Bellman residual minimization Approximate Value Iteration Approximate Policy Iteration Analysis of sample-based algo

Introduction to Reinforcement Learning
Part 2: Approximate Dynamic Programming

Rémi Munos

Sequel project: Sequential Learning
http://researchers.lille.inria.fr/~munos/

INRIA Lille - Nord Europe

Machine Learning Summer School, September 2011, Bordeaux

http://researchers.lille.inria.fr/~munos/

Bellman residual minimization Approximate Value lteration Approximate Policy Iteration Analysis of sample-based algo

Outline of Part 2:
Approximate dynamic programming

Function approximation

Bellman residual minimization

e Approximate value iteration: fitted VI
e Approximate policy iteration, LSTD, BRM

Analysis of sample-based algorithms

References
General references on Approximate Dynamic Programming:
e Neuro Dynamic Programming, Bertsekas et Tsitsiklis, 1996.

e Markov Decision Processes in Artificial Intelligence, Sigaud
and Buffet ed., 2008.

o Algorithms for Reinforcement Learning, Szepesvari, 2009.
BRM, TD, LSTD/LSPI:

e BRM [Williams and Baird, 1993]

e TD learning [Tsitsiklis and Van Roy, 1996]

e LSTD [Bradtke and Barto, 1993], [Boyan, 1999], LSPI
[Lagoudakis and Parr, 2003], [Munos, 2003]

Finite-sample analysis:
e AVI [Munos and Szepesvari, 2008]
e API [Antos et al., 2009]
e LSTD [Lazaric et al., 2010]

Approximate methods

When the state space is finite and small, use DP or RL techniques.
However in most interesting problems, the state-space X is huge,
possibly infinite:

e Tetris, Backgammon, ...

e Control problems often consider continuous spaces
We need to use function approximation:

e Linear approximation F = {f, = 2?;1 ai¢i,a € R}

e Neural networks: F = {f,}, where a is the weight vector

e Non-parametric: k-nearest neighboors, Kernel methods, SVM,

Write F the set of representable functions.

Approximate dynamic programming

General approach: build an approximation V € F of the optimal
value function V* (which may not belong to F), and then consider
the policy 7 greedy policy w.r.t. V, i.e.,

m(x) € argmax [r(x,2) + 7> _ p(ylx,) V(y)]-

(for the case of infinite horizon with discounted rewards.)

We expect that if V € F is close to V* then the policy 7 will be
close-to-optimal.

Bellman residual minimization Approximate Value lteration Approximate Policy Iteration Analysis of sample-based algo

Bound on the performance loss

Proposition 1.

Let V' be an approximation of V*, and write w the policy greedy
w.r.t. V. Then

2y
V¥ — VTl < ——||V* = V]|
I | _1_7|| I
Proof.

From the contraction properties of the operators 7 and 7™ and
that by definition of © we have TV = T7V, we deduce

[VF= VT < V=T " V]oo + TV =TV
< TV =TV +7[V = VTl
< AV = Voo +(IV = Vo + V" = VTlx)
2y X
< lil\V — Vlloo-
-

Bellman residual minimization Approximate Value lteration Approximate Policy Iteration Analysis of sample-based algo

Bellman residual

e Let us define the Bellman residual of a function V as the
function TV — V.

¢ Note that the Bellman residual of V* is 0 (Bellman equation).
e If a function V has a low ||TV — V||, then is V close to V*?

Proposition 2 (Williams and Baird, 1993).
We have

1

1—v
2

11—y

IN

V" = Ve 1TV = Vlloo

V* = VTl

IN

Bellman residual minimization Approximate Value lteration Approximate Policy Iteration Analysis of sample-based algo

Proof of Proposition 2

Point 1: we have
[V* = V] V¥ =T Vl]oo + TV = V]
’YHV* - VHOO =+ ||TV - V”oo

1
—|TV = V]
e A1

IN A

IN

Point 2: We have ||V* = V7|loo < [V* = V|ooc + |V = V|| co-
Since TV =T™V, we deduce

V=Vl < V=TVt TV =V
< ATV = VsV = V7l
1
< IV =V,
-

thus, by using Point 1, it comes

N 2
[V* = VT < EHTV — Vo

Bellman residual minimization Approximate Value Iteration Approximate Policy Iteration Analysis of sample-based algo

Bellman residual minimizer

Given a function space F we can search for the function with
minimum Bellman residual:

VBR = arg \I’/nel.l’;__ HTV — VHoo

What is the performance of the policy mgr greedy w.r.t. Vgg?

Proposition 3.
We have:

2049 0 v = V. (1)

IV* = VR||, <
11—~ ver

Thus minimizing the Bellman residual in F is a sound approach
whenever F is rich enough.

Bellman residual minimization Approximate Value lteration Approximate Policy Iteration Analysis of sample-based algo

Proof of Proposition 3

We have

[TV = Vi [TV =TV oo+ V" = V]

L+ NNV = V.
Thus Vg satisfies:

ITVer — VBrlleo = \jgﬁtllTV — V|l
< (1 inf |[V* — V]| w.
< (1+79) \}ng |

Combining with the result of Proposition 2, we deduce (1).

Bellman residual minimization

Possible numerical implementation
Assume that we possess a generative model:

State x Reward r(z, a)

Action a Next state sample y ~ p(-|z, a)

e Sample n states (xj)1<j<n uniformly over the state space X,

e For each action a € A, generate a reward sample r(x,a) and
m next state samples (y!,)1<j<m.

e Return the empirical Bellman residual minimizer:

VBR = arg min max
& VeF 1<i<n

max [r(x;, a) + ’y% Z V(y,’a)] —V(xi)|.

acA

sample estimate of TVv(x;)

This problem is numerically hard to solve...

Approximate Value lteration

Approximate Value lteration

Approximate Value Iteration:
builds a sequence of Vj € F:

Vierr = NT Vi,
where 1 is a projection operator
onto F (under some norm || - |]).
Remark: [1 is a non-expansion under || - ||, and 7 is a contraction
under || - ||oo. Thus if we use || - ||« for I1, then AVI converges. If

we use another norm for 1 (e.g., L»), then AVl may not converge.

Bellman residual minimization Approximate Value lteration Approximate Policy Iteration Analysis of sample-based algo

Performance bound for AVI

Apply AVI for K iterations.
Proposition 4 (Bertsekas & Tsitsiklis, 1996).

The performance loss || V* — V||, resulting from using the
policy mk greedy w.r.t. Vi is bounded as:

27K+1
V V™o < ——5 Vi =V, V*—Wollso-
[oo < (o R LT Ve~ Vit o 47— 1V Vol
prOJeCt/on error
Now if we use || - [|oc-norm for 1, then AVI converges, say to %

which is such that V =T1TV. Write i the policy greedy w.r.t. V.
Then

IV =Vl < inf_[V* =Vl

(1 —~)2 ver

Approximate Value lteration

Proof of Proposition 4
Point 1: Write ¢ = maxg<k<k || 7 Vk — Vi+1l|oo. For all
0 < k < K, we have
[TV =T Villoo + IT Vi = Vit llow

V" = Vicrilloo <
< VT = Vidloo + 5,

thus, [|V* — Vk|loo Ly 4+ e+ [V~ Vol

IN

IN

eV = Vol
-7

and we conclude by using Proposition 1.
Point 2: If T uses || - [|o then 7 is a y-contraction mapping,
thus AVI converges, say to V satisfying V =TT V. And

[V* = V]oo <[[V* =NV |loo + [[NV* = V]
with [MV* = Voo = [NTV* = NTV||se < [[V* = V||so,

and the result follows from Proposition 1.

Approximate Value lteration

A possible numerical implementation
At each round k,
1. Sample n states (xi)i1<i<n

2. From each state x;, for each action a € A, use the generative
model to obtain a reward r(x;,a) and m next state samples
(v Di<j<m ~ p(-|xi; @)

3. Define the next approximation (say using L..-norm)

1 & -
Vier = arg min_max | V() —max [r(xj,a) +7 Z} Vie(v7,)] \
J:

sample estimate of TVi(x)
This is still a numerically hard problem. However, using L norm:

2
Vk+1—argm|nZ‘Vx, —max[l’(X,, +7 = ka /a)]’

_] 1
is much easier!

Approximate Value lteration

Example: optimal replacement problem

1d-state: accumulated utilization of a product (ex. car).
Decisions: each year,

e Replace: replacement cost C, next state y ~ d(-),

e Keep: maintenance cost c¢(x), next state y ~ d(- — x).

Goal: Minimize the expected sum of discounted costs.
The optimal value function solves the Bellman equation:

Vi) =min{c(7 [dly -V) oy [)V)

and the optimal policy is the argument of the min.

Bellman residual minimization Approximate Value lteration Approximate Policy Iteration

Maintenance cost and value function

Maintenance cost Value function
] N
o
ol
]
ol
o
o
7
107 7
State K R, K RK R
N T T T S Yo Tl T T T e T TR T

Here, v = 0.6, C =50, d(y) = Be #"1,0, with 3 = 0.6.
Maintenance costs = increasing function + punctual costs.

Analysis of sample-based algo

Bellman residual minimization Approximate Value lteration Approximate Policy Iteration Analysis of sample-based algo

Linear approximation

Function space F = {fa(x) =2 ajcos(ims>—), o € R20}.
Consider a uniform discretization grid with n = 100 states,

m = 100 next-states.

First iteration: Vp =0,

© ©
o e o
© ©
£ EY
» »
2 ©
o 13 s 4% e T T T o 13 s 4% e 7 s 8w

Bellman values {71\\/0(X;)}1§,'§n Approximation Vi € F of ﬂo

Bellman residual minimization Approximate Value lteration Approximate Policy Iteration Analysis of sample-based algo

Next iterations

Approximate Policy Iteration

Approximate Policy lteration
Choose an initial policy mp and iterate:

1. Approximate policy evaluation of 7y:
compute an approximation Vj of V7,
2. Policy improvement: 7,1 is greedy w.r.t. Vj:

Tia(x) € argmax [r(x,a) +7 3 _ p(ylx, @) Vi(y)]-
yeX

(VARRVALY

}Asymptotic erro
k

The algorithm may not converge but we can analyze the
asymptotic performance.

Bellman residual minimization Approximate Value Iteration Approximate Policy Iteration Analysis of sample-based algo

Performance bound for API

We relate the asymptotic performance ||V* — V™ || of the
policies m, greedy w.r.t. the iterates Vj, in terms of the
approximation errors ||V — V7| .

Proposition 5 (Bertsekas & Tsitsiklis, 1996).
We have

2
limsup||V* = V|5 < 772 limsup||Vk = V™]|oo
k—»o00 (1=7)° kooo

Thus if we are able to well approximate the value functions V™ at
each iteration then the performance of the resulting policies will be
close to the optimum.

Approximate Policy Iteration

Proof of Proposition 5 [part 1]

Write ex = Vi — V™ the approximation error, g = V7«1 — V7k
the performance gain between iterations k and k + 1, and

Ix = V* — V7™ the loss of using policy 7y instead of 7*.

The next policy cannot be much worst that the current one:

gk > =y (I —yPTe) TH(PTHL — PTH) gy (2)

Indeed, since T™ 1V > T™ V) (as w1 is greedy w.r.t. Vi), we
have:

8k = TTet1 /Tl _ TTht1\/Tk 4 TTh+1\/Th _ TTktl Vk
F TV — TV TRV — T/
YPT ge — (P — PTX) e

—(I — ry’Dﬂ'kJrl)*l(Pﬂ'kJrl — P™) ¢

AV

Bellman residual minimization Approximate Value Iteration Approximate Policy Iteration Analysis of sample-based algo

Proof of Proposition 5 [part 2]

The loss at the next iteration is bounded by the current loss as:
It < YPT I A[PTE(] = 4P (] = yPT) — PT ey
Indeed, since T™ V) < TTk1V,

her = TE V=TTV IOV TV,
+T7r* Vi — TTRV) TTh1 V) — TTht1\/Tk
+ T71'k+1 Vﬂ'k _ T71'k+1 V7Tk+1
< APl — Py 4 (P — P)ey]

and by using (2),

1 < ’YPﬂ*/k _|_,-Y[P7Tk+1(l _ ,-YPTrkJrl)*l(PTrkJrl _ pm) 4 P pW*]ek
< AP A APl — A PT) T — yPTE) — PT ey

Bellman residual minimization Approximate Value Iteration Approximate Policy Iteration Analysis of sample-based algo

Proof of Proposition 5 [part 3]
Writing i = y[P™+1 (] — yP™+1)~1(] — vP™) — P™ |ey, we have:
lerr < AP™ I + £
Thus, by taking the limit sup.,

(I —~P™)limsup [y < limsup f;

k—00 k—00
limsup I < (I — 'yP”*)_1 limsup fg,
k—o00 k—o00

. * . . .
since | —yP™ is invertible. In L,,-norm, we have

limsup || /||

IN

lim sup [Pt (1 — 4 P™e+) (1 4y P™) + P

€k
k—o00 17’7 k— 00 || H
v 147 . 2y .
< ——(—— 4+ 1)limsup||lek|| = ——— limsup ||ek]|-
1—7(1—7) k00 el (1-7)? kseo el

Approximate Policy Iteration

Approximate policy evaluation

For a given policy m we search for an approximation V,, € F of VT,
For example, by minimizing the approximation error

inf ||V, — V™|)5.

Va€F
Writing g(a) = 3|V — V™||3, we may consider a stochastic

gradient algorithm: .

a+—a—nVg(a)
where an estimate @(a) = (VVa, Vo — > 1507 re) of the
gradient Vg(a) = (V V4, Vo, — V™) may be obtained by using MC
sampling of trajectories (x;) following .
Extension to TD(\) algorithms have been introduced:

o a+ nz Vo Va(xs) Z('y)\)t_sdt.

s>0 t>s

Bellman residual minimization Approximate Value Iteration Approximate Policy lteration Analysis of sample-based algo

TD-Gammon [Tesauro, 1994]

weight @ <---oo TD-ervenr Va(wpa1) — Valar)

weight a

i Output Va(x)

= prediction of the
1 probability towin

Game configuration

—~0

State = game configuration x + player j — N ~ 10%.
Reward 1 or 0 at the end of the game.

The neural network returns an approximation of V*(x, j):
probability that player j wins from position x, assuming that both
players play optimally.

Approximate Policy Iteration

TD-Gammon algorithm

e At time t, the current game configuration is x;

e Roll dices and select the action that maximizes the value V,,
of the resulting state x;y1

o Compute the temporal difference
di = Vio(Xt+1,Jt+1) — Va(xt,Jji) (if this is a final position,
replace Vi (x¢+1,Jt+1) by +1 or 0)

e Update a; according to

Qi1 = QO +'ntdt ji: «Xt_SKZyba(XB)

0<s<t

This is a variant of APl using TD(A) where there is a policy
improvement step after each update of the parameter.

After several weeks of self playing — world best player.
According to human experts it developed new strategies, specially
in openings.

Bellman residual minimization Approximate Value Iteration Approximate Policy Iteration Analysis of sample-based algo

TD(\) with linear space

Consider a set of features (¢; : X — R)i<j<4 and the linear space

F ={Va(x Za,gb,), € RYY.

Run a trajectory (x;) by foIIowmg policy .
After the transition x; - Xt+1, compute the temporal difference
de = rt + yVa(xe+1) — Va(xt), and update

Qpy1 = Q¢ + 1edy Z (A7) 0(xs)-
0<s<t
Proposition 6 (Tsitsiklis & Van Roy, 1996).

Assume that > 1, = oo and Y n? < oo, and there exists u € RV
such that Vx,y € X, lim¢_00 P(xt = y|xo0 = x) = p(y). Then oy
converges, say to a*. And we have

—A
Var = V7l < == inf [Ve = V7

Bellman residual minimization Approximate Value lteration Approximate Policy Iteration Analysis of sample-based algo

Least Squares Temporal Difference
[Bradtke & Barto, 1996, Lagoudakis & Parr, 2003]
Consider a linear space F and 1, the projection with norm Ly(p),

where p is a distribution over X.
When the fixed-point of I, T™ exists, we call it Least Squares

Temporal Difference solution V1p.

VTT

Bellman residual minimization Approximate Value Iteration Approximate Policy Iteration Analysis of sample-based algo

Characterization of the LSTD solution

The Bellman residual 7™ V1p — V7p is orthogonal to the space F,
thus for all 1 < < d,

(r" +~P"Vip — V1p,0i)p = 0
d
<r7ra¢i>ll+

J

(YP"¢; — ¢j, di)pxtDj = O,
1

where a1p is the parameter of Vrp. We deduce that a7p is
solution to the linear system (of size d):

[Ay = (6n P
Aa = b, with { b,jJ (61, r7jr>u s

Approximate Policy Iteration

Performance bound for LSTD

In general there is no guarantee that there exists a fixed-point to
M,T7™ (since T™ is not a contraction in Ly(y)-norm).

However, when p is the stationary distribution associated to 7 (i.e.,
such that uP™ =), then there exists a unique LSTD solution.

Proposition 7.

Consider 1 to be the stationary distribution associated to w. Then
T™ is a contraction mapping in Ly(y)-norm, thus M, T™ is also a
contraction, and there exists a unique LSTD solution V1p. In
addition, we have the approximation error:

VT = Vol < inf_[[VT = V|, (3)

1
/1 —~2 VEF

Approximate Policy Iteration

Proof of Proposition 7 [part 1]

First let us prove that ||P||, = 1. We have:

IPTV|2 = Zu<x)(zp(y|x,7r(x))wy))2
< ZZM (vIx, T(x)) V(y)?
= Zu)2 =[|V|2.

We deduce that 7™ is a contraction mapping in Lp(u):
[T7"Ve = T"Vallp = AIIPT (Vi = Vo)l < yI[V2 = Val|,

and since [1,, is a non-expansion in Ly(x), then I, 77 is a
contraction in Ly(p). Write Vrp its (unique) fixed-point.

Bellman residual minimization Approximate Value Iteration Approximate Policy Iteration Analysis of sample-based algo

Proof of Proposition 7 [part 2]
We have ||V™ — VrpllZ = VT — O, VT|% + [N,V = Vo2,
but M, V™ = Vil = [NV = NT" Vol
IT7V™ — TVl <7?IV™ = Vipll2.

A

Thus [|V™ = Vrpli < VT = MLVTE + 2%V = Vrplfp,

from which the result follows.

T

Vrp =1, T"Vrp

Bellman residual minimization Approximate Value Iteration Approximate Policy Iteration Analysis of sample-based algo

Bellman Residual Minimization (BRM)

Another approach consists in searching for the function F that
minimizes the Bellman residual for the policy :

Ver = arg \f/nelg TV = V|, (4)

for some norm || - ||.

/]'71'

arg min |[[VT =V
g o | [

Vopp=agmmn||[7™V -V
BR = a1g i f|| |

Bellman residual minimization Approximate Value Iteration Approximate Policy Iteration Analysis of sample-based algo

Characterization of the BRM solution

Let u be a distribution and Vgg be the BRM using Ly(u)-norm.
The mapping oo — || 7™V, — V4|3 is quadratic and its minimum is
characterized by its gradient = 0: for all 1 </ < d,

N

(r"+ (yP" — ZQS_]O{I: vPT —)¢> =0

We deduce that apgg is solution to the linear system (of size d):

B : Aij (@i —vP™ i, 0j —YP"9)),
o= win{ g1 =0 TOE

Approximate Policy Iteration

Performance of BRM

Proposition 8.
We have

V™ = Varll < [I(1 =P HI@ +A11PT]) jnf [V = V]. (5)

Now, if pu is the stationary distribution for m, then ||P™|, =1 and

(1 =~P™) M = 115, thus

1+7v .
VT = Verlly < - Jnf VT =V,

Note that the BRM solution has performance guarantees even
when 1 is not the stationary distribution (contrary to LSTD). See
discussion in [Lagoudakis & Parr, 2003] and [Munos, 2003].

Approximate Policy Iteration

Proof of Proposition 8

Point 1: For any fonction V, we have

vi—V = V" _-T"V4+T"V -V
— APT(VT V)4 TV — V
(/ —’y,’:’7T)(VTr — V) = T"V-V,

thus

V™ — Vgl < (1 =vP™) ||| T Vr — Vgl

d "Ver—V, = inf V-V < (1 P™||) inf ||[VT=V

and [|7™ Vgr— VRl \}QFHT | < (14| ||)\}QFH B
and (5) follows.

Point 2: Now when we consider the stationary distribution, we
have already seen that ||P™||, = 1, which implies that

1 =P < Ceso v IPTIE < 12

Approximate Policy Iteration

Back to RL

Approximate Policy Iteration algorithm: We studied how to
compute an approximation V) of the value function V™ for any
policy m,. Now the policy improvement step is:

Tipa(x) € argmaxy | p(ylx, a)[r(x,a,) + 7 Vi(y)]-
y

In RL, the transition probabilities and rewards are unknown. How
to adapt this methodology? Again, two same ideas:

1. Use sampling methods

2. Use Q-value functions

Bellman residual minimization Approximate Value Iteration Approximate Policy Iteration Analysis of sample-based algo

APl with Q-value functions

We now wish to approximate the Q-value function
Q™ : X x A — R for any policy 7, where

Q" (x,a) = E[Zytr(xt, at)|xo = x,a0 = a,a; = m(x¢), t > 1].
>0

Consider a set of features ¢; : X x A — R and the linear space F

F ={Qua(x,a) Za,qﬁ,(x a),a € R,

i=1

Approximate Policy Iteration

Least-Squares Policy Iteration
[Lagoudakis & Parr, 2003]
e Policy evaluation: At round k, run a trajectory (x¢)i<t<n by
following policy Tk. Write a; = 7Tk(Xt) and ry = r(xt, at).
Build the matrix A and the vector b as

N

1 n
Aij = " Z ¢i(Xt; 3t)[¢j(Xt7 at) - ’Y¢j(Xt+17 at—‘rl)]a
t=1

1 n
- E ¢i(Xt,at)ft
n

t=1

and we compute the solution &7p of Ao = b.
(Note that &7p 22 arp when n — oo, since A3 Aand b 23 b).

o
I

¢ Policy improvement:

Tr+1(x) € arg max Qa,, (x, a).
acA

Approximate Policy Iteration

BRM alternative

We require a generative model. At each iteration k, we generate n
i.i.d. samples x; ~ pu, and for each sample, we make a call to the
generative model to obtain 2 independent samples y; and

yi ~ p(:|xt, ar). Write by = mi(yt) and b}, = mi(yy).

We build the matrix A and the vector b as

~ 1

Aij = > [#i(xt, ar) = v¢ilye, br)] [6(xe, ar) — vyt b))
=1

T 1 ¢ i(Ve, by (vl b,

bi = nZ[@(Xt?at)—’ng(y);L(b(yt t)]rt.
t=1

We also have the property that A% Aand b 23 b of the BRM
system, thus dgr =3 agg.

Analysis of sample-based algo

Theoretical guarantees so far

For example, Approximate Value lteration:

[V = Ve < max |7 Vi = Viralloo +0(7%).

(1 —)2 0<k<K

projection error

Sample-based algorithms minimizing an empirical L,.-norm

V41 = arg \r}ﬂelglE 12;2'§Xn ‘TVk(Xi) - V(Xi)‘

suffer from 2 problems:
e Numerically intractable
e Cannot relate |7 Vik — Vii1]|oo to max; |’7/'\\/k(x,-) — Vi1 ()]

Analysis of sample-based algo

L,-based algorithms

We would like to use sample-based algorithms minimizing an
empirical Ly-norm:

Vi1 = arg \Tégz ’ﬂk(xi) - V(x,-)}2,
i—1

which is just a regression problem!
e Numerically tractable
e Generalization bounds exits: with high probability,

n

1 —
ITVie = Vi ll3 < ~ ST Vilx) = V()| + ¢

i=1

VC(F)

n

But we need || 7 Vk — Vit1lloo, not || T Vi — Vi1 ||2!

Bellman residual minimization Approximate Value lteration Approximate Policy Iteration Analysis of sample-based algo

L,-norm analysis of ADP

Under smoothness assumptions on the MDP, the propagation error
of all usual ADP algorithms can be analyzed in Ly-norm (p > 1).

Proposition 9 (Munos, 2003, 2007).
Assume there is a constant C > 1 and a distribution 1 such that
Vx € X, VaeA,
p(:[x,a) < Cu(-).
o Approximate Value Iteration:

2
I1V* = V™o < = € e 1TV = Vel + 00,

(1 0<k<
o Approximate Policy Iteration:

. _yr 2y x
IV = V7l < g O max Ve = V™l + O,

(1

We now have all ingredients for a finite-sample analysis of ADP.

Bellman residual minimization Approximate Value lteration Approximate Policy Iteration Analysis of sample-based algo

Finite-sample analysis of AVI

Sample n states i.i.d. x; ~ p. From each state x;, each a € A,
generate m next state samples y/ , ~ p(:|x;,a). Iterate K times:

m
Vii1 = arg m|n g ‘V X;) —max r(x,, — g :a ’
m

Proposition 10 (Munos and Szepesvari, 2007).
For any § > 0, with probability at least 1 — §, we have:

2
V=Vl £ oo €7 dTF,F) +0(")
V(F)log(1/6)\1/4 log(1/6)\1/2
+O< n) + O(m > ’
where d(TF,F) o supgerinfrer || Tg — fll2,u is the Bellman
residual of the space F, and V(F) the pseudo-dimension of F.

Analysis of sample-based algo

More works on finite-sample analysis of ADP/RL

This is important to know how many samples n are required to
build an e-approximation of the optimal policy.

e Policy iteration using a single trajectory [Antos et al., 2008]
LSTD/LSPI [Lazaric et al., 2010]

BRM [Maillard et al., 2010]

LSTD with random projections [Ghavamzadeh et al., 2010]
Lasso-TD [Ghavamzadeh et al., 2011]

Active research topic which links RL and statistical learning
theory.

	Bellman residual minimization
	Approximate Value Iteration
	Approximate Policy Iteration
	Analysis of sample-based algo

