Introduction to Reinforcement Learning Part 3: Exploration for decision making, Application to games, optimization, and planning

Rémi Munos

SequeL project: Sequential Learning http://researchers.lille.inria.fr/~munos/

INRIA Lille - Nord Europe

Machine Learning Summer School, September 2011, Bordeaux

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Outline of Part 3

Exploration for sequential decision making: Application to games, optimization, and planning

- The stochastic bandit: UCB
- The adversarial bandit: EXP3
- Populations of bandits
 - Computation of equilibrium in games. Application to Poker
 - Hierarchical bandits. MCTS and application to Go.
- Optimism for decision making
 - Lipschitz optimization
 - Lipschitz bandits
 - Optimistic planning in MDPs

Optimistic planning

The stochastic multi-armed bandit problem

Setting:

- Set of K arms, defined by distributions ν_k (with support in [0, 1]), whose law is unknown,
- At each time t, choose an arm k_t and receive reward $x_t \stackrel{i.i.d.}{\sim} \nu_{k_t}$.
- **Goal**: find an arm selection policy such as to maximize the expected sum of rewards.

Exploration-exploitation tradeoff:

- Explore: learn about the environment
- Exploit: act optimally according to our current beliefs

The regret

Definitions:

- Let $\mu_k = \mathbb{E}[\nu_k]$ be the expected value of arm k,
- Let $\mu^* = \max_k \mu_k$ the best expected value,
- The cumulative expected regret:

$$R_n \stackrel{\text{def}}{=} \sum_{t=1}^n \mu^* - \mu_{k_t} = \sum_{k=1}^K (\mu^* - \mu_k) \sum_{t=1}^n \mathbf{1}\{k_t = k\} = \sum_{k=1}^K \Delta_k n_k,$$

where $\Delta_k \stackrel{\text{def}}{=} \mu^* - \mu_k$, and n_k the number of times arm k has been pulled up to time n.

Goal: Find an arm selection policy such as to minimize R_n .

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Proposed solutions

This is an old problem! [Robbins, 1952] Maybe surprisingly, not fully solved yet!

Many proposed strategies:

- ϵ -greedy exploration: choose apparent best action with proba 1ϵ , or random action with proba ϵ ,
- **Bayesian exploration**: assign prior to the arm distributions and select arm according to the posterior distributions (Gittins index, Thompson strategy, ...)
- Softmax exploration: choose arm k with proba $\propto \exp(\beta \widehat{X}_k)$ (ex: EXP3 algo)
- Follow the perturbed leader: choose best perturbed arm
- Optimistic exploration: select arm with highest upper bound

The UCB algorithm

Upper Confidence Bound algorithm [Auer, Cesa-Bianchi, Fischer, 2002]: at each time n, select the arm k with highest $B_{k,n_k,n}$ value:

$$B_{k,n_k,n} \stackrel{\text{def}}{=} \underbrace{\frac{1}{n_k} \sum_{s=1}^{n_k} x_{k,s}}_{\widehat{X}_{k,n_k}} + \underbrace{\sqrt{\frac{3 \log(n)}{2n_k}}}_{c_{n_k,n}},$$

with:

- n_k is the number of times arm k has been pulled up to time n
- $x_{k,s}$ is the *s*-th reward received when pulling arm *k*.

Note that

- Sum of an *exploitation term* and an *exploration term*.
- $c_{n_k,n}$ is a confidence interval term, so $B_{k,n_k,n}$ is a UCB.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Intuition of the UCB algorithm

Idea:

- "Optimism in the face of uncertainty" principle
- Select the arm with highest upper bound (on the true value of the arm, given what has been observed so far).
- The B-values $B_{k,s,t}$ are UCBs on μ_k . Indeed:

$$\mathbb{P}(\widehat{X}_{k,s} - \mu_k \ge \sqrt{\frac{3\log(t)}{2s}}) \le \frac{1}{t^3},$$
$$\mathbb{P}(\widehat{X}_{k,s} - \mu_k \le -\sqrt{\frac{3\log(t)}{2s}}) \le \frac{1}{t^3}$$

Reminder of Chernoff-Hoeffding inequality:

Ι

$$\mathbb{P}(\widehat{X}_{k,s} - \mu_k \ge \epsilon) \le e^{-2s\epsilon^2} \\ \mathbb{P}(\widehat{X}_{k,s} - \mu_k \le -\epsilon) \le e^{-2s\epsilon^2}$$

Regret bound for UCB

Proposition 1.

Each sub-optimal arm k is visited in average, at most:

$$\mathbb{E}n_k(n) \leq 6\frac{\log n}{\Delta_k^2} + 1 + \frac{\pi^2}{3}$$

times (where $\Delta_k \stackrel{\text{def}}{=} \mu^* - \mu_k > 0$). Thus the expected regret is bounded by:

$$\mathbb{E}R_n = \sum_k \mathbb{E}[n_k] \Delta_k \leq 6 \sum_{k:\Delta_k>0} \frac{\log n}{\Delta_k} + K(1 + \frac{\pi^2}{3}).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

Intuition of the proof

Let k be a sub-optimal arm, and k^* be an optimal arm. At time n, if arm k is selected, this means that

$$\begin{array}{rcl} B_{k,n_k,n} &\geq & B_{k^*,n_{k^*},n} \\ \widehat{X}_{k,n_k} + \sqrt{\frac{3\log(n)}{2n_k}} &\geq & \widehat{X}_{k^*,n_{k^*}} + \sqrt{\frac{3\log(n)}{2n_{k^*}}} \\ \mu_k + 2\sqrt{\frac{3\log(n)}{2n_k}} &\geq & \mu^*, \text{ with high proba} \\ n_k &\leq & \frac{6\log(n)}{\Delta_k^2} \end{array}$$

Thus, if $n_k > \frac{6 \log(n)}{\Delta_k^2}$, then there is only a small probability that arm k be selected.

n

Optimistic planning

Proof of Proposition 1

Write
$$u = \frac{6\log(n)}{\Delta_k^2} + 1$$
. We have:

$$n_k(n) \leq u + \sum_{t=u+1} \mathbf{1}\{k_t = k; n_k(t) > u\}$$

$$\leq u + \sum_{t=u+1}^{n} \left[\sum_{s=u+1}^{t} \mathbf{1}\{\hat{X}_{k,s} - \mu_k \ge c_{t,s}\} + \sum_{s=1}^{t} \mathbf{1}\{\hat{X}_{k^*,s^*} - \mu_k \le -c_{t,s^*}\} \right]$$

Now, taking the expectation of both sides,

$$\mathbb{E}[n_k(n)] \le u + \sum_{t=u+1}^n \Big[\sum_{s=u+1}^t \mathbb{P}(\hat{X}_{k,s} - \mu_k \ge c_{t,s}) + \sum_{s=1}^t \mathbb{P}(\hat{X}_{k^*,s^*} - \mu_k \le -c_{t,s^*}) \Big] \\ \le u + \sum_{t=u+1}^n \Big[\sum_{s=u+1}^t t^{-3} + \sum_{s=1}^t t^{-3} \Big] \le \frac{6\log(n)}{\Delta_k^2} + 1 + \frac{\pi^2}{3}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● のへで

Variants of UCB

[Audibert et al., 2008]

• UCB with variance estimate: Define the UCB:

$$B_{k,n_k,n} \stackrel{\text{def}}{=} \widehat{X}_{k,t} + \sqrt{2 \frac{V_{k,n_k} \log(1.2n)}{n_k}} + \frac{3 \log(1.2n)}{n_k}.$$

Then the expected regret is bounded by:

$$\mathbb{E}R_n \leq 10\Big(\sum_{k:\Delta_k>0}\frac{\sigma_k^2}{\Delta_k}+2\Big)\log(n).$$

• **PAC-UCB:** Let $\beta > 0$. Define the UCB:

$$B_{k,n_k} \stackrel{\mathrm{def}}{=} \widehat{X}_{k,n_k} + \sqrt{rac{\log(Kn_k(n_k+1)eta^{-1})}{n_k}}.$$

Then w.p. $1 - \beta$, the regret is bounded by a constant:

$$R_n \leq 6 \log(K \beta^{-1}) \sum_{k:\Delta_k > 0} \frac{1}{\Delta_k}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

Upper and Lower bounds

UCB:

- Distribution-dependent: $\mathbb{E}R_n = O\left(\sum_{k:\Delta_k>0} \frac{1}{\Delta_k} \log n\right)$
- Distribution-independent: $\mathbb{E}R_n = O(\sqrt{Kn \log n})$.

Lower-bounds:

• Distribution-dependent [Lai et Robbins, 1985]:

$$\mathbb{E}R_n = \Omega\Big(\sum_{k:\Delta_k>0} \frac{\Delta_k}{KL(\nu_k||\nu^*)} \log n\Big)$$

• Distribution-independent [Cesa-Bianchi et Lugosi, 2006]:

$$\inf_{\text{Algo Problem}} \sup_{R_n} = \Omega(\sqrt{nK}).$$

Recent improvements in upper-bounds: optimal bounds!

- MOSS [Audibert & Bubeck, 2009]
- KL-UCB [Garivier & Cappé, 2011], [Maillard et al., 2011]

The adversarial bandit

The rewards are no more i.i.d., but arbitrary! At time *t*, simultaneously

- The adversary assigns a reward $x_{k,t} \in [0,1]$ to each arm $k \in \{1,\ldots,K\}$
- The player chooses an arm k_t

The player receives the corresponding reward x_{k_t} . His goal is to maximize the sum of rewards.

Can we expect to do almost as good as the best (constant) arm?

Time	1	2	3	4	5	6	7	8	
Arm pulled	1	2	1	1	2	1	1	1	
Reward arm 1	1	0.7	0.9	1	1	1	0.8	1	
Reward arm 2	0.9	0	1	0	0.4	0	0.6	0	

Reward obtained: 6.1. Arm 1: 7.4, Arm 2: 2.9. Regret w.r.t. best constant strategy: 7.4 - 6.1 = 1.3.

Notion of regret

Define the regret:

$$R_n = \max_{k \in \{1,...,K\}} \sum_{t=1}^n x_{k,t} - \sum_{t=1}^n x_{k_t}.$$

- Performance assessed in terms of the best constant strategy.
- Can we expect

$$\sup_{rewards} \mathbb{E}R_n/n \to 0?$$

 If the policy of the player is deterministic, there exists a reward sequence such that the performance is arbitrarily poor → Need internal randomization.

・ロト・雪ト・雪ト・雪・ 今日・

EXP3 algorithm

EXP3 algorithm (Explore-Exploit using Exponential weights) [Auer et al, 2002]:

- $\eta > 0$ and $\beta > 0$ are two parameters of the algorithm.
- Initialize $w_1(k) = 1$ for all $k = 1, \ldots, K$.
- At each round t = 1, ..., n, player selects arm $k_t \sim p_t(\cdot)$, where

$$p_t(k) = (1-\beta) \frac{w_t(k)}{\sum_{i=1}^K w_t(i)} + \frac{\beta}{K},$$

with

$$w_t(k) = e^{\eta \sum_{s=1}^{t-1} \tilde{x}_s(k)},$$

where

$$\tilde{x}_s(k) = \frac{x_s(k)}{p_s(k)} \mathbf{1}\{k_s = k\}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Performance of EXP3

Proposition 2.

Let
$$\eta \leq 1$$
 and $\beta = \eta K$. We have $\mathbb{E}R_n \leq \frac{\log K}{\eta} + (e-1)\eta nK$. Thus, by choosing $\eta = \sqrt{\frac{\log K}{(e-1)nK}}$, it comes

$$\sup_{rewards} \mathbb{E}R_n \leq 2.63\sqrt{nK\log K}.$$

Properties:

• If all rewards are provided to the learner, with a similar algorithms we have [Lugosi and Cesa-Bianchi, 2006]

$$\sup_{rewards} \mathbb{E}R_n = O(\sqrt{n\log K}).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proof of Proposition 2 [part 1]

Write $W_t = \sum_{k=1}^{K} w_k(t)$. Notice that

$$\mathbb{E}_{k_s \sim p_s}[\tilde{x}_s(k)] = \sum_{i=1}^K p_s(i) \frac{x_s(k)}{p_s(k)} \mathbf{1}\{i=k\} = x_s(k),$$

and
$$\mathbb{E}_{k_s \sim p_s}[\tilde{x}_s(k_s)] = \sum_{i=1}^K p_s(i) \frac{x_s(i)}{p_s(i)} \leq K.$$

We thus have

$$\begin{split} \frac{W_{t+1}}{W_t} &= \sum_{k=1}^K \frac{w_k(t)e^{\eta \tilde{x}_t(k)}}{W_t} = \sum_{k=1}^K \frac{p_k(t) - \beta/K}{1 - \beta} e^{\eta \tilde{x}_t(k)} \\ &\leq \sum_{k=1}^K \frac{p_k(t) - \beta/K}{1 - \beta} (1 + \eta \tilde{x}_t(k) + (e - 2)\eta^2 \tilde{x}_t(k)^2), \end{split}$$

since $\eta \tilde{x}_t(k) \leq \eta K/\beta = 1$, and $e^x \leq 1 + x + (e-2)x^2$ for $x \leq 1$.

Proof of Proposition 2 [part 2]

Thus

$$\begin{aligned} \frac{W_{t+1}}{W_t} &\leq 1 + \frac{1}{1-\beta} \sum_{k=1}^{K} p_k(t) (\eta \tilde{x}_t(k) + (e-2)\eta^2 \tilde{x}_t(k)^2), \\ \log \frac{W_{t+1}}{W_t} &\leq \frac{1}{1-\beta} \sum_{k=1}^{K} p_k(t) (\eta \tilde{x}_t(k) + (e-2)\eta^2 \tilde{x}_t(k)^2), \\ \log \frac{W_{n+1}}{W_1} &\leq \frac{1}{1-\beta} \sum_{t=1}^n \sum_{k=1}^{K} p_k(t) (\eta \tilde{x}_t(k) + (e-2)\eta^2 \tilde{x}_t(k)^2). \end{aligned}$$

But we also have

$$\log \frac{W_{n+1}}{W_1} = \log \sum_{k=1}^{K} e^{\eta \sum_{t=1}^n \tilde{x}_t(k)} - \log K \ge \eta \sum_{t=1}^n \tilde{x}_t(k) - \log K,$$

for any $k = 1, \ldots, n$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Proof of Proposition 2 [part 3]

Take expectation w.r.t. internal randomization of the algo, thus for all k,

$$\begin{split} \mathbb{E}\Big[(1-\beta)\sum_{t=1}^{n}\tilde{x}_{t}(k) - \sum_{t=1}^{n}\sum_{i=1}^{K}p_{i}(t)\tilde{x}_{t}(i)\Big] &\leq (1-\beta)\frac{\log K}{\eta} \\ &+ (e-2)\eta\mathbb{E}\Big[\sum_{t=1}^{n}\sum_{k=1}^{K}p_{k}(t)\tilde{x}_{t}(k)^{2}\Big] \\ \mathbb{E}\Big[\sum_{t=1}^{n}x_{t}(k) - \sum_{t=1}^{n}x_{t}(k_{t})\Big] &\leq \beta n + \frac{\log K}{\eta} + (e-2)\eta nK \\ \mathbb{E}[R_{n}(k)] &\leq \frac{\log K}{\eta} + (e-1)\eta nK \end{split}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Optimistic planning

In summary...

Distribution-dependent bounds:

UCB:
$$\mathbb{E}R_n = O\left(\sum_k \frac{1}{\Delta_k} \log n\right)$$

lower-bound: $\mathbb{E}R_n = \Omega\left(\log n\right)$

Distribution-independent bounds:

UCB: $\sup_{\substack{distributions\\rewards}} \mathbb{E}R_n = O\left(\sqrt{Kn \log n}\right)$ EXP3: $\sup_{\substack{rewards\\rewards}} \mathbb{E}R_n = O\left(\sqrt{Kn \log K}\right)$ lower-bound: $\sup_{\substack{rewards}} \mathbb{E}R_n = \Omega\left(\sqrt{Kn}\right)$

Remark: The optimal rate $O(\sqrt{Kn})$ is achieved by INF [Audibert and Bubeck, 2010]

Population of bandits

- Bandit (or regret minimization) algorithms = tool for rapidly selecting the best action.
- Basic building block for solving more complex problems
- We now consider a population of bandits:

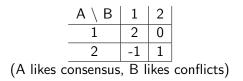
Adversarial bandits

Collaborative bandits

・ロト・西ト・山田・山田・山下・

Game between bandits

Consider a 2-players zero-sum repeated game: A and B play actions: 1 or 2 simultaneously, and receive the reward (for A):



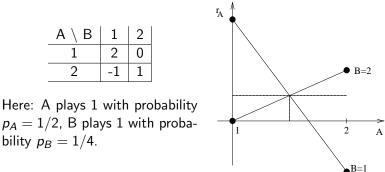
Now, let A and B be bandit algorithms, aiming at minimizing their regret, i.e. for player A:

$$R_n(A) \stackrel{\text{def}}{=} \max_{a \in \{1,2\}} \sum_{t=1}^n r_A(a, B_t) - \sum_{t=1}^n r_A(A_t, B_t).$$

What happens?

Nash equilibrium

Nash equilibrium: (mixed) strategy for both players, such that no player has incentive for changing unilaterally his own strategy.



Regret minimization \rightarrow Nash equilibrium

Define the regret of A:

$$R_n(A) \stackrel{\text{def}}{=} \max_{a \in \{1,2\}} \sum_{t=1}^n r_A(a, B_t) - \sum_{t=1}^n r_A(A_t, B_t).$$

and that of B accordingly.

Proposition 3.

If both players perform a (Hannan) consistent regret-minimization strategy (i.e. $R_n(A)/n \rightarrow 0$ and $R_n(B)/n \rightarrow 0$), then the empirical frequencies of chosen actions of both players converge to a Nash equilibrium.

(Remember that EXP3 is consistent!)

Note that in general, we have convergence towards correlated equilibrium [Foster and Vohra, 1997].

Sketch of proof:

Write $p_A^n \stackrel{\text{def}}{=} \frac{1}{n} \sum_{t=1}^n \mathbf{1}_{A_t=1}$ and $p_B^n \stackrel{\text{def}}{=} \frac{1}{n} \sum_{t=1}^n \mathbf{1}_{B_t=1}$ and $r_A(p,q) \stackrel{\text{def}}{=} \mathbb{E} r_A(A \sim p, B \sim q)$. Regret-minimization algorithm: $R_n(A)/n \to 0$ means that: $\forall \varepsilon > 0$,

for *n* large enough,

$$\max_{a \in \{1,2\}} \frac{1}{n} \sum_{t=1}^{n} r_A(a, B_t) - \frac{1}{n} \sum_{t=1}^{n} r_A(A_t, B_t) \leq \varepsilon$$
$$\max_{a \in \{1,2\}} r_A(a, p_B^n) - r_A(p_A^n, p_B^n) \leq \varepsilon$$
$$r_A(p, p_B^n) - r_A(p_A^n, p_B^n) \leq \varepsilon,$$

for all $p \in [0,1]$. Now, using $R_n(B)/n \to 0$ we deduce that:

$$r_{\mathcal{A}}(p,p_{B}^{n})-arepsilon\leq r_{\mathcal{A}}(p_{\mathcal{A}}^{n},p_{B}^{n})\leq r_{\mathcal{A}}(p_{\mathcal{A}}^{n},q)+arepsilon, \quad orall p,q\in [0,1]$$

Thus the empirical frequencies of actions played by both players is arbitrarily close to a Nash strategy.

Lipschitz optimizatio

on Lipschitz b

its Optimistic p

Texas Hold'em Poker

- In the 2-players Poker game, the Nash equilibrium is interesting (zero-sum game)
- A policy:

information set (my cards + board + pot) \rightarrow probabilities over decisions (check, raise, fold)

• Space of policies is huge!

Idea: Approximate the Nash equilibrium by using bandit algorithms assigned to each information set.

• This provides the world best Texas Hold'em Poker program for 2-player with pot-limit [Zinkevich et al., 2007]

Hierarchy of bandits

We now consider another way of combining bandits: **Hierarchy of bandits**: the reward obtained when pulling an arm is itself the return of another bandit in a hierarchy. Applications to

- tree search,
- optimization,
- planning

nes **Hiera**

Hierarchical bandits

_ipschitz optimizatio

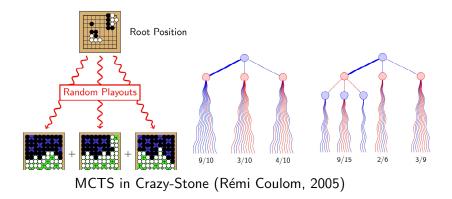
Lipschitz ban

ヘロト ヘ週ト ヘヨト ヘヨト

3

Optimistic planning

Historical motivation for this problem



Idea: use bandits at each node.

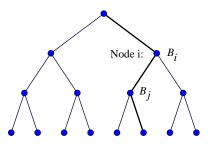
Hierarchical bandit algorithm

Upper Confidence Bound (UCB) algo at each node

$$B_j \stackrel{\text{def}}{=} X_{j,n_j} + \sqrt{\frac{2\log(n_j)}{n_j}}.$$

Intuition:

- Explore first the most promising branches



- Average converges to max
 - Adaptive Multistage Sampling (AMS) algorithm [Chang, Fu, Hu, Marcus, 2005]
 - UCB applied to Trees (UCT) [Kocsis and Szepesvári, 2006]

Optimistic plannin

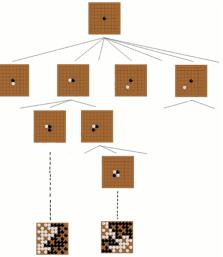
The MoGo program

[Gelly et al., 2006] + collaborative work with many others.

Features:

- Explore-Exploit with UCT
- Monte-Carlo evaluation
- Asymmetric tree expansion
- Anytime algo
- Use of features

Among world best programs!



イロト イポト イヨト イヨト

 $\frac{D-1}{D}$

No finite-time guarantee for UCT

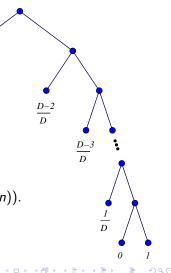
Problem: at each node, the rewards are not i.i.d. Consider the tree:

The left branches seem better than right branches, thus are explored for a **very** long time before the optimal leaf is eventually reached.

The expected regret is disastrous:

$$\mathbb{E}R_n = \Omega(\underbrace{\exp(\exp(\dots \exp(1)\dots))}_{D \text{ times}} + O(\log(n)).$$

See [Coquelin and Munos, 2007]



Optimism for decision making

Outline:

- Optimization of deterministic Lipschitz functions
- Lipschitz bandits in general spaces: HOO
- Application to planning
 - Deterministic environments
 - Open-loop planning in stochastic environments
 - Closed-loop planning in sparse stochastic environements

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Online optimization of a deterministic Lipschitz function

Problem: Find online the maximum of $f : X \to \mathbb{R}$, assumed to be Lipschitz: $|f(x) - f(y)| \le \ell(x, y)$.

- At each time step t, select $x_t \in X$
- Observe $f(x_t)$
- Goal: find an exploration policy such as to maximize the sum of rewards.

Define the cumulative regret

$$R_n = \sum_{t=1}^n f^* - f(x_t),$$

where $f^* = \sup_{x \in X} f(x)$

Introduction to bandits

ames Hierard

erarchical bandits

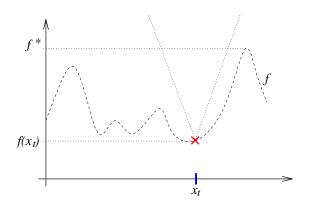
Lipschitz optimization

n Lipschitz ba

Optimistic planning

э

Example in 1d

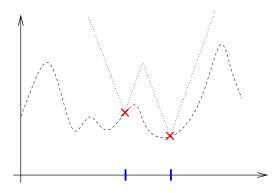


Lipschitz property \rightarrow the evaluation of f at x_t provides a first upper-bound on f.

(日) (同) (日) (日)

э

Example in 1d (continued)



New point \rightarrow refined upper-bound on f.

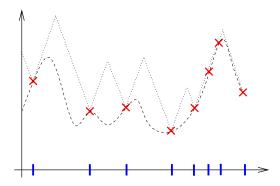
Lipschitz optimization

Lipschitz bandi

イロト イ押ト イヨト イヨト

Optimistic planning

Example in 1d (continued)

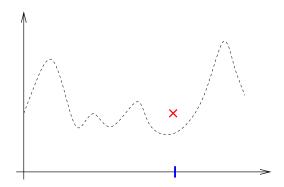


Question: where should one sample the next point? Answer: select the point with highest upper bound! "Optimism in the face of (partial observation) uncertainty"

< ロ > < 同 > < 回 > < 回 >

Lipschitz optimization with noisy evaluations

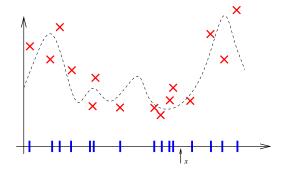
f is still Lipschitz, but now, the evaluation of *f* at x_t returns a noisy evaluation r_t of $f(x_t)$, i.e. such that $\mathbb{E}[r_t|x_t] = f(x_t)$.



< ロ > < 同 > < 回 > < 回 >

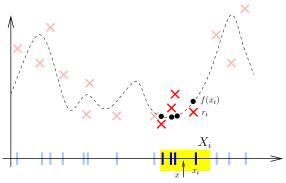
Optimistic planning

Where should one sample next?



How to define a high probability upper bound at any state x?

UCB in a given domain

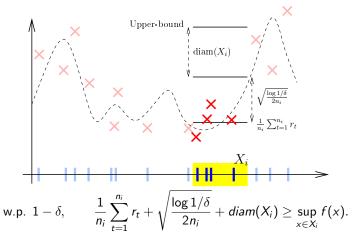


For a fixed domain $X_i \ni x$ containing n_i points $\{x_t\} \in X_i$, we have that $\sum_{t=1}^{n_i} r_t - f(x_t)$ is a Martingale. Thus by Azuma's inequality,

$$\frac{1}{n_i}\sum_{t=1}^{n_i}r_t + \sqrt{\frac{\log 1/\delta}{2n_i}} \geq \frac{1}{n_i}\sum_{t=1}^{n_i}f(x_t) \geq f(x) - diam(X_i),$$

since *f* is Lipschitz (where $diam(X_i) = \sup_{x,y \in X_i} \ell(x, y)$).

High probability upper bound

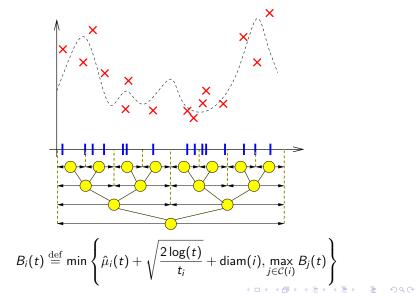


Tradeoff between size of the confidence interval and diameter. By considering several domains we can derive a tighter upper bound.

Optimistic planning

A hierarchical decomposition

Use a tree of partitions at all scales:



Multi-armed bandits in a semi-metric space

More generally:

Let X be space equipped with a semi-metric $\ell(x, y)$. Let f(x) be a function such that:

$$f(x^*) - f(x) \leq \ell(x, x^*),$$

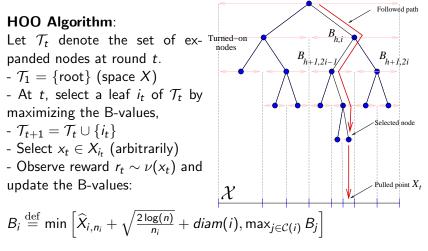
where $f(x^*) = \sup_{x \in X} f(x)$.

X-armed bandit problem: At each round *t*, choose a point (arm) $x_t \in X$, receive reward r_t independent sample drawn from a distribution $\nu(x_t)$ with mean $f(x_t)$. **Goal**: minimize regret:

$$R_n \stackrel{\text{def}}{=} \sum_{t=1}^n f(x^*) - r_t$$

Hierarchical Optimistic Optimization (HOO)

[Bubeck et al., 2011]: Consider a tree of partitions of X, where each node *i* corresponds to a subdomain X_i .



▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨー のへで

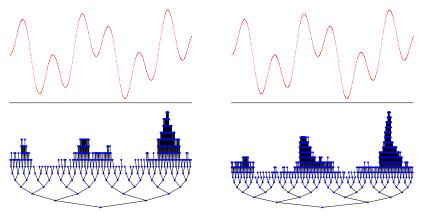
Properties of HOO

Properties:

- For any domain X_i ∋ x*, the corresponding B_i values is a (high probability) upper bound on f(x*).
- We don't really care if for sub-optimal domains X_i, the B_i values is an upper bound on sup_{x∈Xi} f(x) or not.
- The tree grows in an asymmetric way, leaving mainly unexplored the sub-optimal branches,
- Only the optimal branch is essentially explored.

Example in 1d

$r_t \sim \mathcal{B}(f(x_t))$ a Bernoulli distribution with parameter $f(x_t)$



Resulting tree at time n = 1000 and at n = 10000.

Analysis of HOO

Let *d* be the **near-optimality dimension** of *f* in *X*: i.e. such that the set of ε -optimal states

$$X_{\varepsilon} \stackrel{\mathrm{def}}{=} \{x \in X, f(x) \geq f^* - \varepsilon\}$$

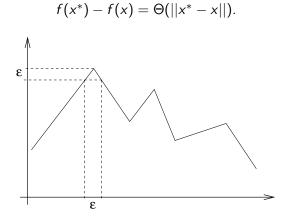
can be covered by $O(\varepsilon^{-d})$ balls of radius ε . Then

$$\mathbb{E}R_n=\widetilde{O}(n^{\frac{d+1}{d+2}}).$$

(Similar to Zooming algorithm of [Kleinberg, Slivkins, Upfall, 2008], but weaker assumption about f and ℓ , and does not require a sampling oracle)

Example 1:

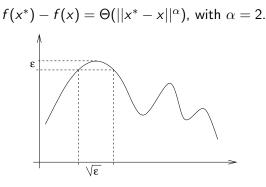
Assume the function is locally peaky around its maximum:



It takes $O(\epsilon^0)$ balls of radius ϵ to cover X_{ϵ} . Thus d = 0 and the regret is \sqrt{n} . ◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Example 2:

Assume the function is locally quadratic around its maximum:



- For ℓ(x, y) = ||x y||, it takes O(ε^{-D/2}) balls of radius ε to cover X_ε (of size O(ε^{D/2})). Thus d = D/2 and the regret is n^{D+2}/_{D+4}.
- For $\ell(x, y) = ||x y||^2$, it takes $O(\epsilon^0) \ell$ -balls of radius ϵ to cover X_{ϵ} . Thus d = 0 and the regret is \sqrt{n} .

Known smoothness around the maximum

Consider $X = [0, 1]^d$. Assume that f has a finite number of global maxima and is locally α -smooth around each maximum x^* , i.e.

$$f(x^*) - f(x) = \Theta(||x^* - x||^{\alpha}).$$

Then, by choosing $\ell(x, y) = ||x - y||^{\alpha}$, X_{ε} is covered by O(1) balls of "radius" ε . Thus the near-optimality dimension d = 0, and the regret of HOO is:

$$\mathbb{E}R_n=\widetilde{O}(\sqrt{n}),$$

i.e. the rate of growth is **independent of the ambient dimension**.

Conclusions on bandits in general spaces

The near-optimality dimension may be seen as an excess order of smoothness of f (around its maxima) compared to what is known:

- If the smoothness order of the function is known then the regret of HOO algorithm is $\widetilde{O}(\sqrt{n})$
- If the smoothness is underestimated, for example f is α -smooth but we only use $\ell(x, y) = ||x y||^{\beta}$, with $\beta < \alpha$, then the near-optimality dimension is $d = D(1/\beta 1/\alpha)$ and the regret is $\widetilde{O}(n^{(d+1)/(d+2)})$
- If the smoothness is overestimated, the weak-Lipschitz assumption is violated, thus there is no guarantee (e.g., UCT)

ntroduction to bandits

Applications

- Online supervized learning: At time t, HOO selects h_t ∈ H. The environment chooses (x_t, y_t) ~ P. The resulting loss ℓ(h_t(x_t), y_t) is a noisy evaluation of E_{(x,y)~P}[ℓ(h(x), y)]. HOO generates sequences of hypotheses (h_t) whose cumulated performances are close to that of the best hypothesis h^{*} ∈ H.
- Policy optimization for MDPs or POMDPs: Consider a class of parameterized policies π_α. At time t, HOO algo selects α_t and a trajectory is generated using π_{αt}. The sum of rewards obtained is a noisy evaluation of the value function V^{π_{αt}}.

Thus HOO performs almost as well as if using the best parameter $\alpha^{\ast}.$

Application to planning in MDPs

Setting:

- Assume we have a generative model of an MDP.
- The state space is large: no way to represent the value function
- Search for the best policy, given a computational budget (e.g., number of calls to the model).
- Ex: from current state s_t , search for the best possible immediate action a_t , play this action, observe next state s_{t+1} , and repeat

Works:

- Optimistic planning in deterministic systems
- Open-Loop optimistic planning

Planning in deterministic systems

Controlled *deterministic* system with discounted rewards:

 $s_{t+1} = f(s_t, a_t)$, where $a_t \in A$.

Goal is to maximize $\sum_{t\geq 0} \gamma^t r(s_t, a_t)$. Online planning:

- From the current state s_t, return the best possible immediate action a_t, computed by using a given computational budget (eg, CPU time, number of calls to the model).
- Play a_t in the real world, and repeat from next state s_{t+1} .

Given *n* calls to a generative model, return actions $a_t(n)$.

Simple regret:
$$r_n \stackrel{\text{def}}{=} \max_{a \in A} Q^*(s_t, a) - Q^*(s_t, a_t(n)).$$

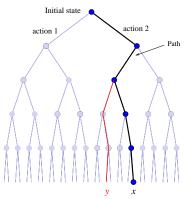
Look-ahead tree for planning in deterministic systems

From the current state, build the look-ahead tree:

- Root of the tree = current state s_t
- Search space X = set of paths (infinite sequence of actions)
- Value of any path x: $f(x) = \sum_{t \ge 0} \gamma^t r_t$

• Metric:
$$\ell(x,y) = rac{\gamma^{h(x,y)}}{1-\gamma}$$

- Prop: f is Lipschitz w.r.t. ℓ
- Use optimistic search to explore the tree with budget *n* resources



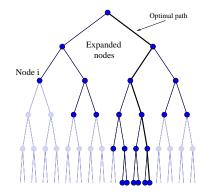
Optimistic exploration

(HOO algo in deterministic setting)

• For any node *i* of depth *d*, define the B-values:

$$B_i \stackrel{\text{def}}{=} \sum_{t=0}^{d-1} \gamma^t r_t + \frac{\gamma^d}{1-\gamma} \ge v_i$$

- At each round *n*, expand the node with highest B-value
- Observe reward, update B-values,
- Repeat until no more available resources
- Return maximizing action



Analysis of the regret

[Hren and Munos, 2008] Define β such that the proportion of ϵ -optimal paths is $O(\epsilon^{\beta})$ (this is related to the near-optimal dimension). Let

$$\kappa \stackrel{\mathrm{def}}{=} \mathsf{K} \gamma^{\beta} \in [1,\mathsf{K}].$$

• If $\kappa > 1$, then

$$r_n = O\left(n^{-\frac{\log 1/\gamma}{\log \kappa}}\right).$$

(whereas for uniform planning $R_n = O(n^{-\frac{\log 1/\gamma}{\log K}})$.)

• If $\kappa = 1$, then we obtain the exponential rate $r_n = O(\gamma^{\frac{(1-\gamma)^{\beta}}{c}n})$, where c is such that the proportion of ϵ -path is bounded by $c\epsilon^{\beta}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Open Loop Optimistic Planning

Setting:

- **Rewards are stochastic** but depend on sequence of actions (and not resulting states)
- Goal : find the sequence of actions that maximizes the expected discounted sum of rewards
- Search space: open-loop policies (sequences of actions)
 [Bubeck et Munos, 2010] OLOP algorithm has expected regret

$$\mathbb{E}r_n = \begin{cases} \tilde{O}\left(n^{-\frac{\log 1/\gamma}{\log \kappa}}\right) & \text{if } \gamma\sqrt{\kappa} > 1, \\ \tilde{O}\left(n^{-\frac{1}{2}}\right) & \text{if } \gamma\sqrt{\kappa} \le 1. \end{cases}$$

Remarks:

- For $\gamma\sqrt{\kappa}>$ 1, this is the same rate as for deterministic systems!
- This is not a consequence of HOO

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Possible extensions

Applications of hierarchical bandits:

- Planning in MDPs when the number of next states is finite [Buşoniu et al., 2011]
- Planning in POMDPs when the number of observations is finite
- Combine planning with function approximation: local ADP methods.
- Many applications in MCTS (Monte-Carlo Tree Search): See Teytaud, Chaslot, Bouzy, Cazenave, and many others.

Related references

- J.Y. Audibert, R. Munos, and C. Szepesvari, *Tuning bandit algorithms in stochastic environments*, ALT, 2007.
- P. Auer, N. Cesa-Bianchi, and P. Fischer, *Finite time analysis of the multiarmed bandit problem*, Machine Learning, 2002.
- S. Bubeck and R. Munos, Open Loop Optimistic Planning, COLT 2010.
- S. Bubeck, R. Munos, G. Stoltz, Cs. Szepesvari, Online Optimization in X-armed Bandits, NIPS 2008. Long version X-armed Bandits JMLR 2011.
- L. Buşoniu, R. Munos, B. De Schutter, R. Babuška Optimistic Planning for Sparsely Stochastic Systems, ADPRL 2011.
- P.-A. Coquelin and R. Munos, Bandit Algorithm for Tree Search, UAI 2007.
- S. Gelly, Y. Wang, R. Munos, and O. Teytaud, *Modification of UCT with Patterns in Monte-Carlo Go*, RR INRIA, 2006.

Related references (cont'ed)

- J.-F. Hren and R. Munos, *Optimistic planning in deterministic systems*. EWRL 2008.
- M. Kearns, Y. Mansour, A. Ng, A Sparse Sampling Algorithm for Near-Optimal Planning in Large Markov Decision Processes, Machine Learning, 2002.
- R. Kleinberg, A. Slivkins, and E. Upfal, *Multi-Armed Bandits in Metric Spaces*, ACM Symposium on Theory of Computing, 2008.
- L. Kocsis and Cs. Szepesvri, Bandit based Monte-Carlo Planning, ECML 2006.
- T. L. Lai and H. Robbins, *Asymptotically Efficient Adaptive Allocation Rules*, Advances in Applied Mathematics, 1985.