relationship (2.1)
with some stochastic expansion to get the right order (see Kohatsu-Higa [KH01] or
[KHP02]). During the revision of this work, Kohatsu-Higa brought to our attention
another paper [KHP00] where the approximation of some smooth functionals of SDEs
is successfully analyzed in this way. Here, we also adopt this approach. However, the
functionals of interest are much more complex. Moreover, extra technicalities com-
pared to [KHP02] are required, because of the necessity for our Malliavin calculus

computations to introduce a localization factor ψN,ε
T .

To clarify the arguments, we first state a quite general result, whose statement
enables us to reduce the proof of our theorems to check that a stochastic expansion
holds true.

4.1. A more general result. By convention, we set dW 0
s = ds. First, we need

to define some particular forms of stochastic expansions.
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Definition 4.1. The real random variable UT (which in general depends on N)
satisfies property (P) if it can be written as

UT =

q∑
i,j=0

cU,0
i,j (T )

∫ T

0

cU,1
i,j (t)

(∫ t

φ(t)

cU,2
i,j (s)dW i

s

)
dW j

t

+

q∑
i,j,k=0

cU,0
i,j,k(T )

∫ T

0

cU,1
i,j,k(t)

[∫ t

0

cU,2
i,j,k(s)

(∫ s

φ(s)

cU,3
i,j,k(u)dW i

u

)
dW j

s

]
dW k

t

for some adapted processes {(cU,i1
i,j (t), cU,i2

i,j,k(t))t≥0: 0 ≤ i, j, k ≤ q, 0 ≤ i1 ≤ 2, 0 ≤
i2 ≤ 3} (possibly depending on N) and if, for each t ∈ [0, T ], they belong to D∞

with Sobolev norms satisfying supN,t∈[0,T ]

(
‖cU,i1

i,j (t)‖k′,p +‖cU,i2
i,j,k(t)‖k′,p

)
< ∞ for any

k′, p ≥ 1.
Theorem 4.2. Assume (R∞) and that HN

T −HT satisfies property (P) . Then,
1. if f is of class C3

b , one has∣∣E(f(VT )HT ) − E(f(V N
T )HN

T )
∣∣ ≤ K(T, x)

( ∑
0≤|α|≤3

‖∂αf‖∞
)
h;

2. under (E′) and (H), one has∣∣E(f(VT )HT ) − E(f(V N
T )HN

T )
∣∣ ≤ K(T, x) ‖f‖∞ ‖1/det(γT )‖qLp h.

In the statement above, (Vt)0≤t≤T corresponds to some coordinates of a SDE
(Xt)0≤t≤T as it is defined in (2.5), but we can also simply consider V = X.

Theorem 4.2 is proved at the end of this section, and for a while, we focus on
its applications to derive the announced results about the discretization errors. Re-
member that the approximation of the weights H is essentially based on an Euler
scheme applied to a system of SDEs. For this reason, the verification of property (P)
is tightly connected to the decomposition of the error, between a Brownian SDE and
its Euler approximation, in terms of a stochastic expansion. This is the purpose of
the following standard lemma (for more general driven semimartingales, see Jacod
and Protter [JP98]).

Lemma 4.3. Consider a general d′-dimensional SDE (X̄t)t≥0 defined by C∞

coefficients with bounded derivatives, and (X̄N
t )t≥0 its Euler approximation:

X̄t = x +

∫ t

0

b̄(s, X̄s) ds +

q∑
j=1

∫ t

0

σ̄j(s, X̄s) dW
j
s ,

X̄N
t = x +

∫ t

0

b̄(φ(s), X̄N
φ(s)) ds +

q∑
j=1

∫ t

0

σ̄j(φ(s), X̄N
φ(s)) dW

j
s .

Then, for each t, each component of X̄t − X̄N
t satisfies (P) . Namely, for 1 ≤ k ≤ d′,

one has

X̄k,t − X̄N
k,t =

q∑
i,j=0

cX̄,0
i,j,k(t)

∫ t

0

cX̄,1
i,j,k(s)

( ∫ s

φ(s)

cX̄,2
i,j,k(u)dW i

u

)
dW j

s

for some adapted processes {(cX̄,i1
i,j,k (t))t≥0 : 0 ≤ i, j ≤ q, 1 ≤ k ≤ d′, 0 ≤ i1 ≤ 2}

satisfying supN,t∈[0,T ] ‖c
X̄,i1
i,j,k (t)‖k′,p < ∞ for any k′, p ≥ 1.
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Proof. One has X̄t−X̄N
t =

∫ t

0
b̄′(s)(X̄s−X̄N

s ) ds+
∑q

j=1

∫ t

0
σ̄′
j(s)(X̄s−X̄N

s ) dW j
s +∫ t

0
[b̄(s, X̄N

s ) − b̄(φ(s), X̄N
φ(s))] ds +

∑q
j=1

∫ t

0
[σ̄j(s, X̄

N
s ) − σ̄j(φ(s), X̄N

φ(s))] dW j
s with

a′(s) =
∫ 1

0
∇xa(s, X̄

N
s + λ(X̄s − X̄N

s ))dλ for a = b̄ or a = σ̄j . Now, consider the

unique solution of the linear equation Et = Id +
∫ t

0
b̄′(s)Es ds+

∑q
j=1

∫ t

0
σ̄′
j(s)Es dW j

s .
From Theorem 56 p. 271 in Protter [Pro90], one deduces that

X̄t − X̄N
t = Et

∫ t

0

Es−1

{
[b̄(s, X̄N

s ) − b̄(φ(s), X̄N
φ(s))]

−
q∑

j=1

σ̄′
j(s)[σ̄j(s, X̄

N
s ) − σ̄j(φ(s), X̄N

φ(s))]

}
ds

+

q∑
j=1

Et
∫ t

0

Es−1[σ̄j(s, X̄
N
s ) − σ̄j(φ(s), X̄N

φ(s))] dW
j
s ;

then, by applying Itô’s formula between φ(s) and s, we can easily complete the proof
of Lemma 4.3.

4.2. Proof of Theorem 3.4 (general nondegenerate case). Owing to The-

orem 4.2, we only have to prove that HMall.Gen.
T −HMall.Gen.,N

T satisfies property (P) .

Thus, it is enough to separately look at each factor in HMall.Gen.
T and HMall.Gen.,N

T , by

proving that their difference is of the form cU,0
i,j (T )

∫ T

0
cU,1
i,j (t)

( ∫ t

φ(t)
cU,2
i,j (s)dW i

s

)
dW j

t or

cU,0
i,j,k(T )

∫ T

0
cU,1
i,j,k(t)

[ ∫ t

0
cU,2
i,j,k(s)

( ∫ s

φ(s)
cU,3
i,j,k(u)dW i

u

)
dW j

s

]
dW k

t , while the other factors

just belong to D∞ with uniformly bounded Sobolev norms.
(a) The fact that the difference Uκ(i,j),T − UN

κ(i,j),T (involved in (3.8), (3.10),

(3.16), and (3.18)) satisfies (P) can be derived from an application of Lemma
4.3 by noticing that Uκ(i,j),T is the product of coordinates of YT and V̇T .

(b) Using the expressions of γT and γN
T , one gets γk,l,T−γN

k,l,T = −δk,lh+E3,1,k,l+
E3,2,k,l with

E3,1,k,l =

∫ T

0

[
ΠR

r (YTZsσ(s,Xs))[Π
R
r (YTZsσ(s,Xs))]

∗]
k,l

ds

−
∫ T

0

[
ΠR

r (Y N
T ZN

s σ(s,XN
s ))[ΠR

r (Y N
T ZN

s σ(s,XN
s ))]∗

]
k,l

ds,

E3,2,k,l =

∫ T

0

[
ΠR

r (Y N
T ZN

s σ(s,XN
s ))[ΠR

r (Y N
T ZN

s σ(s,XN
s ))]∗

]
k,l

ds

−
∫ T

0

[
ΠR

r (Y N
T ZN

φ(s)σ(φ(s), XN
φ(s)))[Π

R
r (Y N

T ZN
φ(s)σ(φ(s), XN

φ(s)))]
∗
]
k,l

ds.

Using Lemma 4.3 and the relation a(s,Xs) − a(s,XN
s ) = a′(s)(Xs − XN

s )

with a′(s) =
∫ 1

0
∇xa(s,X

N
s + λ(Xs −XN

s ))dλ available for smooth functions
a, it is straightforward to see that E3,1,k,l can be written as a sum of terms
satisfying (P). The same conclusion holds for E3,2,k,l if we apply Itô’s formula
between φ(s) and s.
Finally, as 1/det(γT ) and 1/det(γN

T ) belong to any Lp (p ≥ 1) according to
Lemma 3.3, it follows that the difference [γ−1

T ]k′,l′ − [(γN
T )−1]k′,l′ (involved in

(3.8), (3.9), (3.10), (3.16), (3.17), and (3.18)) satisfies (P).
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(c) Concerning (3.8) and (3.16), the difference
∫ T

0
[(Zsσ(s,Xs))

∗]∗i dWs

−
∫ T

0
[(ZN

φ(s)σ(φ(s), XN
φ(s)))

∗]∗i dWs is equal to a sum of two terms:

∫ T

0

[(Zsσ(s,Xs))
∗]∗i dWs −

∫ T

0

[(ZN
s σ(s,XN

s ))∗]∗i dWs,

∫ T

0

[(ZN
s σ(s,XN

s ))∗]∗i dWs −
∫ T

0

[(ZN
φ(s)σ(φ(s), XN

φ(s)))
∗]∗i dWs.

It is straightforward to check that both contributions satisfy (P), the first one
because of Lemma 4.3 and the second one as an application of Itô’s formula.

(d) The approximation error between terms (3.9) and (3.17) also comes from

the difference
∫ T

0
DsUκ(i,j),T [(Zsσ(s,Xs))

∗]ids −
∫ T

0
[Dφ(s)Uκ(i,j),T ]N [(ZN

φ(s)

σ(φ(s), XN
φ(s)))

∗]ids := E4,1,i,j + E4,2,i,j , where

E4,1,i,j =

∫ T

0

DsUκ(i,j),T [(Zsσ(s,Xs))
∗]ids

−
∫ T

0

[DsUκ(i,j),T ]N [(ZN
s σ(s,XN

s ))∗]ids,

E4,2,i,j =

∫ T

0

[DsUκ(i,j),T ]N [(ZN
s σ(s,XN

s ))∗]ids

−
∫ T

0

[Dφ(s)Uκ(i,j),T ]N [(ZN
φ(s)σ(φ(s), XN

φ(s)))
∗]ids.

The error induced by the approximation between Zsσ(s,Xs), Z
N
s σ(s,XN

s ),
and ZN

φ(s)σ(φ(s), XN
φ(s)) can be handled as before using Lemma 4.3 and Itô’s

formula. To deal with DsUκ(i,j),T , [DsUκ(i,j),T ]N and [Dφ(s)Uκ(i,j),T ]N , we
may recall their particular forms given by equations (3.11) and (3.12). Again,
Lemma 4.3 applies to the extended systems which help in defining DsUκ(i,j),T .
This provides a contribution error equal to a sum of terms satisfying (P) .

(e) The difference
∫ T

0
Ds(γk,l,T )[(Zsσ(s,Xs))

∗]ids −
∫ T

0
[Dφ(s)(γk,l,T )]N

[(ZN
φ(s)σ(φ(s), XN

φ(s)))
∗]ids coming from (3.10) and (3.18) can be analyzed

with the same arguments as before, if we take into account the specific form
of the derivative Ds(γk,l,T ) and its approximation given by (3.14) and (3.15).

The proof of Theorem 3.4 is complete.

4.3. Proof of Theorems 3.1 (pathwise approach) and 3.2 (elliptic case).
Proof of Theorem 3.1. By an application of Theorem 4.2, it is enough to check

that ẊT − ẊN
T satisfies (P), which is actually a direct consequence of Lemma 4.3.

Proof of Theorem 3.2. As for Theorem 3.4, we can check that HMall.Ell.
T −

HMall.Ell.,N
T satisfies (P). Thus, Theorem 4.2 with VT = XT and V N

T = XN
T yields∣∣J̇(α) − E(f(XN

T )HMall.Ell.,N
T )

∣∣ ≤ K(T,x)
T ‖f‖∞ ‖1/det(γT )‖qLp h, for some positive

numbers p and q. Invoking the following well-known upper bound (see Theorem 3.5 in
[KS84]) ‖1/det(γT )‖Lp ≤ K(T, x)/T d completes the estimate given in Theorem 3.2.

4.4. Theorem 3.5 (adjoint approach). The first approximation which is easy
to justify is the time discretization of the integral involved in Lemma 2.9. For this, note
that the function t �→ E(

∑d
i=1 ḃi(t,Xt)∂xiu(t,Xt)+

1
2

∑d
i,j=1

˙[σσ∗]i,j(t,Xt)∂
2
xi,xj

u(t,Xt))
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is of class C1
b ([0, T ],R): indeed, it is a smooth function in particular because u is, and

its derivatives are uniformly bounded thanks to estimates of type (2.6). Hence, it
remains to prove the following upper bounds, uniformly in i, j:

(4.1)∣∣∣∣∣E
(
f(XT )ḃ(tk, Xtk) · Ztk

∗
∫ T

tk

[σ−1(s,Xs) Ys]
∗ dWs − f(XN

T )ḃ(tk, X
N
tk

) · ZN
tk

∗

×
∫ T

tk

[σ−1(φ(s), XN
φ(s)) Y

N
φ(s)]

∗ dWs

)∣∣∣∣∣ ≤ K(T, x)
‖f‖∞
T q

(T − tk)h,

(4.2)∣∣∣∣∣E
(

˙[σσ∗]i,j(tk, Xtk)f(XT )ej ·
[
Ztk

∗
∫ T

T+tk
2

[σ−1(s,Xs)Ys]
∗dWs

]

× ei ·
[
Ztk

∗
∫ T+tk

2

tk

[σ−1(s,Xs)Ys]
∗dWs

]
− ˙[σσ∗]i,j(tk, X

N
tk

)f(XN
T )

× ej ·
[
ZN
tk

∗
∫ T

φ(
T+tk

2 )

[σ−1(φ(s), XN
φ(s))Y

N
φ(s)]

∗dWs

]

× ei ·
[
ZN
tk

∗
∫ φ(

T+tk
2 )

tk

[σ−1(φ(s), XN
φ(s))Y

N
φ(s)]

∗dWs

])∣∣∣∣∣ ≤ K(T, x)
‖f‖∞
T q

(T − tk)
2h,

(4.3)∣∣∣∣∣E
(

˙[σσ∗]i,j(tk, Xtk)f(XT )ei ·
{
∇x

[
Ztk

∗
∫ T+tk

2

tk

[σ−1(s,Xs)Ys]
∗dWs

]
Ztke

j

}

− ˙[σσ∗]i,j(tk, X
N
tk

)f(XN
T )ei

·
{
∇x

[
ZN
tk

∗
∫ φ(

T+tk
2 )

tk

[σ−1(φ(s), XN
φ(s))Y

N
φ(s)]

∗dWs

]
ZN
tk
ej

})∣∣∣∣∣
≤ K(T, x)

‖f‖∞
T q

(T − tk)h.

Note that terms with f(Xtk) and f(XN
tk

) have been removed since they do not
contribute in the expectation. The three errors above can be analyzed by applying
Theorem 4.2, except that the upper bounds have to include factors (T−tk) or (T−tk)

2:
this is a simple improvement that we won’t detail here.

4.5. Proof of Theorem 4.2.

4.5.1. When f is of class C3
b . Set V λ,N

T = V N
T + λ(VT − V N

T ) for λ ∈ [0, 1].
Then, the error to analyze is

E(f(VT )HT ) − E(f(V N
T )HN

T ) = E([f(VT ) − f(V N
T )]HT ) + E(f(V N

T )[HT −HN
T ]).

(4.4)

Note that the difference VT −V N
T can be expressed componentwise using Lemma 4.3;

using a Taylor expansion, it follows that the first contribution in the right-hand side
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above can be split in a sum of terms

Ei,j,k =

∫ 1

0

dλ E

(
∂xk

f(V λ,N
T )HT c

0
i,j,k(T )

∫ T

0

c1i,j,k(t)

[(∫ t

φ(t)

c2i,j,k(s)dW
i
s

)
dW j

t

])
,

for 0 ≤ i, j ≤ q. If i and j are different from 0, we twice apply the duality relation
(2.1) combined with Fubini’s theorem to obtain that Ei,j,k equals∫ 1

0

dλ

∫ T

0

dt E

(
Dj

t

[
∂xk

f(V λ,N
T )HT c

0
i,j,k(T )

]
c1i,j,k(t)

(∫ t

φ(t)

c2i,j,k(s)dW
i
s

))

=

∫ 1

0

dλ

∫ T

0

dt

∫ t

φ(t)

ds E
(
Di

s

{
Dj

t

[
∂xk

f(V λ,N
T )HT c

0
i,j,k(T )

]
c1i,j,k(t)

}
c2i,j,k(s)

)

=
∑
l

∫ 1

0

dλ

∫ T

0

dt

∫ t

φ(t)

ds E
(
∂γ1(l)
x f(V λ,N

T )G1,l,λ,N
s,t,T

)
,(4.5)

where the length of the differentiation index γ1(l) is less than 3. If i and/or j equals

0, an analogous formula holds with |γ1(l)| ≤ 2. The random variable G1,l,λ,N
s,t,T is inte-

grable with an L1-norm uniformly bounded w.r.t. λ,N, s, t. We have proved that this
first contribution in the right-hand side of (4.4) meets the estimate of Theorem 4.2.

For the second contribution, taking into account that HT −HN
T satisfies (P) and

using the same techniques as before, we obtain that E(f(V N
T )[HT − HN

T ]) can be
decomposed as a sum of terms of type

(4.6)∫ T

0

dt

∫ t

φ(t)

dsE
(
∂γ2
x f(V N

T )Gγ2,N
s,t,T

)
and

∫ T

0

dt

∫ t

0

ds

∫ s

φ(s)

duE
(
∂γ3
x f(V N

T )Gγ3,N
u,s,t,T

)
with |γ2| ≤ 2 and |γ3| ≤ 3. Uniform Lp estimates are available for Gγ2,N

s,t,T and Gγ3,N
u,s,t,T

and the proof is complete for the case of functions f of class C3
b .

4.5.2. When f is only measurable. Formally, techniques are identical, but
to remove the derivatives of f in (4.5) and (4.6), we may integrate by parts. This step

is not directly possible since the Malliavin covariance matrix of V N
T or V λ,N

T may have
bad properties, even under Assumption (E′). We do not encounter this problem in the
one-dimensional elliptic case developed in [KHP02], since the convex combination of
positive diffusion coefficients is still positive: this argument fails in higher dimensions
with elliptic matrices, and a fortiori in a hypoelliptic framework. To circumvent this
difficulty, we introduce a series of localization and approximation arguments, which
unfortunately make the reading more tedious.

We put V ε
T = VT + εW̃T and V N,ε

T = V N
T + εW̃T , where (W̃T )t≥0 is an extra

independent r-dimensional Brownian motion and we define V λ,N,ε
T = V N,ε

T + λ(V ε
T −

V N,ε
T ) for λ ∈ [0, 1]. In the following computations, the Malliavin calculus will be

made w.r.t. the (q + r)-dimensional Brownian motion (Wt

W̃t
)0≤t≤T .

Denote by µ̄ the measure defined by
∫

Rr g(x)µ̄(dx) = E(g(V 0,N,0
T ))+E(g(V 1,N,0

T ))

+
∫ 1

0
E(g(V λ,N,0

T ))dλ and consider (fm)m≥1 a sequence of smooth functions with com-
pact support, which converges to f in L2(µ̄). Thus, one easily gets that

lim
m↑∞

lim
ε↓0

‖fm(V λ,N,ε
T )‖L2 = lim

m↑∞
‖fm(V λ,N,0

T )‖L2 = ‖f(V λ,N,0
T )‖L2 ≤ ‖f‖∞(4.7)
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for λ = 0 or 1, and

lim
m↑∞

lim
ε↓0

(∫ 1

0

‖fm(V λ,N,ε
T )‖L2dλ

)
= lim

m↑∞

(∫ 1

0

‖fm(V λ,N
T )‖L2dλ

)

≤ lim
m↑∞

√∫ 1

0

E(f2
m(V λ,N

T ))dλ =

√∫ 1

0

E(f2(V λ,N,0
T ))dλ ≤ ‖f‖∞.(4.8)

Then, the error to analyze is equal to E(f(VT )HT ) − E(f(V N
T )HN

T ) =
limm↑∞,ε↓0[E1(m, ε) + E2(m, ε)] with

E1(m, ε) = E

(
fm(V ε

T )HT − fm(V N,ε
T )HT

)
,

E2(m, ε) = E

(
fm(V N,ε

T )HT − fm(V N,ε
T )HN

T

)
.

In view of (4.7) and (4.8), it is enough to prove the following estimates, with some
constants K(T, x), p and q uniform in m, and ε ≤ 1:

|E1(m, ε)| ≤ K(T, x)

(
‖fm(V 0,N,ε

T )‖L2 + ‖fm(V 1,N,ε
T )‖L2

+

∫ 1

0

‖fm(V λ,N,ε
T )‖L2dλ

)
‖1/det(γT )‖qLph,(4.9)

|E2(m, ε)| ≤ K(T, x)
(
‖fm(V 0,N,ε

T )‖L2 + ‖fm(V 1,N,ε
T )‖L2

)
‖1/det(γT )‖qLph.(4.10)

We introduce a localization factor ψN,ε
T ∈ [0, 1], satisfying the following properties:

(a) ψN,ε
T ∈ D∞ and supN,ε ‖ψ

N,ε
T ‖k,p ≤ K(T, x)‖1/det(γT )‖q2Lq1 for any integers

k, p;
(b) P(ψN,ε

T �= 1) ≤ K(T, x)‖1/det(γT )‖qLphk for any k ≥ 1, uniformly in ε;

(c) {ψN,ε
T �= 0} ⊂ {∀λ ∈ [0, 1] : det(γV λ,N,ε

T ) ≥ 1
2det(γVT )}.

Its construction is given at the end of this section.

Error E1(m, ε). Clearly, one has E1(m, ε) = E1,1(m, ε) + E1,2(m, ε) with

E1,1(m, ε) = E

(
[fm(V ε

T ) − fm(V N,ε
T )](1 − ψN,ε

T )HT

)
,(4.11)

E1,2(m, ε) = E

(
[fm(V ε

T ) − fm(V N,ε
T )]ψN,ε

T HT

)
.(4.12)

The first term can easily be bounded by K(T, x)
(
‖fm(V 0,N,ε

T )‖L2 + ‖fm(V 1,N,ε
T )‖L2

)
‖1/det(γT )‖qLphk for any k ≥ 1, using property (b) of ψN,ε

T .
Now, to deal with the term E1,2(m, ε), we proceed as for the first term of the right-

hand side of (4.4), that is, by decomposing V ε
T − V N,ε

T = VT − V N
T using Lemma 4.3

and applying the duality relationship. Consequently, E1,2(m, ε) can be written as a
sum of terms

E1,2,γ1
(m, ε) =

∫ 1

0

dλ

∫ T

0

dt

∫ t

φ(t)

ds E
(
∂γ1
x fm(V λ,N,ε

T )Gγ1,λ,N
s,t,T

)
(4.13)

with |γ1| ≤ 3. The random variable Gγ1,λ,N
s,t,T does not depend on ε and belongs to D∞

with Sobolev norms uniformly bounded w.r.t. λ,N, s, t. Owing to the factor ψN,ε
T ,



ANALYSIS USING ITÔ–MALLIAVIN CALCULUS AND MARTINGALES 1703

note that Gγ1,λ,N
s,t,T = 0 when ψN,ε

T = 0, because of the local property of the derivative

operator (see Proposition 1.3.7 in [Nua95, p. 44]). Since det(γV λ,N,ε
T ) ≥ ε2r, one can

apply Proposition 2.4, which yields

E
(
∂γ1
x fm(V λ,N,ε

T )Gγ1,λ,N
s,t,T

)
= E

(
fm(V λ,N,ε

T )Hγ1
(V λ,N,ε

T , Gγ1,λ,N
s,t,T )

)
for some iterated Skorohod integral Hγ1(V

λ,N,ε
T , Gγ1,λ,N

s,t,T ). Due to the local prop-
erty of the Skorohod integral (see Proposition 1.3.6 in [Nua95, p. 43]), one has

Hγ1
(V λ,N,ε

T , Gγ1,λ,N
s,t,T ) = Hγ1(V

λ,N,ε
T , Gγ1,λ,N

s,t,T )1ψN,ε
T �=0, and applying the estimate from

Proposition 2.4, one gets

‖Hγ1(V
λ,N,ε
T , Gγ1,λ,N

s,t,T )‖L2 ≤ C‖[γV λ,N,ε
T ]−11ψN,ε

T �=0‖
p3

Lq3‖V λ,N,ε
T ‖p1

k1,q1
‖Gγ1,λ,N

s,t,T ‖k2,q2

for some integers p1, p3, q1, q2, q3, k1, k2. It is easy to upper bound ‖V λ,N,ε
T ‖k1,q1 and

‖Gγ1,λ,N
s,t,T ‖k2,q2 , uniformly in λ,N, s, t, and ε ≤ 1. It is straightforward to derive the

estimation of ‖[γV λ,N,ε
T ]−11ψN,ε

T �=0‖Lq3 since on {ψN,ε
T �= 0}, det(γV λ,N,ε

T ) ≥ 1
2det(γVT ),

which has an inverse in any Lp. One has proved that

|E1,2,γ1(m, ε)| ≤ K(T, x)

(∫ 1

0

‖fm(V λ,N,ε
T )‖L2dλ

)
‖1/det(γT )‖qLph;

this completes the estimation (4.9).

Error E2(m, ε). As before, this error can be split into two parts E2(m, ε) =

E
(
fm(V N,ε

T )(1 − ψN,ε
T )(HT −HN

T )
)

+ E
(
fm(V N,ε

T )ψN,ε
T (HT −HN

T )
)
. The first contri-

bution can be neglected using property (b) about ψN,ε
T . The other contribution is

analyzed as the second term in the right-hand side of (4.4): it gives a sum of terms

of type (4.6) with V N,ε
T instead of V N

T and some random variables Gγ2,N
s,t,T and Gγ3,N

u,s,t,T

vanishing when ψN,ε
T = 0. Then, the rest of the proof is identical to that for (4.13);

we omit details. The inequality (4.10) follows and Theorem 4.2 is proved.

Construction of ψN,ε
T . Set d(µ) = det(γV ε

T +µ(V N
T −VT )) for µ ∈ [0, 1]. Since

det(γV λ,N,ε
T ) = d(1 − λ), one has

det(γV λ,N,ε
T ) = det(γV ε

T ) −
∫ 1

1−λ

d′(µ)dµ.(4.14)

Assume that for some C > 0, one has for any µ ∈ [0, 1], |d′(µ)|2 ≤ RN
T with

(4.15)

RN
T := C

(∫ T

0

‖Dt(V
N
T − VT )‖2dt

)(∫ T

0

[
‖DtV

ε
T ‖2 + ‖Dt(V

N
T − VT )‖2

]
dt

)3

.

Then, if we put ψN,ε
T = ψ(

RN
T

det2(γV ε
T )

) with ψ ∈ C∞
b (R,R) such that 1[0, 18 ] ≤ ψ ≤ 1[0, 14 ],

it is now clear that statement (a) is fulfilled using γV ε
T = γVT + ε2Id. Besides, ψN,ε

T �=
1 ⇒ RN

T > 1
8det2(γV ε

T ), and thus estimates (b) follow using techniques of Lemma 3.3.

Finally, ψN,ε
T �= 0 ⇒ RN

T < 1
4det2(γV ε

T ) ⇒ det(γV λ,N,ε
T ) ≥ 1

2det(γV ε
T ) ≥ 1

2det(γVT )
using (4.14) and (c) holds true.
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It remains to prove (4.15). For this, using for any invertible matrix A the relations
∂Adet(A) = det(A)[A∗]−1 (see Theorem A.98 of [RT99]) and A−1 = 1

det(A) [Cof(A)]∗

(Cof(A) being the matrix of cofactors of A), one gets

[det(A(µ))]′ =
∑
i,j

∂ai,j
[det(A)]a′i,j(µ) =

∑
i,j

det(A)[(A∗)−1]i,ja
′
i,j(µ)

= Tr
(
Cof(A(µ))A

′∗(µ)
)
.

Put A(µ) = γV ε
T +µ(V N

T −VT ) = γV ε
T + µ

( ∫ T

0
DtV

ε
T [Dt(V

N
T − VT )]∗dt+

∫ T

0
Dt(V

N
T −

VT )[DtV
ε
T ]∗dt

)
+ µ2γV N

T −VT . We now easily prove that

[(Cof(A))i,j(µ)]2 ≤ C1

(∫ T

0

[
‖DtV

ε
T ‖2 + ‖Dt(V

N
T − VT )‖2

]
dt

)2

,

[(A′
i,j)(µ)]2 ≤ C2

(∫ T

0

‖Dt(V
N
T − VT )‖2dt

)(∫ T

0

[
‖Dt(V

N
T − VT )‖2 + ‖DtV

ε
T ‖2

]
dt

)
.

Thus, (4.15) immediately follows using d′(µ) = [det(A(µ))]′.

5. Numerical experiments.

5.1. Analysis of computational complexity. In this paragraph we indicate
the first-order approximation of the number of elementary operations (multiplications)
needed for computing the different estimators w.r.t. the quantities m (number of
parameters), d (dimension of the space), q (dimension of the Brownian motion), and
N (number of discretization times).

In previous sections we derived estimators of the gradient of the performance
measure J(α) w.r.t. α when J is defined by a terminal cost (see (1.2)). How-
ever, these results may be extended to functionals with instantaneous costs such

as J(α) = E

(∫ T

0
g(t,Xt)dt + f(XT )

)
for which an estimator of the gradient may be

T
N

∑N
i=1 H

N
ti (g)+HN

T (f), where HN
ti (g) (resp., HN

T (f)) is an approximated estimator
of the gradient of E(g(ti, Xti)) (resp., E(f(XT ))). This case is illustrated in the first
numerical experiment considered below.

The computational complexity of the different estimators depends on whether the
payoff has instantaneous costs (in which case an estimator HN

ti (g) for all i ∈ {1, . . . , N}
is needed) or if it has only a terminal cost (for which only HN

T (f) is needed). In
the pathwise and Malliavin calculus methods, the cost of computing HN

ti (g) for all
i ∈ {1, . . . , N} is the same as just computing HN

T (f), whereas in the adjoint and
martingale methods, there is an additional computational burden.

• Complexity of the pathwise method: d2qmN operations for computing the
pathwise estimator HPath.,N

ti (g) (see Proposition 1.1) for all i ∈ {1, . . . , N}
(required for computing ẊN

ti , for all i ∈ {1, . . . , N} and all m parameters).
• Complexity of the Malliavin calculus method, in the elliptic case (q = d):

3d4(d + m)N operations, for computing the Malliavin calculus estimator

HMall.Ell.,N
ti (g) (see Proposition 2.5) for all i ∈ {1, . . . , N}. Indeed, the com-

plexity of computing the Malliavin derivative of each column c (among d)
of ZN

c,ti is 3d4N and computing the Malliavin derivative of ẊN
ti for all m

parameters requires 3d3mN operations.
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• Complexity of the adjoint method: d4N2 + d2mN2/2 operations are needed

to compute the adjoint estimator HAdj.,N
ti (g) = Hb,Adj.,N

ti (g) + 1
2H

σ,Adj.,N
ti (g)

(see Lemma 2.9 and Theorem 2.11) for all i ∈ {1, . . . , N}. Our implemen-
tation memorizes ZN

ti (and other data) along the trajectory and computes

Hb,Adj.,N
ti (g) and Hσ,Adj.,N

ti (g) for all i ∈ {1, . . . , N} afterwards. Such an
implementation allows to treat problems with instantaneous costs. If we
consider a problem with a terminal cost only, the complexity is reduced to
4d4N + 3d2mN .

• Complexity of the martingale method: d2N2/2 + dmN2/2 + d3mN for com-

puting the martingale estimator HMart.,N
ti (g) (see Theorem 2.12) for all i ∈

{1, . . . , N}. For problems with terminal cost only the complexity of comput-

ing HMart.,N
T (f) is d3mN .

These results are summarized in Table 5.1. Note that they are strongly related to the
way we have implemented the methods and they are not guaranteed to be optimal.

Table 5.1

Complexity (in terms of number of elementary operations) of the different estimators for payoff
with instantaneous costs or with terminal cost only.

Pathwise Malliavin Adjoint Martingale

Instantaneous costs d3mN 3d4(d + m)N d4N2 + d2mN2

2
d(d + m)N2

2
+ d3mN

Terminal cost Same Same 4d4N + 3d2mN d2N + d3mN

5.2. Stochastic linear quadratic optimal control. We consider a simple
one-dimensional stochastic linear quadratic (SLQ) control problems (see [CY01] and
[YZ99] for an extensive study on SLQ problems) for which the control u(·) appears
in particular in the diffusion term: dXt = u(t)dt + δu(t)dWt. The cost functional to

be minimized is J(u(·)) = E
[ ∫ 1

0
X2

t dt
]
. This problem admits an optimal control (see

references above) given by the state feedback u∗(t) = −Xt

δ2 .
We consider a class of feedback controllers u(t, x, α) linearly parameterized by a

three-dimensional vector α with basis functions 1, x, and t (i.e., u(t, x, α) = α1 +
α2x + α3t) and we write J(α) for J(u(·, X·, α)). In that case, the optimal control
u∗ belongs to the class of parameterized feedback controllers and corresponds to the
parameter α∗ = (0,−1/δ2, 0).

As explained before, since the payoff involves instantaneous costs, we evaluate
∇αJ(α) using a quantity of type T

N

∑N
i=1 H

N
ti (x2). We check that the different esti-

mators (pathwise, Malliavin calculus, adjoint, martingale) return a zero gradient for
the value α∗ of the parameter and we compare their variance and time for computa-
tion. Table 5.2 shows the empirical variance of the different estimators obtained for
1000 trajectories, with h = 0.05, δ = 1. These simulations have been performed on a
Pentium III, 700Mhz processor.

Table 5.2

Variance of the estimators HPath., HMall.Ell., HAdj., and HMart. of ∇αJ(α) at the optimal
setting of the parameter: α1 = 0, α2 = −1, α3 = 0.

Var(H) Pathwise Malliavin Adjoint Martingale
α1 0.1346 0.3754 0.6669 0.1653
α2 0.0525 0.1188 0.1707 0.0480
α3 0.0136 0.0446 0.0612 0.0148

CPU time 0.44s 1.95s 2.89s 0.89s
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Note that the estimator used in the adjoint approach includes the term f(XT )−
f(Xt) in the computation of Hσ,Adj.

T . Table 5.3 shows similar results for a suboptimal
setting of the parameter (here α1, α2, and α3 are chosen randomly within the range
[−0.1, 0.1]). The columns Adjoint2 and Martingale2 describe simulations of the ad-
joint and martingale methods when the term f(Xt) is omitted from the computation

of the estimators Hσ,Adj.
T and HMart.

T . We note that the variance of these estima-
tors is significantly larger than when the term f(Xt) is included, which corroborates
Remark 2.1.

Table 5.3

Variance of the different estimators of ∇αJ(α) for α1 = −0.0789, α2 = 0.0156, α3 = 0.0648.

Var(H) Pathwise Malliavin Adjoint Adjoint2 Mart. Mart.2
α1 0.2005 4.0347 1.0287 9.5535 1.5085 4.6029
α2 0.0252 0.6597 0.1433 1.6781 0.2360 0.7894
α3 0.0174 0.3869 0.1051 2.2337 0.1407 1.0185

CPU time 0.44s 1.97s 2.94s 2.94s 0.90s 0.90s

For this problem with smooth cost functions, the pathwise approach provides the
best performance in terms of the estimator’s variance. This nice behavior for smooth
costs compared to other methods has been previously observed in [FLL+99].

5.2.1. Stochastic approximation algorithm. The computation of an esti-
mator H of ∇αJ(α) may be used in a stochastic approximation algorithm (see, e.g.,
[KY97] or [BMP90]) to search a locally optimal parameterization of the controller.
The algorithm begins with an initial setting of the parameter α0. Then, if αk denotes
the value of the parameter at iteration k, the algorithm proceeds by computing an

estimator ̂∇αJ(αk) of ∇αJ(αk) and then by performing a stochastic gradient ascent

αk+1 = αk + ηk ̂∇αJ(αk),(5.1)

where the learning steps ηk satisfy a decreasing condition (for example,
∑

k ηk =
∞ and

∑
k η

2
k < ∞; see [Pol87]). Assuming smoothness conditions on J(α) and a

bounded variance for ̂∇αJ(αk), one proves that if αk converges, then the limit is a
point of local minimum for J(α) (see references above for several sets of hypotheses
for which the convergence is guaranteed).

Figure 5.1 illustrates this algorithm on the SLQ problem described previously,
where the initial parameter is chosen randomly (same value as in Table 5.3). At
iteration k, one trajectory is simulated using the controller parameterized by αk, and

an estimation ̂∇αJ(αk) of ∇J(αk) (using the pathwise method) is obtained. The
parameter is updated according to (5.1) with a learning step ηk = K

K+k . We take
K = 200 to avoid a too rapid decreasing of (ηk)k at the beginning: this trick usually
speeds up the numerical optimization as mentioned in [BT96b]. We note that the
parameter converges to α∗ = (0,−1, 0).

The speed of convergence for such algorithms is closely related to the gradient es-
timator’s variance, which motivates our variance analysis for the different estimators.

5.2.2. Discretization error. Here, we report the impact of the number of dis-
cretization times in the regular mesh of the interval [0, T ], in the computation of
the gradient ∇αJ(α) for the SLQ problem. Figure 5.2 reports the sensitivity of
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Fig. 5.1. Stochastic approximation of the control parameters. The gradient ∇αJ(αk) is esti-
mated using the pathwise method.
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Fig. 5.2. Discretization error as a function of the number of discretization times.

J(α) (for α = α∗) w.r.t. the parameter α1, computed with different estimators, with
N = 8, 16, 32, 64, and 128 discretization times. Recall that, for this setting of the
parameter, the true gradient is zero. To get relevant results, we have run 107 sample
paths, which ensures that the confidence interval’s width is less than 10−3 for all
methods. We can empirically check that the convergence holds at rate 1/N (as pre-
viously proved), except for the martingale method, for which the rate of convergence
is not clear because of the sign change (more discretization times would be needed to
clarify the speed of approximation). Note that the discretization error for the Malli-
avin calculus estimator is smaller than for the other ones, although we have not found
any explanation for this.

5.3. Sensitivity analysis in a financial market. We consider two risky assets
with price process evolving according to the following SDE under the so-called risk-
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neutral probability:

dS1
t

S1
t

= r dt + σ(S1
t , λ1) dW

1
t ,

dS2
t

S2
t

= r dt + σ(S2
t , λ2)

(
ρ dW 1

t +
√

1 − ρ2 dW 2
t

)
,

with constant interest rate r and volatility function σ(x, λ) = 0.25(1 + 1
1+e−λx ). The

parameters of this dynamics are λ1, λ2, and the correlation coefficient ρ. Suppose
that the true model is given by a set of parameters and that we are interested in the
impact of the inaccuracy on these parameters (due to a previous statistical procedure)
on option prices. For instance, we may consider digital options with payoff χ(S1

T −S2
T )

(where χ(x) = 1x≥0) whose prices are given by J(λ1, λ2, ρ) = E[χ(S1
T − S2

T )] up to
the discount factor.

Table 5.4

Variance of the estimators HMall.Ell.
T , HAdj.

T , HMart.
T , Hε,Path.

T .

Var(H) or Malliavin Adjoint Martingale Pathwise Pathwise Pathwise
Var(Hε) ε = 10−2 ε = 10−3 ε = 10−4

λ1 0.0011 0.0022 0.0012 0.0053 0.0378 3.8951
λ2 0.0048 0.0030 0.0018 0.0042 0.0296 4.9427
ρ 1.5788 2.0829 1.4323 1.6523 14.923 100.86

CPU time 20.8s 18.6s 7.31s 2.97s 2.97s 2.97s

We estimate the sensitivity of J w.r.t. the parameters λ1, λ2, and ρ. Table 5.4
reports the empirical variance of the estimators (HMall.Ell.

T , HAdj.
T , and HMart.

T ) of
the sensitivity of J w.r.t. the parameters for the Malliavin calculus, adjoint, and
martingale methods. Since the payoff function is not differentiable, we cannot directly
apply the pathwise method; instead, we use χε, a regularization of χ defined by
χε(x) = 1 if x > ε, 0 if x < −ε, and (x + ε)/(2ε) otherwise. Note that this induces
a bias on the true value of the gradient, bias which vanishes when ε goes to 0. The
pathwise estimator that we obtain with this regularization is denoted by Hε,Path. and
Table 5.4 also reports its variance for different values of ε.

For this experiment, we ran 1000 trajectories with initial values S1
0 = S2

0 = 1,
r = 0.04, T = 1, h = 0.01 and parameters setting λ1 = 2, λ2 = 2, and ρ = 0.6.

We note that the variance obtained by the pathwise methods is significantly larger
than those obtained by the other methods (especially when ε is small), which mo-
tivates the use of the Malliavin calculus, adjoint, or martingale estimators for non-
smooth cost functions. To further reduce the variance in the case of piecewise smooth
cost functions, we could combine two methods as suggested in [FLL+99]: the path-
wise method where the cost function is smooth and one of the other methods where
it is not.

5.4. Neurocontrol for a stochastic target problem. We consider a two-
dimensional stochastic target (for example, that models the displacement of a fly)
moving according to a diffusion. We control a squared fly-swatter with a two-
dimensional bounded force (b(u1), b(u2)) (where u = (u1, u2) is the control), and
our goal is to hit the fly at time T . Let X = (X1, X2) be the relative coordinates of
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the fly w.r.t. the fly-swatter, and V = (V1, V2) be the velocity of the fly-swatter. A
simple model of the dynamics is

dX1,t = V1,tdt + σflydW
1
t ,

dX2,t = V2,tdt + σflydW
2
t ,

dV1,t = b(u1,t)dt + σswat(1 + ||ut||)dW 3
t ,

dV2,t = b(u2,t)dt + σswat(1 + ||ut||)dW 4
t ,

where b(x) = [1 − e−x]/[1 + e−x]. [(W i
t )t≥0]i are independent standard Brownian

motions; the coefficients σfly and σswat are constant. The factor (1 + ||u||) (where

||u|| =
√
u2

1 + u2
2) adds uncertainty on highly forced movements. The goal is to reach

the fly with the fly-swatter at time T : hence, J(u(·);X0, V0) = E[1(X1,T ,X2,T )∈A],
where A = [−a, a] × [−a, a] is the squared fly-swatter.
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Fig. 5.3. The architecture of the network.

We implement the feedback controller using a one-hidden-layer neural network
(see [Hay94] or [RM86] for general references on neural networks) whose architecture
is given in Figure 5.3. The input layer (xi)1≤5 is connected to the state and time
variables: x1 = X1,t, x2 = X2,t, x3 = V1,t, x4 = V2,t, and x5 = t. There is one
hidden layer with n neurons, and the output layer (yk)1≤k≤2 returns the feedback
control y1 = u1(t), y2 = u2(t). The network is defined by two matrices of weights (the
parameters): the input weights {win

ij } and the output weights {wout
jk }. The network’s

output is given by yk =
∑n

j=1 w
out
jk ϕ(

∑5
i=0 w

in
ij xi) (for 1 ≤ k ≤ 2), where the win

0j ’s are

the bias weights (and we set x0 = 1) and ϕ(s) = 1/(1 + e−s) is the sigmoid function.
In this experiment, we use a hidden layer with four neurons (thus there are

6 × 4 + 4 × 2 = 32 control parameters); we have run 1000 trajectories with initial
values of the weights chosen randomly within the range [−0.1, 0.1]. Here, T = 1,
h = 0.05, σfly = σswat = 0.1, and a = 0.1. Each trajectory starts from a initial
state chosen randomly within the range Ω = [−0.5, 0.5]4. Thus, we actually estimate
∇wE[J(·;X0, V0) | (X0, V0) ∼ 1

|Ω|1Ω(dω)], for each weight w.

Table 5.5 reports the empirical variance of the estimators (HMall.Ell., HAdj.,
and HMart.) of the gradient of J w.r.t. the parameters (the set of input and output
weights). Here again, the function to be maximized is not differentiable and to apply
the pathwise method, we use a regularization of the indicator function of A (i.e.,
Jε(α) = E[(χε(X1,T +a)−χε(X1,T−a))(χε(X2,T +a)−χε(X2,T−a))]). The associated
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Table 5.5

Variance of the estimators of the gradient of E[J(·;X0, V0)|(X0, V0) ∼ 1
|Ω|1Ω(dω)] w.r.t. the

weights. The values provided are the averaged variances over all 32 parameters.

Var(H) or Malliavin Adjoint Martingale Pathwise Pathwise
Var(HPath.

ε ) ε = 10−3 ε = 10−4

Average over 0.1917 0.2550 0.1701 3.364 187.48
all parameters

CPU time 70.44s 22.04s 5.73s 2.88s 2.88s

pathwise estimator is denoted Hε,Path.
T : its variance for some values of ε is also given in

Table 5.5. Although its computational time is the lowest one, the pathwise approach
is not appropriate because of its large variance. On the other hand, the martingale
method is the most attractive.

Stochastic approximation of an optimal controller. We run a stochastic
approximation algorithm (5.1) with a learning rate ηk = K

K+k (with K = 1000) using
a neural network with four hidden neurons. At each iteration, the SA algorithm uses
an estimator of the gradient of J w.r.t. the weights, which averages 50 samples of the
martingale estimator.

On Figure 5.4, we plot the parameter and performance evolutions w.r.t. the itera-
tion number: we obtain a series of weights that provide a locally optimal performance,
although there is no guarantee of global optimality of the controller.
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Fig. 5.4. Stochastic approximation of the parameters (the weights of the neural network) and
performance of the parameterized controller. The gradient is estimated using the martingale method.

This stochastic gradient algorithm in the space of parameterized policies is often
called policy search (about which an abundant literature exists in the discrete-time
case; see, e.g., [BB01]), as opposed to value search for which some approximate dy-
namic programming algorithm is performed on a parameterized value function (see,
e.g., [BT96b]). One may also combine these approaches and learn an approximate
value function to perform a policy search (the so-called Actor-Critic algorithms, see
e.g. [KB99]).

6. Conclusion. In this work, we have derived three new types of formulae to

compute ∇αE(f(Xα
T )) or ∇αE(

∫ T

0
g(t,Xα

t )dt + f(Xα
T )) using Monte Carlo methods.

Our computations rely on Itô–Malliavin calculus and martingale techniques: the rep-
resentations derived are simple to implement using Euler-type schemes and the asso-
ciate weak error is in most of the cases linear w.r.t. the time step. We have assumed
that f is bounded, but all results remain valid if f satisfies some polynomial growth.
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The numerical experiments enable us to draw the following conclusions on how
to select the appropriate method to use.

1. Pathwise approach. This can be used only if the instantaneous and terminal
costs are differentiable. Otherwise, regularization procedures lead to high
variances. It provides the smallest computational time. Note also that no
condition on the nondegeneracy of the diffusion coefficient is needed. For the
implementation, only the first derivatives of the coefficient are required.

2. Malliavin calculus approach. This handles the case of nonsmooth costs, but
the computational time is rather large. A nondegeneracy assumption has to
be satisfied but it may be not stringent (hypoellipticity, e.g.). Note that the
simulation procedures require the computations of the second derivatives ∂2

x,x

and ∂2
x,α of the coefficients.

3. Adjoint approach. It can be applied in the elliptic case and is particularly
efficient in terms of computational time for a large number of parameters.
However, it is quite slow, especially when there are instantaneous costs (be-
cause of double time integrals and a possible large number of discretization
times). The second derivatives required for the simulations concern only ∂2

x,x.
4. Martingale approach. The diffusion coefficient has to be elliptic. As for the

adjoint approach, it handles situations with nonsmooth costs. It appears to
be very fast (almost as fast as the pathwise approach), but it is slower for
instantaneous cost problems (same reason as for the adjoint approach). Note
also that only the first derivatives of the coefficient are needed.

In future research, we will consider the analysis of the weak error for the martin-
gale method and numerical optimizations in the general nondegenerate case (such as
portfolio optimization problems in finance).
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