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Abstract. We consider the problem of online stratified sampling for
Monte Carlo integration of a function given a finite budget of n noisy
evaluations to the function. More precisely we focus on the problem of
choosing the number of strata K as a function of the budget n. We
provide asymptotic and finite-time results on how an oracle that has
access to the function would choose the number of strata optimally. In
addition we prove a lower bound on the learning rate for the problem of
stratified Monte-Carlo. As a result, we are able to state, by improving
the bound on its performance, that algorithm MC-UCB, defined in [1],
is minimax optimal both in terms of the number of samples n and the
number of strata K, up to a

√
log(nK). This enables to deduce a minimax

optimal bound on the difference between the performance of the estimate
output by MC-UCB, and the performance of the estimate output by the
best oracle static strategy, on the class of Hölder continuous functions,
and up to a factor

√
log(n).

Keywords: Bandit Theory, Online learning, Stratified sampling, Monte
Carlo integration, Regret bounds.

Introduction

The objective of this paper is to provide an efficient strategy for Monte-Carlo
integration of a function f over a domain [0, 1]d. We assume that we can query
the function n times. Querying the function at a time t and at a point xt ∈ [0, 1]d

provides a noisy sample1

f(xt) + s(xt)εt, (1)

where εt is an independent noise drawn from νxt and s ≥ 0 is a function on
[0, 1]d. Here νx is a distribution with mean 0, variance 1 and whose shape may
depend on x. This model is actually very general (see Section 1).

Stratified sampling is a well-known strategy to reduce the variance of the
estimate of the integral of f , when compared to the variance of the estimate

1 It is the usual model for functions in heterocedastic noise. We isolate the standard
deviation on a point x, s(x), in the expression of the noise, since this quantity is
very relevant.
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provided by crude Monte-Carlo. The principle is to partition the domain in K
subsets called strata and then to sample in each stratum (see [11][Subsection
5.5] or [6]). If the variances of the samples in the strata are known, there exists
an optimal static allocation strategy which allocates the number of samples in
each stratum proportionally to the measure of the stratum times the variance
in the stratum (see Equation 3 in this paper for a reminder). We refer to this
allocation as optimal oracle strategy for a given partition. In the case that the
variations of f and the standard deviation of the noise s are unknown, it is not
possible to adopt this strategy.

Consider first that the partition of the space is fixed. A way around this
problem is to estimate the variations of the function and the amount of noise
on the function in the strata online (exploration) while allocating the samples
according to the estimated optimal oracle strategy (exploitation). This setting
is considered in [3, 8, 1]. In the long version [2] of the last paper, the authors
describe the MC-UCB algorithm which is based on Upper-Confidence-Bounds
(UCB) on the standard deviation. They provide upper bounds for the difference
between the mean-squared error(w.r.t. the integral of f) of the estimate provided
by MC-UCB and the mean-squared error of the estimate provided by the optimal
oracle strategy (optimal oracle variance). The algorithm performs almost as well
as the optimal oracle strategy. However, the authors of [2] do not verify nor
assess the optimality of their algorithm with a lower bound as benchmark. As a
matter of fact, no lower bound on the rate of convergence (to the oracle optimal
strategy) for the problem of stratified Monte-Carlo exists, to the best of our
knowledge. Still in the same paper [2], the authors do not at all discuss on how
to stratify the space. In particular, they do not pose the problem of what an
optimal partition of the space is, and do not try to answer on whether it is
possible or not to attain it.

The next step is thus to efficiently design the partition. There are some
interesting papers on that topic such as [7, 10, 4]. The recent, state of the art,
work of [4] describes a strategy that samples asymptotically almost as efficiently
as the optimal oracle strategy, and at the same time adapts the direction and
number of the strata online. This is a very difficult problem. The authors do not
provide proofs of convergence of their algorithm. However for static allocation
of the samples, they present some properties of the stratified estimate when
the number of strata goes to infinity and provide convergence results under the
optimal oracle strategy. As a corollary, they prove that the more strata there
are, the smaller the optimal oracle variance.

Contribution: The more strata there are, the smaller the variance of the
estimate computed when following the optimal oracle strategy. However, the
more strata there are, the more difficult it is to estimate the variance within each
of these strata, and thus the more difficult it is to perform almost as well as the
optimal oracle strategy. Choosing the number of strata is thus crucial and this is
the problem we address in this paper. This defines a trade-off similar to the one
in model selection (and in all its variants, e.g. density estimation, regression...):
The wider the class of models considered, i.e. the larger the number of strata,
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the smaller the distance between the true model and the best model of the class,
i.e. the approximation error, but the larger the estimation error.
Paper [4], although proposing no finite time bounds, develops very interesting
ideas for bounding the first term, i.e. the approximation error. As pointed out
in paper e.g. [1], it is possible to build algorithms that have a small estimation
error. By constructing tight and finite-time bounds for the approximation error,
it is thus possible to propose a number of strata that minimizes an upper bound
on the performance. It is however not clear if this choice is really optimal in
some sense. The essential ingredients for choosing efficiently a partition are thus
lower bounds on the estimation error, and on the approximation error.

The objective of this paper is to propose a method for choosing the minimax-
optimal number of strata. Our contributions are the following.

– We first present results on what we call the quality Qn,N of a given partition
in K strata N (i.e., using the previous analogy to model selection, this
would represent the approximation error). Using very mild assumptions we
compute a lower bound on the variance of the estimate given by the optimal
oracle strategy on the optimal oracle partition. Then if the function and
the standard deviation of the noise are α−Hölder, and if the strata also

satisfy some assumptions, we prove that Qn,N = O(K
α/d

n ). This bound is
also minimax optimal on the class of α−Hölder functions.

– We then present results on the estimation error for the estimate output by
algorithm MC-UCB of [1] (pseudo-regret in the terminology of [1]). In this
paper, we improve the analysis of the MC-UCB algorithm when compared
to paper [1] in terms of the dependence on K. The problem independent
bound on the pseudo-regret in [1] is of order2 Õ(Kn−4/3), and we tighten
this bound in this paper so that it is of order Õ(K1/3n−4/3).

– We provide the first lower bound (on the pseudo-regret) for the problem of
online Stratified Sampling. The bound Ω(K1/3n−4/3) is tight and matches
the upper-bound of MC-UCB both in terms of the number of strata and the
number of samples up to

√
log(nK). This is the main contribution of the

paper, and we believe that the proof technique for this bound is original.
– Finally, we combine the results on the quality and on the pseudo-regret of

MC-UCB to provide a value on the number of strata leading to a minimax-
optimal trade-off (up to a

√
log(n)) on the class of α−Hölder functions.

The rest of the paper is organized as follows. In Section 1 we formalize the
problem and introduce the notations used throughout the paper. Section 2 states
the results on the quality of a partition. Section 3 improves the analysis of
the MC-UCB algorithm, and establishes the lower bound on the pseudo-regret.
Section 4 reports the best trade-off to choose the number of strata. And in
Section 5, we illustrate how important it is to choose carefully the number of
strata. We finally conclude the paper and suggest future works.
Due to space constraints, we were not able to incorporate complete proofs of our
results in this paper, but they are all available in the Technical Report [12].

2 Here Õ is a O up to poly(log(n)).
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1 Setting

We consider the problem of numerical integration of a function f : [0, 1]d → R
with respect to the uniform (Lebesgue) measure. We have at our disposal a
budget of n queries (samples) to the function, and we can allocate this budget
sequentially. When querying the function at a time t and at a point xt, we receive
a noisy sample X(t) of the form described in Equation 1.

We now assume that the space is stratified in K Lebesgue measurable strata
that form a partition N . We index these strata, called Ωk, with indexes k ∈
{1, . . . ,K}, and write wk their measure, according to the Lebesgue measure. We
write µk = 1

wk

∫
Ωk

Eε∼νx [f(x) + s(x)ε]dx = 1
wk

∫
Ωk
f(x)dx their mean and σ2

k =
1
wk

∫
Ωk

Eε∼νx [(f(x) + s(x)ε − µk)2]dx their variance. These mean and variance

correspond to the mean and variance of the random variable X(t) when the
coordinate x at which the noisy evaluation of f is observed is chosen uniformly
at random on the stratum Ωk.

We denote by A an algorithm that allocates online the budget by select-
ing at each time step 1 ≤ t ≤ n the index kt ∈ {1, . . . ,K} of a stratum and
then samples uniformly in the corresponding stratum Ωkt . The objective is to
return the best possible estimate µ̂n of the integral of the function f . We write
Tk,n =

∑
t≤n I {kt = k} the number of samples in stratum Ωk up to time n.

We denote by
(
Xk,t

)
1≤k≤K,1≤t≤Tk,n

the samples in stratum Ωk, and we define

µ̂k,n = 1
Tk,n

∑Tk,n
t=1 Xk,t (the empirical means in the stratum). We estimate the

integral of f by µ̂n =
∑K
k=1 wkµ̂k,n.

If we allocate a deterministic number of samples Tk to each stratum Ωk and
if the samples are independent and chosen uniformly on each stratum Ωk, we
have

E(µ̂n) =
∑
k≤K

wkµk =
∑
k≤K

∫
Ωk

f(u)du =

∫
[0,1]d

f(u)du = µ,

and also V(µ̂n) =
∑
k≤K

w2
kσ

2
k

Tk
,

where the expectation and the variance are computed according to all the sam-
ples that the algorithm collected.

For a given algorithm A allocating Tk,n samples drawn uniformly within
stratum Ωk, we call pseudo-risk the quantity

Ln,N (A) =
∑
k≤K

w2
kσ

2
k

Tk,n
. (2)

Note that if an algorithm A∗ has access the variances σ2
k of the strata, it can

choose to allocate the budget in order to minimize the pseudo-risk, i.e., sample
each stratum T ∗k = wkσk∑

i≤K wiσi
n times (this is the so-called oracle allocation).

These optimal numbers of samples can be non-integer values, in which case the
proposed optimal allocation is not realizable. But we still use it as a benchmark.
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The pseudo-risk for this algorithm (which is also the variance of the estimate
here since the sampling strategy is deterministic) is then

Ln,N (A∗) =

(∑
k≤K wkσk

)2
n

=
Σ2
N
n
, (3)

where ΣN =
∑
k≤K wkσk. We also refer in the sequel as optimal proportion

to λk = wkσk∑
i≤K wiσi

, and to optimal oracle strategy to this allocation strategy.

Although, as already mentioned, the optimal allocations (and thus the optimal
pseudo-risk) might not be realizable, it is still very useful in providing a lower-
bound. No static (even oracle) algorithm has a pseudo-risk lower than Ln,N (A∗)
on partition N .

It is straightforward to see that the more refined the partition N the smaller
Ln,N (A∗) (see e.g. [7]). We thus define the quality of a partition Qn,N as the dif-
ference between the variance Ln,N (A∗) of the estimate provided by the optimal
oracle strategy on partition N , and the infimum of the variance of the optimal
oracle strategy on any partition (optimal oracle partition) (with an arbitrary
number of strata):

Qn,N = Ln,N (A∗)− inf
N ′measurable

Ln,N ′(A∗). (4)

We also define the pseudo-regret of an algorithm A on a given partition N , as
the difference between its pseudo-risk and the variance of the optimal oracle
strategy:

Rn,N (A) = Ln,N (A)− Ln,N (A∗). (5)

We will assess the performance of an algorithm A by comparing its pseudo
risk to the minimum possible variance of an optimal oracle strategy on the
optimal oracle partition:

Ln,N (A)− inf
N ′measurable

Ln,N ′(A∗) = Rn,N (A) +Qn,N . (6)

Using the analogy of model selection mentioned in the Introduction, the
quality Qn,N is similar to the approximation error and the pseudo-risk Rn,N (A)
to the estimation error.

Motivation for the model f(x) + s(x)εt. Assume that a learner can, at each
time t, choose a point x and collect an observation F (x,Wt), where Wt is an
independent noise, that can however depend on x. It is the general model for
representing evaluations of a noisy function. There are many settings where one
needs to integrate accurately a noisy function without wasting too much bud-
get, like for instance pollution survey. Set f(x) = EWt

[F (x,Wt)], and s(x)εt =
F (x,Wt)−f(x). Since by definition εt is of mean 0 and variance 1, we have in fact

s(x) =
√
Eνx [(F (x,Wt)− f(x))2] and εt = F (x,Wt)−f(x)

s(x) . Observing F (x,Wt) is

thus equivalent to observing f(x) + s(x)εt, and this implies that the model that
we choose is also very general.
There is also an important setting where this model is relevant, and this is for
the integration of a function F in high dimension d∗. Stratifying in dimension d∗
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seems hopeless, since the budget n has to be exponential with d∗ if one wants to
stratify in every direction of the domain: this is the curse of dimensionality. It
is necessary to reduce the dimension by choosing a small amount of directions
(1, . . . , d) that are particularly relevant, and control/stratify only in these d direc-
tions3. Then the control/stratification is only on the first d coordinates, so when
sampling at at a time t, one chooses x = (x1, . . . , xd), and the other d∗− d coor-
dinates U(t) = (Ud+1(t), . . . , Ud∗(t)) are uniform random variables on [0, 1]d

∗−d

(without any control). When sampling in x at a time t, we observe F (x, U(t)).
By writing f(x) = EU(t)∼U([0,1]d∗−d)[F (x, U(t))], and s(x)εt = F (x, U(t))−f(x),
we obtain that the model we propose is also valid in this case.

2 The quality of a partition: Analysis of the term Qn,N .

In this Section, we focus on the quality of a partition defined in Section 1.
Convergence under very mild assumptions As mentioned out in Section 1, the
more refined the partition N of the space, the smaller Ln,N (A∗), and thus ΣN .
Through this monotony property, we know that infN ΣN is also the limit of the
(ΣNp)p of a sequence of partitions (Np)p such that the diameter of each stratum
goes to 0. We state in the following Proposition that for any such sequence,
limp→+∞ΣNp =

∫
[0,1]d

s(x)dx. Consequently infN ΣN =
∫
[0,1]d

s(x)dx.

Proposition 1. Let (Np)p = (Ωk,p)k∈{1,...,Kp},p∈{1,...,+∞} be a sequence of mea-
surable partitions (where Kp is the number of strata of partition Np) such that

– AS1: 0 < wk,p ≤ υp, for some sequence (υp)p, where υp → 0 for p→ +∞.
– AS2: The diameters according to the ||.||2 norm on Rd of the strata are such

that Diam(Ωk,p) ≤ D(wk,p), for some real valued function D(·), such that
D(w)→ 0 for w → 0.

If the functions m and s are in L2([0, 1]d), then

lim
p→+∞

ΣNp = inf
Nmeasurable

ΣN =

∫
[0,1]d

s(x)dx,

which implies that n×Qn,Np → 0 for p→ +∞.

The full proof of this Proposition (omitted due to space constraints) is available
in the Technical Report [12].

In Proposition 1, even though the optimal oracle allocation might not be
realizable (in particular if the number of strata is larger than the budget), we
can still compute the quality of a partition, as defined in 4. It does not correspond
to any reachable pseudo-risk, but rather to a lower bound on any (even oracle)
static allocation.

When f and s are in L2([0, 1]d), for any appropriate sequence of partitions
(Np)p, ΣNp (which is the principal ingredient of the variance of the optimal
oracle allocation) converges to the smallest possible ΣN for given f and s. Note
however that this condition is not sufficient to obtain a rate.

3 This is actually a very common technique for computing the price of options, see [6].
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Finite-Time analysis under Hölder assumption: We make the following assump-
tion on the functions f and s.

Assumption 1 The functions f and s are (M,α)−Hölder continuous, i.e., for
g ∈ {f, s}, for any x and y ∈ [0, 1]d, |g(x)− g(y)| ≤M ||x− y||α2 .

The Hölder assumption enables us to consider arbitrarily non-smooth func-
tions (for small α, the function can vary arbitrarily fast), and is thus a fairly
general assumption.

We also consider the following partitions in K squared strata.

Definition 1. We write NK the partition of [0, 1]d in K hyper-cubic strata of
measure wk = w = 1

K and side length ( 1
K )1/d: we assume for simplicity that

there exists an integer l such that K = ld.

The following Proposition holds.

Proposition 2. Under Assumption 1 we have for any partition NK as defined
in Definition 1 that

ΣNK −
∫
[0,1]d

s(x)dx ≤
√

2dM(
1

K
)α/d, (7)

which implies
Qn,NK ≤

2
√

2dMΣN1

n
(

1

K
)α/d,

where N1 stands for the “partition” with one stratum.

The full proof of this Proposition (omitted due to space constraints) is available
in the Technical Report [12].

2.1 General comments

The impact of α and d: The quantity Qn,NK increases with the dimension d,
because the Hölder assumption becomes less constraining when d increases. This
can easily be seen since a squared strata of measure w has a diameter of order
w1/d. Qn,NK decreases with the smoothness α of the function, which is a con-
sequence of the Hölder assumption. Note also that when defining the partitions
NK in Definition 1, we made the crucial assumption that K1/d is an integer. This
is of little importance in small dimension, but will matter in high dimension, as
we will enlighten in the last remark of Section 4.

Minimax optimality of this rate: The rate n−1K−α/d is minimax optimal on
the class of α−Hölder functions since for any n and K one can easily build a
function with Hölder exponent α such that the corresponding ΣNK is at least∫
[0,1]d

s(x)dx+ cK−α/d for some constant c.

Discussion of the shape of the strata: Whatever the shape of the strata, as long
as their diameter goes to zero4, ΣNK converges to

∫
[0,1]d

s(x)dx. The shape of the

4 And note that in this noisy setting, if the diameter of the strata does not go to 0
on non homogeneous part of m and s, then the standard deviation corresponding to
the allocation is larger than

∫
[0,1]d

s(u)du.
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strata have an influence only on the negligible term, i.e. the speed of convergence
to this quantity. This result was already made explicit, in a different setting and
under different assumptions, in [4]. Choosing small strata of same shape and size
is also minimax optimal on the class of Hölder functions. Working on the shape
of the strata could, however, improve the speed of convergence in some specific
cases, e.g. when the noise is very localized. It could also be interesting to consider
strata of varying size, and make this size depend on the specific problem.

The decomposition of the variance: The variance σ2
k within each stratum Ωk

comes from two sources. First, σ2
k comes from the noise, that contributes to

it by 1
wk

∫
Ωk
s(x)2dx. Second, the mean f is not a constant function, thus its

contribution to σ2
k is 1

wk

∫
Ωk

(
f(x)− 1

wk

∫
Ωk
f(u)du

)2
dx. Note that when the size

of Ωk goes to 0, this later contribution vanishes, and the optimal allocation is

thus proportional to
√
wk
∫
Ωk
s(x)2dx+ o(1) =

∫
Ωk
s(x)dx + o(1). This means

that for small strata, the variation in the mean are negligible when compared to
the variation due to the noise.

3 Algorithm MC-UCB and a matching lower bound

3.1 Algorithm MC − UCB
In this Subsection, we describe a slight modification of the algorithm MC −
UCB introduced in [1]. The only difference is that we change the form of the
high-probability upper confidence bound on the standard deviations, in order to
improve the elegance of the proofs, and we refine their analysis. The algorithm
takes as input two parameters b and fmax which are linked to the distribution
in the strata, δ which is a (small) probability, and the partition NK . We remind
in Figure 1 the algorithm MC − UCB.

Input: b, fmax, δ, NK , set A = 2
√

(1 + 3b+ 4f2
max) log(2nK/δ)

Initialize: Sample 2 states in each strata.
for t = 2K + 1, . . . , n do

Compute Bk,t = wk
Tk,t−1

(
σ̂k,t−1 +A

√
1

Tk,t−1

)
for each stratum k ≤ K

Sample a point in stratum kt ∈ arg max1≤k≤K Bk,t

end for
Output: µ̂n =

∑K
k=1 wkµ̂k,n

Fig. 1. The pseudo-code of the MC-UCB algorithm. The empirical standard deviations
and means σ̂2

k,t and µ̂k,t are computed using Equation 8.

The estimates of σ̂2
k,t−1 and µ̂k,t−1 are computed according to

σ̂2
k,t−1 =

1

Tk,t−1

Tk,t−1∑
i=1

(Xk,i − µ̂k,t−1)2, and µ̂k,t−1 =
1

Tk,t−1

Tk,t−1∑
i=1

Xk,i . (8)

3.2 Upper bound on the pseudo-regret of algorithm MC-UCB.

We first state the following Assumption on the noise εt:
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Assumption 2 There exist b > 0 such that ∀x ∈ [0, 1]d, ∀t, and ∀λ < 1
b ,

Eνx
[

exp(λεt)
]
≤ exp

( λ2

2(1− λb)

)
, and Eνx

[
exp(λε2t−λ)

]
≤ exp

( λ2

2(1− λb)

)
.

This is a kind of sub-Gaussian assumption, satisfied for e.g., Gaussian as well
as bounded distributions. We also state an assumption on f and s.

Assumption 3 The functions f and s are bounded by fmax.

Note that since the functions f and s are defined on [0, 1]d, if Assumption 1
is satisfied, then Assumption 3 holds with fmax = max(f(0), s(0)) +

√
2dM . We

now prove the following bound on the pseudo-regret. Note that we state it on
partitions NK , but that it in fact holds for any partition in K strata.

Proposition 3. Under Assumptions 2 and 3, on partition NK , when n ≥ 4K,
we have

E[Rn,NK (AMC−UCB)] ≤ CK
1/3

n4/3

√
log(nK) +

14KΣ2
NK

n2
,

where C = 24
√

2ΣNK
√

(1 + 3b+ 4f2max)
(
fmax+4

4

)1/3
.

The proof of this Proposition is close to the one of MC-UCB in [1]. But an
improved analysis leads to a better dependency in terms of number of strata K.
Recall that in [1], the bound is of order Õ(Kn−4/3). This improvement is crucial
here since the larger K is, the closer ΣNK is to

∫
[0,1]d

s(x)dx. The full proof of

this Proposition is available in the Technical Report [12]. The next Subsection
states that the rate K1/3Õ(n−4/3) of MC-UCB is optimal both in terms of K
and n.

3.3 Lower Bound

We now study the minimax rate for the pseudo-regret of any algorithm on a
given partition NK .

Theorem 1. Let K ∈ N. Let inf be the infimum taken over all online strati-
fied sampling algorithms on NK and sup represent the supremum taken over all
environments, then:

inf supE[Rn,NK ] ≥ CK
1/3

n4/3
,

where C is a numerical constant.

Proof (Proof sketch (the full proof of this Theorem is available in the Technical
Report [12])). We consider a partition with 2K strata. On the K first strata,
the samples are drawn from Bernoulli distributions of parameter µk where µk ∈
{µ2 , µ, 3

µ
2 }, and on the K last strata, the samples are drawn from a Bernoulli of
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parameter 1/2. We write σ =
√
µ(1− µ) the standard deviation of a Bernoulli

of parameter µ. We index by υ a set of 2K possible environments, where υ =
(υ1, . . . , υK) ∈ {−1,+1}K , and the K first strata are defined by µk = µ +
υk

µ
2 . Write Pυ the probability under such an environment, also consider Pσ the

probability under which all the K first strata are Bernoulli with mean µ.
We define Ωυ the event on which there are less than K

3 strata not pulled
correctly for environment υ (i.e. for which Tk,n is larger than the optimal allo-
cation corresponding to µ when actually µk = µ

2 , or smaller than the optimal
allocation corresponding to µ when µk = 3µ2 ). See the Appendix D in [12] for a
precise definition of these events. Then, the idea is that there are so many such
environments that any algorithm will be such that for at least one of them we
have Pσ(Ωυ) ≤ exp(−K/72). Then we derive by a variant of Pinsker’s inequality

applied to an event of small probability that Pυ(Ωυ) ≤ KL(Pσ,Pυ)
K = O(σ

3/2n
K ).

Finally, by choosing σ of order (Kn )1/3, we have that Pυ(Ωcυ) is bigger than a

constant, and on Ωcυ we know that there are more than K
3 strata not pulled

correctly. This leads to an expected pseudo-regret in environment υ of order

Ω(K
1/3

n4/3 ).

This is the first lower-bound for the problem of online stratified sampling for
Monte-Carlo. Moreover, we believe that the proof is original and interesting: this
is the main contribution of this work. Note that this bound is of same order as
the upper bound for the pseudo-regret of algorithm MC-UCB. It means that this
algorithm is, up to

√
log(nK), minimax optimal, both in terms of the number

of samples and in terms of the number of strata. It however holds only on the
partitions NK (we conjecture that a similar result holds for any measurable

partition N , but with a bound of order Ω
(∑

x∈N
w2/3
x

n4/3

)
).

4 Minimax-optimal trade-off between Qn,NK
and

Rn,NK
(AMC−UCB)

4.1 Minimax-optimal trade-off

We consider in this Section the hyper-cubic partitions NK as defined in Defi-
nition 1, and we want to find the minimax-optimal number of strata Kn as a
function of n. Using the results in Section 2 and Subsection 3.1, it is possible
to deduce an optimal number of strata K to give as parameter to algorithm
MC − UCB. Note that since the performance of the algorithm is defined as
the sum of the quality of partition NK , i.e. Qn,NK and of the pseudo-regret of
the algorithm MC-UCB, namely Rn,NK (AMC−UCB), one wants to (i) on the
one hand take many strata so that Qn,NK is small but (ii) on the other hand,
pay attention to the impact this number of strata has on the pseudo-regret
Rn,NK (AMC−UCB). A good way to do that is to choose Kn in function of n
such that Qn,NKn and Rn,NKn (AMC−UCB) are of the same order.
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Theorem 2. Under Assumptions 1 and 2 (since on [0, 1]d, Assumption 1 im-

plies Assumption 3, by setting fmax = X(1)+
√

2dM), choosing Kn =
(
b(n

d
d+3α )1/dc

)d
(≤

n
d

d+3α ≤ n), we have

E[Ln(AMC−UCB)]− 1

n

(∫
[0,1]d

s(x)dx
)2
≤ Cd 2α

3d+
1
2

√
log(n)n−

d+4α
d+3α (1 + dαn−

α
d+3α ),

where c = 70(1+M)ΣNK
√

(1 + 3b+ 4(f(0) + s(0) +M)2)
(

(f(0)+s(0)+M)+4
4

)1/3
.

If d� n, then E[Ln(AMC−UCB)]− 1
n

( ∫
[0,1]d

s(x)dx
)2

= Õ(n−
d+4α
d+3α ).

We can also prove a matching (up to
√

log(n)) minimax lower bound using the
results in Theorem 1.

Theorem 3. Let sup represent the supremum taken over all α−Hölder functions
and inf be the infimum taken over all algorithms that partition the space in convex
strata of same shape, then the following holds true:

inf supELn(A)− 1

n

(∫
[0,1]d

s(x)dx
)2

= Ω(n−
d+4α
d+3α ).

4.2 Discussion

Optimal pseudo-risk. The dominant term in the pseudo-risk of MC-UCB with

the proper number of strata is (infN ΣN )2

n = 1
n

( ∫
[0,1]d

s(x)dx
)2

(the other term is

negligible). This means that algorithm MC-UCB is almost as efficient as the op-
timal oracle strategy on the optimal oracle partition. In comparison, the variance

of the estimate given by crude Monte-Carlo is
∫
[0,1]d

(
f(x)−

∫
[0,1]d

f(u)du
)2
dx+∫

[0,1]d
s(x)2dx. Thus MC-UCB enables to have the term coming from the varia-

tions in the mean vanish, and the noise term decreases (since by Cauchy-Schwarz,( ∫
[0,1]d

s(x)dx
)2 ≤ ∫

[0,1]d
s(x)2dx).

Minimax-optimal trade-off for algorithm MC-UCB. The optimal trade-off on

the number of strata Kn of order n
d

d+3α depends on the dimension and the
smoothness of the function. The higher the dimension, the more strata are needed
in order to have a decent speed of convergence for ΣNK . The smoother the
function, the fewer strata are needed.
It is yet important to remark that this trade-off is not exact. We provide an
almost minimax-optimal order of magnitude for Kn, in terms of n, so that the
rate of convergence of the algorithm is minimax-optimal up to a

√
log(n).

Link between risk and pseudo-risk. It is important to compare the pseudo-risk

Ln(A) =
∑K
k=1

w2
kσ

2
k

Tk,n
and the true risk E[(µ̂n − µ)2]. Note that these quantities

are in general not equal for an algorithm A that allocates the samples in a
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dynamic way: indeed, the quantities Tk,n are in that case stopping times and
the variance of estimate µ̂n is not equal to the pseudo-risk. However, in the
paper [2], the authors highlighted for MC − UCB some links between the risk
and the pseudo-risk. More precisely, they established links between Ln(A) and∑K
k=1 w

2
kE[(µ̂k,n−µk)2]. This step is possible since E[(µ̂k,n−µk)2] ≤ w2

kσ
2
k

T 2
k,n

E[Tk,n],

where T k,n is a lower-bound on the number of pulls Tk,n on a high probability
event. Then they bounded the cross products E[(µ̂k,n − µk)(µ̂p,n − µp)] and
provided some upper bounds on these terms. A tight analysis of these terms as
a function of the number of strata K remains to be investigated.

Knowledge of the Hölder exponent. In order to be able to choose properly the
number of strata to achieve the rate in Theorem 2, it is needed to possess a proper
lower bound on the Hölder exponent of the function: indeed, the rougher the
function is, the more strata are required. On the other hand, such a knowledge
on the function is not always available and an interesting question is whether it
is possible to estimate this exponent fast enough. There are interesting papers
on that subject like [9] where the authors tackle the problem of regression and
prove that it is possible to adapt to the unknown smoothness of the function. The
authors in [5] add to that (in the case of density estimation) and prove that it is
even possible under the assumption that the function attain its Hölder exponent
to have a proper estimation of this exponent and thus adaptive confidence bands.
An idea would be to try to adapt these results in the case of finite sample.

MC-UCB On a noiseless function. Consider the case where s = 0 almost surely,
i.e. the collected samples are noiseless. Proposition 1 ensures that infN ΣN = 0:
it is thus possible in this case to achieve a pseudo-risk that has a faster rate than
O( 1

n ). If the function m is smooth, e.g. Hölder with a not too low exponent α, it
is efficient to use low discrepancy methods to integrate the functions. An idea is
to stratify the domain in n hyper-rectangular strata of minimal diameter, and to
pick at random one sample per stratum. The variance of the resulting estimate is
of order O( 1

n1+2α/d ). Algorithm MC-UCB is not as efficient as a low discrepancy
scheme: it needs a number of strata K < n in order to be able to estimate the
variance within each stratum. Its pseudo-risk is then of order O( 1

nK2α/d ).
However, this only holds when the samples are noiseless. Otherwise, the variance
of the estimate is of order 1/n, no matter what strategy the learner chooses.

In high dimension. The first bound in Theorem 2 expresses precisely how the
performance of the estimate output by MC-UCB depends on d. The first bound

states that the quantity Ln(A)− 1
n

( ∫
[0,1]d

s(x)dx
)2

is negligible when compared

to 1/n when n is exponential in d. This is not surprising since our technique aims
at stratifying equally in every direction. It is not possible to stratify in every di-
rections of the domain if the function lies in a very high dimensional domain.
This is however not a reason for not using our algorithm in high dimension.
Indeed, stratifying even in a small number of strata already reduces the vari-
ance, and in high dimension, any variance reduction techniques are welcome. As
mentioned at the end of Section 1, the model that we propose for the function
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is suitable for modeling d∗ dimensional functions that we only stratify in d < d∗

directions (and d � n). A reasonable trade-off for d can also be inferred from
the bound, but we believe that what a good choice of d is depends a lot of the
problem. We then believe that it is a good idea to select the number of strata
in the minimax way that we propose. Again, having a very high dimensional
function that one stratifies in only a few directions is a very common technique
in financial mathematics, for pricing options (practitioners stratify an infinite
dimensional process in only 1 to 5 carefully chosen dimensions). We illustrate
this in the next Section.

5 Numerical experiment: influence of the number of
strata in the Pricing of an Asian option

We consider the pricing problem of an Asian option introduced in [7] and later
considered in [10, 3]. This uses a Black-Scholes model with strike C and maturity
T . Let (W (t))0≤t≤T be a Brownian motion. The discounted payoff of the Asian
option is defined as a function of W , by:

F ((W )0≤t≤T ) = exp(−rT ) max
[ ∫ T

0
S0 exp

(
(r − 1

2s
2
0)t+ s0Wt

)
dt− C, 0

]
,

where S0, r, and s0 are constants.
We want to estimate the price p = EW [F (W )] by Monte-Carlo simulations

(by sampling on W ). In order to reduce the variance of the estimated price, we
can stratify the space of W . [7] suggest to stratify according to a one dimensional
projection of W , i.e., by choosing a time t and stratifying according to the
quantiles of Wt (and simulating the rest of the Brownian according to a Brownian
Bridge, see [10]). They further argue that the best direction for stratification is
to choose t = T , i.e., to stratify according to the last time of T . This choice
of stratification is also intuitive since WT has the highest variance, the largest
exponent in the payoff and thus the highest volatility. We stratify according to
the quantiles of WT , that is to say the quantiles of a normal distribution N (0, T ).
When stratifying in K strata, we stratify according to the 1/K-th quantiles (so
that the strata are hyper-cubes of same measure).

We choose the same numerical values as [10]: S0 = 100, r = 0.05, s0 = 0.30,
T = 1 and d = 16. We discretize also, as in [10], the Brownian motion in 16
equidistant times, so that we are able to simulate it. We choose C = 120.

In this paper, we only do experiments for MC-UCB, and exhibit the influ-
ence of the number of strata. For a comparison between MC-UCB and other
algorithms, see [1]. By studying the range of the F (W ), we set the parameter of
the algorithm MC-UCB to A = 150 log(n).

For n = 200 and n = 2000, we observe the influence of the number of strata
in Figure 2 (the number of strata varying from 2 to 100). We plot results for
MC-UCB, uniform stratified Monte-Carlo (that allocates a number of samples
in each stratum proportional to the measure of the stratum), and also for crude,
unstratified, Monte-Carlo. We observe the trade-off that we mentioned between
pseudo-regret and quality, in the sense that the mean squared error of the es-
timate output by MC-UCB (when compared to the true integral of f) first
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decreases with K and then increases. Note that, without surprise, for a large n
the minimum of mean squared error is reached with more strata. Finally, note
that our technique is never outperformed by uniform stratified Monte-Carlo: it
is a good idea to try to adapt.
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Fig. 2. Mean squared error for crude Monte-Carlo, uniform stratified sampling and
MC-UCB, for different number of strata, for (Left:) n=200 and (Right:) n=2000.

Conclusion

In this paper we studied the problem of online stratified sampling for the nu-
merical integration of a function given noisy evaluations, and more precisely we
discussed the problem of choosing the minimax-optimal number of strata.

We explained why, to our minds, this is a crucial problem when one wants to
design an efficient algorithm. We highlighted the trade-off between having many
strata (and a good approximation error, i.e. quality of a partition), and not too
many, in order to perform almost as well as the optimal oracle allocation on a
given partition (small estimation error, i.e. pseudo-regret).

When the function is noisy, the noise is the dominant quantity in the optimal
oracle variance on the optimal oracle partition. Indeed, decreasing the size of
the strata does not diminish the (local) variance of the noise. In this case, the
pseudo-risk of algorithm MC-UCB is equal, up to negligible terms, to the mean
squared error of the estimate output by the optimal oracle strategy on the best

(oracle) partition, at a rate of O(n−
d+4α
d+3α ) where α is the Hölder exponent of s

and m. This rate is minimax optimal on the class of α-Hölder functions: it is not
possible, to do better on simultaneously all α-Hölder functions.

There are (at least) three very interesting remaining open questions:

– The first one is to investigate whether it is possible to estimate online the
Hölder exponent fast enough. Indeed, one needs it in order to compute the
proper number of strata for MC-UCB, and the lower bound on the Hölder
exponent appears in the bound. It is thus a crucial parameter.
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– The second direction is to build a more efficient algorithm in the noiseless
case. We remarked that MC-UCB is not as efficient in this case as a simple
non-adaptive method. The problem comes from the fact that in the case of a
noiseless function, it is important to sample the space in a way that ensures
that the points are as spread as possible.

– Another question is the relevance of fixing the strata in advance. Although it
is minimax-optimal on the class of α−Hölder functions to have hyper-cubic
strata of same measure, it might in some cases be more interesting to focus
and stratify more finely at places where the function is rough.
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A Proof of Theorem 4

A.1 The main tool: a high probability bound on the standard
deviations

Upper bound on the standard deviation:

Lemma 1. Let Assumption 2 hold and n ≥ 2. Define the following event

ξ = ξK,n(δ) =
⋂

1≤k≤K, 2≤t≤n


∣∣∣∣∣
√√√√ 1

t− 1

t∑
i=1

(
Xk,i −

1

t

t∑
j=1

Xk,j

)2
− σk

∣∣∣∣∣ ≤ A
√

1

t

 ,

(9)

where A = 2
√

(1 + 3b+ 4V̄ ) log(2nK/δ). Then Pr(ξ) ≥ 1− δ.

Note that the first term in the absolute value in Equation 9 is the empirical
standard deviation of arm k computed as in Equation 8 for t samples. The event
ξ plays an important role in the proofs of this section and a number of statements
will be proved on this event.

Proof. Under Assumption 2 we have for f2max ≥ maxk σ
2
k with probability 1− δ

because of the results of Lemma 4∣∣∣∣∣
√√√√ 1

t− 1

t∑
i=1

(
Xk,i −

1

t

t∑
j=1

Xk,j

)2
− σk

∣∣∣∣∣ ≤ 2

√
(1 + 3b+ 4f2max) log(2/δ)

t
. (10)

Then by doing a simple union bound on (k, t), we obtain the result.

We deduce the following corollary when the number of samples Tk,t are random.

Corollary 1. For any k = 1, . . . ,K and t = 2K, . . . , n, let {Xk,i}i be n i.i.d. ran-
dom variables drawn from νk, satisfying Assumption 2. Let Tk,t be any random
variable taking values in {2, . . . , n}. Let σ̂2

k,t be the empirical variance computed
from Equation 8. Then, on the event ξ, we have:

|σ̂k,t − σk| ≤ A

√
1

Tk,t
, (11)

where A = 2
√

(1 + 3b+ 4V̄ ) log(2nK/δ).

A.2 Main Demonstration

We first state and prove the following Lemma and then use this result to prove
Theorem 4.
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Theorem 4. Let Assumption 2 hold. For any 0 < δ ≤ 1 and for n ≥ 4K, the
algorithm MC-UCB launched on a partition NK satisfies

ELn ≤
Σ2
NK
n

+ 24
√

2ΣNK
√

(1 + 3b+ 4f2max)
(fmax + 4

4

)1/3K1/3

n4/3

√
log(nK) +

14KΣ2
NK

n2
.

Proof. Step 1. Lower bound of order Õ(n2/3). Let k be the index of an
arm such that Tk,n ≥ n

K (this implies Tk,n ≥ 3 as n ≥ 4K, and arm k is thus
pulled after the initialization) and let t+ 1 ≤ n be the last time at which it was
pulled 5, i.e., Tk,t = Tk,n − 1 and Tk,t+1 = Tk,n. From Equation 11 and the fact
that Tk,n ≥ n

K , we obtain on ξ

Bk,t ≤
wk
Tk,t

(
σk + 2A

√
1

Tk,t

)
≤
Kwk

(
σk + 2A

)
n

, (12)

where the second inequality follows from the facts that Tk,t ≥ 1, wkσk ≤ ΣNK ,
and wk ≤

∑
k wk = 1. Since at time t + 1 the arm k has been pulled, then for

any arm q, we have
Bq,t ≤ Bk,t. (13)

From the definition of Bq,t, and also using the fact that Tq,t ≤ Tq,n, we deduce
on ξ that

Bq,t ≥
2Awq

T
3/2
q,t

≥ 2Awq

T
3/2
q,n

. (14)

Combining Equations 12–14, we obtain on ξ

2Awq

T
3/2
q,n

≤
Kwk

(
σk + 2A

)
n

.

Finally, this implies on ξ that for any q because wk = wq,

Tq,n ≥
( 2A

σk + 2A

n

K

)2/3
. (15)

This implies that ∀q, Tq,n ≥ C
(
n
K

)2/3
where C =

(
2A

maxk σk+2A

)2/3
.

Step 2. Properties of the algorithm. We first remind the definition of Bq,t+1

used in the MC-UCB algorithm

Bq,t+1 =
wq
Tq,t

(
σ̂q,t +A

√
1

Tq,t

)
.

Using Corollary 1 it follows that, on ξ

wqσq
Tq,t

≤ Bq,t+1 ≤
wq
Tq,t

(
σq + 2A

√
1

Tq,t

)
. (16)

5 Note that such an arm always exists for any possible allocation strategy given the
constraint n =

∑
q Tq,n.
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Let t+1 ≥ 2K+1 be the time at which an arm q is pulled for the last time, that
is Tq,t = Tq,n − 1. Note that there is at least one arm such that this happens as
n ≥ 4K. Since at t+ 1 arm q is chosen, then for any other arm p, we have

Bp,t+1 ≤ Bq,t+1 . (17)

From Equation 16 and Tq,t = Tq,n − 1, we obtain on ξ

Bq,t+1 ≤
wq
Tq,t

(
σq + 2A

√
1

Tq,t

)
=

wq
Tq,n − 1

(
σq + 2A

√
1

Tq,n − 1

)
. (18)

Furthermore, since Tp,t ≤ Tp,n, then on ξ

Bp,t+1 ≥
wpσp
Tp,t

≥ wpσp
Tp,n

. (19)

Combining Equations 17–19, we obtain on ξ

wpσp
Tp,n

(Tq,n − 1) ≤ wq

(
σq + 2A

√
1

Tq,n − 1

)
.

Summing over all q such that the previous Equation is verified, i.e. such that
Tq,n ≥ 3, on both sides, we obtain on ξ

wpσp
Tp,n

∑
q|Tq,n≥3

(Tq,n − 1) ≤
∑

q|Tq,n≥3

wq

(
σq + 2A

√
1

Tq,n − 1

)
.

This implies

wpσp
Tp,n

(n− 3K) ≤
K∑
q=1

wq

(
σq + 2A

√
1

Tq,n − 1

)
. (20)

Step 3. Lower bound. Plugging Equation 15 in Equation 20,

wpσp
Tp,n

(n− 3K) ≤
∑
q

wq

(
σq + 2A

√
1

Tq,n − 1

)

≤
∑
q

wq

(
σq + 2A

√
2K2/3

Cn2/3

)

≤ ΣNK +
2
√

2A√
C

K1/3

n1/3
,

on ξ, since Tq,n − 1 ≥ Tq,n
2 (as Tq,n ≥ 2). Finally as n ≥ 4K, we obtain on ξ the

following bound

wpσp
Tp,n

≤ ΣNK
n

+
4
√

2A√
C

K1/3

n4/3
+

12KΣNK
n2

. (21)
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Step 4. Regret. By summing and using Equation 21 which holds for all p, we
obtain on ξ (with probability 1− δ)

Ln =
∑
p

w2
pσ

2
p

Tp,n
≤
Σ2
NK
n

+
4ΣNK

√
2A√

C

K1/3

n4/3
+

12KΣ2
NK

n2
.

This implies since ELn = E[LnI {ξ}] + E[LnI {ξc}] and since δ = n−2

ELn ≤
Σ2
NK
n

+
4ΣNK

√
2A√

C

K1/3

n4/3
+

12KΣ2
NK

n2
+ (
∑
p

w2
pσ

2
p)n−2

≤
Σ2
NK
n

+
4ΣNK

√
2A√

C

K1/3

n4/3
+

14KΣ2
NK

n2
.

Since δ = n−2, we have A ≤ 6
√

(1 + 3b+ 4V̄ ) log(nK) and C ≥
(

4
fmax+4

)2/3
,

this leads to

ELn ≤
Σ2
NK
n

+ 24
√

2ΣNK
√

(1 + 3b+ 4f2max)
(fmax + 4

4

)1/3K1/3

n4/3

√
log(nKn) +

14KΣ2
NK

n2
.

B Proof of Proposition 1

Step 1: Expression of the variance of the stratified estimate. Note that the sam-
ples f(x) + s(x)εt where εt ∼ νx and Eνx [εt] = 0, Vνx [εt] = 1 the εt are indepen-
dent.
We have

σ2
k =

1

wk

∫
Ωk

Eνx [(Xx(t)− µk)2]dx

=
1

wk

∫
Ωk

Eνx
[
(f(x) + s(x)εt −

1

wk

∫
Ωk

f(u)du)2
]
dx

=
1

wk

∫
Ωk

Eνx
[
(f(x)− 1

wk

∫
Ωk

f(u)du)2
]
dx+

1

wk

∫
Ωk

Eνx
[
s(x)2ε2t

]
dx

=
1

wk

∫
Ωk

(
f(x)− 1

wk

∫
Ωk

f(u)du
)2
dx+

1

wk

∫
Ωk

s(x)2dx

Step 2: Proof for the uniformly continuous functions. We first prove the result
for a subset of L2([0, 1]d), namely the set of functions m and s that are uniformly
continuous.

Proposition 4. If the functions f and s are uniformly continuous and if the
strata satisfy the Assumptions of Proposition 1, we have∑

k

wk,nσk,n −
∫
[0,1]d

s(x)dx→ 0
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Proof. Let υ > 0. As s and f are uniformly continuous, we know that ∀x, ∃η
such that |s(x+ u)− s(x)| ≤ υ and |f(x+ u)− f(x)| ≤ υ where u ∈ B2,d(η). We
denote by B2,d(η) the ball of center 0 and radius η according to the ||.||2 norm.
By Assumption AS1, we know that wk,n ≤ υn. Note that the diameter of strata
Ωk,n is smaller than D(wk,n) ≤ D(υn). Let us choose n big enough, i.e. such
that D(υn) ≤ η and υn ≤ υ.
We have

σ2
k,n − (

1

wk,n

∫
Ωk,n

s)2 =
1

wk,n

∫
Ωk,n

s2 −
( 1

wk,n

∫
Ωk,n

s
)2

+
1

wk,n

∫
Ωk,n

(
f − 1

wk,n

∫
Ωk,n

f
)2

=
1

wk,n

∫
Ωk,n

(
s− 1

wk,n

∫
Ωk,n

s
)2

+
1

wk,n

∫
Ωk,n

(
f − 1

wk,n

∫
Ωk,n

f
)2

≤ υ2 + υ2 ≤ 2υ2.

Because of concavity of the square-root function, we get

σk,n − (
1

wk,n

∫
Ωk,n

s) ≤
√

2υ.

By summing we get ∑
k

wk,nσk,n −
∫
[0,1]d

s ≤
√

2υ.

Step 3: Density of uniformly continuous functions in L2([0, 1]d). We first remind
a property of the functions in L2([0, 1]d).

Proposition 5. The uniformly continuous functions according to the ||.||2 norm
are dense in L2([0, 1]d).

Proof. The result follows directly from the facts that

– The continuous functions are dense in L2(Ω) (Stone-Weierstrass Theorem).
– The uniformly continuous functions on a compact space Ω according to the
||.||2 norm are dense in the space of continuous functions.

– [0, 1]d is a compact.

This means that we can approximate with arbitrary precision according to the
||.||2 measure on L2([0, 1]d) any function in L2([0, 1]d) by an uniformly continuous
function.
Using this proposition, we can prove the following Lemma.

Lemma 2. For a given n and a given υ, there exist two uniformly continuous
function mυ and sυ such that:

∣∣∣ Kn∑
k=1

wk,nσk,n−
Kn∑
k=1

√
wk,n

√∫
Ωk,n

(
fυ(x) +

∫
Ωk,n

fυ(u)du
)2
dx− 1

wk,n

∫
Ωk,n

s2υ(x)dx
∣∣∣ ≤ υ.
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Proof. Let us fix n and υ.
Let mυ be an uniformly continuous function such that∫

Ω

(f(x)− fυ(x))2dx ≤ min
k

(wk,n)
υ

2
,

and sυ be an uniformly continuous function such that∫
Ω

(s(x)− sυ(x))2dx ≤ min
k

(wk,n)
υ

2
.

It is possible because of wk,n > 0 and because the uniformly continuous functions
are dense in L2([0, 1]d) by Proposition 5.
Note that we thus have

1

wk,n

∫
Ωk,n

(f(x)− fυ(x))2dx ≤ υ

2
,

and
1

wk,n

∫
Ωk,n

(s(x)− sυ(x))2dx ≤ υ

2
.

Note also that 1
wk,n

∫
Ωk,n

(s(x)−sυ(x))2dx ≥
∣∣∣ 1
wk,n

∫
Ωk,n

s(x)2dx− 1
wk,n

∫
Ωk,n

sυ(x)2dx
∣∣∣.

Simple triangle inequality leads to∣∣∣ 1

wk,n

∫
Ωk,n

(f(x)− 1

wk,n

∫
Ωk,n

f(u)du)2dx− 1

wk,n

∫
Ωk,n

(fυ(x)− 1

wk,n

∫
Ωk,n

fυ(u)du)2dx
∣∣∣ ≤ υ

2
.

Now note that as σ2
k,n = 1

wk,n

∫
Ωk,n

(f(x)− 1
wk,n

∫
Ωk,n

f(u)du)2dx+ 1
wk,n

∫
Ωk,n

s(x)2dx,

we know that the variance of the function on strata Ωk,n is arbitrarily close to
the variance of its approximation.
By convexity, one gets∣∣∣σk,n−√ 1

wk,n

∫
Ωk,n

(
fυ(x)− 1

wk,n

∫
Ωk,n

fυ(u)du
)2
dx+

1

wk,n

∫
Ωk,n

s2υ(x)dx
∣∣∣ ≤ υ.

And finally, by summing

∣∣∣ Kn∑
k=1

wk,nσk,n−
Kn∑
k=1

√
wk,n

√∫
Ωk,n

(
fυ(x) +

∫
Ωk,n

fυ(u)du
)2
dx− 1

wk,n

∫
Ωk,n

s2υ(x)dx
∣∣∣ ≤ υ.

Step 4: Combination of all the preliminary results to finish the proof. Finally,
we finish the demonstration of Proposition 1.

Let υ > 0 and fυ and sυ be as in Lemma 2.
We know that∣∣∣ Kn∑
k=1

wk,nσk,n−
Kn∑
k=1

√
wk,n

√∫
Ωk,n

(
fυ(x) +

∫
Ωk,n

fυ(u)du
)2
dx− 1

wk,n

∫
Ωk,n

s2υ(x)dx
∣∣∣ ≤ υ,



22 Carpentier and Munos

and also that ∫
Ω

(s(x)− sυ(x))2dx ≤ min
k

(wk,n)
υ

2
≤ υ

2
.

Note that by Cauchy-Schwartz:∫
Ω

|s(x)− sυ(x)|dx ≤

√∫
Ω

(s(x)− sυ(x))2dx ≤
√
υ

2
.

Note also that Proposition 4 tells us that ∃n such that

Kn∑
k=1

√
wk,n

√∫
Ωk,n

(
fυ(x)− 1

wk,n

∫
Ωk,n

fυ(u)du
)2
dx+

∫
Ωk,n

s2υ(x)dx−
∫
[0,1]d

sυ(x)dx ≤ υ.

When combining all those results, one gets the desired result.
Note finally that if we choose the strata as being small boxes of size 1

K and

side ( 1
K )1/d, then the assumptions of Proposition 1 is verified.

C Proof of Proposition 2

Note first that

σ2
k =

1

wk

∫
Ωk

(
f(x)− 1

wk

∫
Ωk

f(u)du
)2
dx+

1

wk

∫
Ωk

s2(x)dx.

The term in f As the function f is (α,M)− Hölder, we know that ∀(x, y) ∈
Ω, |f(x)− f(y)| ≤M ||x− y||α2 .
Using that we get

1

wk

∫
Ωk

(
f(x)− 1

wk

∫
Ωk

f(u)du
)2
dx ≤M2D(Ωk)2α

≤M2d(
1

K
)2α/d.

The term in s As the function s is (α,M)− Hölder, we know that ∀(x, y) ∈
Ω, |s(x)− s(y)| ≤M ||x− y||α2 .

1

wk

∫
Ωk

s2(x)dx−
( 1

wk

∫
Ωk

s(u)du
)2

=
1

wk

∫
Ωk

(
s(x)− 1

wk

∫
Ωk

s(u)du
)2
dx ≤M2D(Ωk)2α

≤M2d(
1

K
)2α/d.

Finally... By combining those two results

wkσk −
∫
Ωk

s(x)dx ≤ wk

√
σ2
k −

( 1

wk

∫
Ωk

s(x)dx
)2

≤ wk

√
M2d(

1

K
)2α/d +M2d(

1

K
)2α/d.
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By summing over all the strata, one obtains

ΣNK −
∫
[0,1]d

s(x)dx ≤
√

2dM(
1

K
)α/d.

D Lower bound

Let us write the proof of the lower bound using the terminology of multi-armed
bandits. Each arm k represents a stratum and the distribution associated to this
arm is defined as the distribution of the noisy samples of the function collected
when sampling uniformly on the strata.

Let us choose µ < 1/2 and α = µ
2 . Consider 2K Bernoulli bandits (i.e.,

2K strata where the samples follow Bernoulli distributions) where the K first
bandits have parameter (µk)1≤k≤K and the K last ones have parameter 1/2.
The µk take values in {µ− α, µ, µ+ α}.

Define σ2 = µ(1− µ) the variance of a Bernoulli of parameter µ, and is such

that
√

1
2µ ≤ σ ≤

√
µ. We wite σ−α and σ+α the two other standard deviations,

and notice that 1
2

√
µ ≤ σ−α ≤

√
µ, and

√
1
2µ ≤ σ+α ≤

√
µ.

We consider the 2K bandit environmentsM(υ) (characterized by υ = (υk)1≤k≤K ∈
{−1,+1}K) defined by (µk = µ+ υkα)1≤k≤K . We write Pυ the probability with
respect to the environment M(υ) at time n. We also write M(σ) the environment
defined by all K first arms having a parameter σ, and write Pσ the associated
probability at time n.

The optimal oracle allocation for environment M(υ) is to play arm k ≤
K, tk(υ) =

συkα∑K
i=1 συiα+K/2

n times and arm k > K, tk(υ) = 1/2∑K
i=1 συiα+K/2

n

times. The corresponding quadratic error of the resulting estimate is l(υ) =
(
∑K
i=1 συiα+K/2)

2

(2K)2n . For the environment M(σ), the optimal oracle allocation is to

play arm k ≤ K, t(σ) = σ
Kσ+K/2n times (and arm k > K, t2(σ) = 1/2

Kσ+K/2n

times).
Consider deterministic algorithms first (extension to randomized algorithms

will be discussed later). An algorithm is a set (for all t = 1 to n − 1) of
mappings from any sequence (r1, . . . , rt) ∈ {0, 1} of t observed samples (where
rs ∈ {0, 1} is the sample observed at the s-th round) to the choice of an arm
It+1 ∈ {1, . . . , 2K}. Write Tk(r1, . . . , rn) the (random variable) corresponding to

the number of pulls of arm k up to time n. We thus have n =
∑2K
k=1 Tk.

Now, consider the set of algorithms that know that the K first arms have
parameter µk ∈ {µ−α, µ, µ+α}, and that also know that the K last arms have
their parameters in {1/4, 3/4}. Given this knowledge, an optimal algorithm will

not pull any arm k ≤ K more than
(

σ+α

Kσ−α+
√
3K/4

)
n times. Indeed, the optimal

oracle allocation in all such environments allocates less than
(

σ+α

Kσ−α+
√
3K/4

)
n

samples to each arm k ≤ K. In addition, since the samples of all arms are
independent, a sample collected from arm k does not provide any information
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about the relative allocations among the other arms. Thus, once an arm has been
pulled as many times as recommended by the optimal oracle strategy, there is no
need to allocate more samples to that arm. Writing A the class of all algorithms
that do not know the set of possible environments, Aυ the class of algorithms
that know the set of possible environments M(υ) and Aopt the subclass of Aυ
that pull all arms k ≤ K less than

(
σ+α

Kσ−α+
√
3K/4

)
n times, we have

inf
A

sup
M(υ)

ERn ≥ inf
Aυ

sup
M(υ)

ERn = inf
Aopt

sup
M(υ)

ERn,

where the first inequality comes from the fact that algorithms in Aυ possess
more information than those in A, which they can use or not. Thus A ⊂ Aυ.

Now for any υ = (υ1, . . . , υK), define the events

Ωυ = {ω : ∀U ⊂ {1, . . . ,K} : |U| ≤ K

3
and ∀k ∈ Uc, υkTk ≥ υkt(σ)}.

Note that by definition

Ωυ =

K
3⋃

p=1

⋃
U⊂{1,...,K}:|U|=p

{{ ⋂
k∈U

{υkTk < υkt(σ)}
}⋂{ ⋂

k∈UC
{υkTk ≥ υkt(σ)}

}}
.

By the sub-additivity of the probabilities, we have

Pσ(Ωυ) ≤
K
3∑

p=1

∑
U⊂{1,...,K}:|U|=p

P

[{{ ⋂
k∈U

{υkTk < υkt(σ)}
}⋂{ ⋂

k∈UC
{υkTk ≥ υkt(σ)}

}}]
.

The events

{{⋂
k∈U{υkTk < υkt(σ)}

}⋂{⋂
k∈UC{υkTk ≥ υt(σ)}

}}
are

disjoint for different υ, and form a partition of the space, thus
∑
υ Pσ

[{{⋂
k∈U{υkTk <

υkt(σ)}
}⋂{⋂

k∈UC{υTk ≥ υkt(σ)}
}}]

= 1.

We deduce that∑
υ

Pσ(Ωυ) ≤
∑
υ

K
3∑

p=1

∑
U⊂{1,...,K}:|U|=p

Pσ

[{{ ⋂
k∈U

{υTk < υkt(σ)}
}⋂{ ⋂

k∈UC
{υkTk ≥ υkt(σ)}

}}]

=

K
3∑

p=1

∑
U⊂{1,...,K}:|U|=p

∑
υ

[{{ ⋂
k∈U

{υkTk < υkt(σ)}
}⋂{ ⋂

k∈UC
{υTk ≥ υkt(σ)}

}}]

=

K
3∑

p=1

∑
U⊂{1,...,K}:|U|=p

1

=

K
3∑

p=1

(
K
p

)
.
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Since there are 2K environments υ, we have

min
υ

Pσ(Ωυ) ≤ 1

2K

∑
υ

Pσ(Ωυ) ≤ 1

2K

K
3∑

p=1

(
K
p

)
.

Note that 1
2K

∑K
3
p=1

(
K
p

)
= P(

∑K
k=1Xk ≤ K

3 ) where (X1, . . . , XK) are K

independent Bernoulli random variables of parameter 1/2. By Chernoff-Hoeffding’s

inequality, we have P(
∑K
k=1Xk ≤ K

3 ) = P( 1
K

∑K
k=1Xk− 1

2 ≤
K
6 ) ≤ exp(−K/72).

Thus there exists υmin such that Pσ(Ωυmin
) ≤ exp(−K/72).

Let us write p = Pυmin
(Ωυmin

) and pσ = Pσ(Ωυmin
). Let kl(a, b) = a log(ab ) +

(1−a) log(1−a
1−b ) denote the KL for Bernoulli distributions with parameters a and

b. Note that because ∀Ω, KL(Pυmin
(.|Ω),Pσ(.|Ω)) ≥ 0, we have

kl(p, pσ) ≤ KL(Pυmin
,Pσ).

From that we deduce that p(log(p)−log(pσ))+(1−p)(log(1−p)−log(1−pσ)) ≤
KL(Pυmin ,Pσ), which leads to

p ≤ max(
36

K

(
KL(Pυmin

,Pσ)
)
, exp(−K/72)). (22)

Let us now consider any environment (υ). Let Rt = (r1, . . . , rt) be the se-
quence of observations, and let Ptυ be the law of Rt for environment M(υ). Note
first that Pυ = Pnυ . Adapting the chain rule for Kullback-Leibler divergence, we
get

KL(Pnυ ,Pnσ)

= KL(P1
υ,P1

σ) +

n∑
t=2

∑
Rt−1

Pt−1υ (Rt−1)KL(Ptυ(.|Rt−1),Ptσ(.|Rt))

= KL(P1
σ,P1

υ) +

n∑
t=2

[ ∑
Rt−1|υIt=+1

Pt−1σ (Rt−1)kl(µ+ α, µ) +
∑

Rt−1|υIt=−1

Pt−1σ (Rt−1)kl(µ− α, µ)
]

= kl(µ− α, µ)Eυ[
∑

k:υk=−1

Tk] + kl(µ+ α, µ)Eυ[
∑

k:υk=+1

Tk].

We thus have, using the property that kl(a, b) ≤ (a−b)2
b(1−b) ,

KL(Pυ,Pσ) = kl(µ− α, µ)Eυ[
∑

k:υk=−1

Tk] + kl(µ+ α, µ)Eυ[
∑

k:υk=+1

Tk]

≤ Eσ[
∑
k≤K

Tk]
α2

µ(1− µ)

= Eσ[
∑
k≤K

Tk]
α2

σ2
.
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Note that for an algorithm in Aopt, we have
∑K
k=1 Tk ≤ Tk ≤ K

(
σ+α

Kσ−α+
√
3K/4

)
n.

Since α = µ
2 and 0 < µ ≤ 1

2 we have

KL(Pυ,Pσ) ≤
(
K

σ+α

Kσ−α +
√

3K/4

)α2

σ2
n

≤ 4σ+α
α2

σ2
n

≤ 8
α2

σ
n,

We thus deduce using Equation 22

Pυmin
(Ωυmin

) = p ≤ max(
18

K

(
KL(Pυmin

,Pσ)
)
, exp(−K/72))

≤ 144

K

α2

σ
n.

Now choose σ ≤ 1
7 (Kn )1/3 (as α = µ

2 = σ2

2 ). Note that this implies that
Pυmin(Ωυmin) ≤ 1

2 .

Let ω ∈ Ωcυmin
. We know that for ω, there are at least K

3 arms among the

K first which are not pulled correctly: either K
6 arms among the arms with

parameter µ−α or among the arms with parameter µ+α are not pulled correctly.
Assume that for this fixed ω, there are K

6 arms among the arms with parameter
µ− α which are not pulled correctly. Let U(ω) be this subset of arms.

We write ∆T =
∑
k∈U Tk −

K
6 t(σ−α) the number of times those arms are

over pulled. Note that on ω we have ∆T ≥ K
6 t(σ)− t(σ−α). We have

∆T =
K

6
t(σ)− K

6
t(σ−α) =

1

6

Kσ

Kσ +K/2
n− 1

6

Kσ−α∑K
i=1 συiα +K/2

n

≥ 1

6

Kσ

Kσ +K/2
n− 1

6

Kσ/
√

2√
3Kσ/

√
2 +K/2

n

≥ 1

6

1

Kσ +K/2

1√
3Kσ/

√
2 +K/2

(
K2σ/2−K2σ/2

√
2
)
n

≥ 1

2
(1− 1/

√
2)σn

≥ 1

35
K1/3n2/3
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Thus on ω, the regret is such that

Rn,υmin
(ω) ≥

3K∑
k=1

w2
kσ

2
k

Tk(ω)
− 1

(2K)2
(
∑K
i=1 συiα +K/2

)2
n

≥
∑

k∈U(ω)

w2
kσ

2
k

Tk(ω)
+

∑
k∈U(ω)C

w2
kσ

2
k

Tk(ω)
− 1

(2K)2
(
∑K
i=1 συiα +K/2

)2
n

≥ 1

K2

K

6

σ2
−α

tk(σ−α) + 6∆T/K
+

(∑K
i=1 συiα −Kσ−α/6 +K/2

)2
(2K −K/6)2(n−∆T )

− 1

(2K)2
(
∑K
i=1 συiα +K/2

)2
n

≥ 1

(2K)2

(∑K
i=1 συiα +K/2

)2
n

1 +
((∑K

i=1 συiα+K/2
)
∆T(

Kσ−α/6
)
n

−
(∑K

i=1 συiα+K/2
)
∆T(∑K

i=1 συiα−Kσ−α/6+K/2
)
n

)
(

1 +
6∆T

(∑K
i=1 συiα+K/2

)
Kσ−αn

)(
1−

(∑K
i=1 συiα+K/2

)
∆T(∑K

i=1 συiα−Kσ−α/6+K/2
)
n

)
− 1

(2K)2
(
∑K
i=1 συiα +K/2

)2
n

≥ 1

(2K)2
(
∑K
i=1 συiα +K/2

)2
n

( (∑K
i=1 συiα+K/2

)
∆T(∑K

i=1 συiα−Kσ−α/6+K/2
)
n

)((∑K
i=1 συiα+K/2

)
∆T(

Kσ−α/6
)
n

)
(

1 +
6∆T

(∑K
i=1 συiα+K/2

)
Kσ−αn

)(
1−

(∑K
i=1 συiα+K/2

)
∆T(∑K

i=1 συiα−Kσ−α/6+K/2
)
n

)
≥ C (∆T )2

n3σ

≥ CK
1/3

n4/3
,

where C is a numerical constant. Note that for events ω where there are K
6 arms

among the arms with parameter µ+ α which are not pulled correctly, the same
result holds.

Note finally that P(Ωcυmin
) ≥ 1/2. We thus have that the regret is bigger than

ERn,υmin
≥

∑
ω∈Ωcυmin

Rn,υmin
(ω)Pυmin

(ω)

≥
∑

ω∈Ωcυmin

C
K1/3

n4/3
Pυmin

(ω)

≥ 1

2
C
K1/3

n4/3
,

which proves the lower bound for deterministic algorithms. Now the extension to
randomized algorithms is straightforward: any randomized algorithm can be seen
as a static (i.e., does not depend on samples) mixture of deterministic algorithms
(which can be defined before the game starts). Each deterministic algorithm
satisfies the lower bound above in expectation, thus any static mixture does so
too.
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E Large deviation inequalities for independent
sub-Gaussian random variables

We first state Bernstein inequality for large deviations of independent random
variables around their mean.

Lemma 3. Let (X1, . . . , Xn) be n independent random variables of mean (µ1, . . . , µn)
and of variance (σ2

1 , . . . , σ
2
n). Assume that there exists b > 0 such that for any

λ < 1
b , for any i ≤ n, it holds that E

[
exp(λ(Xi − µi))

]
≤ exp

(
λ2σ2

i

2(1−λb)

)
. Then

with probability 1− δ

| 1
n

n∑
i=1

Xi −
1

n

n∑
i=1

µi| ≤

√
2( 1
n

∑n
i=1 σ

2
i ) log(2/δ)

n
+
b log(2/δ)

n
.

Proof. If the assumptions of Lemma 3 are verified, then

P
( n∑
i=1

Xi −
n∑
i=1

µi ≥ nυ
)

= P

[
exp

(
λ(
∑n
i=1Xi −

∑n
i=1 µi)

)
≥ exp(nλυ)

]

≤ E

[
exp

(
λ(

∑n
i=1Xi−

∑n
i=1 µi)

)
exp(nλυ)

]

≤
∏n
i=1 E

[
exp

(
λ(Xi−µi)

)
exp(λυ)

]
≤ exp(λ

2

2

∑n
i=1

σ2
i

2(1−λb) − nλυ).

By setting λ = nυ∑n
i=1 σ

2
i+bnυ

we obtain

P
( n∑
i=1

Xi −
n∑
i=1

µi ≥ nυ
)
≤ exp(− n2υ2

2(
∑n
i=1 σ

2
i + bnυ)

).

By an union bound we obtain

P
(
|
n∑
i=1

Xi −
n∑
i=1

µi| ≥ nυ
)
≤ 2 exp(− n2υ2

2(
∑n
i=1 σ

2
i + bnυ)

).

This means that with probability 1− δ,

| 1
n

n∑
i=1

Xi −
1

n

n∑
i=1

µi| ≤

√
2( 1
n

∑n
i=1 σ

2
i ) log(2/δ)

n
+
b log(2/δ)

n
.

We also state the following Lemma on large deviations for the variance of
independent random variables.
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Lemma 4. Let (X1, . . . , Xn) be n independent random variables of mean (µ1, . . . , µn)
and of variance (σ2

1 , . . . , σ
2
n). Assume that there exists b > 0 such that for any

λ < 1
b , for any i ≤ n, it holds that E

[
exp(λ(Xi − µi))

]
≤ exp

(
λ2σ2

i

2(1−λb)

)
and

also E
[

exp(λ(Xi − µi)2 − λσ2
i )
]
≤ exp

(
λ2σ2

i

2(1−λb)

)
.

Let V = 1
n

∑
i(µi −

1
n

∑
i µi)

2 + 1
n

∑
n σ

2
i be the variance of a sample cho-

sen uniformly at random among the n distributions, and V̂ = 1
n

∑n
i=1

(
Xi −

1
n

∑n
j=1Xj

)2
the corresponding empirical variance. Then with probability 1− δ,

|
√
V̂ −

√
V | ≤ 2

√
(1 + 3b+ 4V ) log(2/δ)

n
.

Proof. By decomposing the estimate of the empirical variance in bias and vari-
ance, we obtain with probability 1− δ

V̂ =
1

n

∑
i

(Xi −
1

n

∑
j

µj)
2 − (

1

n

∑
i

Xi −
1

n

∑
i

µi)
2

=
1

n

∑
i

(Xi − µi)2 + 2
1

n

∑
i

(Xi − µi)
1

n

∑
i

(µi −
1

n

∑
j

µj)

+
1

n

∑
i

(µi −
1

n

∑
j

µj)
2 − (

1

n

∑
i

Xi −
1

n

∑
i

µi)
2

=
1

n

∑
i

(Xi − µi)2 +
1

n

∑
i

(µi −
1

n

∑
j

µj)
2 − (

1

n

∑
i

Xi −
1

n

∑
i

µi)
2.

We then have by the definition of V that with probability 1− δ

V̂ − V =
1

n

n∑
i=1

(Xi − µi)2 −
1

n

n∑
i=1

σ2
i − (

1

n

∑
i

Xi −
1

n

∑
i

µi)
2. (23)

If the assumptions of Lemma 4 are verified, we have with probability 1− δ

P
( n∑
i=1

(Xi − µi)2 −
n∑
i=1

σ2
i ≥ nυ

)
= P

[
exp

(
λ(

n∑
i=1

|Xi − µi|2 −
n∑
i=1

σ2
i )
)
≥ exp(nλυ)

]

≤ E

[
exp

(
λ(
∑n
i=1 |Xi − µi|2 −

∑n
i=1 σ

2
i )
)

exp(nλυ)

]

≤
n∏
i=1

E

[
exp

(
λ(|Xi − µi|2 − σ2

i )
)

exp(λυ)

]

≤ 2 exp(
λ2

2

n∑
i=1

σ2
i

2(1− λb)
− nλυ).
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If we take λ = nυ∑n
i=1 σ

2
i+nbυ

we obtain with probability 1− δ

P
( n∑
i=1

(Xi − µi)2 −
n∑
i=1

σ2
i ≥ nυ2

)
≤ exp(− n2υ2

2(
∑n
i=1 σ

2
i + bnυ)

). (24)

By a union bound we get with probability 1− δ that

P
(
|
n∑
i=1

(Xi − µi)2 −
n∑
i=1

σ2
i | ≥ nυ

)
≤ 2 exp(− n2υ2

2(
∑n
i=1 σ

2
i + bnυ)

).

This means that with probability 1− δ,

| 1
n

n∑
i=1

(Xi − µi)2 −
1

n

n∑
i=1

σ2
i | ≤

√
2( 1
n

∑n
i=1 σ

2
i ) log(2/δ)

n
+
b log(2/δ)

n
. (25)

Finally, by combining Equations 23 and 25 with Lemma 3, we obtain with
probability 1− δ

|V̂ − V | ≤
4( 1
n

∑n
i=1 σ

2
i ) log(2/δ)

n
+

2b2 log(2/δ)2

n2
+

√
2( 1
n

∑n
i=1 σ

2
i ) log(2/δ)

n
+
b log(2/δ)

n

≤

√
2( 1
n

∑n
i=1 σ

2
i ) log(2/δ)

n
+

(3b+ 4 1
n

∑n
i=1 σ

2
i ) log(2/δ)

n

≤
√

2V log(2/δ)

n
+

(3b+ 4V ) log(2/δ)

n
,

when n ≥ b log(2/δ) and because V ≥ 1
n

∑n
i=1 σ

2
i .

This implies with probability 1− δ that

V −
√

2V log(2/δ)

n
+

log(2/δ)

2n
≤ V̂ +

(3b+ 4V ) log(2/δ)

n
+

log(2/δ)

2n

⇔
√
V −

√
log(2/δ)

2n
≤
√
V̂ +

(1 + 3b+ 4V ) log(2/δ)

n

⇒
√
V −

√
log(2/δ)

2n
≤
√
V̂ +

√
(1 + 3b+ 4V ) log(2/δ)

n

⇒
√
V ≤

√
V̂ + 2

√
(1 + 3b+ 4V ) log(2/δ)

n
.

On the other hand, we have also with probability 1− δ

V̂ ≤ V +

√
2V log(2/δ)

n
+

(3b+ 4V ) log(2/δ)

n

⇒
√
V̂ ≤

√
V + 2

√
(1 + 3b+ 4V ) log(2/δ)

n
.
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Finally, we have with probability 1− δ

|
√
V̂ −

√
V | ≤ 2

√
(1 + 3b+ 4V ) log(2/δ)

n
. (26)


