Introduction to Reinforcement Learning Part 2: Approximate Dynamic Programming

Rémi Munos

SequeL project: Sequential Learning http://researchers.lille.inria.fr/~munos/

INRIA Lille - Nord Europe

Machine Learning Summer School, September 2011, Bordeaux

Outline of Part 2: Approximate dynamic programming

- Function approximation
- Bellman residual minimization
- Approximate value iteration: fitted VI
- Approximate policy iteration, LSTD, BRM
- Analysis of sample-based algorithms

References

General references on Approximate Dynamic Programming:

- Neuro Dynamic Programming, Bertsekas et Tsitsiklis, 1996.
- Markov Decision Processes in Artificial Intelligence, Sigaud and Buffet ed., 2008.
- Algorithms for Reinforcement Learning, Szepesvári, 2009. BRM, TD, LSTD/LSPI:
 - BRM [Williams and Baird, 1993]
 - TD learning [Tsitsiklis and Van Roy, 1996]
 - LSTD [Bradtke and Barto, 1993], [Boyan, 1999], LSPI [Lagoudakis and Parr, 2003], [Munos, 2003]

Finite-sample analysis:

- AVI [Munos and Szepesvári, 2008]
- API [Antos et al., 2009]
- LSTD [Lazaric et al., 2010]

Approximate methods

When the state space is finite and small, use DP or RL techniques. However in most interesting problems, the state-space X is huge, possibly infinite:

• Tetris, Backgammon, ...

. . .

• Control problems often consider continuous spaces

We need to use function approximation:

- Linear approximation $\mathcal{F} = \{f_{\alpha} = \sum_{i=1}^{d} \alpha_i \phi_i, \alpha \in \mathbb{R}^d\}$
- Neural networks: $\mathcal{F} = \{f_{\alpha}\}$, where α is the weight vector
- Non-parametric: *k*-nearest neighboors, Kernel methods, SVM,

Write \mathcal{F} the set of representable functions.

Approximate dynamic programming

General approach: build an approximation $V \in \mathcal{F}$ of the optimal value function V^* (which may not belong to \mathcal{F}), and then consider the policy π greedy policy w.r.t. V, i.e.,

$$\pi(x) \in \arg \max_{a \in A} [r(x, a) + \gamma \sum_{y} p(y|x, a)V(y)].$$

(for the case of infinite horizon with discounted rewards.)

We expect that if $V \in \mathcal{F}$ is close to V^* then the policy π will be close-to-optimal.

Bound on the performance loss

Proposition 1.

Let V be an approximation of V^{*}, and write π the policy greedy w.r.t. V. Then

$$||V^*-V^\pi||_\infty\leq rac{2\gamma}{1-\gamma}||V^*-V||_\infty.$$

Proof.

From the contraction properties of the operators \mathcal{T} and \mathcal{T}^{π} and that by definition of π we have $\mathcal{T}V = \mathcal{T}^{\pi}V$, we deduce

$$\begin{split} \|V^* - V^{\pi}\|_{\infty} &\leq \|V^* - \mathcal{T}^{\pi}V\|_{\infty} + \|\mathcal{T}^{\pi}V - \mathcal{T}^{\pi}V^{\pi}\|_{\infty} \\ &\leq \|\mathcal{T}V^* - \mathcal{T}V\|_{\infty} + \gamma\|V - V^{\pi}\|_{\infty} \\ &\leq \gamma\|V^* - V\|_{\infty} + \gamma(\|V - V^*\|_{\infty} + \|V^* - V^{\pi}\|_{\infty}) \\ &\leq \frac{2\gamma}{1 - \gamma}\|V^* - V\|_{\infty}. \end{split}$$

Bellman residual

- Let us define the **Bellman residual** of a function V as the function $\mathcal{T}V V$.
- Note that the Bellman residual of V* is 0 (Bellman equation).
- If a function V has a low $||\mathcal{T}V V||_{\infty}$, then is V close to V*?

Proposition 2 (Williams and Baird, 1993).

We have

$$egin{array}{rcl} \|m{V}^*-m{V}\|_{\infty} &\leq & \displaystylerac{1}{1-\gamma}\|\mathcal{T}m{V}-m{V}\|_{\infty} \ \|m{V}^*-m{V}^{\pi}\|_{\infty} &\leq & \displaystylerac{2}{1-\gamma}\|\mathcal{T}m{V}-m{V}\|_{\infty} \end{array}$$

Proof of Proposition 2

Point 1: we have

$$\begin{split} \|V^* - V\|_{\infty} &\leq \|V^* - \mathcal{T}V\|_{\infty} + \|\mathcal{T}V - V\|_{\infty} \\ &\leq \gamma \|V^* - V\|_{\infty} + \|\mathcal{T}V - V\|_{\infty} \\ &\leq \frac{1}{1 - \gamma} \|\mathcal{T}V - V\|_{\infty} \end{split}$$

Point 2: We have $\|V^* - V^{\pi}\|_{\infty} \leq \|V^* - V\|_{\infty} + \|V - V^{\pi}\|_{\infty}$. Since $\mathcal{T}V = \mathcal{T}^{\pi}V$, we deduce

$$egin{array}{rcl} \|m{V}-m{V}^{\pi}\|_{\infty} &\leq & \|m{V}-m{\mathcal{T}}m{V}\|_{\infty}+\|m{\mathcal{T}}m{V}-m{V}^{\pi}\|_{\infty}\ &\leq & \|m{\mathcal{T}}m{V}-m{V}\|_{\infty}+\gamma\|m{V}-m{V}^{\pi}\|_{\infty}\ &\leq & rac{1}{1-\gamma}\|m{\mathcal{T}}m{V}-m{V}\|_{\infty}, \end{array}$$

thus, by using Point 1, it comes

$$\|V^* - V^{\pi}\|_{\infty} \leq \frac{2}{1 - \gamma} \|\mathcal{T}V - V\|_{\infty}.$$

900

3

Bellman residual minimizer

Given a function space \mathcal{F} we can search for the function with minimum Bellman residual:

$$V_{BR} = \arg\min_{V\in\mathcal{F}} \|\mathcal{T}V - V\|_{\infty}.$$

What is the performance of the policy π_{BR} greedy w.r.t. V_{BR} ?

Proposition 3.

We have:

$$\|V^* - V^{\pi_{BR}}\|_{\infty} \le \frac{2(1+\gamma)}{1-\gamma} \inf_{V \in \mathcal{F}} \|V^* - V\|_{\infty}.$$
 (1)

Thus minimizing the Bellman residual in \mathcal{F} is a sound approach whenever \mathcal{F} is rich enough.

Proof of Proposition 3

We have

$$\begin{split} \|\mathcal{T}V - V\|_{\infty} &\leq \|\mathcal{T}V - \mathcal{T}V^*\|_{\infty} + \|V^* - V\|_{\infty} \\ &\leq (1+\gamma)\|V^* - V\|_{\infty}. \end{split}$$

Thus V_{BR} satisfies:

$$\begin{aligned} \|\mathcal{T}V_{BR} - V_{BR}\|_{\infty} &= \inf_{V \in \mathcal{F}} \|\mathcal{T}V - V\|_{\infty} \\ &\leq (1+\gamma) \inf_{V \in \mathcal{F}} \|V^* - V\|_{\infty}. \end{aligned}$$

Combining with the result of Proposition 2, we deduce (1).

Possible numerical implementation

Assume that we possess a generative model:

- Sample *n* states $(x_i)_{1 \le i \le n}$ uniformly over the state space *X*,
- For each action a ∈ A, generate a reward sample r(x, a) and m next state samples (y^j_{i,a})_{1≤j≤m}.
- Return the empirical Bellman residual minimizer:

$$\widehat{V}_{BR} = \arg\min_{V \in \mathcal{F}} \max_{1 \leq i \leq n} \left| \underbrace{\max_{a \in \mathcal{A}} \left[r(x_i, a) + \gamma \frac{1}{m} \sum_{j=1}^m V(y_{i,a}^j) \right]}_{\text{sample estimate of } \mathcal{T}V(x_i)} - V(x_i) \right|.$$

This problem is numerically hard to solve...

Approximate Value Iteration

Approximate Value Iteration: builds a sequence of $V_k \in \mathcal{F}$:

 $V_{k+1} = \Pi \mathcal{T} V_k,$

where Π is a projection operator onto \mathcal{F} (under some norm $\|\cdot\|$).

Remark: Π is a non-expansion under $\|\cdot\|$, and \mathcal{T} is a contraction under $\|\cdot\|_{\infty}$. Thus if we use $\|\cdot\|_{\infty}$ for Π , then AVI converges. If we use another norm for Π (e.g., L_2), then AVI may not converge.

Performance bound for AVI

Apply AVI for K iterations.

Proposition 4 (Bertsekas & Tsitsiklis, 1996).

The performance loss $||V^* - V^{\pi_K}||_{\infty}$ resulting from using the policy π_K greedy w.r.t. V_K is bounded as:

$$\|V^* - V^{\pi_K}\|_{\infty} \leq \frac{2\gamma}{(1-\gamma)^2} \max_{0 \leq k < K} \underbrace{\|\mathcal{T}V_k - V_{k+1}\|_{\infty}}_{\text{projection error}} + \frac{2\gamma^{K+1}}{1-\gamma} \|V^* - V_0\|_{\infty}.$$

Now if we use $\|\cdot\|_{\infty}$ -norm for Π , then AVI converges, say to \widetilde{V} which is such that $\widetilde{V} = \Pi \mathcal{T} \widetilde{V}$. Write $\widetilde{\pi}$ the policy greedy w.r.t. \widetilde{V} . Then

$$\|V^* - V^{\widetilde{\pi}}\|_{\infty} \leq rac{2}{(1-\gamma)^2} \inf_{V \in \mathcal{F}} \|V^* - V\|_{\infty}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

a

Proof of Proposition 4

Point 1: Write $\varepsilon = \max_{0 \le k < K} \|\mathcal{T}V_k - V_{k+1}\|_{\infty}$. For all $0 \le k < K$, we have

$$\begin{aligned} \|V^* - V_{k+1}\|_{\infty} &\leq & \|\mathcal{T}V^* - \mathcal{T}V_k\|_{\infty} + \|\mathcal{T}V_k - V_{k+1}\|_{\infty} \\ &\leq & \gamma \|V^* - V_k\|_{\infty} + \varepsilon, \end{aligned}$$

thus,
$$\|V^* - V_K\|_{\infty} \leq (1 + \gamma + \dots + \gamma^{K-1})\varepsilon + \gamma^K \|V^* - V_0\|_{\infty}$$

 $\leq \frac{1}{1 - \gamma}\varepsilon + \gamma^K \|V^* - V_0\|_{\infty}$

and we conclude by using Proposition 1. **Point 2**: If Π uses $\|\cdot\|_{\infty}$ then $\Pi \mathcal{T}$ is a γ -contraction mapping, thus AVI converges, say to \widetilde{V} satisfying $\widetilde{V} = \Pi \mathcal{T} \widetilde{V}$. And

$$\begin{split} \|V^* - \widetilde{V}\|_{\infty} &\leq \|V^* - \Pi V^*\|_{\infty} + \|\Pi V^* - \widetilde{V}\|_{\infty} \\ \text{with } \|\Pi V^* - \widetilde{V}\|_{\infty} &= \|\Pi \mathcal{T} V^* - \Pi \mathcal{T} \widetilde{V}\|_{\infty} \leq \gamma \|V^* - \widetilde{V}\|_{\infty}, \\ \text{nd the result follows from Proposition 1.} \end{split}$$

A possible numerical implementation

At each round k,

- 1. Sample *n* states $(x_i)_{1 \le i \le n}$
- From each state x_i, for each action a ∈ A, use the generative model to obtain a reward r(x_i, a) and m next state samples (y^j_{i,a})_{1≤j≤m} ~ p(·|x_i, a)
- 3. Define the next approximation (say using L_{∞} -norm)

$$V_{k+1} = \arg\min_{V \in \mathcal{F}} \max_{1 \le i \le n} \left| V(x_i) - \max_{a \in A} \left[r(x_i, a) + \gamma \frac{1}{m} \sum_{j=1}^m V_k(y_{i,a}^j) \right] \right|$$
sample estimate of $\mathcal{T}_{V_k(x_i)}$

This is still a numerically hard problem. However, using L_2 norm:

$$V_{k+1} = \arg\min_{V \in \mathcal{F}} \sum_{i=1}^{n} \left| V(x_i) - \max_{a \in A} \left[r(x_i, a) + \gamma \frac{1}{m} \sum_{j=1}^{m} V_k(y_{i,a}^j) \right] \right|^2$$

is much easier!

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○

Example: optimal replacement problem

1d-state: accumulated utilization of a product (ex. car). **Decisions**: each year,

- **Replace**: replacement cost *C*, next state $y \sim d(\cdot)$,
- **Keep**: maintenance cost c(x), next state $y \sim d(\cdot x)$.

Goal: Minimize the expected sum of discounted costs. The optimal value function solves the Bellman equation:

$$V^*(x) = \min\left\{c(x) + \gamma \int_0^\infty d(y-x)V^*(y)dy, \ C + \gamma \int_0^\infty d(y)V^*(y)dy\right\}$$

and the optimal policy is the argument of the min.

Maintenance cost and value function

Here, $\gamma = 0.6$, C = 50, $d(y) = \beta e^{-\beta y} \mathbf{1}_{y \ge 0}$, with $\beta = 0.6$. Maintenance costs = increasing function + punctual costs.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Linear approximation

Function space $\mathcal{F} = \left\{ f_{\alpha}(x) = \sum_{i=1}^{20} \alpha_i \cos(i\pi \frac{x}{x_{\max}}), \alpha \in \mathbb{R}^{20} \right\}$. Consider a uniform discretization grid with n = 100 states, m = 100 next-states. First iteration: $V_0 = 0$,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

▲□▶ ▲圖▶ ▲温▶ ▲温▶ ---

æ

Next iterations

Approximate Policy Iteration

Choose an initial policy π_0 and iterate:

- 1. Approximate policy evaluation of π_k : compute an approximation V_k of V^{π_k} .
- 2. **Policy improvement**: π_{k+1} is greedy w.r.t. V_k :

$$au_{k+1}(x) \in rg\max_{a \in A} \big[r(x,a) + \gamma \sum_{y \in X} p(y|x,a) V_k(y) \big].$$

The algorithm may not converge but we can analyze the asymptotic performance.

Performance bound for API

We relate the asymptotic performance $||V^* - V^{\pi_k}||_{\infty}$ of the policies π_k greedy w.r.t. the iterates V_k , in terms of the approximation errors $||V_k - V^{\pi_k}||_{\infty}$.

Proposition 5 (Bertsekas & Tsitsiklis, 1996). *We have*

$$\limsup_{k\to\infty} ||V^* - V^{\pi_k}||_{\infty} \leq \frac{2\gamma}{(1-\gamma)^2} \limsup_{k\to\infty} ||V_k - V^{\pi_k}||_{\infty}$$

Thus if we are able to well approximate the value functions V^{π_k} at each iteration then the performance of the resulting policies will be close to the optimum.

Proof of Proposition 5 [part 1]

Write $e_k = V_k - V^{\pi_k}$ the approximation error, $g_k = V^{\pi_{k+1}} - V^{\pi_k}$ the performance gain between iterations k and k + 1, and $l_k = V^* - V^{\pi_k}$ the loss of using policy π_k instead of π^* . The next policy cannot be much worst that the current one:

$$g_k \ge -\gamma (I - \gamma P^{\pi_{k+1}})^{-1} (P^{\pi_{k+1}} - P^{\pi_k}) e_k$$
 (2)

Indeed, since $T^{\pi_{k+1}}V_k \ge T^{\pi_k}V_k$ (as π_{k+1} is greedy w.r.t. V_k), we have:

$$g_{k} = T^{\pi_{k+1}}V^{\pi_{k+1}} - T^{\pi_{k+1}}V^{\pi_{k}} + T^{\pi_{k+1}}V^{\pi_{k}} - T^{\pi_{k+1}}V_{k} + T^{\pi_{k+1}}V_{k} - T^{\pi_{k}}V_{k} + T^{\pi_{k}}V_{k} - T^{\pi_{k}}V^{\pi_{k}} \geq \gamma P^{\pi_{k+1}}g_{k} - \gamma (P^{\pi_{k+1}} - P^{\pi_{k}})e_{k} \geq -\gamma (I - \gamma P^{\pi_{k+1}})^{-1} (P^{\pi_{k+1}} - P^{\pi_{k}})e_{k}$$

Proof of Proposition 5 [part 2]

The loss at the next iteration is bounded by the current loss as:

$$I_{k+1} \leq \gamma P^{\pi^*} I_k + \gamma [P^{\pi_{k+1}} (I - \gamma P^{\pi_{k+1}})^{-1} (I - \gamma P^{\pi_k}) - P^{\pi^*}] e_k$$

Indeed, since $T^{\pi^*}V_k \leq T^{\pi_{k+1}}V_k$,

$$\begin{aligned}
I_{k+1} &= T^{\pi^*} V^* - T^{\pi^*} V^{\pi_k} + T^{\pi^*} V^{\pi_k} - T^{\pi^*} V_k \\
&+ T^{\pi^*} V_k - T^{\pi_{k+1}} V_k + T^{\pi_{k+1}} V_k - T^{\pi_{k+1}} V^{\pi_k} \\
&+ T^{\pi_{k+1}} V^{\pi_k} - T^{\pi_{k+1}} V^{\pi_{k+1}} \\
&\leq \gamma [P^{\pi^*} I_k - P^{\pi_{k+1}} g_k + (P^{\pi_{k+1}} - P^{\pi^*}) e_k]
\end{aligned}$$

and by using (2),

$$\begin{split} I_{k+1} &\leq \gamma P^{\pi^*} I_k + \gamma [P^{\pi_{k+1}} (I - \gamma P^{\pi_{k+1}})^{-1} (P^{\pi_{k+1}} - P^{\pi_k}) + P^{\pi_{k+1}} - P^{\pi^*}] e_k \\ &\leq \gamma P^{\pi^*} I_k + \gamma [P^{\pi_{k+1}} (I - \gamma P^{\pi_{k+1}})^{-1} (I - \gamma P^{\pi_k}) - P^{\pi^*}] e_k. \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Proof of Proposition 5 [part 3]

Writing
$$f_k = \gamma [P^{\pi_{k+1}} (I - \gamma P^{\pi_{k+1}})^{-1} (I - \gamma P^{\pi_k}) - P^{\pi^*}] e_k$$
, we have:
 $I_{k+1} \leq \gamma P^{\pi^*} I_k + f_k.$

Thus, by taking the limit sup.,

$$(I - \gamma P^{\pi^*}) \limsup_{k \to \infty} I_k \leq \limsup_{k \to \infty} f_k$$
$$\limsup_{k \to \infty} I_k \leq (I - \gamma P^{\pi^*})^{-1} \limsup_{k \to \infty} f_k,$$

since $I - \gamma P^{\pi^*}$ is invertible. In L_{∞} -norm, we have

$$\begin{split} \limsup_{k \to \infty} ||I_k|| &\leq \frac{\gamma}{1-\gamma} \limsup_{k \to \infty} ||P^{\pi_{k+1}} (I - \gamma P^{\pi_{k+1}})^{-1} (I + \gamma P^{\pi_k}) + P^{\pi^*} || ||e_k|| \\ &\leq \frac{\gamma}{1-\gamma} (\frac{1+\gamma}{1-\gamma} + 1) \limsup_{k \to \infty} ||e_k|| = \frac{2\gamma}{(1-\gamma)^2} \limsup_{k \to \infty} ||e_k||. \end{split}$$

Approximate policy evaluation

For a given policy π we search for an approximation $V_{\alpha} \in \mathcal{F}$ of V^{π} . For example, by minimizing the approximation error

$$\inf_{V_{\alpha}\in\mathcal{F}}||V_{\alpha}-V^{\pi}||_{2}^{2}.$$

Writing $g(\alpha) = \frac{1}{2} ||V_{\alpha} - V^{\pi}||_2^2$, we may consider a stochastic gradient algorithm:

$$\alpha \leftarrow \alpha - \eta \widehat{\nabla g}(\alpha)$$

where an estimate $\widehat{\nabla g}(\alpha) = \langle \nabla V_{\alpha}, V_{\alpha} - \sum_{t \ge 0} \gamma^t r_t \rangle$ of the gradient $\nabla g(\alpha) = \langle \nabla V_{\alpha}, V_{\alpha} - V^{\pi} \rangle$ may be obtained by using MC sampling of trajectories (x_t) following π .

Extension to $TD(\lambda)$ algorithms have been introduced:

$$\alpha \leftarrow \alpha + \eta \sum_{s \ge 0} \nabla_{\alpha} V_{\alpha}(x_s) \sum_{t \ge s} (\gamma \lambda)^{t-s} d_t.$$

TD-Gammon [Tesauro, 1994]

State = game configuration x + player $j \rightarrow N \simeq 10^{20}$. **Reward** 1 or 0 at the end of the game.

The neural network returns an approximation of $V^*(x,j)$: probability that player *j* wins from position *x*, assuming that both players play optimally.

TD-Gammon algorithm

- At time t, the current game configuration is x_t
- Roll dices and select the action that maximizes the value V_α of the resulting state x_{t+1}
- Compute the temporal difference $d_t = V_{\alpha}(x_{t+1}, j_{t+1}) - V_{\alpha}(x_t, j_t)$ (if this is a final position, replace $V_{\alpha}(x_{t+1}, j_{t+1})$ by +1 or 0)
- Update α_t according to

$$\alpha_{t+1} = \alpha_t + \eta_t d_t \sum_{0 \le s \le t} \lambda^{t-s} \nabla_\alpha V_\alpha(x_s).$$

This is a variant of API using $TD(\lambda)$ where there is a policy improvement step after each update of the parameter. After several weeks of self playing \rightarrow world best player. According to human experts it developed new strategies, specially in openings.

$\mathsf{TD}(\lambda)$ with linear space

Consider a set of features $(\phi_i: X \to R)_{1 \le i \le d}$ and the linear space

$$\mathcal{F} = \{V_{\alpha}(x) = \sum_{i=1}^{d} \alpha_i \phi_i(x), \alpha \in \mathbf{R}^d\}.$$

Run a trajectory (x_t) by following policy π . After the transition $x_t \xrightarrow{r_t} x_{t+1}$, compute the temporal difference $d_t = r_t + \gamma V_{\alpha}(x_{t+1}) - V_{\alpha}(x_t)$, and update

$$\alpha_{t+1} = \alpha_t + \eta_t d_t \sum_{0 \le s \le t} (\lambda \gamma)^{t-s} \Phi(x_s).$$

Proposition 6 (Tsitsiklis & Van Roy, 1996).

Assume that $\sum \eta_t = \infty$ and $\sum \eta_t^2 < \infty$, and there exists $\mu \in \mathbb{R}^N$ such that $\forall x, y \in X$, $\lim_{t\to\infty} \mathbb{P}(x_t = y | x_0 = x) = \mu(y)$. Then α_t converges, say to α^* . And we have

$$||V_{\alpha^*} - V^{\pi}||_{\mu} \leq \frac{1 - \lambda \gamma}{1 - \gamma} \inf_{\alpha} ||V_{\alpha} - V^{\pi}||_{\mu}.$$

Least Squares Temporal Difference

[Bradtke & Barto, 1996, Lagoudakis & Parr, 2003] Consider a linear space \mathcal{F} and Π_{μ} the projection with norm $L_2(\mu)$, where μ is a distribution over X.

When the fixed-point of $\Pi_{\mu}T^{\pi}$ exists, we call it **Least Squares Temporal Difference** solution V_{TD} .

Characterization of the LSTD solution

The Bellman residual $T^{\pi}V_{TD} - V_{TD}$ is orthogonal to the space \mathcal{F} , thus for all $1 \leq i \leq d$,

$$\langle r^{\pi} + \gamma P^{\pi} V_{TD} - V_{TD}, \phi_i \rangle_{\mu} = 0$$

$$\langle r^{\pi}, \phi_i \rangle_{\mu} + \sum_{j=1}^{d} \langle \gamma P^{\pi} \phi_j - \phi_j, \phi_i \rangle_{\mu} \alpha_{TD,j} = 0,$$

where α_{TD} is the parameter of V_{TD} . We deduce that α_{TD} is solution to the linear system (of size *d*):

$$A\alpha = b, \text{ with } \begin{cases} A_{i,j} = \langle \phi_i, \phi_j - \gamma P^{\pi} \phi_j \rangle_{\mu} \\ b_i = \langle \phi_i, r^{\pi} \rangle_{\mu} \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Performance bound for LSTD

In general there is no guarantee that there exists a fixed-point to $\Pi_{\mu}\mathcal{T}^{\pi}$ (since \mathcal{T}^{π} is not a contraction in $L_2(\mu)$ -norm). However, when μ is the stationary distribution associated to π (i.e., such that $\mu P^{\pi} = \mu$), then there exists a unique LSTD solution.

Proposition 7.

Consider μ to be the stationary distribution associated to π . Then \mathcal{T}^{π} is a contraction mapping in $L_2(\mu)$ -norm, thus $\Pi_{\mu}\mathcal{T}^{\pi}$ is also a contraction, and there exists a unique LSTD solution V_{TD} . In addition, we have the approximation error:

$$\|V^{\pi} - V_{TD}\|_{\mu} \le \frac{1}{\sqrt{1 - \gamma^2}} \inf_{V \in \mathcal{F}} \|V^{\pi} - V\|_{\mu}.$$
 (3)

Proof of Proposition 7 [part 1]

First let us prove that $\|P_{\pi}\|_{\mu} = 1$. We have:

$$\|P^{\pi}V\|_{\mu}^{2} = \sum_{x} \mu(x) \left(\sum_{y} p(y|x, \pi(x))V(y)\right)^{2}$$

$$\leq \sum_{x} \sum_{y} \mu(x) p(y|x, \pi(x))V(y)^{2}$$

$$= \sum_{y} \mu(y)V(y)^{2} = \|V\|_{\mu}^{2}.$$

We deduce that \mathcal{T}^{π} is a contraction mapping in $L_2(\mu)$:

$$\|\mathcal{T}^{\pi}V_{1} - \mathcal{T}^{\pi}V_{2}\|_{\mu} = \gamma \|P^{\pi}(V_{1} - V_{2})\|_{\mu} \leq \gamma \|V_{1} - V_{2}\|_{\mu},$$

and since Π_{μ} is a non-expansion in $L_2(\mu)$, then $\Pi_{\mu}\mathcal{T}^{\pi}$ is a contraction in $L_2(\mu)$. Write V_{TD} its (unique) fixed-point.

Proof of Proposition 7 [part 2] We have $\|V^{\pi} - V_{TD}\|_{\mu}^{2} = \|V^{\pi} - \Pi_{\mu}V^{\pi}\|_{\mu}^{2} + \|\Pi_{\mu}V^{\pi} - V_{TD}\|_{\mu}^{2}$, but $\|\Pi_{\mu}V^{\pi} - V_{TD}\|_{\mu}^{2} = \|\Pi_{\mu}V^{\pi} - \Pi_{\mu}\mathcal{T}^{\pi}V_{TD}\|_{\mu}^{2}$ $\leq \|\mathcal{T}^{\pi}V^{\pi} - \mathcal{T}V_{TD}\|_{\mu}^{2} \leq \gamma^{2}\|V^{\pi} - V_{TD}\|_{\mu}^{2}$.

Thus
$$\|V^{\pi} - V_{TD}\|_{\mu}^{2} \le \|V^{\pi} - \Pi_{\mu}V^{\pi}\|_{\mu}^{2} + \gamma^{2}\|V^{\pi} - V_{TD}\|_{\mu}^{2}$$

from which the result follows.

Bellman Residual Minimization (BRM)

Another approach consists in searching for the function \mathcal{F} that minimizes the Bellman residual for the policy π :

$$V_{BR} = \arg\min_{V \in \mathcal{F}} \|T^{\pi}V - V\|, \qquad (4)$$

 τ^{π} $\arg\min_{V\in\mathcal{F}} \|V^{\pi}-V\|$ $T^{\pi}V_{BR}$ $V_{BR} = \arg\min_{V \in \mathcal{F}} \|\mathcal{T}^{\pi}V - V\|$

for some norm $\|\cdot\|$.

Characterization of the BRM solution

Let μ be a distribution and V_{BR} be the BRM using $L_2(\mu)$ -norm. The mapping $\alpha \to ||\mathcal{T}^{\pi}V_{\alpha} - V_{\alpha}||_{\mu}^2$ is quadratic and its minimum is characterized by its gradient = 0: for all $1 \le i \le d$,

$$\langle r^{\pi} + \gamma P^{\pi} V_{\alpha} - V_{\alpha}, \gamma P^{\pi} \phi_{i} - \phi_{i} \rangle_{\mu} = 0$$

$$\langle r^{\pi} + (\gamma P^{\pi} - I) \sum_{j=1}^{d} \phi_{j} \alpha_{j}, (\gamma P^{\pi} - I) \phi_{i} \rangle_{\mu} = 0$$

We deduce that α_{BR} is solution to the linear system (of size *d*):

$$A\alpha = b, \text{ with } \begin{cases} A_{i,j} = \langle \phi_i - \gamma P^{\pi} \phi_i, \phi_j - \gamma P^{\pi} \phi_j \rangle_{\mu} \\ b_i = \langle \phi_i - \gamma P^{\pi} \phi_i, r^{\pi} \rangle_{\mu} \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへ⊙

Performance of BRM

Proposition 8.

We have

$$\|V^{\pi} - V_{BR}\| \le \|(I - \gamma P^{\pi})^{-1}\|(1 + \gamma \|P^{\pi}\|) \inf_{V \in \mathcal{F}} \|V^{\pi} - V\|.$$
(5)

Now, if μ is the stationary distribution for π , then $||P^{\pi}||_{\mu} = 1$ and $||(I - \gamma P^{\pi})^{-1}||_{\mu} = \frac{1}{1-\gamma}$, thus

$$\|V^{\pi} - V_{BR}\|_{\mu} \leq rac{1+\gamma}{1-\gamma} \inf_{V\in\mathcal{F}} \|V^{\pi} - V\|_{\mu}.$$

Note that the BRM solution has performance guarantees even when μ is not the stationary distribution (contrary to LSTD). See discussion in [Lagoudakis & Parr, 2003] and [Munos, 2003].

Proof of Proposition 8

Point 1: For any fonction V, we have

$$V^{\pi} - V = V^{\pi} - T^{\pi}V + T^{\pi}V - V$$

= $\gamma P^{\pi}(V^{\pi} - V) + T^{\pi}V - V$
 $(I - \gamma P^{\pi})(V^{\pi} - V) = T^{\pi}V - V,$

thus

$$\|V^{\pi} - V_{BR}\| \le \|(I - \gamma P^{\pi})^{-1}\| \|\mathcal{T}^{\pi} V_{BR} - V_{BR}\|$$

and $\|\mathcal{T}^{\pi} V_{BR} - V_{BR}\| = \inf_{V \in \mathcal{F}} \|\mathcal{T}^{\pi} V - V\| \le (1 + \gamma \|P^{\pi}\|) \inf_{V \in \mathcal{F}} \|V^{\pi} - V\|,$

and (5) follows.

Point 2: Now when we consider the stationary distribution, we have already seen that $||P^{\pi}||_{\mu} = 1$, which implies that $||(I - \gamma P^{\pi})^{-1}||_{\mu} \leq \sum_{t \geq 0} \gamma^{t} ||P^{\pi}||_{\mu}^{t} \leq \frac{1}{1-\gamma}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Back to RL

Approximate Policy Iteration algorithm: We studied how to compute an approximation V_k of the value function V^{π_k} for any policy π_k . Now the policy improvement step is:

$$\pi_{k+1}(x) \in rg\max_{a \in A} \sum_{y} p(y|x, a)[r(x, a, y) + \gamma V_k(y)].$$

In RL, the transition probabilities and rewards are unknown. How to adapt this methodology? Again, two same ideas:

- 1. Use sampling methods
- 2. Use Q-value functions

API with Q-value functions

We now wish to approximate the Q-value function $Q^{\pi}: X \times A \rightarrow \mathbf{R}$ for any policy π , where

$$Q^{\pi}(x, a) = \mathbb{E}ig[\sum_{t\geq 0} \gamma^t r(x_t, a_t) | x_0 = x, a_0 = a, a_t = \pi(x_t), t\geq 1ig].$$

Consider a set of features $\phi_i : X \times A \rightarrow R$ and the linear space \mathcal{F}

$$\mathcal{F} = \{ \mathcal{Q}_{\alpha}(x, \mathbf{a}) = \sum_{i=1}^{d} \alpha_i \phi_i(x, \mathbf{a}), \alpha \in \mathbf{R}^d \}.$$

Least-Squares Policy Iteration

[Lagoudakis & Parr, 2003]

Policy evaluation: At round k, run a trajectory (x_t)_{1≤t≤n} by following policy π_k. Write a_t = π_k(x_t) and r_t = r(x_t, a_t). Build the matrix and the vector b as

$$\hat{A}_{ij} = \frac{1}{n} \sum_{t=1}^{n} \phi_i(x_t, a_t) [\phi_j(x_t, a_t) - \gamma \phi_j(x_{t+1}, a_{t+1})],$$

$$\hat{b}_i = \frac{1}{n} \sum_{t=1}^{n} \phi_i(x_t, a_t) r_t.$$

and we compute the solution $\hat{\alpha}_{TD}$ of $\hat{A}\alpha = \hat{b}$. (Note that $\hat{\alpha}_{TD} \xrightarrow{a.s.} \alpha_{TD}$ when $n \to \infty$, since $\hat{A} \xrightarrow{a.s.} A$ and $\hat{b} \xrightarrow{a.s.} b$).

Policy improvement:

$$\pi_{k+1}(x) \in \arg \max_{a \in A} Q_{\hat{\alpha}_{TD}}(x, a).$$

BRM alternative

We require a generative model. At each iteration k, we generate n i.i.d. samples $x_t \sim \mu$, and for each sample, we make a call to the generative model to obtain 2 independent samples y_t and $y'_t \sim p(\cdot|x_t, a_t)$. Write $b_t = \pi_k(y_t)$ and $b'_t = \pi_k(y'_t)$.

We build the matrix \hat{A} and the vector \hat{b} as

$$\begin{aligned} \widehat{A}_{i,j} &= \frac{1}{n} \sum_{t=1}^{n} \left[\phi_i(x_t, a_t) - \gamma \phi_i(y_t, b_t) \right] \left[\phi_j(x_t, a_t) - \gamma \phi_j(y'_t, b'_t) \right], \\ \widehat{b}_i &= \frac{1}{n} \sum_{t=1}^{n} \left[\phi_i(X_t, a_t) - \gamma \frac{\phi_i(y_t, b_t) + \phi_i(y'_t, b'_t)}{2} \right] r_t. \end{aligned}$$

We also have the property that $\hat{A} \xrightarrow{a.s.} A$ and $\hat{b} \xrightarrow{a.s.} b$ of the BRM system, thus $\hat{\alpha}_{BR} \xrightarrow{a.s.} \alpha_{BR}$.

Theoretical guarantees so far

For example, Approximate Value Iteration:

$$\|V^* - V^{\pi_{\mathcal{K}}}\|_{\infty} \leq \frac{2\gamma}{(1-\gamma)^2} \max_{0 \leq k < \mathcal{K}} \underbrace{\|\mathcal{T}V_k - V_{k+1}\|_{\infty}}_{\text{projection error}} + O(\gamma^{\mathcal{K}}).$$

Sample-based algorithms minimizing an empirical L_∞ -norm

$$V_{k+1} = \arg\min_{V \in \mathcal{F}} \max_{1 \leq i \leq n} \left| \widehat{\mathcal{TV}}_k(x_i) - V(x_i) \right|$$

suffer from 2 problems:

- Numerically intractable
- Cannot relate $\|\mathcal{T}V_k V_{k+1}\|_{\infty}$ to $\max_i |\widehat{\mathcal{T}V}_k(x_i) V_{k+1}(x_i)|$

*L*₂-based algorithms

We would like to use sample-based algorithms minimizing an empirical L_2 -norm:

$$V_{k+1} = \arg\min_{V\in\mathcal{F}}\sum_{i=1}^n \big|\widehat{\mathcal{T}V}_k(x_i) - V(x_i)\big|^2,$$

which is just a regression problem!

- Numerically tractable
- · Generalization bounds exits: with high probability,

$$\|\mathcal{T}V_k - V_{k+1}\|_2^2 \leq \frac{1}{n} \sum_{i=1}^n \left|\widehat{\mathcal{T}V}_k(x_i) - V(x_i)\right|^2 + c\sqrt{\frac{VC(\mathcal{F})}{n}}$$

But we need $\|\mathcal{T}V_k - V_{k+1}\|_{\infty}$, not $\|\mathcal{T}V_k - V_{k+1}\|_2$!

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

L_p -norm analysis of ADP

Under smoothness assumptions on the MDP, the propagation error of all usual ADP algorithms can be analyzed in L_p -norm ($p \ge 1$).

Proposition 9 (Munos, 2003, 2007).

Assume there is a constant $C \ge 1$ and a distribution μ such that $\forall x \in X$, $\forall a \in A$,

$$p(\cdot|x,a) \leq C\mu(\cdot).$$

• Approximate Value Iteration:

$$\|V^* - V^{\pi_K}\|_{\infty} \leq \frac{2\gamma}{(1-\gamma)^2} C^{1/p} \max_{0 \leq k < K} \|\mathcal{T}V_k - V_{k+1}\|_{p,\mu} + O(\gamma^K).$$

• Approximate Policy Iteration:

$$\|V^* - V^{\pi_K}\|_{\infty} \leq rac{2\gamma}{(1-\gamma)^2} C^{1/p} \max_{0 \leq k < K} \|V_k - V^{\pi_k}\|_{p,\mu} + O(\gamma^K).$$

We now have all ingredients for a finite-sample analysis of ADP.

Finite-sample analysis of AVI

Sample *n* states i.i.d. $x_i \sim \mu$. From each state x_i , each $a \in A$, generate *m* next state samples $y_{i,a}^j \sim p(\cdot|x_i, a)$. Iterate *K* times:

$$V_{k+1} = \arg\min_{V \in \mathcal{F}} \sum_{i=1}^{n} \left| V(x_i) - \max_{a \in \mathcal{A}} \left[r(x_i, a) + \gamma \frac{1}{m} \sum_{j=1}^{m} V_k(y_{i,a}^j) \right] \right|^2$$

Proposition 10 (Munos and Szepesvári, 2007). For any $\delta > 0$, with probability at least $1 - \delta$, we have:

$$\begin{split} ||V^* - V^{\pi_{\mathcal{K}}}||_{\infty} &\leq \frac{2\gamma}{(1-\gamma)^2} \, C^{1/p} \, d(\mathcal{TF}, \mathcal{F}) + O(\gamma^{\mathcal{K}}) \\ &+ O\Big(\frac{V(\mathcal{F})\log(1/\delta)}{n}\Big)^{1/4} + O\Big(\frac{\log(1/\delta)}{m}\Big)^{1/2}, \end{split}$$

where $d(\mathcal{TF}, \mathcal{F}) \stackrel{\text{def}}{=} \sup_{g \in \mathcal{F}} \inf_{f \in \mathcal{F}} ||\mathcal{T}g - f||_{2,\mu}$ is the Bellman residual of the space \mathcal{F} , and $V(\mathcal{F})$ the pseudo-dimension of \mathcal{F} .

More works on finite-sample analysis of ADP/RL

This is important to know how many samples n are required to build an ϵ -approximation of the optimal policy.

- Policy iteration using a single trajectory [Antos et al., 2008]
- LSTD/LSPI [Lazaric et al., 2010]
- BRM [Maillard et al., 2010]
- LSTD with random projections [Ghavamzadeh et al., 2010]
- Lasso-TD [Ghavamzadeh et al., 2011]

Active research topic which links RL and statistical learning theory.