

Neural Information Processing Systems

- Product recommendation (e.g., movies)
- Adaptive hypothesis testing under linear assumption
- Optimization of a stochastic linear function

SETTING

The linear stochastic bandit model

- Set of arms $\mathcal{X} \subseteq \mathbb{R}^d$, $|\mathcal{X}| = K$, $||x||_2 \leq L$, $\forall x \in \mathcal{X}$.
- Linear reward model

$$r(x) = x^\top \theta^* + \varepsilon$$

with $\theta^* \in \mathbb{R}^d$ unknown parameter and noise $\varepsilon \sim \mathcal{N}(0, \sigma^2)$ • The (unique) best arm in \mathcal{X} :

$$x^* = \arg \max_{x \in \mathcal{X}} x^\top \theta^*$$

The best-arm identification problem ($(0, \delta)$ -PAC setting)

- $\hat{x}(n)$ recommended best arm after *n* steps.
- Given a fixed confidence δ , design an allocation strategy and a *stopping criterion* such that:

 $\mathbb{P}(\mathbf{\hat{x}}(\mathbf{n}) = \mathbf{x}^*) \ge \mathbf{1} - \delta$ and \mathbf{n} as small as possible.

TOOLS

Ordinary Least-Squares estimate

- Sequence of arms $\mathbf{x}_n = (x_1, \dots, x_n) \in \mathcal{X}^n$
- Sequence of rewards (r_1, \ldots, r_n)
- OLS estimate, $A_{\mathbf{x}_n} = \sum_{t=1}^n x_t x_t^{\top}$, $b_{\mathbf{x}_n} = \sum_{t=1}^n x_t r_t$

$$\hat{\theta}_n = A_{\mathbf{x}_n}^{-1} b_{\mathbf{x}_n}$$

Prediction errors

• Fixed sequence and OLS estimate (w.p. $1 - \delta$)

$$\left|x^{\top}\theta^{*} - x^{\top}\hat{\theta}_{n}\right| \leq c||x||_{A_{\mathbf{x}_{n}}^{-1}}\sqrt{\log_{n}(K/\delta)}$$

• Adaptive sequence (Thm.2 in [1]) for η -regularized OLS (w.p. $1 - \delta$)

$$\left| \boldsymbol{x}^{\top} (\boldsymbol{\theta}^* - \hat{\boldsymbol{\theta}}_n^{\eta}) \right| \leq \left| |\boldsymbol{x}| \right|_{A_{\mathbf{x}_n}^{\eta, -1}} \left(\sigma \sqrt{\frac{d}{\log\left(\frac{1 + nL^2/\eta}{\delta}\right)}} + \eta^{1/2} ||\boldsymbol{\theta}^*|| \right)$$

REFERENCES

Université de Lille 1 sciences 1 sciences t technologies

- [1] Y. Abbasi-Yadkori, D. Pál, and C. Szepesvári. Improved algorithms for linear stochastic bandits. In Advances Neural Information Processing Systems 24, 2011.
- [2] E. Even-Dar, S. Mannor, and Y.Mansour. PAC bounds for multiarmed bandit and markov decision processed. In Computational Learning Theory, 2002.
- [3] V. Gabillon, M. Ghavamzadeh, and A. Lazaric. Best arm identification: A unified approach to fixed budget and fixed confidence. In Advances Neural Information Processing Systems 25, 2012.

Research

ACKNOWLEDGEMENTS

BEST-ARM IDENTIFICATION IN LINEAR BANDITS

MARTA SOARE, ALESSANDRO LAZARIC, REMI MUNOS

$$\mathbf{x}_{n}^{\mathcal{X}\mathcal{Y}} = \arg\min_{\mathbf{x}_{n}} \max_{y \in \mathcal{Y}} ||y||_{A_{\mathbf{x}_{n}}^{-1}}$$

Input: $\mathcal{X} \in \mathbb{R}^d$; confidence δ ; Phase length given by an α improvement; Set j=1; $\mathcal{X}_j=\mathcal{X}$; $\mathcal{Y}_1=\mathcal{Y}$; n=0; STOPPING RULE while $|\hat{\mathcal{X}}_i| > 1$ do Start a new phase: j = j + 1, t = 1; $A_0 = I$ while $\rho^{j}/t \ge \alpha \rho^{j-1}(\mathbf{x}_{n_{j-1}}^{j-1})/n_{j-1}$ do Allocation rule $x_t = \arg\min\max_{A} y^{\top} (A + xx^{\top})^{-1} y$ $\widetilde{x \in X} \quad y \in \hat{\mathcal{Y}}_j$ Update $A_t = A_t + x_t x_t^{\top}$; t = t + 1; n = n + 1 $\rho^j = \max_{y \in \hat{\mathcal{Y}}_i} y^\top A_t^{-1} y$ end while $b = \sum_{s=1}^{t} x_s r_s; \ \hat{\theta}_j = A_t^{-1} b$ Recompute the set of potential optimal arms: $\mathcal{X}_{j} = \{ x, \nexists x' : ||x - x'||_{A_{t}^{-1}} \sqrt{\log_{n}(K^{2}/\delta)} \le \Delta_{j}(x', x) \}$ Recompute the set of directions of interest: $\mathcal{Y}_{i} = \{ y = (x - x'); x, x' \in \mathcal{X}_{i} \}$ end while **RECOMMENDATION RULE**

Theorem 1. If the \mathcal{XY} -adaptive allocation strategy is implemented with a β -approximate method then

$$\mathbb{P}\left[N \le \frac{(1+\beta)\max\{M^*, \frac{16}{\alpha}N^*\}}{\log(1/\alpha)}\log\left(\frac{c\sqrt{\log_n(K^2/\delta)}}{\Delta_{\min}}\right) \land (\hat{x}_N = x^*)\right] \ge 1 - \delta.$$

The bound holds for any $(1 + \beta)$ -approximate allocation strategy: e.g., continuous relaxation, greedy incremental allocation.

Setting:

$\mathcal{X}\mathcal{Y}$ -oracle	\mathcal{XY} -adapt.	\mathcal{XY}	G	Fully-adapt.
207	263	29523	28014	740
41440	52713	29524	28015	149220
2	3	29524	28015	1
2	5	29524	28015	1
1	2	29524	28015	1
0	2	1	1	1
41652	52988	147620	140075	149964
÷	-	-	•	

- arm.

- sion:

\mathcal{XY} -ADAPTIVE ALGORITHM

Return $\hat{x}(n)$ – the only arm remaining in \mathcal{X}_i .

• Fixed confidence $\delta = 0.05$. • Set of arms: $\mathcal{X} \in \mathbb{R}^d$, $|\mathcal{X}| = d+1$ and d = 2, ..., 10. • Canonical basis (x_1, \ldots, x_d) and additional arm x_{d+1} very close to x_1 .

• $\theta^* = \begin{bmatrix} 2 & 0 & 0 & \dots & 0 \end{bmatrix}^\top \to \Delta_{\min} = (x_1 - x_{d+1})^\top \theta^*$ much smaller than the other gaps.

• Identifying the best arm \rightarrow reducing uncertainty in the direction $\tilde{y} = (x_1 - x_{d+1})$.

• x_2 is almost aligned with $\tilde{y} \rightarrow$ the most informative

The sample complexity grows linearly with the dimen-

• Fully-adaptive – despite pulling only the informative arms, the additional d term in the bound prevents a good performance.

• G and $\mathcal{X}\mathcal{Y}$ – always consider the complete set \mathcal{Y} .

The sample complexity remains **constant**:

• \mathcal{XY} -Adaptive and \mathcal{XY} -Oracle – exclusively pull the two most informative arms, independently of the number of dimensions.