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MOTIVATION (ZAPS AND DIRECTIONS STATIC ALLOCATIONS

e Product recommendation (e.g., movies)
e Adaptive hypothesis testing under linear assumption
e Optimization of a stochastic linear function

SETTING

The linear stochastic bandit model
e Setofarms X C R?, |X| =K, ||z||ls < L, Vo € X.
e Linear reward model

r(x) =a' 0" +¢
with 8* € RY unknown parameter and noise e ~N (0, 02).
e The (unique) best arm in A:
* T@*

rT = argmax I
reX

The best-arm identification problem ((0, 9)-PAC setting)

e z(n) — recommended best arm after n steps.
e Given a fixed confidence &, design an allocation strategy
and a stopping criterion such that:

(]P)(fc(n):x*) >1 —¢ and n as small as possible. J

TOOLS

Ordinary Least-Squares estimate

e Sequence of arms x,, = (z1,...,2,) € X"
e Sequence of rewards (r1,...,7,)

o OLS estimate, Ay, => 1w, , by, =D 1y T4Ty

O = AL by,

Prediction errors
e Fixed sequence and OLS estimate (w.p. 1 — §)

2 0 — 20, < cl|lz|| ,-1+/1log, (K/0)
leTL

e Adaptive sequence (Thm.2 in [1]) for n-regularized OLS
(w.p. 1 —9)

« A 1 L2
= (0 —emlénxu%l(a\/dlog( rnbimy,

771/2H9*||>
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Value gaps
e Forany pairz,2’ € X, Az, 2') = (v — o) ' 0*
e Smallest gap Anin = mingecy A(x*, )

The smaller the gaps the more difficult the problem.

Example
e r; and x3 are very close, while ,
. . X
xo is clearly suboptimal ®

e Only direction y = x1 — x3
(i.e., 03) must be estimated ac- .XX‘;’ 6
curately o—X¢
e 1o provides much information
about direction y (65)

Use one arm to learn about the others
(exploit the linear structure)!

Sets of directions

YV={y=x—-2"}, YV'={y=z"—u}

ILLUSTRATION

C(ZIZ1> =C*
Clay)
° ° C(z2)

Optimality cones
C(z) = Nwex{f € R, (z—2")' 6 > 0}

Confidence set

S(xn) = {0,9y,y7 (0"~ 0) < cl[yl| 21/ 108(K2/0) |

Intuition: select arms so that the confidence set shrinks into
one optimality cone as soon as possible.

Stopping rule Allocation rule

yl] a2
JreX s.t. 5(x,) CC(x) X = arg min max =
( J " 5 yed* A(y)

Complexity of Linear
Best-Arm ldentification

é )

= INnin ma
B eDk yey A?(y)

\. J

Oracle sample complexity

(N* — CZHLB lOgn(K2/5)J

N* is the lower-bound on the sample complexity of
any fixed allocation strategy

Remarks
2
Y 4d
max [UAD < Hig < A2 Hwmas < Hig <2HmaB

G-Optimal Design: estimate 6* uniformly well over all arms

G L .
X, = aIgminmax HZCHA;i

X Y-Design: estimate the value of the gaps uniformly well
over all the directions in )/

Xy _

Xn

arg min max |ly|| ,

Empirical stopping criterion:

w

dr € XV € X, V0 € S(x,,)
(x—2')T (0 — 0) < Ap(z,2)

.

Sample complexity O(d/A?

min/ "

The minimum number of steps needed by the static X' V-
allocation to discard all suboptimal directions.

M* = min{n € NV # z*,Va' # 2*,
S*(xIY N (C(x)NC(z)) = 0}.

BEST-ARM IDENTIFICATION IN LINEAR BANDITS
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X )V-ADAPTIVE ALGORITHM

Input: X €RY; confidence ;

STOPPING RULE

while |X;| > 1 do
Start a new phase: j=5+1,t=1;A4A0=1
while p/ /t > apj_l(xglj_,_ll)/nj_l do

end while

__\¢ .. — A1
b= . Tsrs; 05 =A; b
Recompute the set of potential optimal arms:
N ,
Xj — {ZC, ﬂﬂ? X
Recompute the set of directions of interest:
A / . / A
Vi={y=(r—2);z,2" € X;}
end while
RECOMMENDATION RULE

Return z(n) - the only arm remaining in X;.

Phase length given by an « improvement;
Set j=1; &;=4&; Y1=V;n=0;

ALLOCATION RULE
r; = argmin max y' (A+axz' )"y
reX yey;
Update A; :At+xta:;r; t=t+1, n=n+1

T 4—1

2 —o!|| - 1/log, (K2 /8) < A (2!, )}

Theorem 1. If the XY -adaptive allocation strateqy is implemented with a B-approrimate method then

MAIN RESULT

f

. 'N< (1 + B)max{M*, %N*}

~

B log(1/c)

.

cy/log, (K2/8)\ . '
log( Amin

)/\(CENIQZ‘*) >1—6.

.

The bound holds for any (1 + 3)-approximate allocation strategy: e.g., continuous relaxation, greedy incremental allocation.

Dim =10

Dim=9

Setting:

The sample complexity grows linearly with the dimen-
sion:

Dim =38 —
Dim = 7 ____
T
Dim =6 ——
Dim=5 —_— ® Fully—Adaptive
 a
I =G
i XY
. -
DIm =3 — " XY—-Adaptive
Dim =2 — ® XY-Oracle
e
0 5 10 15 20 25 30 35
Total number of pulls (x 10000)
Arm XYV-oracle | X)Y-adapt. XY G | Fully-adapt.
T1 207 263 29523 28014 740
T2 41440 52713 29524 28015 149220
T3 2 3 29524 28015 1
T4 2 5 29524 28015 1
5 1 2 29524 28015 1
T6 0 2 1 1 1
Total 41652 52988 | 147620 | 140075 149964

The sample complexity remains constant:

EXPERIMENTS — SAMPLE COMPLEXITY AND ARM PULLS

Fixed confidence 6 = 0.05.

Set of arms: X ¢ R4, |X| =d+1andd=2,...,10.
Canonical basis (x1,...,z4) and additional arm x4,
very close to x7.

0* =12 0 0 0]" — Apin =
much smaller than the other gaps.
ldentifying the best arm — reducing uncertainty in
the direction §y = (1 — x441).

x9 is almost aligned with § — the most informative
arm.

(x1 — xd_|_1)T(9*

Fully-adaptive — despite pulling only the informative
arms, the additional d term in the bound prevents a
good performance.

G and XY — always consider the complete set V.

X Y-Adaptive and X'Y-Oracle — exclusively pull the
two most informative arms, independently of the
number of dimensions.




