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Outline of Part 2:
Approximate dynamic programming

• Function approximation

• Bellman residual minimization

• Approximate value iteration: fitted VI

• Approximate policy iteration, LSTD, BRM

• Analysis of sample-based algorithms
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Approximate methods

When the state space is finite and small, use DP or RL techniques.
However in most interesting problems, the state-space X is huge,
possibly infinite:

• Tetris, Backgammon, ...

• Control problems often consider continuous spaces

We need to use function approximation:

• Linear approximation F = {fα =
∑d

i=1 αiφi , α ∈ IRd}
• Neural networks: F = {fα}, where α is the weight vector

• Non-parametric: k-nearest neighboors, Kernel methods, SVM,
...

Write F the set of representable functions.
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Approximate dynamic programming

General approach: build an approximation V ∈ F of the optimal
value function V ∗ (which may not belong to F), and then consider
the policy π greedy policy w.r.t. V , i.e.,

π(x) ∈ argmax
a∈A

[
r(x , a) + γ

∑
y

p(y |x , a)V (y)
]
.

(for the case of infinite horizon with discounted rewards.)

We expect that if V ∈ F is close to V ∗ then the policy π will be
close-to-optimal.
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Bound on the performance loss

Proposition 1.

Let V be an approximation of V ∗, and write π the policy greedy
w.r.t. V . Then

||V ∗ − V π||∞ ≤
2γ

1− γ
||V ∗ − V ||∞.

Proof.
From the contraction properties of the operators T and T π and
that by definition of π we have T V = T πV , we deduce

‖V ∗ − V π‖∞ ≤ ‖V ∗ − T πV ‖∞ + ‖T πV − T πV π‖∞
≤ ‖T V ∗ − T V ‖∞ + γ‖V − V π‖∞
≤ γ‖V ∗ − V ‖∞ + γ(‖V − V ∗‖∞ + ‖V ∗ − V π‖∞)

≤ 2γ

1− γ
‖V ∗ − V ‖∞.
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Bellman residual

• Let us define the Bellman residual of a function V as the
function T V − V .

• Note that the Bellman residual of V ∗ is 0 (Bellman equation).

• If a function V has a low ||T V −V ||∞, then is V close to V ∗?

Proposition 2 (Williams and Baird, 1993).

We have

‖V ∗ − V ‖∞ ≤ 1

1− γ
‖T V − V ‖∞

‖V ∗ − V π‖∞ ≤ 2

1− γ
‖T V − V ‖∞
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Proof of Proposition 2
Point 1: we have

‖V ∗ − V ‖∞ ≤ ‖V ∗ − T V ‖∞ + ‖T V − V ‖∞
≤ γ‖V ∗ − V ‖∞ + ‖T V − V ‖∞

≤ 1

1− γ
‖T V − V ‖∞

Point 2: We have ‖V ∗ − V π‖∞ ≤ ‖V ∗ − V ‖∞ + ‖V − V π‖∞.
Since T V = T πV , we deduce

‖V − V π‖∞ ≤ ‖V − T V ‖∞ + ‖T V − V π‖∞
≤ ‖T V − V ‖∞ + γ‖V − V π‖∞

≤ 1

1− γ
‖T V − V ‖∞,

thus, by using Point 1, it comes

‖V ∗ − V π‖∞ ≤
2

1− γ
‖T V − V ‖∞.
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Bellman residual minimizer

Given a function space F we can search for the function with
minimum Bellman residual:

VBR = arg min
V∈F
‖T V − V ‖∞.

What is the performance of the policy πBR greedy w.r.t. VBR?

Proposition 3.

We have:

‖V ∗ − V πBR‖∞ ≤
2(1 + γ)

1− γ
inf
V∈F
‖V ∗ − V ‖∞. (1)

Thus minimizing the Bellman residual in F is a sound approach
whenever F is rich enough.
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Proof of Proposition 3

We have

‖T V − V ‖∞ ≤ ‖T V − T V ∗‖∞ + ‖V ∗ − V ‖∞
≤ (1 + γ)‖V ∗ − V ‖∞.

Thus VBR satisfies:

‖T VBR − VBR‖∞ = inf
V∈F
‖T V − V ‖∞

≤ (1 + γ) inf
V∈F
‖V ∗ − V ‖∞.

Combining with the result of Proposition 2, we deduce (1).



. . . . . .

Bellman residual minimization Approximate Value Iteration Approximate Policy Iteration Analysis of sample-based algo

Possible numerical implementation

Assume that we possess a generative model:

Generative model

State x

Ation a

Reward r(x, a)

Next state sample y ∼ p(·|x, a)

• Sample n states (xi )1≤i≤n uniformly over the state space X ,

• For each action a ∈ A, generate a reward sample r(x , a) and
m next state samples (y ji ,a)1≤j≤m.

• Return the empirical Bellman residual minimizer:

V̂BR = arg min
V∈F

max
1≤i≤n

∣∣∣max
a∈A

[
r(xi , a) + γ

1

m

m∑
j=1

V (y ji ,a)
]

︸ ︷︷ ︸
sample estimate of T V (xi )

−V (xi )
∣∣∣.

This problem is numerically hard to solve...
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Approximate Value Iteration

Approximate Value Iteration:
builds a sequence of Vk ∈ F :

Vk+1 = ΠT Vk ,

where Π is a projection operator
onto F (under some norm ‖ · ‖).

F

Vk

ΠV ∗

V
∗

T

T Vk

T
Vk+1 = ΠT Vk

Remark: Π is a non-expansion under ‖ · ‖, and T is a contraction
under ‖ · ‖∞. Thus if we use ‖ · ‖∞ for Π, then AVI converges. If
we use another norm for Π (e.g., L2), then AVI may not converge.
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Performance bound for AVI

Apply AVI for K iterations.

Proposition 4 (Bertsekas & Tsitsiklis, 1996).

The performance loss ‖V ∗ − V πK ‖∞ resulting from using the
policy πK greedy w.r.t. VK is bounded as:

‖V ∗−V πK ‖∞ ≤
2γ

(1− γ)2
max

0≤k<K
‖T Vk − Vk+1‖∞︸ ︷︷ ︸
projection error

+
2γK+1

1− γ
‖V ∗−V0‖∞.

Now if we use ‖ · ‖∞-norm for Π, then AVI converges, say to Ṽ
which is such that Ṽ = ΠT Ṽ . Write π̃ the policy greedy w.r.t. Ṽ .
Then

‖V ∗ − V π̃‖∞ ≤
2

(1− γ)2
inf
V∈F
‖V ∗ − V ‖∞
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Proof of Proposition 4
Point 1: Write ε = max0≤k<K ‖T Vk − Vk+1‖∞. For all
0 ≤ k < K , we have

‖V ∗ − Vk+1‖∞ ≤ ‖T V ∗ − T Vk‖∞ + ‖T Vk − Vk+1‖∞
≤ γ‖V ∗ − Vk‖∞ + ε,

thus, ‖V ∗ − VK‖∞ ≤ (1 + γ + · · ·+ γK−1)ε+ γK‖V ∗ − V0‖∞

≤ 1

1− γ
ε+ γK‖V ∗ − V0‖∞

and we conclude by using Proposition 1.
Point 2: If Π uses ‖ · ‖∞ then ΠT is a γ-contraction mapping,
thus AVI converges, say to Ṽ satisfying Ṽ = ΠT Ṽ . And

‖V ∗ − Ṽ ‖∞ ≤ ‖V ∗ − ΠV ∗‖∞ + ‖ΠV ∗ − Ṽ ‖∞

with ‖ΠV ∗ − Ṽ ‖∞ = ‖ΠT V ∗ − ΠT Ṽ ‖∞ ≤ γ‖V ∗ − Ṽ ‖∞,

and the result follows from Proposition 1.
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A possible numerical implementation

At each round k,

1. Sample n states (xi )1≤i≤n

2. From each state xi , for each action a ∈ A, use the generative
model to obtain a reward r(xi , a) and m next state samples
(y ji ,a)1≤j≤m ∼ p(·|xi , a)

3. Define the next approximation (say using L∞-norm)

Vk+1 = arg min
V∈F

max
1≤i≤n

∣∣∣V (xi )−max
a∈A

[
r(xi , a) + γ

1

m

m∑
j=1

Vk(y
j
i ,a)

]
︸ ︷︷ ︸

sample estimate of T Vk(xi )

∣∣∣

This is still a numerically hard problem. However, using L2 norm:

Vk+1 = arg min
V∈F

n∑
i=1

∣∣∣V (xi )−max
a∈A

[
r(xi , a) + γ

1

m

m∑
j=1

Vk(y
j
i ,a)

]∣∣∣2
is much easier!
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Example: optimal replacement problem

1d-state: accumulated utilization of a product (ex. car).
Decisions: each year,

• Replace: replacement cost C , next state y ∼ d(·),
• Keep: maintenance cost c(x), next state y ∼ d(· − x).

Goal: Minimize the expected sum of discounted costs.
The optimal value function solves the Bellman equation:

V ∗(x) = min
{
c(x)+γ

∫ ∞

0

d(y−x)V ∗(y)dy , C +γ

∫ ∞

0

d(y)V ∗(y)dy
}

and the optimal policy is the argument of the min.
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Maintenance cost and value function
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Here, γ = 0.6, C = 50, d(y) = βe−βy1y≥0, with β = 0.6.
Maintenance costs = increasing function + punctual costs.
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Linear approximation

Function space F =
{
fα(x) =

∑20
i=1 αi cos(iπ

x
xmax

), α ∈ IR20
}
.

Consider a uniform discretization grid with n = 100 states,
m = 100 next-states.
First iteration: V0 = 0,
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Next iterations
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Approximate Policy Iteration
Choose an initial policy π0 and iterate:

1. Approximate policy evaluation of πk :
compute an approximation Vk of V πk .

2. Policy improvement: πk+1 is greedy w.r.t. Vk :

πk+1(x) ∈ argmax
a∈A

[
r(x , a) + γ

∑
y∈X

p(y |x , a)Vk(y)
]
.

V *−V πk

k
Asymptotic error

The algorithm may not converge but we can analyze the
asymptotic performance.
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Performance bound for API

We relate the asymptotic performance ||V ∗ − V πk ||∞ of the
policies πk greedy w.r.t. the iterates Vk , in terms of the
approximation errors ||Vk − V πk ||∞.

Proposition 5 (Bertsekas & Tsitsiklis, 1996).

We have

lim sup
k→∞

||V ∗ − V πk ||∞ ≤
2γ

(1− γ)2
lim sup
k→∞

||Vk − V πk ||∞

Thus if we are able to well approximate the value functions V πk at
each iteration then the performance of the resulting policies will be
close to the optimum.
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Proof of Proposition 5 [part 1]

Write ek = Vk − V πk the approximation error, gk = V πk+1 − V πk

the performance gain between iterations k and k + 1, and
lk = V ∗ − V πk the loss of using policy πk instead of π∗.
The next policy cannot be much worst that the current one:

gk ≥ −γ(I − γPπk+1)−1(Pπk+1 − Pπk ) ek (2)

Indeed, since Tπk+1Vk ≥ T πkVk (as πk+1 is greedy w.r.t. Vk), we
have:

gk = Tπk+1V πk+1 − T πk+1V πk + T πk+1V πk − Tπk+1Vk

+Tπk+1Vk − TπkVk + TπkVk − TπkV πk

≥ γPπk+1gk − γ(Pπk+1 − Pπk ) ek

≥ −γ(I − γPπk+1)−1(Pπk+1 − Pπk ) ek
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Proof of Proposition 5 [part 2]

The loss at the next iteration is bounded by the current loss as:

lk+1 ≤ γPπ∗
lk + γ[Pπk+1(I − γPπk+1)−1(I − γPπk )− Pπ∗

]ek

Indeed, since Tπ∗
Vk ≤ Tπk+1Vk ,

lk+1 = Tπ∗
V ∗ − Tπ∗

V πk + Tπ∗
V πk − Tπ∗

Vk

+T π∗
Vk − Tπk+1Vk + Tπk+1Vk − Tπk+1V πk

+T πk+1V πk − T πk+1V πk+1

≤ γ[Pπ∗
lk − Pπk+1gk + (Pπk+1 − Pπ∗

)ek ]

and by using (2),

lk+1 ≤ γPπ∗
lk + γ[Pπk+1(I − γPπk+1)−1(Pπk+1 − Pπk ) + Pπk+1 − Pπ∗

]ek

≤ γPπ∗
lk + γ[Pπk+1(I − γPπk+1)−1(I − γPπk )− Pπ∗

]ek .
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Proof of Proposition 5 [part 3]

Writing fk = γ[Pπk+1(I − γPπk+1)−1(I − γPπk )− Pπ∗
]ek , we have:

lk+1 ≤ γPπ∗
lk + fk .

Thus, by taking the limit sup.,

(I − γPπ∗
) lim sup

k→∞
lk ≤ lim sup

k→∞
fk

lim sup
k→∞

lk ≤ (I − γPπ∗
)−1 lim sup

k→∞
fk ,

since I − γPπ∗
is invertible. In L∞-norm, we have

lim sup
k→∞

||lk || ≤
γ

1− γ
lim sup
k→∞

||Pπk+1(I − γPπk+1)−1(I + γPπk ) + Pπ∗
|| ||ek ||

≤ γ

1− γ
(
1 + γ

1− γ
+ 1) lim sup

k→∞
||ek || =

2γ

(1− γ)2
lim sup
k→∞

||ek ||.
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Approximate policy evaluation

For a given policy π we search for an approximation Vα ∈ F of V π.
For example, by minimizing the approximation error

inf
Vα∈F

||Vα − V π||22.

Writing g(α) = 1
2‖Vα − V π‖22, we may consider a stochastic

gradient algorithm:
α← α− η∇̂g(α)

where an estimate ∇̂g(α) = 〈∇Vα,Vα −
∑

t≥0 γ
trt〉 of the

gradient ∇g(α) = 〈∇Vα,Vα − V π〉 may be obtained by using MC
sampling of trajectories (xt) following π.
Extension to TD(λ) algorithms have been introduced:

α← α+ η
∑
s≥0

∇αVα(xs)
∑
t≥s

(γλ)t−sdt .
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TD-Gammon [Tesauro, 1994]

G
am
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198 input 40 hidden units

= prediction of the 
probability to win

network
Neural

weight α TD-erreur Vα(xt+1)− Vα(xt)

weight α
Output Vα(x)

State = game configuration x + player j → N ' 1020.
Reward 1 or 0 at the end of the game.

The neural network returns an approximation of V ∗(x , j):
probability that player j wins from position x , assuming that both
players play optimally.
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TD-Gammon algorithm

• At time t, the current game configuration is xt

• Roll dices and select the action that maximizes the value Vα

of the resulting state xt+1

• Compute the temporal difference
dt = Vα(xt+1, jt+1)− Vα(xt , jt) (if this is a final position,
replace Vα(xt+1, jt+1) by +1 or 0)

• Update αt according to

αt+1 = αt + ηtdt
∑

0≤s≤t

λt−s∇αVα(xs).

This is a variant of API using TD(λ) where there is a policy
improvement step after each update of the parameter.
After several weeks of self playing → world best player.
According to human experts it developed new strategies, specially
in openings.
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TD(λ) with linear space
Consider a set of features (φi : X → IR)1≤i≤d and the linear space

F = {Vα(x) =
d∑

i=1

αiφi (x), α ∈ IRd}.

Run a trajectory (xt) by following policy π.

After the transition xt
rt→ xt+1, compute the temporal difference

dt = rt + γVα(xt+1)− Vα(xt), and update

αt+1 = αt + ηtdt
∑

0≤s≤t

(λγ)t−sΦ(xs).

Proposition 6 (Tsitsiklis & Van Roy, 1996).

Assume that
∑

ηt =∞ and
∑

η2t <∞, and there exists µ ∈ IRN

such that ∀x , y ∈ X, limt→∞ P(xt = y |x0 = x) = µ(y). Then αt

converges, say to α∗. And we have

||Vα∗ − V π||µ ≤
1− λγ

1− γ
inf
α
||Vα − V π||µ.
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Least Squares Temporal Difference
[Bradtke & Barto, 1996, Lagoudakis & Parr, 2003]
Consider a linear space F and Πµ the projection with norm L2(µ),
where µ is a distribution over X .
When the fixed-point of ΠµT

π exists, we call it Least Squares
Temporal Difference solution VTD .

VTD = ΠµT
πVTD

ΠµV π

V π

T π

T πVTD

T π

F
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Characterization of the LSTD solution

The Bellman residual T πVTD − VTD is orthogonal to the space F ,
thus for all 1 ≤ i ≤ d ,

〈rπ + γPπVTD − VTD , φi 〉µ = 0

〈rπ, φi 〉µ +
d∑

j=1

〈γPπφj − φj , φi 〉µαTD,j = 0,

where αTD is the parameter of VTD . We deduce that αTD is
solution to the linear system (of size d):

Aα = b, with

{
Ai ,j = 〈φi , φj − γPπφj〉µ
bi = 〈φi , r

π〉µ
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Performance bound for LSTD

In general there is no guarantee that there exists a fixed-point to
ΠµT π (since T π is not a contraction in L2(µ)-norm).
However, when µ is the stationary distribution associated to π (i.e.,
such that µPπ = µ), then there exists a unique LSTD solution.

Proposition 7.

Consider µ to be the stationary distribution associated to π. Then
T π is a contraction mapping in L2(µ)-norm, thus ΠµT π is also a
contraction, and there exists a unique LSTD solution VTD . In
addition, we have the approximation error:

‖V π − VTD‖µ ≤
1√

1− γ2
inf
V∈F
‖V π − V ‖µ. (3)
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Proof of Proposition 7 [part 1]

First let us prove that ‖Pπ‖µ = 1. We have:

‖PπV ‖2µ =
∑
x

µ(x)
(∑

y

p(y |x , π(x))V (y)
)2

≤
∑
x

∑
y

µ(x)p(y |x , π(x))V (y)2

=
∑
y

µ(y)V (y)2 = ‖V ‖2µ.

We deduce that T π is a contraction mapping in L2(µ):

‖T πV1 − T πV2‖µ = γ‖Pπ(V1 − V2)‖µ ≤ γ‖V1 − V2‖µ,

and since Πµ is a non-expansion in L2(µ), then ΠµT π is a
contraction in L2(µ). Write VTD its (unique) fixed-point.
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Proof of Proposition 7 [part 2]
We have ‖V π − VTD‖2µ = ‖V π − ΠµV

π‖2µ + ‖ΠµV
π − VTD‖2µ,

but ‖ΠµV
π − VTD‖2µ = ‖ΠµV

π − ΠµT πVTD‖2µ
≤ ‖T πV π − T VTD‖2µ ≤ γ2‖V π − VTD‖2µ.

Thus ‖V π − VTD‖2µ ≤ ‖V π − ΠµV
π‖2µ + γ2‖V π − VTD‖2µ,

from which the result follows.

VTD = ΠµT
πVTD

ΠµV π

V π

T π

T πVTD

T π

F
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Bellman Residual Minimization (BRM)
Another approach consists in searching for the function F that
minimizes the Bellman residual for the policy π:

VBR = arg min
V∈F
‖TπV − V ‖, (4)

for some norm ‖ · ‖.

V
π

T π

F

T π

T π
VBR

arg min
V ∈F

‖V π − V ‖

VBR = arg min
V ∈F

‖T π
V − V ‖
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Characterization of the BRM solution

Let µ be a distribution and VBR be the BRM using L2(µ)-norm.
The mapping α→ ‖T πVα − Vα‖2µ is quadratic and its minimum is
characterized by its gradient = 0: for all 1 ≤ i ≤ d ,

〈rπ + γPπVα − Vα, γP
πφi − φi 〉µ = 0

〈rπ + (γPπ − I )
d∑

j=1

φjαj , (γP
π − I )φi 〉µ = 0

We deduce that αBR is solution to the linear system (of size d):

Aα = b, with

{
Ai ,j = 〈φi − γPπφi , φj − γPπφj〉µ
bi = 〈φi − γPπφi , r

π〉µ
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Performance of BRM

Proposition 8.

We have

‖V π − VBR‖ ≤ ‖(I − γPπ)−1‖(1 + γ‖Pπ‖) inf
V∈F
‖V π − V ‖. (5)

Now, if µ is the stationary distribution for π, then ‖Pπ‖µ = 1 and
‖(I − γPπ)−1‖µ = 1

1−γ , thus

‖V π − VBR‖µ ≤
1 + γ

1− γ
inf
V∈F
‖V π − V ‖µ.

Note that the BRM solution has performance guarantees even
when µ is not the stationary distribution (contrary to LSTD). See
discussion in [Lagoudakis & Parr, 2003] and [Munos, 2003].
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Proof of Proposition 8

Point 1: For any fonction V , we have

V π − V = V π − TπV + TπV − V

= γPπ(V π − V ) + TπV − V

(I − γPπ)(V π − V ) = T πV − V ,

thus
‖V π − VBR‖ ≤ ‖(I − γPπ)−1‖‖T πVBR − VBR‖

and ‖T πVBR−VBR‖ = inf
V∈F
‖T πV−V ‖ ≤ (1+γ‖Pπ‖) inf

V∈F
‖V π−V ‖,

and (5) follows.
Point 2: Now when we consider the stationary distribution, we
have already seen that ‖Pπ‖µ = 1, which implies that
‖(I − γPπ)−1‖µ ≤

∑
t≥0 γ

t‖Pπ‖tµ ≤ 1
1−γ .
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Back to RL

Approximate Policy Iteration algorithm: We studied how to
compute an approximation Vk of the value function V πk for any
policy πk . Now the policy improvement step is:

πk+1(x) ∈ argmax
a∈A

∑
y

p(y |x , a)[r(x , a, y) + γVk(y)].

In RL, the transition probabilities and rewards are unknown. How
to adapt this methodology? Again, two same ideas:

1. Use sampling methods

2. Use Q-value functions
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API with Q-value functions

We now wish to approximate the Q-value function
Qπ : X × A→ IR for any policy π, where

Qπ(x , a) = E
[∑
t≥0

γtr(xt , at)|x0 = x , a0 = a, at = π(xt), t ≥ 1
]
.

Consider a set of features φi : X × A→ IR and the linear space F

F = {Qα(x , a) =
d∑

i=1

αiφi (x , a), α ∈ IRd}.
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Least-Squares Policy Iteration
[Lagoudakis & Parr, 2003]

• Policy evaluation: At round k, run a trajectory (xt)1≤t≤n by
following policy πk . Write at = πk(xt) and rt = r(xt , at).
Build the matrix Â and the vector b̂ as

Âij =
1

n

n∑
t=1

φi (xt , at)[φj(xt , at)− γφj(xt+1, at+1)],

b̂i =
1

n

n∑
t=1

φi (xt , at)rt .

and we compute the solution α̂TD of Âα = b̂.
(Note that α̂TD

a.s.→ αTD when n→∞, since Â
a.s.→ A and b̂

a.s.→ b).

• Policy improvement:

πk+1(x) ∈ argmax
a∈A

Qα̂TD
(x , a).
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BRM alternative

We require a generative model. At each iteration k , we generate n
i.i.d. samples xt ∼ µ, and for each sample, we make a call to the
generative model to obtain 2 independent samples yt and
y ′t ∼ p(·|xt , at). Write bt = πk(yt) and b′t = πk(y

′
t).

We build the matrix Â and the vector b̂ as

Âi ,j =
1

n

n∑
t=1

[
φi (xt , at)− γφi (yt , bt)

][
φj(xt , at)− γφj(y

′
t , b

′
t)
]
,

b̂i =
1

n

n∑
t=1

[
φi (Xt , at)− γ

φi (yt , bt) + φi (y
′
t , b

′
t)

2

]
rt .

We also have the property that Â
a.s.→ A and b̂

a.s.→ b of the BRM
system, thus α̂BR

a.s.→ αBR .
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Theoretical guarantees so far

For example, Approximate Value Iteration:

‖V ∗ − V πK ‖∞ ≤
2γ

(1− γ)2
max

0≤k<K
‖T Vk − Vk+1‖∞︸ ︷︷ ︸
projection error

+O(γK ).

Sample-based algorithms minimizing an empirical L∞-norm

Vk+1 = arg min
V∈F

max
1≤i≤n

∣∣T̂ V k(xi )− V (xi )
∣∣

suffer from 2 problems:

• Numerically intractable

• Cannot relate ‖T Vk − Vk+1‖∞ to maxi |T̂ V k(xi )− Vk+1(xi )|
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L2-based algorithms

We would like to use sample-based algorithms minimizing an
empirical L2-norm:

Vk+1 = arg min
V∈F

n∑
i=1

∣∣T̂ V k(xi )− V (xi )
∣∣2,

which is just a regression problem!

• Numerically tractable

• Generalization bounds exits: with high probability,

‖T Vk − Vk+1‖22 ≤
1

n

n∑
i=1

∣∣T̂ V k(xi )− V (xi )
∣∣2 + c

√
VC (F)

n

But we need ‖T Vk − Vk+1‖∞, not ‖T Vk − Vk+1‖2!
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Lp-norm analysis of ADP

Under smoothness assumptions on the MDP, the propagation error
of all usual ADP algorithms can be analyzed in Lp-norm (p ≥ 1).

Proposition 9 (Munos, 2003, 2007).

Assume there is a constant C ≥ 1 and a distribution µ such that
∀x ∈ X, ∀a ∈ A,

p(·|x , a) ≤ Cµ(·).
• Approximate Value Iteration:

‖V ∗ − V πK ‖∞ ≤
2γ

(1− γ)2
C 1/p max

0≤k<K
‖T Vk − Vk+1‖p,µ + O(γK ).

• Approximate Policy Iteration:

‖V ∗ − V πK ‖∞ ≤
2γ

(1− γ)2
C 1/p max

0≤k<K
‖Vk − V πk‖p,µ + O(γK ).

We now have all ingredients for a finite-sample analysis of ADP.
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Finite-sample analysis of AVI

Sample n states i.i.d. xi ∼ µ. From each state xi , each a ∈ A,
generate m next state samples y ji ,a ∼ p(·|xi , a). Iterate K times:

Vk+1 = arg min
V∈F

n∑
i=1

∣∣∣V (xi )−max
a∈A

[
r(xi , a) + γ

1

m

m∑
j=1

Vk(y
j
i ,a)

]∣∣∣2
Proposition 10 (Munos and Szepesvári, 2007).

For any δ > 0, with probability at least 1− δ, we have:

||V ∗ − V πK ||∞ ≤ 2γ

(1− γ)2
C 1/p d(T F ,F) + O(γK )

+O
(V (F) log(1/δ)

n

)1/4
+ O

( log(1/δ)
m

)1/2
,

where d(T F ,F) def
= supg∈F inff ∈F ||T g − f ||2,µ is the Bellman

residual of the space F , and V (F) the pseudo-dimension of F .
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More works on finite-sample analysis of ADP/RL

This is important to know how many samples n are required to
build an ε-approximation of the optimal policy.

• Policy iteration using a single trajectory [Antos et al., 2008]

• LSTD/LSPI [Lazaric et al., 2010]

• BRM [Maillard et al., 2010]

• LSTD with random projections [Ghavamzadeh et al., 2010]

• Lasso-TD [Ghavamzadeh et al., 2011]

Active research topic which links RL and statistical learning
theory.


	Bellman residual minimization
	Approximate Value Iteration
	Approximate Policy Iteration
	Analysis of sample-based algo

