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Motivation
• Product recommendation (e.g., movies)
• Adaptive hypothesis testing under linear assumption
• Optimization of a stochastic linear function

Setting
The linear stochastic bandit model
• Set of arms X ⊆ Rd, |X | = K, ||x||2 ≤ L, ∀x ∈ X .
• Linear reward model

r(x) = x>θ∗ + ε

with θ∗∈Rd unknown parameter and noise ε∼N (0, σ2).
• The (unique) best arm in X :

x∗ = arg max
x∈X

x>θ∗

The best-arm identification problem ((0, δ)-PAC setting)
• x̂(n) – recommended best arm after n steps.
• Given a fixed confidence δ, design an allocation strategy

and a stopping criterion such that:

P
(
x̂(n)=x∗

)
≥1−δ and n as small as possible.

Gaps and Directions
Value gaps
• For any pair x, x′ ∈ X , ∆(x, x′) = (x− x′)>θ∗
• Smallest gap ∆min = minx∈X ∆(x∗, x)

The smaller the gaps the more difficult the problem.

Example
• x1 and x3 are very close, while
x2 is clearly suboptimal

• Only direction y = x1 − x3
(i.e., θ∗2) must be estimated ac-
curately

• x2 provides much information
about direction y (θ∗2)

Use one arm to learn about the others
(exploit the linear structure)!

Sets of directions
Y = {y = x− x′}, Y∗ = {y = x∗ − x}

Tools
Ordinary Least-Squares estimate
• Sequence of arms xn = (x1, . . . , xn) ∈ Xn
• Sequence of rewards (r1, . . . , rn)
• OLS estimate, Axn =

∑n
t=1xtx

>
t , bxn =

∑n
t=1 xtrt

θ̂n = A−1
xn bxn

Prediction errors
• Fixed sequence and OLS estimate (w.p. 1− δ)∣∣x>θ∗ − x>θ̂n∣∣ ≤ c||x||A−1

xn

√
logn(K/δ)

• Adaptive sequence (Thm.2 in [1]) for η-regularized OLS
(w.p. 1− δ)

∣∣x>(θ∗ − θ̂ηn)
∣∣ ≤||x||

A
η,−1
xn

(
σ

√
d log

(1 + nL2/η

δ

)
+ η1/2||θ∗||

)

Illustration
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Optimality cones
C(x) = ∩x′∈X {θ ∈ Rd, (x− x′)>θ ≥ 0}

Confidence set

S(xn) =
{
θ,∀y, y>(θ∗− θ) ≤ c||y||A−1

xn

√
log(K2/δ)

}

XY-Oracle
Intuition: select arms so that the confidence set shrinks into
one optimality cone as soon as possible.

Stopping rule

∃x∈X s.t.S(xn)⊂C(x)

Allocation rule

x∗n = arg min
xn

max
y∈Y∗

||y||A−1
xn

∆(y)

Oracle sample complexity

N∗ = c2HLB logn(K2/δ)

Complexity of Linear
Best-Arm Identification

HLB = min
λ∈Dk

max
y∈Y∗

||y||2
Λ−1
λ

∆2(y)

N∗ is the lower-bound on the sample complexity of
any fixed allocation strategy

Remarks

max
y∈Y∗

||y||2

L∆2
min

≤ HLB ≤
4d

∆2
min

HMAB≤HLB≤2HMAB

XY-adaptive Algorithm
Input: X ∈Rd; confidence δ;

Phase length given by an α improvement;
Set j=1; X̂j=X ; Ŷ1 =Y;n = 0;

STOPPING RULE
while |X̂j | > 1 do

Start a new phase: j = j + 1, t = 1;A0 = I
while ρj/t ≥ αρj−1(xj−1

nj−1
)/nj−1 do

ALLOCATION RULE
xt = arg min

x∈X
max
y∈Ŷj

y>(A+ xx>)−1y

Update At = At + xtx
>
t ; t = t+ 1; n = n+ 1

ρj = maxy∈Ŷj y
>A−1

t y

end while
b =

∑t
s=1 xsrs; θ̂j = A−1

t b
Recompute the set of potential optimal arms:
X̂j={x, @x′ : ||x− x′||A−1

t

√
logn(K2/δ)≤∆̂j(x

′, x)}
Recompute the set of directions of interest:
Ŷj = {y = (x− x′);x, x′ ∈ X̂j}

end while
RECOMMENDATION RULE
Return x̂(n) - the only arm remaining in X̂j .

Static allocations
G-Optimal Design: estimate θ∗ uniformly well over all arms

xGn = arg min
xn

max
x∈X
||x||A−1

xn

XY-Design: estimate the value of the gaps uniformly well
over all the directions in Y

xXYn = arg min
xn

max
y∈Y
||y||A−1

xn

Empirical stopping criterion:

∃x ∈ X ,∀x′ ∈ X ,∀θ ∈ Ŝ(xn)

(x− x′)>(θ̂n − θ) ≤ ∆̂n(x, x′)

Sample complexity O(d/∆2
min).

From Y to Y∗
The minimum number of steps needed by the static XY-
allocation to discard all suboptimal directions.

M∗ = min{n ∈ N,∀x 6= x∗,∀x′ 6= x∗,

S∗(xXYn ) ∩ (C(x) ∩ C(x′)) = ∅}.

Main result
Theorem 1. If the XY-adaptive allocation strategy is implemented with a β-approximate method then

P
[
N≤ (1 + β)max{M∗, 16

α N
∗}

log(1/α)
log
(c√logn(K2/δ)

∆min

)
∧ (x̂N = x∗)

]
≥ 1− δ.

The bound holds for any (1 +β)-approximate allocation strategy : e.g., continuous relaxation, greedy incremental allocation.

Experiments – Sample Complexity and arm pulls
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 Total number of pulls (x 10000) 
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XY 
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Arm XY-oracle XY-adapt. XY G Fully-adapt.
x1 207 263 29523 28014 740
x2 41440 52713 29524 28015 149220
x3 2 3 29524 28015 1
x4 2 5 29524 28015 1
x5 1 2 29524 28015 1
x6 0 2 1 1 1
Total 41652 52988 147620 140075 149964

Setting:
• Fixed confidence δ = 0.05.
• Set of arms: X ∈ Rd, |X | = d+ 1 and d = 2, . . . , 10.
• Canonical basis (x1, . . . , xd) and additional arm xd+1

very close to x1.
• θ∗ = [2 0 0 . . . 0]> → ∆min = (x1 − xd+1)>θ∗

much smaller than the other gaps.
• Identifying the best arm → reducing uncertainty in

the direction ỹ = (x1 − xd+1).
• x2 is almost aligned with ỹ → the most informative
arm.

The sample complexity grows linearly with the dimen-
sion:
• Fully-adaptive – despite pulling only the informative

arms, the additional d term in the bound prevents a
good performance.

• G and XY – always consider the complete set Y.
The sample complexity remains constant:
• XY-Adaptive and XY-Oracle – exclusively pull the

two most informative arms, independently of the
number of dimensions.
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