EFFICIENT LEARNING BY IMPLICIT EXPLORATION IN BANDIT PROBLEMS WITH SIDE OBSERVATIONS

TOMAs.KOCAK@INRIA.FR, GERGELY.NEU@INRIA.FR, MICHAL.VALKO@INRIA.FR, AND REMI.MUNOS@INRIA.FR

Motivation - Sequential news recommendation

APPLICATIONS

- Packet routing in computer networks

Typical feedback: delays of our own packets Side observations: other delays in network

- Web advertising - displaying one ad

Case 1: symmetric interrelations
Example: similar preferences for similar cars Typical feedback: reward for displayed ad Side observations for similar cars
Model for observations: undirected graph
Case 2: asymmetric interrelations
Example: electronics (interest in camera Typical feedback: reward for display Sideal eedback. reward for dont products Model for observations: directed graph

EXAMPLES OF GRAPH STRUCTURES
Side observations can be modeled as a graph Full information and bandit setting - simple action

Directed combinatorial case - complex action

Learning setting

In every round $t=$

- Environment
- Privately assigns vector ℓ_{t} of losses to actions
- Generates an observation graph
\diamond Undirected / Directed Disclosed / Not disclosed
- Learner
- Plays action $\boldsymbol{V}_{t} \in \mathcal{S} \subseteq\{0,1\}^{N}$ \diamond Each action $\boldsymbol{v} \in \mathcal{S}$ satisfies $\|\boldsymbol{v}\|_{1} \leq m$ I.e. action consists of playing at most m nodes
\diamond Case $m=1$. \diamond Case $m=1$: we denote $I_{t} \in[N]$ a node played Obtain loss $V_{t}^{\top} \ell_{t}$ corresponding to nodes played - Observe losses of neighbors of played nodes \diamond Graph disclosed
Performance measure: total expected regret

$$
R_{T}=\max _{\boldsymbol{v} \in S} \mathbb{E}\left[\sum_{t=1}^{T}\left(\boldsymbol{V}_{t}-\boldsymbol{v}\right)^{\top} \ell_{t}\right]
$$

IMPLICIT EXPLORATION
Usual approach to exploration:

- Bias sampling distribution as $\tilde{\boldsymbol{p}}_{t}=(1-\gamma) \boldsymbol{p}_{t}+\gamma \boldsymbol{\mu}$
- Needs to know graph structure
- Constructing a good μ is expensive
- Construct unbiased loss estimates
$\hat{\ell}_{t, i}=\frac{\ell_{t, i}}{o_{t, i}} \mathbb{1}\left\{\ell_{t, i}\right.$ is observed $\}$
- $o_{t, i}$ - probability of observing $\ell_{t, i}$ Our new approach:
- Do not touch sampling distribution
- Construct optimistically biased loss estimates
$\hat{\ell}_{t, i}=\frac{\ell_{t, i}}{o_{t, i}+\gamma} \mathbb{1}\left\{\ell_{t, i}\right.$ is observed $\}$ s.t. $\mathbb{E}\left[\hat{\ell}_{t, i}\right] \leq \ell_{t, i}$
- Encourages exploration by optimism
- Does not require knowledge of observation graph
- Cheaper than computing μ

ExP3-IX ALGORITHM

- Compute weights using loss estimates $\hat{\ell}_{t, i}$

$$
w_{t, i}=\exp \left(-\eta \sum_{s=1}^{t-1} \hat{\ell}_{s, i}\right)
$$

- Play action I_{t} according to probability distribution

$$
\mathbb{P}\left(I_{t}=i\right)=p_{t, i}=\frac{w_{t, i}}{W_{t}}=\frac{w_{t, i}}{\sum_{j=1}^{N} w_{t, j}}
$$

- Compute loss estimates (using observability graph)

$$
\hat{\ell}_{t, i}=\frac{\ell_{t, i}}{o_{t+i}+\gamma} \mathbb{1}\left\{\ell_{t, i} \text { is observed }\right\}
$$

FPL-IX ALGORITHM

- Draw perturbation $Z_{t, i} \sim \operatorname{Exp}(1)$ for all $i \in[N]$
- Play "the best" action V_{t} according to total loss estimate $\widehat{\boldsymbol{L}}_{t-1}$ and perturbation \boldsymbol{Z}_{t}

$$
\boldsymbol{V}_{t}=\underset{v \in \mathcal{S}}{\arg \min } \boldsymbol{v}^{\top}\left(\eta_{t} \widehat{\boldsymbol{L}}_{t-1}-\boldsymbol{Z}_{t}\right)
$$

- Compute loss estimates

$$
\hat{\ell}_{t, i}=\ell_{t, i} K_{t, i} \mathbb{1}\left\{\ell_{t, i} \text { is observed }\right\}
$$

- $K_{t, i:}$: geometric random variable with

$$
\mathbb{E}\left[K_{t, i}\right]=\frac{1}{o_{t, i}+\left(1-o_{t, i}\right) \gamma}
$$

INDEPENDENCE SET

- Nodes of independence set are not connected
- α - size of the largest independence set

Main Results

Regret bound of Exp3-IX

$$
R_{T}=\widetilde{\mathcal{O}}\left(\sqrt{\sum_{t=1}^{T} \alpha_{t}}\right)=\widetilde{\mathcal{O}}(\sqrt{\bar{\alpha} T})
$$

$\bar{\alpha}$ - average independence number of observation graph Regret bound of FPL-IX

$$
R_{T}=\widetilde{\mathcal{O}}\left(m^{3 / 2} \sqrt{\sum_{t=1}^{T} \alpha_{t}}\right)=\widetilde{\mathcal{O}}\left(m^{3 / 2} \sqrt{\bar{\alpha} T}\right)
$$

RELATED WORK

- Undirected case - simple action ($m=1$)
- ELP (Mannor, Shamir)
\diamond Graph disclosed before action
Graph disclosed before action Regret bound of order $\widetilde{\mathcal{O}}(\sqrt{c T})$
- Exp3-Set (Alon, Cesa-Bianchi, Gentile, Mansour) Graph disclosed after action
Regret bound of order $\widetilde{\mathcal{O}}(\sqrt{\alpha T})$
- Directed case - simple action $(m=1)$
- Exp3-Dom (Alon, Cesa-Bianchi, Gentile, Mansour) \diamond Graph disclosed before action
\diamond Need to find dominating set of graph \diamond Regret bound of order $\widetilde{\mathcal{O}}(\sqrt{\alpha T})$
- Expz-IX

Graph disclosed after action \checkmark Computationally efficient
\diamond Regret bound of order $\widetilde{\mathcal{O}}(\sqrt{\alpha T})$

- Directed case - complex action ($m>1$)
- FPL-IX
\diamond Graph disclosed after action
\diamond Computationally efficient
\diamond Regret bound of order $\widetilde{\mathcal{O}}\left(m^{3 / 2} \sqrt{\alpha T}\right)$

ANALYSIS

Analysis of Exp3 algorithms in general - tracking evolution of $\log \left(W_{t+1} / W_{t}\right)$

Lower bound of A (using definition of loss estimates)
$\mathbb{E}\left[\sum_{t=1}^{T} \sum_{i=1}^{N} p_{t, i} \hat{\mathrm{l}}_{t, i}\right] \geq \mathbb{E}\left[\sum_{t=1}^{T} \sum_{i=1}^{N} p_{t, i} \ell_{t, i}\right]-\mathbb{E}\left[\gamma \sum_{t=1}^{T} Q_{t}\right]$
Lower bound of B (optimistic loss estimates: $\mathbb{E}[\hat{\ell}]<\mathbb{E}[\ell])$

$$
-\mathbb{E}\left[\sum_{t=1}^{T} \hat{\ell}_{t, k}\right] \geq-\mathbb{E}\left[\sum_{t=1}^{T} \ell_{t, k}\right]
$$

Upper bound of C (using definition of loss estimates)

$$
\mathbb{E}\left[\frac{\eta}{2} \sum_{t=1}^{T} \sum_{i=1}^{N} p_{t, i}\left(\hat{\ell}_{t, i}\right)^{2}\right] \leq \mathbb{E}\left[\frac{\eta}{2} \sum_{t=1}^{T} Q_{t}\right]
$$

Together we have

$R_{T} \leq \frac{\log N}{\eta}+\left(\frac{\eta}{2}+\gamma\right) \sum_{t=1}^{T} \mathbb{E}\left[Q_{t}\right]$

$$
Q_{t}=\sum_{i=1}^{N} \frac{p_{t, i}}{o_{t, i}+\gamma}
$$

Lemma 1. Let G be a directed graph, with $V=\{1, \ldots, N\}$. Let d_{i} be the indegree of the
independence number of G. Then

$$
\sum_{i=1}^{N} \frac{1}{1+d_{i}^{-}} \leq 2 \alpha \log \left(1+\frac{N}{\alpha}\right)
$$

Step 1 of applying Lemma 1 to upper bound Q_{t} - Discretization

Step 2 of applying Lemma 1 to upper bound Q_{t} - Construction of a "clique graph"

$\sum_{i=1}^{N} \frac{\hat{p}_{t, i}}{\hat{p}_{t, i}+\sum_{j \in N_{i}^{-}} \hat{p}_{t, j}}=\sum_{i=1}^{N} \frac{M \hat{p}_{t, i}}{M \hat{p}_{t, i}+\sum_{j \in N_{i}^{-}} M \hat{p}_{t, j}}=\sum_{i=1}^{N} \sum_{k \in C_{i}} \frac{1}{1+d_{k}^{-}} \leq 2 \alpha \log \left(1+\frac{M+N}{\alpha}\right)$

