
.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Introduction to Reinforcement Learning

Rémi Munos

SequeL project: Sequential Learning
http://researchers.lille.inria.fr/∼munos/

INRIA Lille - Nord Europe

Machine Learning Summer School, September 2011, Bordeaux

http://researchers.lille.inria.fr/~munos/

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Outline of the course

• Part 1: Introduction to Reinforcement Learning and Dynamic
Programming

• Settting, examples
• Dynamic programming: value iteration, policy iteration
• RL algorithms: TD(λ), Q-learning.

• Part 2: Approximate dynamic programming
• L∞- performance bounds
• Sample-based algorithms: Least Squares TD, Bellman

Residual, Fitted-VI

• Part 3: Exploration-Exploitation tradeoffs
• The stochastic bandit: UCB
• The adversarial bandit: EXP3
• Populations of bandits: Tree search, Nash equilibrium.
• Applications to games (Go, Poker) and planning.

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Part 1: Introduction to Reinforcement Learning and
Dynamic Programming

• Settting, examples

• Dynamic programming: value iteration, policy iteration

• RL algorithms: TD(λ), Q-learning.

General references:

• Neuro Dynamic Programming, Bertsekas et Tsitsiklis, 1996.

• Introduction to Reinforcement Learning, Sutton and Barto,
1998.

• Markov Decision Problems, Puterman, 1994.

• Markov Decision Processes in Artificial Intelligence, Sigaud
and Buffet ed., 2008.

• Algorithms for Reinforcement Learning, Szepesvári, 2009.

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Introduction to Reinforcement Learning (RL)

• Acquire skills for sequencial decision making in complex,
stochastic, partially observable, possibly adversarial,
environments.

• Learning from experience a behavior policy (what to do in
each situation) from past success or failures

• Examples: Hot and Cold game, chess game, learning to ride
a bicycle, autonomous robotics, operation research, decision
making in stochastic market, ... any adaptive sequential
decision making task.

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Birth of the domain

Meeting in the end of the 70s:

• Computational Neurosciences. Reinforcement of synaptic
weights in neuronal transmissions (Hebbs rules,
Rescorla-Wagner models).
Reinforcement = correlations in neuronal activity.

• Experimental Psychology. Animal conditioning:
reinforcement of behaviors that lead to a satisfaction
(behaviorism initiated by Pavlov, Skinner).
Reinforcement = satisfaction or discomfort.

Independently, a mathematical formalism appeared in the 50s, 60s:
Dynamic Programming by R. Bellman, in optimal control theory.
Reinforcement = criterion to be optimized.

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Experimental Psychology

About animal conditioning, Thorndike (1911) says:

“Of several responses made to the same situation, those
which are accompanied or closely followed by satisfaction
to the animal will, other things being equal, be more
firmly connected with the situation, so that, when it
recurs, they will be more likely to recur; those which are
accompanied or closely followed by discomfort to the
animal will, other things being equal, have their
connections with that situation weakened, so that, when
it recurs, they will be less likely to occur. The greater the
satisfaction or discomfort, the greater the strengthening
or weakening of the bond”

“The Law of Effect”.

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

History of the computational RL

• Shannon 1950: Programming a computer for playing chess.

• Minsky 1954: Neural-Analog Reinforcement Systems.

• Samuel 1959: Learning for the game of checkers.

• Michie 1961: Trial and error for tic-tac-toe game.

• Michie and Chambers 1968: Inverted pendulum.

• Widrow, Gupta, Maitra 1973: Punish/reward: learning with a
critic in adaptive threshold systems. Neuronal rules.

• Barto, Sutton, Anderson 1983: Actor-Critic neuronal rules.

• Sutton 1984: Temporal Credit Assignment in RL.

• Sutton 1988: Learning from temporal differences.

• Watkins 1989: Q-learning.

• Tesauro 1992: TD-Gammon

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

A few applications

• TD-Gammon. [Tesauro 1992-1995]: Backgammon.

• KnightCap [Baxter et al. 1998]: chess ('2500 ELO)

• Robotics: juggling, acrobots [Schaal and Atkeson, 1994]

• Mobile robot navigation [Thrun et al., 1999]

• Elevator controller [Crites et Barto, 1996],

• Packet Routing [Boyan et Littman, 1993],

• Job-Shop Scheduling [Zhang et Dietterich, 1995],

• Production manufacturing optimization[Mahadevan et al.,
1998],

• Game of poker (Bandit algo for Nash computation)

• Game of go (hierarchical bandits, UCT)

http://www.ualberta.ca/∼szepesva/RESEARCH/RLApplications.html

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Reinforcement Learning

Action

Decision making agent

State

Reinforcement

Environment

Stochastic

Partially observable

Adversarial

• Environment: can be stochastic (Tetris), adversarial (Chess),
partially unknown (bicycle), partially observable (robot)

• Available information: the reinforcement (may be delayed)

• Goal: maximize the expected sum of future rewards.

Problem: How to sacrify a short term small reward to priviledge
larger rewards in the long term?

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Optimal value function

• Gives an evaluation of each state if the agent plays optimally.

• Ex: in a stochastic environment:

actions

0.70.5

Transition probabilities

0.3

0.2

0.1
0.2

V
∗(xt)

V
∗(xt+1)

• Bellman eq.:

V ∗(xt) = maxa∈A

[
r(xt , a) +

∑
y p(y |xt , a)V ∗(y)

]
• Temporal difference: δt(V

∗) = V ∗(xt+1) + r(xt , at)− V ∗(xt)

• If V ∗ is known, then when choosing the optimal action at ,
E[δt(V ∗)] = 0 (i.e., in average there is no surprise)

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Learning the value function

• How can we learn the value function?
Thanks to the surprise! (i.e., the temporal difference)
If V is an approximation of V ∗ and we observe

δt(V) = V (xt+1) + r(xt , at)− V (xt) > 0

then V (xt) should be increased.

• From V ∗ we deduce the optimal action in xt :

argmax
a∈A

[
r(xt , a) +

∑
y

p(y |xt , a)V ∗(y)
]

locally maximizing the value function ⇐⇒ maximizing the
sum of future rewards.

Note that RL is really different from supervised learning!

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Challenges of RL

• The state-dynamics and reward functions are unknown.
Two approaches:

• Model-based: learn first a model, then use dynamic
programming

• Model-free: use samples to directly learn a good value function

• The curse of dimensionality: In high-dimensional problems,
the computational complexity may be prohibitively large.
Need to learn an approximation of the value function / policy.

• Exploration issue: Where should one explore the state space
in order to build a good representation of the unknown
function where (and only where) it is useful.

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Introduction to Dynamic Programming

References:

• Neuro Dynamic Programming, Bertsekas et Tsitsiklis, 1996.

• Markov Decision Problems, Puterman, 1994.

• Markov Decision Processes in Artificial Intelligence, Sigaud
and Buffet ed., 2008.

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Markov Decision Process

[Bellman 1957, Howard 1960, Dubins et Savage 1965]
We consider a discrete-time process (xt) ∈ X where:

• X : state space (assumed to be finite)

• A: action space (or decisions) (assumed to be finite)

• State dynamics: All relevant information about future is
included in the current state and action

P(xt+1 | xt , xt−1, . . . , x0, at , at−1, . . . , a0) = P(xt+1 | xt , at)

(Markov property). Thus we can define transition
probabilities p(y |x , a) = P(xt+1 = y |xt = x , at = a).

• Reinforcement (or reward): r(x , a) is obtained when
choosing action a in state x .

An MDP is defined by (X ,A, p, r).

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Definition of policy

Policy π = (π1, π2, . . .), where πt : X → A defines the action
πt(x) choosen in x at time t.

If π = (π, π, . . . , π), the policy is stationary ou Markovian.

When following a stationary policy π the process (xt)t≥0 is a
Markov chain with transition probabilities

p(xt+1|xt) = p(xt+1|xt , πt(xt)).

Our goal is to learn a policy that maximizes the sum of rewards.

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Performance of a policy
For any policy π, define the value function V π:
Infinite horizon:

• Discounted: V π(x) = E
[∞∑
t=0

γtr(xt , at) | x0 = x ;π
]
,

where 0 ≤ γ < 1 is the discount factor

• Undiscounted: V π(x) = E
[∞∑
t=0

r(xt , at) | x0 = x ;π
]

• Average: V π(x) = lim
T→∞

1

T
E
[T−1∑

t=0

r(xt , at) | x0 = x ;π
]

Finite horizon: V π(x , t) = E
[T−1∑

s=t

r(xs , as) + R(xT) | xt = x ;π
]

Goal of the MDP: Find an optimal policy π∗, i.e.

V π∗
= sup

π
V π

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Example: Tetris

• State: wall configuration + new piece

• Action: posible positions of the new
piece on the wall,

• Reward: number of lines removed

• Next state: Resulting configuration
of the wall + random new piece.

(we can prove that for any policy, the game ends in finite time a.s.)
State space 1061 states for regular Tetris

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

The dilemma of the MLSS student

Sleep

Think
Think

Sleep

Sleep

Think

Think

Sleep

p=0.5

0.4

0.3

0.7

0.5

0.50.5

0.5

0.4

0.6

0.6

1
0.5

r=1

r=−1000

r=0

r=−10

r=100

r=−10

0.9

0.1

r=−1

1

2

3

4

5

6

7

You try to maximize the sum of rewards!

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Solution of the MLSS student

Sleep

Think
Think

Sleep

Think
Sleep

Think

Sleep

p=0.5

0.4

0.3

0.7

0.5

0.50.5

0.5

0.4

0.6

0.6

1
0.5

r=−1000

r=0

r=−10

r=100

0.9

0.1

r=−1

V = 88.31

V = 86.93

r=−10

V = 88.94

r=1
V = 88.32

V = −105

V = 1006

V = −10007

V5 = −10, V6 = 100, V7 = −1000,
V4 = −10 + 0.9V6 + 0.1V4 ' 88.9.
V3 = −1 + 0.5V4 + 0.5V3 ' 86.9. V2 = 1 + 0.7V3 + 0.3V1 and
V1 = max{0.5V2 + 0.5V1, 0.5V3 + 0.5V1}, thus: V1 = V2 = 88.3.

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Infinite horizon, discounted problems
Let π be a stationary deterministic policy.
Define the value function V π as:

V π(x) = E
[∞∑
t=0

γtr(xt , π(xt)) | x0 = x ;π
]
,

where 0 ≤ γ < 1 a discount factor (which relates rewards in the
future compared to current rewards).
And define the optimal value function: V ∗ = supπ V

π.

Proposition 1 (Bellman equations).

For any policy π, V π satisfies:

V π(x) = r(x , π(x)) + γ
∑
y∈X

p(y |x , π(x))V π(y),

and V ∗ satisfies:

V ∗(x) = max
a∈A

[
r(x , a) + γ

∑
y∈X

p(y |x , a)V ∗(y)
]
.

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Proof of Proposition 1

V π(x) = E
[∑
t≥0

γtr(xt , π(xt)) | x0 = x ;π
]

= r(x , π(x)) + E
[∑
t≥1

γtr(xt , π(xt)) | x0 = x ;π
]

= r(x , π(x)) + γ
∑
y

P(x1 = y | x0 = x ;π)

E
[∑
t≥1

γt−1r(xt , π(xt)) | x1 = y ;π
]

= r(x , π(x)) + γ
∑
y

p(y |x , π(x))V π(y).

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Proof of Proposition 1 (continued)
And for all policy π = (a, π′) (not necessarily stationary),

V ∗(x) = max
π

E
[∑
t≥0

γtr(xt , π(xt)) | x0 = x ;π
]

= max
(a,π′)

[
r(x , a) + γ

∑
y

p(y |x , a)V π′
(y)

]
= max

a

[
r(x , a) + γ

∑
y

p(y |x , a)max
π′

V π′
(y)

]
(1)

= max
a

[
r(x , a) + γ

∑
y

p(y |x , a)V ∗(y)
]
.

where (1) holds since:

• maxπ′
∑

y p(y |x , a)V π′
(y) ≤

∑
y p(y |x , a)maxπ′ V π′

(y)

• Let π̄ be the policy defined by π̄(y) = argmaxπ′ V π′
(y).

Thus
∑

y p(y |x , a)maxπ′ V π′
(y) =

∑
y p(y |x , a)V π̄(y) ≤

maxπ′
∑

y p(y |x , a)V π′
(y).

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Bellman operators
Since X is finite (say with N states), V π can be considered as a
vector of IRN .
Write:

• rπ ∈ IRN the vector with components rπ(x) = r(x , π(x))

• Pπ ∈ IRN×N the stochastic matric with elements
Pπ(x , y) = p(y |x , π(x)).

Define the

• Bellman operator T π : IRN → IRN : for any W ∈ IRN ,

T πW (x) = r(x , π(x)) + γ
∑
y

p(y |x , π(x))W (y)

• Dynamic Programming operator T : IRN → IRN :

T W (x) = max
a∈A

[
r(x , a) + γ

∑
y

p(y |x , a)W (y)
]
.

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Properties of the value functions

Proposition 2.

1. V π is the unique fixed-point of T π

V π = T πV π.

2. V ∗ is the unique fixed-point of T :

V ∗ = T V ∗.

3. For any policy π, we have V π = (I − γPπ)−1rπ

4. The policy defined by

π∗(x) ∈ argmax
a∈A

[
r(x , a) + γ

∑
y

p(y |x , a)V ∗(y)
]

is optimal (and stationary)

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Proof of Proposition 2 [part 1]
Basic properties of the Bellman operators:

• Monotonicity: If W1 ≤ W2 (componentwise) then

T πW1 ≤ T πW2, and T W1 ≤ T W2.

• Contraction in max-norm: For any vectors W1 and W2,

||T πW1 − T πW2||∞ ≤ γ||W1 −W2||∞,

||T W1 − T W2||∞ ≤ γ||W1 −W2||∞.

Indeed, for all x ∈ X ,

|T W1(x)− T W2(x)| =
∣∣max

a

[
r(x , a) + γ

∑
y

p(y |x , a)W1(y)
]

−max
a

[
r(x , a) + γ

∑
y

p(y |x , a)W2(y)
]∣∣

≤ γmax
a

∑
y

p(y |x , a)|W1(y)−W2(y)|

≤ γ||W1 −W2||∞

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Proof of Proposition 2 [part 2]

1. From Proposition 1, V π is a fixed point of T π. Uniqueness
comes from the contraction property of T π.

2. Idem for V ∗.

3. From Point 1, V π = rπ + γPπV π. Thus (I − γPπ)V π = rπ.
Now Pπ is a stochastic matrix (whose eingenvalues have a
modulus ≤ 1), thus the eing. of (I − γPπ) have a modulus
≥ 1− γ > 0, thus is invertible.

4. From the definition of π∗, we have T π∗
V ∗ = T V ∗ = V ∗.

Thus V ∗ is the fixed-point of T π∗
. But, by definition, V π∗

is
the fixed-point of T π∗

and since there is uniqueness of the
fixed-point, V π∗

= V ∗ and π∗ is optimal.

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Value Iteration

Proposition 3.

• For any V0 ∈ IRN , define Vk+1 = T Vk . Then Vk → V ∗.

• Idem for V π: define Vk+1 = T πVk . Then Vk → V π.

Proof.

||Vk+1−V ∗|| = ||T Vk−T V ∗|| ≤ γ||Vk−V ∗|| ≤ γk+1||V0−V ∗|| → 0

(idem for V π)

Variant: asynchronous iterations

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Policy Iteration

Choose any initial policy π0. Iterate:

1. Policy evaluation: compute V πk .

2. Policy improvement: πk+1 greedy w.r.t. V πk :

πk+1(x) ∈ argmax
a∈A

[
r(x , a) + γ

∑
y

p(y |x , a)V πk (y)
]
,

(i.e. πk+1 ∈ argmaxπ T πV πk)

Stop when V πk = V πk+1 .

Proposition 4.

Policy iteration generates a sequence of policies with increasing
performance (V πk+1 ≥ V πk) and terminates in a finite number of
steps with the optimal policy π∗.

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Proof of Proposition 4

From the definition of the operators T , T πk , T πk+1 and from πk+1,

V πk = T πkV πk ≤ T V πk = T πk+1V πk , (2)

and from the monotonicity of T πk+1 , we have

V πk ≤ lim
n→∞

(T πk+1)nV πk = V πk+1 .

Thus (V πk)k is a non-decreasing sequence. Since there is a finite
number of possible policies (finite state and action spaces), the
stopping criterion holds for a finite k; We thus have equality in (2),
thus

V πk = T V πk

so V πk = V ∗ and πk is an optimal policy.

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Back to Reinforcement Learning

What if the transition probabilities p(y |x , a) and the reward
functions r(x , a) are unknown?
In DP, we used their knowledge

• in value iteration:

Vk+1(x) = T Vk(x) = max
a

[
r(x , a) + γ

∑
y

p(y |x , a)Vk(y)
]
.

• in policy iteration:
• when computing V πk (which requires iterating T πk)
• when computing the greedy policy:

πk+1(x) ∈ argmax
a∈A

[
r(x , a) + γ

∑
y

p(y |x , a)V πk (y)
]
,

RL = introduction of 2 ideas: sampling and Q-functions.

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

1st idea: Use sampling

Use the real system (or a simulator) to generate trajectories.
This means that from any state-action (xt , at) we can obtain a
next-state sample xt+1 ∼ p(·|xt , at) and a reward sample r(xt , at).
So we can estimate V π(x) by Monte-Carlo:
Run trajectories (xkt) starting from x and following π:

Vk+1(x) = (1− ηk)Vk(x) + ηk
∑
t≥0

γtr(xkt , π(x
k
t)),

where e.g. ηk = 1/k (sample mean), or more generally use
Stochastic Approximation with

∑
k ηk = ∞ and

∑
k η

2
k < ∞.

Problem: this method should be repeated for all initial states x
and is not sample efficient.

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Temporal difference learning

The update rule rewrites: for s ≤ t (by writing rt = r(xt , π(xt)))

Vk+1(xs) = (1− ηk)Vk(xs) + ηk
∑
t≥s

γt−srt ,

= Vk(xs) + ηk
∑
t≥s

γt−s
[
rt + γVk(xt+1)− Vk(xt)︸ ︷︷ ︸

δt(Vk)

]
δt(Vk) is the temporal difference for the transition xt → xt+1.

• δt(Vk) provides an indication of the direction towards which
the estimate Vk(xs) should be updated.

• Note that E[δt(V π)] = 0 (this is Bellman equation).

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

TD(λ) algorithm

[Sutton, 1988] Observe a trajectory (xt) by following π. Update
the value of each states (xs):

Vk+1(xs) = Vk(xs) + ηk(xs)
∑
t≥s

(γλ)t−sδt(Vk),

where 0 ≤ λ ≤ 1.
Vk(xs) is impacted by δt(Vk) at all times t ≥ s

• For λ = 1, we recover Monte-Carlo:

Vk+1(xs) = Vk(xs) + ηk(xs)
∑
t≥s

γt−sδt(Vk)

• For λ = 0, we have TD(0):

Vk+1(xs) = Vk(xs) + ηk(xs)δs(Vk)

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Convergence of TD(λ)

Proposition 5 (Jaakkola, Jordan et Singh, 1994).

Assume that all states x ∈ X are visited infinitely often and that
the learning steps ηk(x) satisfy for all x ∈ X,

∑
k≥0 ηk(x) = ∞,∑

k≥0 η
2
k(x) < ∞, then Vk

a.s.−→ V π.

Proof.
TD(0) rewrites Vk+1(xs) = Vk(xs) + ηk(xs)

[
T̂ πVk(xs)− Vk(xs)

]
,

where

T̂ πVk(xs) = rs + γVk(xs+1) is a noisy estimate of

T πVk(xs) = r(xs , as) + γ
∑
y

p(y |xs , as)Vk(y).

This is a Stochastic Approximation algorithm for estimating the
fixed-point of the contraction mapping T π.

TD(λ) similar.

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Tradeoff for λ
Example of the linear chain:

0 1 3 4
−1

2
0 0 0

05
1

Expected quadratic error (for 100 trajectories):

��
��
��
��

�
�
�
�

����
��

��

����

��

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

0.2 0.4 0.6 0.8 1 λ0

• Small λ reduces variance

• Large λ propagates rewards faster

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

2nd Idea: use Q-value functions

Define the Q-value function Qπ : X × A → IR: for a policy π,

Qπ(x , a) = E
[∑
t≥0

γtr(xt , at)|x0 = x , a0 = a, at = π(xt), t ≥ 1
]

and the optimal Q-value function Q∗(x , a) = maxπ Q
π(x , a).

Proposition 6.

Qπ and Q∗ satisfy the Bellman equations:

Qπ(x , a) = r(x , a) + γ
∑
y∈X

p(y |x , a)Qπ(y , π(y))

Q∗(x , a) = r(x , a) + γ
∑
y∈X

p(y |x , a)max
b∈A

Qπ(y , b)

Idea: compute Q∗ and then π∗(x) ∈ argmaxa Q
∗(x , a).

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Q-learning algorithm

[Watkins, 1989] Whenever a transition xt , at
rt−→ xt+1 occurs,

update the Q-value:

Qk+1(xt , at) = Qk(xt , at)+ηk(xt , at)
[
rt+γmax

b∈A
Qk(xt+1, b)−Qk(xt , at)

]
.

Proposition 7 (Watkins et Dayan, 1992).

Assume that all state-action pairs (x , a) are visited infinitely often
and that the learning steps satisfy for all x , a,∑

k≥0 ηk(x , a) = ∞,
∑

k≥0 η
2
k(x , a) < ∞, then Qk

a.s.−→ Q∗.

Again the proof relies on Stochastic Approximation algorithm for
estimating the fixed-point of a contraction mapping.
Remark: This does not say how to explore the space.

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Q-learning algorithm

Deterministic case, discount factor γ = 0.9. Take steps η = 1.

1 0

0

0

0.9

After transition x , a
r−→ y update Qk+1(x , a) = r + γmaxb∈A Qk(y , b)

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Optimal Q-values

1 0

0

0

0
0

0

0

0

0.53
0.59

0

0 0 0

00.66 0.66

0.660.73

0 0.73
0

0.73

0.73 0.730.66

0

0

0

0
0 0 0 0

0

0

0
0.9

0.81

0.81
0.73

0.73
0.730.66

0.59

0.9

0.81

0.81

0.9

0.810.73

Bellman’s equation: Q∗(x , a) = γmax
b∈A

Q∗(next-state(x , a), b).

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Conclusions of Part 1

When the state-space is finite and “small”:

• If transition probabilities and rewards are known, then DP
algorithms (value iteration, policy iteration) compute the
optimal solution

• Otherwise, use sampling techniques and RL algorithms
(TD(λ), Q-learning) apply

2 big problems:

• Usually state-space is HUGE! We face the curse of
dimensionality and thus we need to find approximate
solutions → Part 2.

• We need efficient exploration → Part 3.

	Intro to Reinforcement Learning
	Intro to Dynamic Programming
	DP algorithms
	RL algorithms

