
Fast LSTD using stochastic approximation: Finite time analysis
and application to traffic control

Prashanth L A ∗1, Nathaniel Korda †2 and Rémi Munos ‡1

1INRIA Lille - Nord Europe, Team SequeL, FRANCE.
2Oxford University, UNITED KINGDOM.

Abstract

We propose a stochastic approximation based method with randomisation of samples for policy evaluation
using the least squares temporal difference (LSTD) algorithm. Our method results in an O(d) improvement in
complexity in comparison to regular LSTD, where d is the dimension of the data. We provide convergence rate
results for our proposed method, both in high probability and in expectation. Moreover, we also establish that
using our scheme in place of LSTD does not impact the rate of convergence of the approximate value function to
the true value function. This result coupled with the low complexity of our method makes it attractive for imple-
mentation in big data settings, where d is large. Further, we also analyse a similar low-complexity alternative for
least squares regression and provide finite-time bounds there. We demonstrate the practicality of our method for
LSTD empirically by combining it with the LSPI algorithm in a traffic signal control application.

Several machine learning problems involve solving a linear system of equations from a given set of training
data. In this paper we consider the problem of policy evaluation in reinforcement learning (RL) using the method
of temporal differences (TD). Given a fixed training data set, one popular temporal difference algorithm for policy
evaluation is LSTD Bradtke and Barto [1996]. However, LSTD is computationally expensive as it requires O(d2)
computations. We propose a stochastic approximation (SA) based algorithm that draws data samples from a
uniform distribution on the training set. From the finite time analyses that we provide, we observe our algorithm
converges at the optimal rate, in high probability as well as in expectation. Moreover, using our scheme in place of
LSTD does not impact the rate of convergence of the approximate value function to the true value function. This
finding coupled with the significant decrease in the computational cost of our algorithm, makes it appealing in the
canonical big data settings.

The problem considered here is to estimate the value function V π of a given policy π. Temporal difference
(TD) methods are well-known in this context, and they are known to converge to the fixed point V π = T π(V π),
where T π is the Bellman operator (see Section 2.1 for a precise definition). A popular approach to overcome
the curse of dimensionality associated with large state spaces is to parameterize the value function using a linear
function approximation architecture. For every s in the state space S, we approximate V π(s) ≈ θTφ(s), where
φ(·) is a d-dimensional feature vector with d << |S|, and θ is a tunable parameter. The function approximation
variant of TD Tsitsiklis and Van Roy [1997] is known to converge to the fixed point of Φθ = ΠT π(Φθ), where Π
is the orthogonal projection onto the space within which we approximate the value function, and Φ is the feature
matrix that characterises this space.

LSTD estimates the fixed point of ΠT π using empirical data D := {(si, ri, s′i), i = 1, . . . , T)} obtained by
simulating the Markov decision process (MDP) with the underlying policy π. For every i = 1, . . . , T , the 3-tuple
(si, ri, s

′
i) corresponds to a transition from state si to s′i under action π(si) and the resulting reward is denoted by

∗prashanth.la@inria.fr
†nathaniel.korda@eng.ox.ac.uk
‡remi.munos@inria.fr

1

ar
X

iv
:1

30
6.

25
57

v3
 [

cs
.L

G
]

 1
6

Ju
n

20
14

ri. The LSTD estimate is given as the solution to θ̂T = Ā−1T b̄T , where ĀT = 1
T

∑T
i=1 φ(si)(φ(si) − βφ(s′i))

T,
and b̄T = 1

T

∑T
i=1 riφ(si).

Computing the inverse of the matrix ĀT is computationally expensive, especially when d is large. Indeed,
assuming that the features φ(si) evolve in a compact subset of Rd, the complexity of the above approach is
O(d2T), where Ā−1T is computed iteratively using the Sherman-Morrison lemma. On the other hand, if we employ
the Strassen algorithm or the Coppersmith-Winograd algorithm for computing Ā−1T , the complexity is of the order
O(d2.807) and O(d2.375), respectively, in addition to O(d2T) complexity for computing ĀT .

A common trick, in practice, to alleviate this problem in high dimensions, is to replace the inversion of the
ĀT matrix by an iterative procedure that performs a fixed point iteration. From a theoretical standpoint, this
comes under the purview of stochastic approximation (SA), and one requires that the samples be chosen randomly
to ensure convergence. In this paper, we analyse such an SA based scheme and show that it converges to the
LSTD solution. The advantage is that the SA based scheme incurs lower computational cost in comparison to the
approaches mentioned above. We also analyse a similar low-complexity alternative for the classic least squares
parameter estimation problem.

We provide convergence rate results for our proposed method, both in high probability and in expectation. In
particular, we show that, with probability 1 − δ, the SA based scheme constructs an ε-approximation of the cor-
responding LSTD solution with O(d ln(1/δ)/ε2) complexity, irrespective of the number of samples T . Moreover,
we also establish that using the SA based scheme in place of LSTD does not impact the rate of convergence of the
approximate value function to the true value function (see Theorem 3).

The rate results coupled with the low complexity of our scheme make it more amenable to practical implemen-
tation in the canonical big data settings, where both d and T are large. Further, we provide explicit constants in
the high probability bounds and we believe this opens several avenues for the use of SA based low complexity al-
ternatives in higher level decision making procedures, for instance, least squares policy iteration (LSPI) and linear
bandit algorithms. We demonstrate the practicality of our solution scheme for LSTD empirically by using it as a
subroutine in the LSPI algorithm for adaptive traffic signal control1. In particular, for the experiments we employ
step-sizes that were used to derive the finite-time bounds (see Corollary 2). We demonstrate that this choice results
in rapid convergence of our SA based scheme in the experiments and also that the performance of the SA variant
of LSPI is comparable to that of LSPI.

The rest of the paper is organized as follows: In Section 1, we review relevant previous works. In Section 2 we
present the fast LSTD algorithm based on stochastic approximation and in Section 3 we provide the non-asymptotic
bounds for this algorithm. In Section 4, we outline the variants of our algorithm to incorporate regularization and
iterate averaging, while in Section 6, we provide extensions to solve the problem of least squares regression. Next,
in Section 5, we provide outlines for the proof and derivation of rates. In Section 7, we provide experiments on a
traffic signal control application. Finally, in Section 8 we provide the concluding remarks.

1 Related work
In the context of the problem of prediction in RL, temporal difference (TD) learning is a well-known algorithm.
See Bertsekas and Tsitsiklis [1996], Sutton and Barto [1998] for a textbook introduction and Tsitsiklis and Van Roy
[1997] for an asymptotic analysis. LSTD Bradtke and Barto [1996] is a popular batch algorithm that converges
asymptotically to the TD solution. Finite time analysis of LSTD is provided by Lazaric et al. [2012] and we extend
it to the case when LSTD solution is replaced by a SA iterate.

A popular line of research in RL is on improving the complexity of TD-like algorithms (cf. GTD Sutton et al.
[2009b], GTD2 Sutton et al. [2009a], iLSTD Geramifard et al. [2007] and the references therein). The popular
Computer Go with dimension d = 106 Silver et al. [2007] and several practical applications (e.g. transportation,
networks) involve high-feature dimensions. Moreover, considering that linear function approximation is effective
with a large number of features, our O(d) improvement in complexity of LSTD by employing SA is meaningful.

1See Appendix D for another set of experiments that combines the SA based low-complexity variant for least squares regression with the
LinUCB algorithm for contextual bandits, using the large scale news recommendation dataset from Yahoo Webscope [2011].

2

θn
Pick in uniformly

in {1, . . . , T }

Random Sampling

Update θn
using (sin , rin , s

′
in
)

SA Update

θn+1

Figure 1: Overall flow of the fLSTD-SA algorithm.

Our algorithms are based on the well-known stochastic approximation technique, originally proposed for find-
ing zeroes of a nonlinear function by Robbins and Monro [1951]. The reader is referred to Kushner and Yin [2003]
for a textbook introduction to SA. Iterate averaging is a standard approach to accelerate the convergence of SA
schemes and was proposed independently by Ruppert [1991] and Polyak and Juditsky [1992]. Non asymptotic
bounds for Robbins Monro schemes have been provided by Frikha and Menozzi [2012] and extended to incorpo-
rate iterate averaging by Fathi and Frikha [2013].

In comparison to previous work, we would like to point out that there is no finite time analysis of GTD-type
algorithms. While iLSTD is an efficient approximation to LSTD, analysis by Geramifard et al. [2007] requires that
the feature matrix be sparse. In contrast, we provide finite-time bounds and do not make any sparsity assumption.
To the best of our knowledge, efficient SA algorithms that approximate LSTD without impacting its rate of con-
vergence to true value function, have not been proposed before in the literature. The high probability bounds that
we derive for the SA based scheme do not directly follow from earlier work on LSTD algorithms. Further, unlike
Frikha and Menozzi [2012], we provide explicit constants in the bounds that we derive (see Corollary 2) and we
employ these in our experiments as well.

Stochastic gradient descent (SGD) is a well-known method for optimising a function given only noisy obser-
vations. In the context of machine learning, finite time analysis of such methods have been provided by Bach
and Moulines [2011]. While the bounds by Bach and Moulines [2011] are given in expectation, many machine
learning applications require high probability bounds, which we provide for our case. Regret bounds for online
SGD techniques have been given by Zinkevich [2003], Hazan and Kale [2011]: the gradient descent algorithm by
Zinkevich [2003] is in the setting of optimising the average of convex loss functions whose gradients are available,
while that by Hazan and Kale [2011] is for strongly convex loss functions.

In comparison to previous work w.r.t. least squares regression, we highlight the following differences: (i) Ear-
lier works on least squares regression (cf. Hazan and Kale [2011]) require the knowledge of the strong convexity
constant in deciding the step-size, while we average the iterates to get rid of this dependency. (ii) Our analysis is
much simpler (since we work directly with least squares problems) and we make all the constants explicit for the
problems considered.

2 Fast LSTD using Stochastic Approximation (fLSTD-SA)
We propose here a stochastic approximation variant of the least squares temporal difference (LSTD) algorithm,
whose iterates converge to the same fixed point as the regular LSTD algorithm, while incurring much smaller
overall computational cost.

The algorithm, which we call Stochastic Algorithm for LSTD Approximation (fLSTD-SA), is a simple stochas-
tic approximation scheme with randomized samples. The results that we present establish that fLSTD-SA com-
putes an ε-approximation to the LSTD solution θ̂T with probability 1−δ, while incurring a complexity of the order
O(d ln(1/δ)/ε2), irrespective of the number of samples T . In turn, this enables us to give a performance bound
for the approximate value function computed by fLSTD-SA. A schema of fLSTD-SA is given in Figure 1.

Although our analysis for fLSTD-SA depends on a strong convexity assumption that may not hold in all
situations, we present also a variant of fLSTD-SA employing iterate averaging for which error bounds can be
given without resorting to a strong convexity assumption.

3

2.1 Background for LSTD
Consider an MDP with state space S, action space A and transition probabilities p(s, a, s′), s, s′ ∈ S, a ∈ A. The
value function V π for a given policy π (a mapping from states to actions) is the fixed point of the Bellman operator
Tπ defined as

T π(s) = r(s, π(s)) + β
∑
s′

p(s, π(s), s′)V π(s′), (1)

where β ∈ (0, 1) is the discount factor and r(s, π(s′)) denotes the instantaneous rewards obtained in state s with
action π(s). When the cardinality of S is huge and in the absence of knowledge of the transition dynamics, a
popular approach is to parameterize the value function using a linear function approximation architecture, i.e., for
every s ∈ S, we approximate V π(s) ≈ θTφ(s), where φ(s) is a d-dimensional feature vector with d << |S|, and
θ is a tunable parameter. The well-known TD learning algorithm Bertsekas and Tsitsiklis [1996] attempts to find
the fixed point of the operator ΠT given by

Φθ = ΠT π(Φθ), (2)

where B = {Φθ | θ ∈ Rd} is the space within which we want to approximate the value function V π , Π is
the orthogonal projection onto B, and Φ is the feature matrix with rows φ(s)T,∀s ∈ S denoting the features
corresponding to state s ∈ S. Let θ∗ denote the solution to (2), P the transition probability matrix with components
p(s, π(s), s′) and Ψ the stationary distribution (assuming it exists) of the Markov chain for the underlying policy
π. Then, θ∗ can be written as the solution to the following system of equations (cf. [Bertsekas, 2012, Section 6.3])

Aθ∗ = b, where A = ΦTΨ(I − βP)Φ and b = ΦTΨr. (3)

The LSTD approach is to approximateA and b using T samples {(si, ri, s′i), i = 1, . . . , T)} obtained by simulating
the MDP with the underlying policy π.

An approximate solution to (3) is constructed as follows:

θ̂T = Ā−1T b̄T (4)

where ĀT =
1

T

T∑
i=1

φ(si)(φ(si)−βφ(s′i))
T, and b̄T =

1

T

T∑
i=1

riφ(si). Here φ(si) is a d-dimensional feature vector

corresponding to state si, for all i = 1, . . . , T . By invoking the strong law of large numbers, one can show that
ĀT → A and b̄T → b as the number of samples T tends to infinity.

2.2 Update rule for fLSTD-SA
Starting with an arbitrary θ0, update the parameter θn as follows:

θn = θn−1 + γn
(
rin + βθT

n−1φ(s′in)− θT

n−1φ(sin)
)
φ(sin), (5)

where each in is chosen uniformly randomly from the set {1, . . . , T}. In other words, we pick a sample with
uniform probability 1/T from the set D := {(si, ri, s′i), i = 1, . . . , T)} and use it to perform a fixed point
iteration in (5). The quantities γn above are step sizes that are chosen in advance and satisfy standard stochastic
approximation conditions (see (A4) below). Notice that the above update is the usual TD update, except that the
samples are drawn uniformly randomly from the sample set D.

3 Main Results

3.1 Error bounds
We make the following assumptions for the analysis fLSTD-SA:
(A1) Bounded features, i.e., ‖φ(si)‖2 ≤ 1, for i = 1, . . . , T .

4

(A2) Bounded rewards, i.e., |ri| ≤ Rmax < ∞ for i = 1, . . . , T and bounded linear space, i.e., −Vmax ≤ Φθ ≤
Vmax <∞.

(A3) Writing ΦT
4
= (φ(s1)T; . . . ;φ(sT)T), the covariance matrix 1

T ΦT

TΦT is positive definite and its smallest
(positive) eigenvalue is at least µ.
(A4) The step sizes γn satisfy

∑
n γn =∞, and

∑
n γ

2
n <∞.

By working in a bounded linear space along with bounded rewards and features, along with step sizes that satisfy
standard stochastic approximation conditions, we ensure that the parameter θ remains stable, and hence that (5)
converges.

Let zn := θn−θ̂T denote the approximation error for the algorithm (5), i.e. the error incurred by the nth iterate
of our optimization procedure. To obtain high probability bounds on the error we consider separately the deviation
of zn from its mean (see (6) in Theorem 1), and the size of its mean itself (see (7) in Theorem 1). In this way
the first quantity can be directly decomposed as a sum of martingale differences, and then a standard martingale
concentration argument applied, while the second quantity can be analyzed by directly unrolling iteration (5) (a
proof outline is provided in Section 5, while the detailed proofs are available in Appendix A).

Theorem 1. Under (A1)-(A4), we have ∀ε > 0,

P (
∥∥∥θn − θ̂T∥∥∥

2
−E

∥∥∥θn − θ̂T∥∥∥
2
≥ ε) ≤ exp

(
−ε2/(2

n∑
i=1

L2
i)

)
, (6)

E
∥∥∥θn − θ̂T∥∥∥

2
≤ exp(−(1− β)µΓn)

∥∥∥θ0 − θ̂T∥∥∥
2︸ ︷︷ ︸

initial error

+

(
n−1∑
k=1

H2
βγ

2
k+1 exp(−2(1− β)µ(Γn − Γk+1)

) 1
2

︸ ︷︷ ︸
sampling error

, (7)

where Li := γi
∏n−1
j=i (1− 2γj+1µ((1−β)−β(2−β)γj+1))1/2, Γn :=

∑n
i=1 γi and H2

β := Rmax(Rmax + 2) +

(1 + β)2V 2
max.

The initial error depends on the initial point θ0 of the algorithm. The sampling error arises out of a martingale
difference sequence and is the dominant term in (7). Under a suitable choice of step-sizes (see Corollary 2), it can
be shown that the initial error is forgotten faster than the sampling error.

The above theorem assumes no specific form for the step-sizes γn. Specifying the step-size sequence, we can
merge the two claims above to deduce the following bounds on the approximation error zn with explicit constants:

Corollary 2 (Error Bound for iterates of fLSTD-SA). Under (A1)-(A4), choosing γn = (1−β)c
2(c+n) and c such that

(1− β)2µc ∈ (1.33, 2), we have, for any δ > 0,

E
∥∥∥θn − θ̂T∥∥∥

2
≤ K1√

n+ c
and P

(∥∥∥θn − θ̂T∥∥∥
2
≤ K2√

n+ c

)
≥ 1− δ, (8)

where

K1 :=

√
c
∥∥∥θ0 − θ̂T∥∥∥

2

n((1−β)2µc−1)/2
+

(1− β)cHβ

2
and K2 :=

(1− β)c

2
√(

4
3 (1− β)2µc− 1

)
√

log
1

δ
+K1.

Remark 1. We note that setting c such that (1− β)2µc = η ∈ (1, 2) we can rewrite the constants in Corollary 2
as:

K1 :=

∥∥∥θ0 − θ̂T∥∥∥
2

(1− β)
√
µn(η−1)

+
Hβ

2(1− β)µ
and K2 :=

√
log δ−1

2(1− β)µ
√(

4
3η − 1

) +K1.

So both the bounds in expectation and high probability have a linear dependence on the inverse of (1− β)µ.

5

3.2 Performance Bound
Let ṽT := ΦθT denote the approximate value function and v denote the true value function, evaluated at the
states s1, . . . , sT . Then the following lower bound on the performance of ṽT can be deduced from Corollary 2 in
conjunction with Theorem 1 of Lazaric et al. [2012]:

Theorem 3. Under conditions of Corollary 2, for any δ > 0, with probability 1− δ we have

‖v − ṽT ‖T ≤
‖v −Πv‖T√

1− β2︸ ︷︷ ︸
residual error

+O

(√
d

(1− β)2µT

)
︸ ︷︷ ︸

estimation error

+O

(√
1

(1− β)µT
ln

1

δ

)
︸ ︷︷ ︸

approximation error

,

where ‖f‖2T :=
1

T

T∑
i=1

f(si)
2, for any function f .

The residual and estimation errors (first and second terms in the RHS above) are artifacts of function approx-
imation and least squares methods, respectively. The third term, of order O

(
1√
T

)
, is a consequence of using

fLSTD-SA in place of the LSTD. From the above theorem, we observe that using our scheme in place of LSTD
does not impact the rate of convergence of the approximate value function ṽT to the true value function v. This
finding coupled with the fact that our scheme is of low complexity makes it attractive for implementation in big
data settings, where the feature dimension d is large.

4 Variants
To obtain the best performance from fLSTD-SA we need to know the value of µ. However with minor adjustments
to the analysis we can provide two variants of fLSTD-SA for which it is not necessary to know the value of µ to
obtain the (optimal) approximation error of order O(n−1/2) and explicit constants.

4.1 Regularization.
A popular approach is to search not for the LSTD solution, but instead for a regularized LSTD solution defined as
follows:

θ̂regT = (ĀT + µI)−1b̄T (9)

where µ is now a constant set in advance. The update rule for this variant is

θregn =(1− γnµ)θn−1 + γn
(
rin + βθT

n−1φ(s′in)− θT

n−1φ(sin)
)
φ(sin). (10)

This algorithm retains all the properties of the non-regularized fLSTD-SA algorithm, except that it converges to
the solution of (9) rather than to that of (4). In particular the conclusions of Theorem 1, and of Corollary 2 hold
without requiring assumption (A3), but where zn = θn − θ̂regT measures the error to the regularized fixed point
θ̂regT .

4.2 Iterate Averaging.
Here we employ the well-known Polyak-Ruppert scheme of averaging the iterates and coupling it with larger

step-sizes. In particular, we fix the step-size γn := (1−β)
2

(
c

c+n

)α
, and then use the averaged iterate θ̄n+1 :=

(θ1 + . . .+ θn)/n to approximate the LSTD solution. Here the quantities θn are just the iterates of the fLSTD-SA
presented earlier. An analogue of Corollary 2 for iterate averaging is as follows (see Appendix B for a detailed
proof):

6

Corollary 4. Under (A1)-(A2), choosing γn = (1−β)
2

(
c

c+n

)α
, with α ∈ (1/2, 1) and c ∈ (1.33, 2), we have, for

any δ > 0,

E
∥∥∥θ̄n − θ̂T∥∥∥

2
≤ KIA

1

(n+ c)α/2
and P

(∥∥∥θ̄n − θ̂T∥∥∥
2
≤ KIA

2

(n+ c)α/2

)
≥ 1− δ, (11)

where, writing C =
∑∞
n=1 exp(−µcn1−α)(<∞),

KIA
1 :=

C
∥∥∥θ0 − θ̂T∥∥∥

2

(n+ c)
(1−α)/2 +

Hβc
α(1− β)

(µcα(1− β)2)
α 1+2α

2(1−α)

, and

KIA
2 :=

√
log δ−1

µ(1− β)

[
3α +

[
2α

µcα(1− β)2
+

2α

α

]2]
1

(n+ c)
(1−α)/2 +KIA

1 .

Thus, it is possible to remove the dependency on the knowledge of µ for the choice of c through averaging of
the iterates, at the cost of (1 − α)/2 in the rate. However, choosing α close to 1 causes a sampling error blowup.
As suggested by earlier works on stochastic approximation, it is preferred to average after a few iterations since
the initial error ‖θ0 − θT ‖2 is not forgotten exponentially fast with averaging.

5 Outline of analysis
In this section we give outline proofs of the main results concerning the fLSTD-SA algorithm. We split these into
two sections: first, we sketch the martingale analysis that leads to the proof of Theorem 1 and which forms the
template for the proof for extension to least squares regression (see Theorem 10 in Appendix C) and the regularized
and iterate averaged variants of fLSTD-SA (see Corollary 4); second, we give the derivation of the rates when the
step sizes a chosen in specific forms.

5.1 Outline of Theorem 1 proof

Recall that Theorem 1 decomposes the problem of bounding the approximation error zn := θn− θ̂T into bounding
the deviation of zn from its mean in high probability and then bounds the mean of zn itself. In the following, we
first provide a sketch of the proof of high probability bound and later outline the proof for the bound in expectation.
For the former, we employ a proof technique similar to that used in Frikha and Menozzi [2012]. However, our
analysis is much simpler and we make all the constants explicit for the problem at hand. Moreover, in order to
eliminate a possible exponential dependence of the constants in the resulting bound on the inverse of (1−β)µ, we
depart from the argument in Frikha and Menozzi [2012].

High probability bound. (Sketch) Recall that zn := θn − θ̂T . We rewrite ‖zn‖22 − E ‖zn‖22 as a telescoping sum
of martingale differences:

‖zn‖2 − E ‖zn‖2 =

n∑
i=1

gi − E[gi |Fi−1] =

n∑
i=1

Di,

where Di
4
= gi − E[gi |Fi−1], gi = E[‖zn‖2 |θi], and Fi denotes the sigma algebra generated by the random

variables {i1, . . . , in}.
The next step is to show that the functions gi are Lipschitz continuous in the rewards, with Lipschitz constants

Li. In order to obtain constants with no exponential dependence on the inverse of (1 − β)µ we depart from the
general scheme of Frikha and Menozzi [2012], and use our knowledge of the form of the update function fi to

7

eliminate the noise due to the rewards between time i + 1 and time n. Specifically, letting Θi
j(θ) denote the

mapping that returns the value of the iterate θj at instant j, given that θi = θ, we show that

E
[∥∥Θi

n(θ)−Θi
n(θ′)

∥∥2
2

]
= E

[
E
(
[I − γn[φ(sin)φ(sin)T − βφ(sin)φ(s′in)T]]

.(Θi
n−1(θ)−Θi

n−1(θ′)) | Θi
n−1(θ),Θi

n−1(θ′)
)]

≤ (1− γnµ(1− β − γnβ(2− β)))E
[∥∥Θi

n−1(θ)−Θi
n−1(θ′)

∥∥2
2

]
,

where we used the specific form of fi in obtaining the equality, and have applied assumption (A3) to obtain the
inequality. Unrolling this iteration then yields the new Lipschitz constants.

Now we can invoke a standard martingale concentration bound: Using the Li-Lipschitz property of the gi
functions and the assumption (A2) we find that

P (‖zn‖2 − E ‖zn‖2 ≥ ε) = P

(
n∑
i=1

Di ≥ ε

)
≤ exp(−λε) exp

(
αλ2

2

n∑
i=1

L2
i

)
.

The claim follows by optimizing the above over λ. The full proof is available in Appendix A.1.

Bound in expectation. (Sketch) First we extract a martingale difference from the update rule (5): Recall that
zn := θn − θ̂T . Let fn(θ) := (θTxin − (rin + βθTx′in))xin and let F (θ) := Ein(fn(θ)). Then, we have

zn = θn − θ̂T = θn−1 − θ̂T − γn (F (θn−1)−∆Mn) ,

where ∆Mn+1(θ) = Fn(θ)− fn(θ) is a martingale difference. Now since θ̂T is the LSTD solution, F (θ̂T)) = 0.
Moreover, F (·) is linear, and so we obtain

zn =zn−1 − γn
(
zn−1Ān −∆Mn

)
= Πnz0 −

n∑
k=1

γkΠnΠ−1k ∆Mk,

where Ān =
1

n

n∑
i=1

xi(xi − βx′i)T and Πn :=
∏n
k=1

(
I − γkĀk

)
.

By Jensen’s inequality, we obtain

E(‖zn‖2) ≤ (E(〈zn, zn〉))
1
2 =

(
E ‖Πnz0‖22 +

n∑
k=1

γ2kE
∥∥ΠnΠ−1k ∆Mk

∥∥2
2

) 1
2

(12)

The rest of the proof amounts to bounding the martingale difference ∆Mn as follows:

E[‖∆Mn‖22] ≤ Eit〈fit(θt−1), fit(θt−1)〉 ≤ Rmax(Rmax + 2) + (1 + β)2 ‖θt−1‖22 ≤ H
2
β .

5.2 Derivation of rates
Now we give the proof of Corollary 2, which gives explicitly the rate of convergence of the approximation error in
high probability for the specific choice of step sizes γn = 1−β

2
c

c+n :

8

Proof of Corollary 2: Note that when γn = (1−β)c
2(c+n) ,

n∑
i=1

L2
i =

n∑
i=1

(1− β)2c2

4(c+ i)2

n∏
j=i

(
1− 2µ

(1− β)c

2(c+ n)
((1− β)− β(2− β)

(1− β)c

2(c+ n)
)

)

≤
n∑
i=1

(1− β)2c2

4(c+ i)2
exp

−3

4
(1− β)2µc

n∑
j=i

1

(c+ n)


≤ (1− β)2c2

4(n+ c)
3
4 (1−β)2µc

n∑
i=1

(i+ c)−(2−
3
4 (1−β)

2µc).

We now find three regimes for the rate of convergence, based on the choice of c:
(i)
∑n
i=1 L

2
i = O

(
(n+ c)

3
4 (1−β)

2µc
)

when 3
4 (1− β)2µc ∈ (0, 1),

(ii)
∑n
i=1 L

2
i = O

(
n−1 lnn

)
when 3

4 (1− β)2µc = 1, and

(iii)
∑n
i=1 L

2
i = (1−β)2c2

4(3
4 (1−β)2µc−1)

(n+ c)−1 when 3
4 (1− β)2µc ∈ (1, 2).

(We have used comparisons with integrals to bound the summations.) Thus, setting 2/((1− β)2µ) > c > 1/((1−
β)2µ), the high probability bound from Theorem 1 gives

P (
∥∥∥θn − θ̂T∥∥∥

2
− E

∥∥∥θn − θ̂T∥∥∥
2
≥ ε) ≤ exp

(
−ε

2(n+ c)

2Kµ,c,β

)
(13)

where Kµ,c,β := (1−β)2c2
4((1−β)2µc−1) .

Under the same choice of step-size, the bound in expectation in Theorem 1 we have:

n−1∑
k=1

H2
βγ

2
k+1 exp(−2(1− β)µ(Γn − Γk+1))

≤
(1− β)2c2H2

β

4
(n+ c)−(1−β)

2µc
n∑
k=1

(c+ k)−(2−(1−β)
2µc)

≤
(1− β)2c2H2

β

4
(n+ c)−1

we in the last inequality we have again compared the sum with an integral. Similarly

exp(−(1− β)µΓn) ≤
(

c

n+ c

) (1−β)2µc
2

≤
(

c

n+ c

) 1
2

.

So we have

E
∥∥∥θn − θ̂T∥∥∥

2
≤
(√

c ‖θ0 − θ∗‖2 +
(1− β)cHβ

2

)
n−

1
2 , (14)

and the result now follows.

6 Extension to Least Squares Regression
In this section, we describe the classic parameter estimation problem using the method of least squares, the standard
approach to solve this problem and a low-complexity alternative using stochastic approximation.

In this setting, we are given a set of samples D := {(xi, yi), i = 1, . . . , T} with the underlying observation
model yi = xT

iθ
∗ + ξi (ξi is zero mean and bounded noise, and θ∗ is an unknown parameter). The least squares

9

estimate θ̂T minimizes 1
2

T∑
i=1

(yi − θTxi)
2. It can be shown that θ̂T = Ā−1T bT , where ĀT =

1

T

T∑
i=1

xix
T
i and b̄T =

1

T

T∑
i=1

xiyi.

Notice that, unlike the RL setting, θ̂T here is the minimizer of an empirical loss function. However, as in the
case of LSTD, the computational cost for a Sherman-Morrison lemma based approach for solving the above would
be of the order O(d2T). Similarly to the case of the fLSTD-SA algorithm, we update the iterate θn using a SA
scheme as follows (starting with an arbitrary θ0),

θn = θn−1 + γn(yin − θT

n−1xin)xin , (15)

where, as before, each in is chosen uniformly randomly from the sample set D and γn are step-sizes.
Unlike fLSTD-SA which is a fixed point iteration, the above is a stochastic gradient descent procedure. Never-

theless, using the same proof template as for fLSTD-SA earlier, we can derive bounds on the approximation error,
i.e., the distance between θn and least squares solution θ̂T , both in high probability as well as expectation.

Results. As in the case of fLSTD-SA, we assume that the features are bounded, the noise is i.i.d, zero-mean and
bounded and the matrix ĀT is positive definite, with smallest eigenvalue at least µ > 0. An analogue of Corollary
2 for this setting is as follows (See Appendix C for a detailed proof.):

Corollary 5. Choosing γn = c
2(c+n) and c such that µc ∈ (1.33, 2), we have, for any δ > 0,

E
∥∥∥θn − θ̂T∥∥∥

2
≤ KLS

1√
n+ c

and P
(∥∥∥θn − θ̂T∥∥∥

2
≤ KLS

2√
n+ c

)
≥ 1− δ,

with KLS
1 :=

√
c
∥∥∥θ0 − θ̂T∥∥∥

2

(n+ c)(µc−1)/2
+
h(n)

2
, KLS

2 :=

√
c√

((µc)/2− 1)

√
log

1

δ
+K1,

and h(n) :=c

[(
V ar(ξin) + 2

∥∥∥θ0 − θ̂T∥∥∥2
2

)
+ 4

∥∥∥θ0 − θ̂T∥∥∥
2

lnn+ 2 ln2 n

]
.

7 Traffic Control Application
LSPI Lagoudakis and Parr [2003] is a well-known algorithm for control and is based on the policy iteration
procedure for MDPs. It performs policy evaluation and policy improvement in tandem. For the purpose of
policy evaluation, LSPI uses a LSTD-like algorithm called LSTDQ, which learns the state-action value func-
tion. In contrast, LSTD learns the state value function. We now briefly describe LSTDQ and its fast SA variant
fLSTDQ-SA: We are given a set of samples D := {(si, ai, ri, s′i), i = 1, . . . , T)}, where each sample i denotes
a one-step transition of the MDP from state si to s′i under action ai, while resulting in a reward ri. LSTDQ at-
tempts to approximate the Q-value function for any policy π by solving the linear system θ̂T = Ā−1T b̄T , where
ĀT = 1

T

∑T
i=1 φ(si, ai)(φ(si, ai)− βφ(s′i, π(s′i)))

T, and b̄T = 1
T

∑T
i=1 riφ(si, ai).

fLSTDQ-SA approximates LSTDQ by an iterative update scheme as follows (starting with an arbitrary θ0):

θk = θk−1 + γk
(
rik + βθT

k−1φ(s′ik , πn(s′ik))− θT

k−1φ(sik , aik)
)
φ(sik , aik) (16)

From Section 2, it is evident that the claims in Theorem 1 and Corollary 2 hold for the above scheme as well.
The idea behind the experimental setup is to study both LSPI and a variant of LSPI, referred to as fLSPI-

SA, where we use fLSTDQ-SA as a subroutine to approximate the LSTDQ solution. Algorithm 1 provides the
pseudo-code for the latter algorithm.

We consider a traffic signal control application for conducting the experiments. The problem here is to adap-
tively choose the sign configurations for the signalized intersections in the road network considered, in order to

10

Algorithm 1 fLSPI-SA

Input: Sample set D := {si, ai, ri, s′i}Ti=1, obtained from an initial (arbitrary) policy
Initialisation: ε, τ , step-sizes {γk}τk=1, initial policy π0 (given as θ0)
π ← π0, θ ← θ0
repeat

Policy Evaluation
Approximate LSTDQ(D,π) using fLSTDQ-SA(D,π) as follows:
for k = 1 . . . τ do

Get random sample index: ik ∼ U({1, . . . , T})
Update fLSTD-SA iterate θk using (16)

end for
θ′ ← θτ , ∆ = ‖θ − θ′‖2
Policy Improvement

Obtain a greedy policy π′ as follows: π′(s) = arg maxa∈A θ
′Tφ(s, a)

θ ← θ′, π ← π′

until ∆ < ε

maximize the traffic flow in the long run. Let L be the total number of lanes in the road network considered. Fur-
ther, let qi(t), i = 1, . . . , L denote the queue lengths and ti(t), i = 1, . . . , L the elapsed time (since signal turned
to red) on the individual lanes of the road network. Following Prashanth and Bhatnagar [2011], the traffic signal
control MDP is formulated as follows:

State xt =
(
q1(t), . . . , qL(t), t1(t), . . . , tL(t)

)
,

Action at belongs to the set of feasible sign configurations,

Single-stage cost h(xt) = u1

[∑
i∈Ip u2 · qi(t)+

∑
i/∈Ip w2 · qi(t)

]
+w1

[∑
i∈Ip u2 · ti(t)+

∑
i/∈Ip w2 · ti(t)

]
, where

ui, wi ≥ 0 such that ui + wi = 1 for i = 1, 2 and u2 > w2. Here, the set Ip is the set of prioritized lanes.

Function approximation is a standard technique employed to handle high-dimensional state spaces (as is the
case with the traffic signal control MDP on large road networks). We employ the feature selection scheme from
Prashanth and Bhatnagar [2012], which is briefly described in the following: The features φ(s, a) corresponding to
any state-action tuple (s, a) is a L-dimensional vector, with one bit for each line in the road network. The feature
value φi(s, a), i = 1, . . . , L corresponding to lane i is chosen as described in Table. 1, with qi and ti denoting the
queue length and elapsed times for lane i. Thus, as the size of the network increases, the feature dimension scales
in a linear fashion.

Note that the above feature selection scheme depends on certain thresholds L1 and L2 on the queue length and
T1 on the elapsed times. The motivation for using such graded thresholds is owing to the fact that queue lengths
are difficult to measure precisely in practice. We set (L1,L2, T1) = (6, 14, 130) in all our experiments and this
choice has been used, for instance, in Prashanth and Bhatnagar [2012].

We implement both LSPI as well as fLSPI-SA for the above problem. We collect T = 10000 samples from
a exploratory policy that picks the actions in a uniformly random manner. For both LSPI and fLSPI-SA, we set
β = 0.9 and ε = 0.1. For fLSPI-SA, we set τ = 500 steps. This choice is motivated by an experiment where
we observed that at 500 steps, fLSTD-SA is already very close to LSTDQ and taking more steps did not result in
any significant improvements for fLSPI-SA. We implement the regularized variant of LSTDQ, with regularization

constant µ set to 1. Motivated by Corollary 2, we set the step-size γk =
(1− β)c

2(c+ k)
, with c =

1.33

(1− β)2
.

Results. We report the norm differences, total arrived road users (TAR) and run-times obtained from our experi-
mental runs in Figs. 2a–2c. Norm difference measures the distance in `2 norm between the fLSTD-SA iterate θk,
k = 1, . . . , τ and LSTDQ solution θ̂T in iteration 1 of fLSPI-SA. TAR is a throughput metric that denotes the total

11

0 100 200 300 400 500

0

0.2

0.4

0.6

step k of fLSTD-SA

∥ ∥ ∥θ k−
θ̂ T

∥ ∥ ∥ 2

∥∥∥θk − θ̂T∥∥∥2
2

(a) Norm difference on 7x9-grid network

0 1,000 2,000 3,000 4,000 5,000

0

0.5

1

1.5

·104

time steps

TA
R

LSPI
fLSPI-SA

(b) Throughput (TAR) on 7x9-grid network

7x9-Grid
(d = 504)

14x9-Grid
(d = 1008)

14x18-Grid
(d = 2016)

28x18-Grid
(d = 4032)

0

1

2

3

4

5

6

·105

4,917
30,144

1.91 · 105

6.05 · 105

66 159 287 2,164

ru
nt

im
e

(m
s)

LSPI
fLSPI-SA

(c) Run-times on four road networks

Figure 2: Norm difference, throughput and runtime performance of LSPI and fLSPI-SA

12

Table 1: Feature selection

State Action Feature φi(s, a)

qi < L1 and ti < T1
RED 0.01

GREEN 0.06

qi < L1 and ti ≥ T1
RED 0.02

GREEN 0.05

L1 ≤ qi < L2 and ti < T1
RED 0.03

GREEN 0.04

L1 ≤ qi < L2 and ti ≥ T1
RED 0.04

GREEN 0.03

qi ≥ L2 and ti < T1
RED 0.05

GREEN 0.02

qi ≥ L2 and ti ≥ T1
RED 0.06

GREEN 0.01

number of road users who have reached their destination. The choice 1 of the iteration in Fig 2a is arbitrary, as we
observed that fLSTD-SA iterate θτ is close to the corresponding LSTDQ solution in each iteration of fLSPI-SA.
The runtime reports in Fig. 2c are for four different road networks of increasing size and hence, increasing feature
dimension.

From Fig. 2a, we observe that fLSTD-SA algorithm converges rapidly to the corresponding LSTDQ solution.
Further, from the runtime plots (see Fig. 2c), we notice that fLSPI-SA is several orders of magnitude faster than
regular LSPI. From a traffic application standpoint, we observe in Fig. 2b that fLSPI-SA results in a throughput
(TAR) performance that is on par with LSPI.

8 Conclusions
We analysed a stochastic approximation based algorithm with randomised samples for policy evaluation by the
method of LSTD. We provided convergence rate results for this algorithm, both in high probability and in expecta-
tion. Further, we also established that using this scheme in place of LSTD does not impact the rate of convergence
of the approximate value function to the true value function. This result coupled with the fact that the SA based
scheme possesses lower computational complexity in comparison to traditional techniques, makes it attractive for
implementation in big data settings, where the feature dimension is large. On a traffic signal control application,
we demonstrated the practicality of a low-complexity alternative to LSPI that uses our SA based scheme in place
of LSTDQ for policy evaluation.

13

A Full Proofs for fLSTD-SA
Recall that fLSTD-SA is a stochastic approximation scheme with randomized samples, using the following update
rule (starting with an arbitrary θ0):

θn = θn−1 + γn
(
rin + βθT

n−1φ(s′in)− θT

n−1φ(sin)
)
φ(sin), (17)

where each in is chosen uniformly randomly from the set {1, . . . , T}.
In the following, we present the proof of the Theorem 1 that bounds the approximation error zn := θn − θ̂T in

high probability as well as in expectation. Recall that θ̂T denotes the LSTD solution.

A.1 Proof of Theorem 1: High probability bound

Proof. Recall that zn := θn−θ̂T . First, we rewrite ‖zn‖22−E ‖zn‖
2
2 as a telescoping sum of martingale differences:

‖zn‖2 − E ‖zn‖2 =

n∑
i=1

gi − E[gi |Fi−1] =

n∑
i=1

Di, (18)

where Di
4
= gi − E[gi |Fi−1], gi = E[‖zn‖2 |θi], and Fi denotes the sigma algebra generated by the random

variables {i1, . . . , in}.
The proof is given through three lemmas. The first lemma is a technical requirement to establish a monotonicity

property of the limit function F (·) (see Lemma 6 for a precise definition). The next lemma establishes that
the functions gi are Lipschitz continuous with Lipschitz constants Li. This is a crucial ingredient to invoke the
concentration bound in Lemma 7.

Lemma 6. Conditioned on Fi−1, the functions gi are Lipschitz continuous in the random innovation fi(θi−1),
with constants

Li := γi

 n∏
j=i+1

(1− 2γjµ(1− β − γj
2
β(2− β)))

1/2

.

Proof. Denote fm(θ) := (θTφ(sim) − (rim + βθTφ(sim+1
)))φ(sim). Let Θi

j(θ) denote the mapping that returns
the value of the iterate θj at instant j, given that θi = θ.

Θi
j+1(θ)−Θi

j+1(θ′) = Θi
j(θ)−Θi

j(θ
′)− γj+1[fj+1(Θi

j(θ))− fj+1(Θi
j(θ
′))]

= Θi
j(θ)−Θi

j(θ
′)− γj+1[φ(sij+1)φ(sij+1)T − βφ(sij+1)φ(s′ij+1

)T](Θi
j(θ)−Θi

j(θ
′))

= [I − γj+1[φ(sij+1)φ(sij+1)T − βφ(sij+1)φ(s′ij+1
)T]](Θi

j(θ)−Θi
j(θ
′)) (19)

The second equality follows from the definition of fj . Let aj+1 := [φ(sij+1
)φ(sij+1

)T − βφ(sij+1
)φ(s′ij+1

)T].
Then note that

aT

j+1aj+1 = φ(sij+1)φ(sij+1)Tφ(sij+1)φ(sij+1)T

− 2βφ(sij+1)φ(sij+1)Tφ(sij+1)φ(s′ij+1)T + β2φ(s′ij+1)φ(sij+1)Tφ(sij+1)φ(s′ij+1)T

=
∥∥φ(sij+1)

∥∥2
2
φ(sij+1)φ(sij+1)T − β(2−

∥∥φ(sij+1)
∥∥2
2
β)φ(s′ij+1

)φ(s′ij+1
)T,

where the in the first inequality we have used that for two column vectors of equal dimension, x and y, (xyT)T =

14

yxT, and (xxT)T = xxT. Setting ∆j = diag(‖φ(s1)‖22 , . . . , ‖φ(sj)‖22) we find that for any vector θ:

θTEij+1
(I − 2γj+1[aj+1 −

γj+1

2
aT

j+1aj+1])θ (20)

= ‖θ‖22 − 2γj+1
1

T
θTΦT

j(I − βP̂ −
γj+1

2
(∆j − βP̂ T

j (2Ij − β∆j)P̂j))Φjθ (21)

= ‖θ‖22 − 2γj+1
1

T
θTΦT

j(I − βΠP̂ − γj+1

2
(∆j − βP̂ T

j ΠT

j(2Ij − β∆j)ΠjP̂j))Φjθ (22)

≤ ‖θ‖22 − 2γj+1
1

T
(‖Φθ‖22 − β ‖Φθ‖2

∥∥∥ΠP̂Φθ
∥∥∥
2
− γj+1

2
β(2− β)

∥∥∥ΠP̂Φθ
∥∥∥2
2
) (23)

≤ ‖θ‖22 − 2
(γj+1(1− β − γj+1

2 β(2− β)))

T
‖Φθ‖22 (24)

≤ (1− 2γj+1µ(1− β − γj+1

2
β(2− β))) ‖θ‖22 , (25)

where (22) follows from the fact that θTΦTD(I − Π)x = 0 since Π is a projection, (23) by an application of
Cauchy-Schwarz inequality and (24) from the non-expansiveness property of Π and P̂ . The final inequality (25)
follows from (A3). Hence, from the tower property of conditional expectations, it follows that:

E
[∥∥Θi

n(θ)−Θi
n(θ′)

∥∥2
2

]
= E

[
E
(∥∥Θi

n(θ)−Θi
n(θ′)

∥∥2
2
| Θi

n−1(θ),Θi
n−1(θ′)

)]
≤ (1− 2γnµ(1− β − γn

2
β(2− β)))E

[∥∥Θi
n−1(θ)−Θi

n−1(θ′)
∥∥2
2

]
≤

 n∏
j=i+1

(1− 2γjµ(1− β − γj
2
β(2− β)))

 ‖θ − θ′‖22
Finally we have∥∥∥E [∥∥∥θn − θ̂T∥∥∥

2
|θi−1, fii = f

]
−E

[∥∥∥θn − θ̂T∥∥∥
2
|θi−1, fii = f ′

]∥∥∥
2

≤ E
[∥∥Θi

n (θ)−Θi
n (θ′)

∥∥
2

]
≤

 n∏
j=i+1

(1− 2γjµ(1− β − γj
2
β(2− β)))

 1
2

γi ‖f − f ′‖2 = Li ‖f − f ′‖2 .

In the following lemma, we invoke a standard martingale concentration bound using the Li-Lipschitz property
of the gi functions and the assumption (A2).

Lemma 7. Under the conditions of Theorem 1, we have

P (‖zn‖2 − E ‖zn‖2 ≥ ε) ≤ exp(−λε) exp

(
αλ2

2

n∑
i=1

L2
i

)
. (26)

Proof.

P (‖zn‖2 − E ‖zn‖2 ≥ ε) = P

(
n∑
i=1

Di ≥ ε

)
(27)

≤ exp(−λε)E

(
exp

(
λ

n∑
i=1

Di

))
(28)

= exp(−λε)E

(
exp

(
λ

n−1∑
i=1

Di

)
E
(

exp(λDn) |Fn−1
))

. (29)

15

The first equality above follows from (18), while the inequality follows from Markov inequality. Now for any
bounded random variable f , and L-Lipschitz function g we have

E (exp(λg(f))) ≤ exp
(
λ2L2/2

)
.

Note that each fi(θi−1) is a bounded random variable by (A2), and, conditioned on Fi−1, gi is Lipschitz in
fi(θi−1) with constant Li (Lemma 6). So we obtain

E (exp(λDn) |Fn−1) ≤ exp

(
λ2L2

n

2

)
, (30)

and so

P (‖zn‖2 − E ‖zn‖2 ≥ ε) ≤ exp(−λε) exp

(
αλ2

2

n∑
i=1

L2
i

)
. (31)

The proof of Theorem 1 follows by optimizing over λ in (26).

A.2 Proof of Theorem 1: Bound in expectation

Proof. First we extract a martingale difference from the update rule (5): Recall that zn := θn − θ̂T . Let fn(θ) :=
(θTφ(sin)− (rin + βθTφ(s′in)))φ(sin) and let F (θ) := Ein(fn(θ)). Then

zn = θn − θ̂T = θn−1 − θ̂T − γn (F (θn−1)−∆Mn) ,

where ∆Mn+1(θ) = Fn(θ)− fn(θ) is a martingale difference. Now since θ̂T is the LSTD solution, F (θ̂T)) = 0.
Moreover F (·) is linear, and so we obtain a recursive procedure:

zn =zn−1 − γn (zn−1An −∆Mn)

=Πnz0 −
n∑
k=1

γkΠnΠ−1k ∆Mk,

where Ān =
1

n

n∑
i=1

φ(si)(φ(si)− βφ(s′i))
T and Πn :=

∏n
k=1

(
I − γkĀk

)
.

By Jensen’s inequality, we obtain

E(‖zn‖2) ≤ (E(〈zn, zn〉))
1
2

=

(
E ‖Πnz0‖22 +

n∑
k=1

γ2kE
∥∥ΠnΠ−1k ∆Mk

∥∥2
2

) 1
2

(32)

Notice that Ān − (1− β)µI is positive definite by (A3) and hence

∥∥ΠnΠ−1k
∥∥
2

=

∥∥∥∥∥∥
n∏

j=k+1

(
I − γjĀj

)∥∥∥∥∥∥
2

≤
n∏

j=k+1

∥∥(1− γj(1− β)µ)I − γj(Āj − (1− β)µI)
∥∥
2

≤
n∏

j=k+1

‖(1− γj(1− β)µ)I‖2 ≤
n∏

j=k+1

(1− γj(1− β)µ) ≤ exp (−(1− β)µ(Γn − Γk)) , (33)

16

We now bound the martingale difference ∆Mn as follows:

E[‖∆Mn‖22] =Eit〈fit(θt−1), fit(θt−1)〉 − Eit〈F (θt−1), F (θt−1〉
≤Eit〈fit(θt−1), fit(θt−1)〉

≤Rmax(Rmax + 2) + (1 + β)2 ‖θt−1‖22 (34)

≤H2
β , (35)

where (34) follows from (A1) and (A3). The claim now follows by plugging (33) and (35) into (32).

B Incorporating Iterate Averaging
Here we incorporate the well-known Polyak-Ruppert scheme to average the iterates θn. As mentioned earlier,

averaging coupled with larger step-sizes γn = (1−β)
2

(
c

c+n

)−α
with α ∈ (1/2, 1) leads to a convergence rate of

the order O(n−α/2) irrespective of the choice of c in the step-size.

B.1 High probability bound

Define θ̄n+1
4
=
θ1 + . . .+ θn

n
and let zn = θ̄n+1 − θ̂T denote the distance of the averaged iterate to the LSTD

solution.
First we directly give a bound on the error in high probability for the averaged iterates:

Theorem 8. Under (A1)-(A2) we have, for all ε ≥ 0 and ∀n ≥ 1,

P (‖zn‖2 − E ‖zn‖2 ≥ ε) ≤ exp

(
−ε2/2

n∑
i=1

L2
i

)
, where

Li :=
γi
n

(
1 +

n−1∑
l=i+1

l∏
j=i

(1− 2γj+1µ((1− β)− β(2− β)γj+1))
1/2

)
.

Proof. As in Theorem 1, we first decompose ‖zn‖22 − E ‖zn‖
2
2 into a sum of martingale differences as follows:

‖zn‖2 − E ‖zn‖2 =

n∑
i=1

Di, (36)

where Di
4
= gi − E[gi |Fi−1] and gi =

n∑
i=1

E[‖zn‖2
∣∣ζi = (ζ1i , ζ

2
i)]. Here ζ1i is the value of the averaged iterate

θ̄i+1 at instant i and ζ2i is the value of the iterate θi at instant i.
The next step is to prove that the functions gi are Lipschitz continuous with constants

Li :=
γi
n

1 +

n−1∑
l=i+1

l∏
j=i

(
1− 2γj+1µ((1− β)− β(2− β)

γj+1

2
)
)1/2 .

Let Θ̄i
j(ζ) denote the mapping that returns the value of the averaged iterate at instant j, θ̄j , given that θ̄i−1 = ζ1

and θi = ζ2. Then, we have

E
[∥∥Θ̄i

n(ζ)− Θ̄i
n(ζ ′)

∥∥
2

]
≤ i+ 1

n

∥∥ζ1 − ζ ′1∥∥
2

+
1

n

n−1∑
l=i+1

l∏
j=i

(
1− 2γj+1µ((1− β)− β(2− β)

γj+1

2
)
)1/2 ∥∥ζ2 − ζ ′2∥∥

2
(37)

17

Note that since we consider only the smoothness with respect to ξi, the value of the averaged iterate at time i− 1
is irrelevant. Hence, similarly to the proof of Lemma 6, we find that gi is Li-Lipschitz in ξi.

The rest of the proof follows in a similar manner to the proof of Theorem 1.

B.2 Proof of Corollary 4
The proof involves the following steps:

Step 1. We derive the bounds for the Lipschitz constants Li when the iterates are averaged and the step-sizes are

chosen to be γn = (1−β)
2

(
c

c+n

)−α
for some α ∈

(
1
2 , 1
)
. This is a crucial step that helps in establishing the

order O(n−1/2) rate for the high-probability bound in Theorem 1, independent of the choice of c. Recall
that in order to obtain this rate for the algorithm without averaging one had to choose (1 − β)2µc ∈ (1, 2).
The main ingredients of this derivation can be found in the argument of pp. 15 in Fathi and Frikha [2013],
however here we manage to give all the constants explicitly.

Step 2. We bound the expected error by directly averaging the errors of the non-averaged iterates:

E
∥∥∥θ̄n+1 − θ̂T

∥∥∥
2
≤ 1

n

n∑
k=1

E
∥∥∥θk − θ̂T∥∥∥

2
,

and directly applying the bounds in expectation given in Theorem 1. This involves specializing the bounds
for the bound in expectation in Theorem 1 for the new choice of step-size sequence.

Step 1: Bounding the Lipschitz constants.

Lemma 9. Under conditions of Corollary 4, we have

n∑
i=1

L2
i ≤

1

µ(1− β)

{
3α +

[
2α

µcα(1− β)2
+

2α

α

]2}2
1

n
(38)

Proof. We perform the calculation:

n∑
i=1

L2
i =

n∑
i=1

γi
n

1 +

n−1∑
l=i+1

l∏
j=i

(
1− 2µγj+1((1− β)− β(2− β)

γj+1

2
))
)1/22

≤ 1

n2

n∑
i=1

γi
1 +

n−1∑
l=i+1

exp

− l∑
j=i

µγj+1((1− β)− β(2− β)
γj+1

2
))

2

=
1

n2

n∑
i=1

1− β
2

(
c

c+ i

)α1 +

n−1∑
l=i+1

exp

− (1− β)2µ

4

l∑
j=i

(
c

c+ i

)α2

≤ 1

µ(1− β)n2

n∑
i=1

[(
c+ i+ 2

c+ i

)α
+

1

(c+ i)α

n−1∑
l=i

exp

(
−(1− β)2µcα

((c+ l)1−α − (c+ i)1−α)

1− α

)

.((c+ l + 2)α − (l + 1)α)

]2

≤ 1

µ(1− β)n2

{
3α +

n∑
i=1

[
2α

µcα(1− β)2
+

2α

α

]2}

18

In the second equality we have substituted γi = (1−β)
2

(
c

c+n

)α
. For the second inequality we have used an Abel

transform (see page 15 in Fathi and Frikha [2013], display (2.2), for details). For the last inequality we have noted,
as in page 15 in Fathi and Frikha [2013], that

(A) :=

n−1∑
l=i+1

exp

(
−µc

α(1− β)2((c+ l)1−α − (c+ i)1−α)

1− α

)
((c+ l + 2)α − (c+ l + 1)α)

≤ 1

1− α
exp

(
µcα(1− β)2(c+ i)1−α

1− α

)∫ (c+n)1−α

(c+i+1)1−α
exp

(
µcα(1− β)2l

1− α

)
l
2α−1
1−α dl.

Now, by taking the derivative and setting it to zero, we find that l 7→ exp
(
µc(1−β)l

1−α

)
l

2α
1−α is decreasing on

[2α/µcα(1 − β)2,∞), and so we deduce that (A) ≤ (c + i + 1)α/α when c + i ≥ 2α/µcα(1 − β)2. When
c+ i < 2α/µcα(1− β)2 we use that the summand is bounded by 1.

Bounding the error in expectation.

Substituting γn = (1−β)
2

(
c

c+n

)−α
for some α ∈

(
1
2 , 1
)

gives

E
∥∥∥θn − θ̂T∥∥∥

2
≤ exp

(
−µc

α(1− β)2

2
(n+ c)1−α

)∥∥∥θ0 − θ̂T∥∥∥
2

+

(
n∑
k=1

H2
βc

2 (1− β)2

4

(
c

k + c+ 1

)2α

exp(−µ(1− β)2cα((n+ c)1−α − (k + 1 + c)1−α)

) 1
2

≤ exp

(
−µc

α(1− β)2

2
(n+ c)1−α

)∥∥∥θ0 − θ̂T∥∥∥
2

+Hβc
α(1− β)

{∫ n

0

x−2α exp(µ(1− β)2cαx1−α)dx

} 1
2


≤ exp

(
−µc

α(1− β)2

2
(n+ c)1−α

)[∥∥∥θ0 − θ̂T∥∥∥
2

+Hβc
α(1− β)

{(
µcα(1− β)2

)−2α ∫ (µcα(1−β)2)1/(1−α)n

0

y−2α exp(y1−α)dy

} 1
2


≤ exp

(
−µc

α(1− β)2

2
(n+ c)1−α

)[∥∥∥θ0 − θ̂T∥∥∥
2

+Hβc
α(1− β)

{(
µcα(1− β)2

)−2α ∫ (µcα(1−β)2)1/(1−α)n

0

((1− α)y−2α − αy−(1+α)) exp(y1−α)dy

} 1
2


≤ exp(−µcn1−α) ‖θ0 − θT ‖2 +Hβc

α(1− β)
(
µcα(1− β)2

)−α 1+2α
2(1−α) (n+ c)−

α
2

So we have

E
∥∥θ̄n − θT∥∥2 ≤ ∞∑

n=1

exp(−µc(n+ c)1−α) ‖θ0 − θT ‖2 n
−1 +Hβc

α(1− β)
(
µcα(1− β)2

)−α 1+2α
2(1−α) (n+ c)−

α
2 .

The proof of Corollary 4 follows from the above and Lemma 9.

19

C Stochastic Approximation for Least Squares Regression
Recall that this algorithm stochastic approximation scheme that updates the parameter θn according to the update
rule (starting with an arbitrary θ0 ∈ Rd),

θn = θn−1 + γn(yin − θT

n−1xin)xin , (39)

where each in is chosen uniformly randomly from the set {1, . . . , T} (i.e., the samples (xin , yin) passed to (39)
are picked randomly with uniform probability 1/T from the set {(x1, y1), . . . , (xT , yT)}), and the quantities γn
are step sizes.

We make the following assumptions for the analysis:
(A1) Boundedness of xi, i.e., ‖xi‖2 ≤ 1, for i = 1, . . . , T .
(A2) The noise {ξi} is i.i.d., zero mean and |ξi| ≤ 1, for i = 1, . . . , T .
(A3) The matrix ĀT is positive definite, and its smallest eigenvalue is at least µ > 0.
(A4) The step sizes γn satisfy

∑
n γn =∞, and

∑
n γ

2
n <∞.

Our first two assumptions are standard in the context of least squares minimization. As for fLSTD-SA, in cases
when the third assumption is not satisfied we can employ one of the variants described in Section 4 of the main
paper to produce similar results.

In the following, we present an analogue of Theorem 1 in this setting (Recall that θ̂T is the least squares
solution):

Theorem 10. Under (A1)-(A4), we have ∀ε > 0,

P (
∥∥∥θn − θ̂T∥∥∥

2
−E

∥∥∥θn − θ̂T∥∥∥
2
≥ ε) ≤ exp

(
−ε2/(2

n∑
i=1

L2
i)

)
, (40)

E
∥∥∥θn − θ̂T∥∥∥

2
≤ exp(−(1− β)µΓn)

∥∥∥θ0 − θ̂T∥∥∥
2︸ ︷︷ ︸

initial error

+

(
n−1∑
k=1

2h(k)γ2k+1 exp(−2(1− β)µ(Γn − Γk+1)

) 1
2

︸ ︷︷ ︸
sampling error

, (41)

where Li := γi
∏n−1
j=i (1−2γj+1µ(1−γj+1))1/2, Γn :=

∑n
i=1 γi, h(k) := (σ2

ξ +2 ‖z0‖22)+4 ‖z0‖2 ln k+2 ln2 k,
and σ2

ξ := V ar(ξ) <∞.

The proof of the above theorem has the same scheme as the proof of Theorem 1. The major difference is that
the update rule is no longer the update rule of a fixed point iteration, but of a gradient descent scheme. Therefore
we see differences in the proof wherever the update rule is unrolled and bounds on the various quantities in the
resulting expansion need to be obtained.

C.1 Proof of Theorem 10: High probability bound
This theorem follows the proof of high probability bound in Theorem 1, except in the derivation of the Lipschitz
constants (Lemma 6 in the proof of Theorem 1). This is the only part we prove here:

Proof. Denote fn(θ) := 1
2 (ξin − (θ − θ∗)Txin)2. The update (39) can be re-written as

θn = θn−1 − γn(F ′(θn−1)−∆Mn),

where F (θ)
4
= Ein [fn(θ)] and ∆Mn+1 is the associated martingale difference sequence defined by ∆Mn+1(θ) =

F ′(θ)− f ′n(θ).

20

Let Θi
j(θ) denote the mapping that returns the value of the iterate updated according to (39) at instant j, given

that θi = θ. Now we note that

Θi
n(θ)−Θi

n(θ′) =
(
I − γnxinxTin

) [
Θi
n−1(θ)−Θi

n−1(θ′)
]

and (
I − γnxinxTin

)T (
I − γnxinxTin

)
=
(
I − 2γn(1− ‖xin‖22γn)xinx

T
in

)
.

So using Jensen’s inequality, the Tower property of conditional expectations, and Cauchy-Schwarz, we can deduce
that

E
[
‖Θi

n(θ)−Θi
n(θ′)‖2 | Θi

n−1(θ),Θi
n−1(θ′)

]
≤
[
‖I − 2γn(1− γn)Ān−1‖22‖Θi

n−1(θ)−Θi
n−1(θ′)‖22

]1/2
A repeated application of this inequality yields the following

E
[∥∥Θi

n(θ)−Θi
n(θ′)

∥∥2
2

]
≤ ‖θ − θ′‖22

n−1∏
j=i

(1− 2µγj+1(1− γj+1)).

Finally putting all this together we have∥∥∥E [∥∥∥θn − θ̂T∥∥∥
2
|θi−1, fii = f

]
−E

[∥∥∥θn − θ̂T∥∥∥
2
|θi−1, fii = f ′

]∥∥∥
2

≤ E
[∥∥Θi

n (θ)−Θi
n (θ′)

∥∥
2

]
≤

n−1∏
j=i

(1− 2µγj+1(1− γj+1))

 1
2

γi ‖f − f ′‖2 = Li ‖f − f ′‖2 .

C.2 Proof of Theorem 10: Bound in expectation

Proof. First we extract a martingale difference from the update rule (39): Let fn(θ) := 1
2 (ξin − (θ − θ̂T)Txin)2

and let F (θ) := Ein(fn(θ)). Then

zn = θn − θ̂T = θn−1 − θ̂T − γn (F ′(θn−1)−∆Mn) ,

the ∆Mn+1(θ) = F ′n(θ)− fn(θ) is a martingale difference.
Now since θ̂T is the least squares solution, F ′(θ̂T) = 0. Moreover F ′(·) is linear, and so we obtain a recursive

procedure:

zn = zn−1 − γn (zn−1An −∆Mn) = Πnz0 −
n∑
k=1

γkΠnΠ−1k ∆Mk,

where Ān
4
=

1

2n

n∑
i=1

xix
T
i and Πn :=

∏n
k=1

(
I − γkĀk

)
. By Jensen’s inequality

E(‖zn‖2) ≤ (E(〈zn, zn〉))
1
2 =

(
E ‖Πnz0‖22 +

n∑
k=1

γ2kE
∥∥ΠnΠ−1k ∆Mk

∥∥2
2

) 1
2

(42)

21

Notice that Ān − µI is positive definite by (A3) and hence

∥∥ΠnΠ−1k
∥∥
2

=

∥∥∥∥∥∥
n∏

j=k+1

(
I − γjĀj

)∥∥∥∥∥∥
2

≤
n∏

j=k+1

∥∥(1− γjµ)I − γj(Āj − µI)
∥∥
2

≤
n∏

j=k+1

‖(1− γjµ)I‖2 ≤
n∏

j=k+1

(1− γjµ) ≤ exp (−µ(Γn − Γk)) , (43)

Finally we need to bound the squared martingale difference:

E[‖∆Mn‖22] = Eξ,it〈f ′it(θt−1), f ′it(θt−1)〉 − Eξ,it〈F ′(θt−1), F ′(θt−1〉

Using (A1) and (A3), a calculation shows that

Eξ,it〈f ′it(θt−1), f ′it(θt−1)〉 ≤ σ2
ξ − 2Eξ ‖zt‖2 + Eξ ‖zt‖22 and Eξ〈F ′(θt−1, F ′(θt−1〉 ≤ Eξ ‖zt‖22

where σ2
ξ := V ar(ξ) <∞ (ξ is distributed according to the noise distribution). Now

‖zt‖2 =

∥∥∥∥∥
[

t∏
k=1

(I − γkxikxT

k)

]
z0 +

t∑
k=1

γk

 t∏
j=k

(I − γjxijxT

j)

 ξkxk
∥∥∥∥∥∥
2

≤‖z0‖2 +

t∑
k=1

γk ≤ ‖z0‖2 + ln t.

and so E[‖∆Mt‖22] ≤ h(t).
The result now follows from (42) and (43).

D Simulation Experiments for Fast Least Squares Variant
Setup The idea behind the experimental setup here is to involve a higher level machine learning algorithm that
requires to compute least squares solution at each iteration and then use the fast stochastic approximation variant
(henceforth referred to as fLS-SA) to replace traditional least square solution schemes in the higher level algorithm.
We choose LinUCB, a well known contextual bandit algorithm proposed in Li et al. [2010] for this purpose. At
each iteration n, LinUCB computes a least squares estimate based on the arms xi and rewards yi seen so far,
i = 1, . . . , n − 1. Note that {xi, yi} do not come from a distribution. Instead, at every iteration n, the arm xn
chosen by LinUCB is based on the least squares estimate θ̂n. We implement a variant of LinUCB, where we use
fLS-SA as a subroutine to approximate θ̂n. In particular, at any instant n of the LinUCB algorithm, we run the
update (15) for 20 steps and use the resulting θ20 to derive the UCB values for each arm. Pseudocode for this
algorithm, henceforth referred to as fLinUCB-SA, is presented in Algorithm 2.

For conducting the experiments, we use the framework provided by the ICML exploration and exploitation
challenge Mary et al. [2012], based on the user click log dataset Webscope [2011] for the Yahoo! front page today
module (see Fig. 3). We run each algorithm on several data files corresponding to different days in October, 2011.

The choice of the number of iterations of fLS-SA to make in fLinUCB-SA is an arbitrary one. Our aim is simply
to show that using a stochastic approximation iterate in place of an exact solution to the least squares problem does
not significantly decrease performance of a higher level algorithm while it does drastically decreasing complexity.

Each data file has an average of nearly two million records of user click information. Each record in the data
file contains various information obtained from a user visit. These include the displayed article, whether the user
clicked on it or not, user features and a list of available articles that could be recommended. The precise format is
described in Mary et al. [2012]. The evaluation of the algorithms in this framework is done in a off-line manner
using a procedure described in Li et al. [2011].

22

For fLinUCB-SA, we set µ to 1, α to 0.1, τ to 20 and θ0 to the d = 136 dimensional 1 vector. Further, the
step-sizes γk are chosen as 1/k. The constant κ used in second term of the UCB value for each arm in Algorithm
2, is set to 0.1. This choice is motivated by a cross-validation experiment, the results of which are provided Table
2.

Figure 3: The Featured tab in Yahoo! Today module (src: Li et al. [2010])

Algorithm 2 fLinUCB-SA

Initialisation: Set θ0, µ > 0 - the regularization parameter, γk - the step-size sequence.
for n = 1, 2, . . . to do

Approximate least squares solution θ̂n based on data {xi, yi}n−1i=1 using fLS-SA as follows:
for k = 1 . . . τ do

Get random sample index: ik ∼ U({1, . . . , n− 1})
Update fLS-SA iterate θk(n) as follows:
θk(n) = θk−1(n) + γk(yik − θT

k−1xik)xik − γkµθk−1
end for
Choose arm an = arg maxa

(
θT
τxn,a + α κ√

n

)
Observe yn.

end for

Results We report the norm difference and CTR score value obtained from our experimental runs in Figs. 4 and
6, respectively. The norm difference we report is the distance in `2 norm between the fLS-SA iterate θn and the
least squares solution θ̂n at each instant n of the LinUCB algorithm. The CTR score value here is the ratio of the
number of clicks that an algorithm gets to the total number of iterations it completes, multiplied by 10000 for ease
of visualization purposes.

From Fig. 4, we observe that, at every instant n of the LinUCB algorithm, fLS-SA algorithm iterate θ20 tracks
the corresponding least squares solution θ̂n. Further, the observed difference in `2-norm is negligible, reinforcing
the usefulness of fLS-SA in a higher level machine learning algorithm such as LinUCB.

Figs. 5 and 6 present the CTR scores and runtimes observed by running LinUCB and fLinUCB-SA on five
different data files corresponding to five days in October, 2009 of the dataset Webscope [2011]. We observe that
the CTR scores observed when fLS-SA is used are not significantly worse than the vanilla LinUCB algorithm. On
the other hand, fLinUCB-SA resulted in a runtime gain of approximately 25% when the input data was a period
of 5 days. While these experiments correspond to a feature dimension of d = 136, one can expect the gains to
amplify when settings with larger feature dimensions are considered.

In addition to the above experiments, we also tested a variant of fLinUCB-SA in which at each iteration, n,

23

0 500 1,000 1,500 2,000

0

2,000

4,000

6,000

8,000

iteration n of fLinUCB-SA

∥ ∥ ∥θ 20
−
θ̂ n

∥ ∥ ∥ 2

∥∥∥θ20 − θ̂n∥∥∥2
2

Figure 4: Distance between fLS-SA iterate θ20 and θ̂n in `2 norm with day 1’s data file as input to fLinUCB-SA

2 3 4 5 6

40

50

60

70

47

68

73

46

72

35

52

58

35

60

days

ru
nt

im
e

(m
in

ut
es

)

LinUCB fLinUCB-SA

Figure 5: Performance comparison of the algorithms using runtimes on various days of the dataset

κ value
day 0.01 0.1 1 3 5
0.5 372.83 359.57 377.99 390.04 389.48

2 469.96 464.95 475.84 450.85 487.11
3 550.16 564.23 543.99 541.16 570.62
4 502.19 524.02 507.28 507.01 539.62
5 624.72 613.35 648.17 700.20 700.80
6 781.40 823.85 710.15 734.63 733.40

Table 2: CTR scores for different values of kappa on various days of the dataset

24

0.5 2 3 4 5 6

400

500

600

700

800

379

576

674

566

647

833

390

461

563
546

695

786

days

C
T

R
sc

or
e

LinUCB fLinUCB-SA

Figure 6: Performance comparison of the algorithms using CTR scores on various days of the dataset (Note: 0.5
refers to 50% of day 2’s records, while the rest correspond to days 2 to 6 of October, 2011.)

0 100 200 300 400

0

2

4

6

8

10

12

iteration n of fLinUCB-SA

∥ ∥ ∥θ n−
θ̂ n

∥ ∥ ∥ 2

∥∥∥θn − θ̂n∥∥∥2
2

(a) norm difference in the initial phase

0 0.5 1 1.5 2

·104

0

2

4

6

8

10

12

iteration n of fLinUCB-SA

∥ ∥ ∥θ n−
θ̂ n

∥ ∥ ∥ 2

∥∥∥θn − θ̂n∥∥∥2
2

(b) norm difference over a long run

Figure 7: Distance between fLS-SA iterate θn and θ̂n in `2 norm with day 1’s data file as input to fLinUCB-SA

25

of the LinUCB algorithm, we perform n iterations (rather than 20) of fLS-SA. Fig. 7 reports results on the norm
difference from this experiments and it can be seen that that after 500 iterations fLS-SA is already very accurate.

References
Francis Bach and Eric Moulines. Non-asymptotic analysis of stochastic approximation algorithms for machine

learning. In NIPS, 2011.

Dimitri P Bertsekas. Dynamic Programming and Optimal Control, Vol. II, 4th Edition: Approximate Dynamic
Programming. 2012.

Dimitri P Bertsekas and John N Tsitsiklis. Neuro-Dynamic Programming (Optimization and Neural Computation
Series, 3), volume 7. Athena Scientific, 1996.

S.J. Bradtke and A.G. Barto. Linear least-squares algorithms for temporal difference learning. Machine Learning,
22:33–57, 1996.

Max Fathi and Noufel Frikha. Transport-entropy inequalities and deviation estimates for stochastic approximation
schemes. arXiv preprint arXiv:1301.7740, 2013.

Noufel Frikha and Stéphane Menozzi. Concentration Bounds for Stochastic Approximations. Electron. Commun.
Probab., 17:no. 47, 1–15, 2012.

Alborz Geramifard, Michael Bowling, Martin Zinkevich, and Richard S Sutton. iLSTD: Eligibility traces and
convergence analysis. In NIPS, volume 19, page 441, 2007.

Elad Hazan and Satyen Kale. Beyond the regret minimization barrier: an optimal algorithm for stochastic strongly-
convex optimization. Journal of Machine Learning Research-Proceedings Track, 19:421–436, 2011.

Harold J Kushner and George Yin. Stochastic approximation and recursive algorithms and applications, vol-
ume 35. Springer Verlag, 2003.

Michail G Lagoudakis and Ronald Parr. Least-squares policy iteration. The Journal of Machine Learning Research,
4:1107–1149, 2003.

Alessandro Lazaric, Mohammad Ghavamzadeh, and Rémi Munos. Finite-sample analysis of least-squares policy
iteration. Journal of Machine Learning Research, 13:3041–3074, 2012.

Lihong Li, Wei Chu, John Langford, and Robert E Schapire. A contextual-bandit approach to personalized news
article recommendation. In Proceedings of the 19th international conference on World wide web, pages 661–
670. ACM, 2010.

Lihong Li, Wei Chu, John Langford, and Xuanhui Wang. Unbiased offline evaluation of contextual-bandit-based
news article recommendation algorithms. In Proceedings of the fourth ACM international conference on Web
search and data mining, pages 297–306. ACM, 2011.

J. Mary, Aurlien Garivier, L. Li, R. Munos, O. Nicol, R. Ortner, and P. Preux. Icml exploration and exploitation 3
- new challenges, 2012.

Boris T Polyak and Anatoli B Juditsky. Acceleration of stochastic approximation by averaging. SIAM Journal on
Control and Optimization, 30(4):838–855, 1992.

L.A. Prashanth and S. Bhatnagar. Reinforcement Learning with Function Approximation for Traffic Signal Con-
trol. IEEE Transactions on Intelligent Transportation Systems, 12(2):412–421, 2011.

L.A. Prashanth and S. Bhatnagar. Threshold Tuning using Stochastic Optimization for Graded Signal Control.
IEEE Transactions on Vehicular Technology, 61(9):3865–3880, 2012.

26

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathematical statistics,
pages 400–407, 1951.

David Ruppert. Stochastic approximation. Handbook of Sequential Analysis, pages 503–529, 1991.

David Silver, Richard S Sutton, and Martin Müller. Reinforcement Learning of Local Shape in the Game of Go.
In IJCAI, volume 7, pages 1053–1058, 2007.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction, volume 1. Cambridge Univ
Press, 1998.

Richard S Sutton, Hamid Reza Maei, Doina Precup, Shalabh Bhatnagar, David Silver, Csaba Szepesvári, and Eric
Wiewiora. Fast gradient-descent methods for temporal-difference learning with linear function approximation.
In ICML, pages 993–1000. ACM, 2009a.

Richard S Sutton, Csaba Szepesvári, and Hamid Reza Maei. A convergent O(n) algorithm for off-policy temporal-
difference learning with linear function approximation. NIPS, 21:1609–1616, 2009b.

John N Tsitsiklis and Benjamin Van Roy. An analysis of temporal-difference learning with function approximation.
IEEE Transactions on Automatic Control, 42(5):674–690, 1997.

Yahoo! Webscope. Yahoo! Webscope dataset ydata-frontpage-todaymodule-clicks-v2 0, 2011. URL
"http://research.yahoo.com/Academic Relations".

Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In ICML, pages
928–925, 2003.

27

