
Gradient Descent Approaches to Neural-Net-Based
Solutions of the Hamilton-Jacobi-Bellman Equation

Remi Munos, Leemon C. Baird and Andrew W. Moore

Robotics Institute and Computer Science Department,

Carnegie Mellon University

5000 Forbes Ave. Pittsburgh, PA 15213, USA.

fmunos, leemon, awmg@cs.cmu.edu

http://www.cs.cmu.edu/�AUTON/

Abstract

In this paper we investigate new approaches
to dynamic-programming-based optimal con-
trol of continuous time-and-space systems. We
use neural networks to approximate the so-
lution to the Hamilton-Jacobi-Bellman (HJB)
equation which is, in the deterministic case
studied here, a �rst-order, non-linear, partial
di�erential equation. We derive the gradient
descent rule for integrating this equation in-
side the domain, given the conditions on the
boundary. We apply this approach to the \Car-
on-the-hill" which is a two-dimensional highly
non-linear control problem. We discuss the
results obtained and point out a low quality
of approximation of the value function and of
the derived control. We attribute this bad ap-
proximation to the fact that the HJB equation
has many generalized solutions (i.e. di�eren-
tiable almost everywhere) other than the value
function, and our gradient descent method con-
verges to one among these functions, thus pos-
sibly failing to �nd the correct value function.
We illustrate this limitation on a simple one-
dimensional control problem.

1 Introduction

In this paper we consider the method of dynamic
programming for solving optimal control problems [5;
3] for continuous time-and-space systems. The state dy-
namics are de�ned by some controlled di�erential equa-
tion :

dx(t)

dt
= f(x(t); u(t))

where x(t) is the state of the system (x(t) 2 X, the state

space, subset of IRd) and u(t) 2 U is the control. Here
we assume that the control space U is discrete.
We de�ne the value function V (x) as the maximal

value (for all possible Lebesgue-measurable control func-
tions u(t)) of the in�nite-time discounted gain :

V (x) = sup
u(t)

�Z �

0

t:r(x(t); u(t)):dt+ � :R(x(�))

�

where r : X � U ! IR and R : @X ! IR are the current
and boundary reinforcement functions, is the discount
factor (with 0 < < 1) and � is the exit time of the
trajectory from the state space (with the convention that
� =1 if the trajectory stays in�nitely inside X).
From the principle of Dynamic Programming [3], we

derive that V satis�es the followingHamilton-Jacobi-

Bellman equation, which is (for deterministic systems)
a �rst-order non-linear partial di�erential equation :

� For x 2 X, if V is di�erentiable at x, then

V (x) ln +max
u

[rxV (x):f(x; u) + r(x; u)] = 0 (1)

� For x 2 @X, we have the following boundary condi-
tion :

V (x) � R(x) (2)

These notations are justi�ed in the framework of Rein-
forcement Learning [7]. More conventional (but equiv-
alent) notations usually consider the minimization of a
cost functional [3].

Remark 1 The boundary condition is an inequality be-
cause at some boundary point x 2 @X, there may exist

a trajectory going inside X whose gain is strictly greater

than the immediate boundary reinforcement R(x).

We observe that the HJB equation holds only where
V is di�erentiable. However, in general the value func-
tion is not di�erentiable everywhere, even for smooth
boundary conditions.
Besides, we can prove that there is an in�nity of func-

tions satisfying HJB almost everywhere [3]. So this equa-
tion is not easy to solve in the usual sense, because this
would lead to either no classical solution (i.e. di�eren-
tiable everywhere) or an in�nity of generalized solutions

(i.e. di�erentiable almost everywhere).
The formalism of Viscosity Solutions [2], which will

not be used here, overcomes this problem by introducing
a weak formulation of the HJB equation, thus de�ning
an adequate class of solutions : the viscosity solution of
the HJB equation (1) with the boundary condition (2)
exists, is unique and is the value function of the control
problem. See [3] for applications of viscosity solutions
to Markov Di�usion Processes and [7] to Reinforcement
Learning.

In this paper, we intend to approximate the value func-
tion with smooth neural-network-based functions. We
use neural networks to approximate the solution V to the
Hamilton-Jacobi-Bellman equation. We directly solve
this partial di�erential equation subject to representing
V (x) by a neural net.
However, as this will be illustrated by the numerical

simulations, the gradient descent method converges to
an approximation of some generalized solution (among
an in�nity) of the HJB equation, thus possibly failing to
�nd the desired value function.
Section 2 presents the architecture of the network and

the method used ; section 3 derives the gradient descent
updating rules ; section 4 proposes a numerical simula-
tion for a highly non-linear two dimensional control prob-
lem : the \Car-on-the-Hill" and compares the results to
an almost optimal solution obtained with discretization
techniques ; and section 5 illustrates the problems en-
countered on a simple one dimensional example.

2 The gradient descent method

An approximate VW neural-net representation of V can
be improved by gradient descent on the error :

E(W) =
1

2

Z
x

(H(VW ; x))2dx (3)

where H(VW ; x) is the HJB-Residual :

H(VW ; x)
def
=8<

:
VW (x) ln +max

u
[rxVW (x):f(x; u) + r(x; u)] for x 2 X

VW (x)�R(x) for x 2 @X

On the tth step, we generate a random state xt (either
on the boundary or inside the state space), and per-
form a stochastic gradient descent move in the direction
that reduces (H(VW ; xt))

2. This gives an unbiased esti-
mate of the gradient, with bounded variance for bounded
weights, just as in standard back propagation.
Assume that we use a one-hidden-layer network, with

N hidden units (see �gure 1) whose output is :

VW (x) =

NX
j=1

wj:�(

dX
i=0

wij:xi)

where the wij's (i = 0::d, j = 1::N) are the input weights,
the wj's are the output weights and xi (i = 1::d) are the
coordinates of x. The w0j's are the bias weights (and
we set x0 = 1), and �(s) = 1=(1 + e�s) is the sigmoid
function.

3 Derivation of the updating equations

In order to train the network, we randomly choose states,
either inside the state space or on the boundary, and
update the weights each time. We deduce the following
updating rules :

ijw

V (x)
Wwj

=1x 0 x x1 d

(d+1) input units

hidden unitsN

Figure 1: The architecture of the network

3.1 Inside the state space

Here we consider a state x 2 X.
Let u�W (x) be the optimal control with respect to the

current approximated function VW , i.e. u�W (x) satis�es :

u�W (x) = argmax
u

[rxVW (x):f(x; u) + r(x; u)] (4)

Since we have a discrete control space, the derivative of
the optimal control u�W (x) with respect to the weights is
zero almost everywhere :

@u�W (x)

@w
= 0

So the gradient rule that applies to a particular weight
w (where w means either wj or wij) is :

�w = ��
@
�
1
2H(VW ; x)2

�
@w

(5)

=��

"
@VW (x)

@w
ln +

dX
k=1

�
@2VW (x)

@w@xk
:fk(x; u

�

W (x))

�#
:

"
VW (x) ln +

dX
i=1

�
@VW (x)

@xi
:fi(x; u

�

W (x))

�
+r(x; u�W (x))

#

By denoting �j = �
�Pd

k=0wkjxk

�
, we have the

derivative of VW (x) with respect to the ith coordinates
xi (i = 1::d) :

@VW (x)

@xi
=

NX
j=1

wj :wij:�j(1� �j)

Let us derive
@VW (x)

@w
:

� For the output weights w = wj, we have :

@VW (x)

@wj

= �j

� For the input weights w = wij, we have :

@VW (x)

@wj

= wj:xi:�j(1� �j)

Now, let us derive
@2VW (x)

@w@xk
:

� For the output weights w = wj, we have :

@2VW (x)

@wj@xk
= wkj:�j(1� �j)

� For the input weights w = wij, we have :

@2VW (x)

@wij@xk
=

@

@wij

[wj :wkj:�j(1 � �j)]

= wj

h
�j

@wkj

@wij
+ wkj

@�j
@wij

� �2j
@wkj

@wij
� 2wkj�j

@�j
@wij

i
= wj:�j(1� �j)

�
wkj:xi:(1� 2�j) +

�
1 if i = k
0 otherwise

�

3.2 On the boundary

Here we consider a state x 2 @X. From the boundary
condition (2), we deduce that the value function satis-
�es :

V (x) = max

�
R(x);

�1

ln
max
u

[rxV (x):f(x; u) + r(x; u)]

�

So the updating rule will be : for x 2 @X, �nd u�W (x)
satisfying (4), then :

� if :

�1

ln
[rxVW (x):f(x; u�W (x)) + r(x; u�W (x))] > R(x)

then use the updating rule of the previous section.

� otherwise, use a regular gradient descent on the er-
ror 1

2 [VW (x)� R(x)]2 :

�w = ��[VW (x)� R(x)]
@VW (x)

@w

4 The \Car on the Hill" control

problem

We show how this approach applies in the case of the
car-on-the-hill problem [6], a highly non-linear, non-
minimum-phase plant with a two dimensional state
space : the position and velocity of the car. Here, the
current reinforcement r(x; u) is zero everywhere. The
terminal reinforcement R(x) is �1 if the car exits from
the left side of the state-space, and varies linearly be-
tween +1 and �1 depending on the velocity of the car
when it exits from the right side of the state-space. The
best reinforcement +1 occurs when the car reaches the
right boundary with a null velocity (see Figure 2). The
control u has only 2 possible values : maximal positive
or negative thrust. Because of the discount factor, we
are encouraged to get to the goal as quickly as possible.
Figure 3 shows the value function VW obtained by a

neural network with 200 hidden units with a learning
rate � = 10�5 (the fraction of the training points chosen
to be on the boundaries is 0:5).
As a comparison, �gure 4 shows the (almost optimal)

value function obtained by discretization methods (based

Goal

Thrust

Gravitation

Resistance

 :

Reinforcement
R=-1

R=+1 for null velocity
R=-1 for max. velocity

Figure 2: The \Car on the Hill" control problem.

Figure 3: Value function VW obtained by the neural net-
work.

Figure 4: Value function obtained by discretization tech-
niques.

Figure 5: The HJB residual H(VW ; x) of neural network
approximated function VW .

on �nite-element methods) using a very re�ned grid (see
[8]).
The HJB-residualH(VW ; x) of the approximated func-

tion VW is plotted in �gure 5.
Some sub-optimal trajectories (computed with respect

to the neural-net approximated value function, by choos-
ing at each instant the control according to (4)) are plot-
ted in �gure 6.

Position

Velocity

1-1

Figure 6: Some trajectories derived by the neural net-
work. The dots are the starting points. At each instant
the control is chosen according to (4).

As a comparison, some almost-optimal trajectories
(with respect to the �ne grid approximated value func-
tion) are plotted in �gure 7.
During our experiments, we observed that the func-

tion approximated by the neural network considerably
rely on many parameters : the number of hidden units,
the learning rate, the initial weights and the random

Velocity

Position1-1

Figure 7: Optimal trajectories derived by the grid.

training set xt. Small changes in these parameters lead
to di�erent functions.
Of course we know that gradient descent methods only

ensure local optimality thus these functions are di�erent
local optima of the problem of minimizing the error (3).
However, we noticed that many of these functions were

very dissimilar but yet had a very low HJB-residual al-
most everywhere, which means that they minimize the
error quite well, even if their general shape di�ers. This
is surprising. And since the optimal control deduced
from the value function directly depends on its \shape"
(the control is chosen according to V and rxV in (4)),
we observe that the control is very sensitive to the ini-
tial conditions and the training data and di�ers among
approximated functions of same error.
We believe that this problem is related to the fact that

the HJB equation has an in�nity of generalized solutions
(i.e. di�erentiable almost everywhere), and that the gra-
dient descent method converge to one of these general-
ized functions, thus possibly failing to approximate the
desired value function.
Indeed, these generalized functions have a HJB-

residual equal to zero almost everywhere, thus are global
solutions to the problem of minimizing the error (3).
Thus each such generalized function may \attract" the
gradient descent method to converge towards it, thus
failing to approximate the value function.
In the next section, we illustrate this important prob-

lem with a very simple one-dimensional control problem.

5 A simple 1d control problem

Let the state x(t) 2 [0; 1], the control u(t) = �1 or +1

and the state dynamics be : dx
dt

= u.
Consider the current reinforcement :

r(x) =

(
0 for x < 0:4

� ln for x 2
 = [0:4; 0:6]
0 for x > 0:6

and a boundary reinforcement de�ned by R(0) = 1 and
R(1) = 1. In this example, we deduce that the value
function satis�es the HJB equation :

V (x) ln + jV 0(x)j+ r(x) = 0 (6)

For x 2
, there exists a control u(t) such that
x(t) stays in�nitely inside
, leading to a gain ofR
1

t=0
t:(� ln)dt = 1.

Thus for x < 0:2, the optimal control is u� = �1
which leads to get the boundary reinforcement R(0) = 1,
whereas for x 2 [0:2; 0:4], the optimal control is u� = 1
which leads to the area
 where the in�nite-time dis-
counted reward is also 1.
A similar argument holds for x 2 [0:6; 1] and the value

function (plotted in �gure 8 for = 0:5) of this control
problem is :

V (x) =

8>>><
>>>:

x for x � 0:2
0:4�x for 0:2 � x � 0:4

1 for x 2

x�0:6 for 0:6 � x � 0:8
1�x for x � 0:8

0 0.4 0.6 1
0.7

1.4

1

Value function

x

Figure 8: The value function V .

We verify that V (x) satis�es the HJB equation (6)
everywhere except at x = 0:2, x = 0:4, x = 0:6 and
x = 0:8 where it is not di�erentiable.
We already claimed that the HJB equations have

many generalized solutions (see [3; 7]), so we provide
an example of such a generalized solution Vg (plotted in
�gure 9) :

Vg(x) =

8><
>:

�x for x � 0:4
1 + (1� 0:4)�x for 0:4 � x � 0:5
1 + (1� 0:4)x�1 for 0:5 � x � 0:6

x�1 for x � 0:6

which satis�es the HJB equation (6) everywhere except
at x = 0:4, x = 0:5 and x = 0:6 where it is not di�eren-
tiable.

0 0.4 0.6 1
0.7

1.4

1

x0.5

A generalized solution

Figure 9: A generalized solution Vg to HJB (6).

Figure 10 shows the function VW computed by the
neural network (with 100 hidden units and a learning
rate of 10�5) trained by our algorithm of gradient de-
scent on the error (3). We observe that the function

learned by the network completely di�ers from

the value function V (shown in �gure 8). Actually,
the function learned by the network converges to the
generalized solution Vg shown in �gure 9.

Moreover, the control derived by this function (here
u�W (x) = sign(V 0

W (x))) is di�erent from the optimal con-
trol (derived by V) (for x 2 [0; 0:2] and x 2 [0:8; 1]).

We notice that the HJB-residual (plotted in �gure 11)
of this function is very low, which means that the gra-
dient descent method worked well and the error (3) is
almost minimized.

0 1
0.7

1.4

1

x

Neural-net approximation

Figure 10: A solution VW learned by the network.

Knowing that the HJB-residual is zero almost every-
where for both the value function V and the general-

x0 1

HJB-residual
0.1

-0.1

Figure 11: The HJB-residual of the net function VW .

ized solution Vg, in this case, the network tends to ap-
proximate Vg instead of V because its global shape is
smoother. Indeed, in our experiments, none of our sim-
ulations converged to the expected value function, even
when we increased the number of hidden units.
This simple example illustrates the fact (stated theo-

retically in [7]) that gradient-descent methods may ap-
proximate any (among a possible in�nity of) generalized
solution of the HJB equation, because these functions
are global optimum of the problem of minimizing the
error (3) (i.e. the HJB-residual of generalized solutions
is zero almost everywhere thus these functions have an
error of zero).
The insight gained in studying this simple problem

provides us with a better understanding of the cause of
the bad accuracy of the value function and the policy, as
well as the very sensitivity to initial conditions observed
for the simulations on the \Car on the Hill".

6 Conclusion

The algorithm described in this paper combines the gra-
dient descent approach of [1] with the HJB equations
from conventional optimal control. This combination al-
lows us to use function approximators such as neural
networks to represent the value function for continuous-
time problems.
This permits a reinforcement learning algorithm that

had previously been restricted to discrete time to now
be applicable in continuous time.
However, this method su�ers from a major limitation

because the gradient-descent might lead to approximate
any generalized solutions of the HJB equation, thus fail-
ing to �nd the value function. Moreover the control in-
duced by such functions might be very di�erent from the
optimal control (derived from the value function). The
cause of these troubles is that there exists many global
optima (i.e. the generalized solutions of HJB) to the
problem of minimizing the error (3).
Nevertheless, this approach may be extended and

more successfully applied to approximate the solution
of second-order HJB equations that arise when the dy-
namics are stochastic. Indeed, in the particular case of
uniform parabolicity (i.e. when there is some stochastic-
ity in every direction), we know that the value function

is smooth (see [4]) thus we can integrate the HJB equa-
tion in the usual sense and there is a unique solution to
the problem of minimizing the error (3), which can be
approximated by the gradient-descent method described
in this paper.

References

[1] L. C. Baird. Residual Algorithms: Reinforcement
Learning with Function Approximation. In Machine

Learning: Proceedings of the Twelfth International

Conference. Morgan Kaufman, 1995.

[2] M.G. Crandall, Hitoshi Ishii, and P.L. Lions. User's
guide to viscosity solutions of second order par-
tial di�erential equations. Bulletin of the American
Mathematical Society, 27(1), 1992.

[3] Wendell H. Fleming and H. Mete Soner. Controlled
Markov Processes and Viscosity Solutions. Applica-
tions of Mathematics. Springer-Verlag, 1993.

[4] N.V. Krylov. Controlled Di�usion Processes.
Springer-Verlag, New York, 1980.

[5] H. Kushner and D. Clark. Stochastic Approximation

Methods for Constrained and Unconstrained Systems.
Springer-Verlag, 1978.

[6] Andrew W. Moore. Variable resolution dynamic pro-
gramming: E�ciently learning action maps in mul-
tivariate real-valued state-spaces. Machine Learn-

ing : Poceedings of the Eight International Work-
shop, pages 333{337, 1991.

[7] R�emi Munos. A study of reinforcement learning in
the continuous case by the means of viscosity solu-
tions. To appear in Machine Learning Journal, 1999.

[8] R�emi Munos and Andrew Moore. Variable resolution
discretization for high-accuracy solutions of optimal
control problems. International Joint Conference on

Arti�cial Intelligence, 1999.

