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Abstract We consider the problem of finding a near-optimal policy using
value-function methods in continuous space, discounted Markovian Decision
Problems (MDP) when only a single trajectory underlying some policy can
be used as the input. Since the state-space is continuous, one must resort
to the use of function approximation. In this paper we study a policy it-
eration algorithm iterating over action-value functions where the iterates
are obtained by empirical risk minimization, where the loss function used
penalizes high magnitudes of the Bellman-residual. It turns out that when a
linear parameterization is used the algorithm is equivalent to least-squares
policy iteration. Our main result is a finite-sample, high-probability bound
on the performance of the computed policy that depends on the mixing rate
of the trajectory, the capacity of the function set as measured by a novel
capacity concept (the VC-crossing dimension), the approximation power
of the function set and the controllability properties of the MDP. To the
best of our knowledge this is the first theoretical result for off-policy control
learning over continuous state-spaces using a single trajectory.

⋆ Now at the Department of Computing Science, University of Alberta, Edmon-
ton, AB, Canada
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1 Introduction

In many industrial control problems collecting data of the controlled system
is often separated from the learning phase: The data is collected in “field-
experiments”, whence it is taken to the laboratory where it is used to design
a new optimized controller. A crucial feature of these problems is that the
data is fixed and new samples cannot be generated at will. Often, the data
is obtained by observing the controlled system while it is operated using an
existing controller, also called the behaviour policy (Sutton and Barto, 1987,
Chapter 5.6).

In this paper we are interested in designing algorithms and proving
bounds on the achievable performance for this setting. More specifically,
we assume that the control task can be modelled as a discounted Marko-
vian Decision Problem with continuous state-variables and a finite number
of actions.

The algorithm studied is an instance of fitted policy iteration: in its
main loop the algorithm computes an evaluation function of the policy
of the previous step and then uses this evaluation function to compute
the next improved policy. In order to avoid the need of learning a model,
action-value evaluation functions are employed, making the policy improve-
ment step trivial, just like in the least-squares policy iteration (LSPI) algo-
rithm of Lagoudakis and Parr (2003). However, unlike LSPI which builds
on least-squares temporal difference learning (LSTD) due to Bradtke and
Barto (1996), we build our algorithm on the idea of minimizing Bellman-
residuals. The idea of using Bellman-residuals in policy iteration goes back
at least to Schweitzer and Seidmann (1985), who proposed it for comput-
ing approximate state-value functions given the model of a finite-state and
action MDP.

Both LSTD and Bellman-residual minimization (BRM) assume that the
user selects a function class to represent action-value functions and both
aim at solving Bellman’s fixed-point equation for the current policy in an
approximate manner over the chosen set of functions. A popular choice is
to use linearly parameterized functions. The Bellman-residual arises when
the fixed-point equation for the policy’s value function is rewritten so that
one side of the equation equals zero. Formally, T πQπ−Qπ = 0, where Qπ is
the policy’s action-value function and T π is the policy’s evaluation operator
(these will be fully defined in the next section). Then the Bellman-residual
of a function Q is T πQ − Q. When this residual function is evaluated at
a point, we call the resulting value the Bellman-error. A reasonable goal is
then to control the magnitude of the Bellman-residual, such as its weighted
squared 2-norm. While in BRM one aims directly at minimizing such a
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term, LSTD does this in an indirect manner. One major obstacle for (di-
rect) Bellman-residual minimization is that the average of the individual
squared Bellman-errors when computed along a trajectory does not give
rise to an unbiased estimate of the squared 2-norm of the Bellman-residual
(e.g., Sutton and Barto, 1987, pp. 200). Since LSTD does not suffer from
this problem, recently the focus shifted to algorithms that use LSTD.

Here we propose to overcome the biasedness issue by modifying the
loss function. The novel loss function depends on an auxiliary function that
makes sure that the empirical loss is an unbiased estimate of the population-
based loss (Lemma 1). It turns out that when the functions available in the
optimization step use a linear parameterization the minimizers of the new
loss functions and the solution returned by LSTD coincide (Proposition 2).
In this sense the novel loss function generalizes LSTD and the new policy
iteration algorithm generalizes LSPI.

The main result of the paper (Theorem 4) shows that if the input tra-
jectory is sufficiently representative then the performance of the policy re-
turned by our algorithm improves at a rate of 1/N1/4 (where N is the
length of the trajectory) up to a limit set by the choice of the function set
chosen. To the best of our knowledge this is the first result in the litera-
ture where finite-sample error bounds are obtained for an algorithm that
works for continuous state-space MDPs, uses function approximators and
considers control learning in an of-policy setting, i.e., learning from a single
trajectory of some fixed behaviour policy.

One major technical difficulty of the proof is that we have to deal with
dependent samples. The main condition here is that the trajectory should be
sufficiently representative and rapidly mixing. For the sake of simplicity, we
also require that the states in the trajectory follow a stationary distribution,
though we believe that with some additional work this condition could be
relaxed. The mixing condition, on the other hand, seems to be essential for
efficient learning. The particular mixing condition that we use is exponen-
tial β-mixing, used earlier, e.g., by Meir (2000) for analyzing nonparametric
time-series prediction or by Baraud et al. (2001) for analyzing penalized
least-squares regression. This mixing condition allows us to derive polyno-
mial decay rates for the estimation error as a function of the sample size. If
we were to relax this condition to, e.g., algebraic β-mixing (i.e., mixing at
a slower rate), the estimation error-bound would decay with the logarithm
of the number of samples, i.e., at a sub-polynomial rate. Hence, learning is
still possible, but it could be very slow. Let us finally note that for Markov
processes, geometric ergodicity implies exponential β-mixing (see Davidov,
1973; or Doukhan, 1994, Chap. 2.4), hence for such processes there is no
loss of generality in assuming exponential β-mixing.

In order to arrive at our bound, we introduce a new capacity concept
which we call the VC-crossing dimension. The VC-crossing dimension of
a function set F is defined as the VC-dimension of a set-system that con-
sists of the zero-level sets of the pairwise differences of functions from F .
The intuitive explanation is that in policy iteration the action taken by the
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next policy at some state is obtained by selecting the action that yields
the best action-value. When solving the fixed-point equation for this policy,
the policy (as a function of states to actions) is composed with the action-
value function candidates. In order to control variance, one needs to control
the capacity of the resulting function set. The composite functions can be
rewritten in terms of the zero-level sets mentioned above, and this is where
the VC-dimension of this set-system comes into play. The new concept is
compared to previous capacity concepts and is found to be significantly
different from them, except the case of a set of linearly parameterized func-
tions whose VC-crossing dimension just equals the number of parameters,
as usual (Proposition 3)

Similarly to bounds of regression, our bounds depend on the approxima-
tion power of the function set, too. One major difference, though, is that in
our case the approximation power of a function set is measured differently
from how it is done in regression. While in regression, the approximation
power of a function set is characterized by the deviation of the target class
from the considered set of functions, we use error measures that quantify
the extent to which the function set is invariant with respect to the policy
evaluation operators underlying the policies in the MDP. This should be of
no surprise: If for some policy encountered while executing the algorithm
no function in the chosen set has a small Bellman-residual, the quality of
the final solution might well degrade.

The bounds also depend on the number of steps (K) of policy iteration.
As expected, there are two terms involving K that behave inversely: One
term, that is familiar from previous results, decays at a geometric rate (the
base being γ, the discount factor of the MDP). The other term increases
proportionally to the logarithm of the number of iterations. This term comes
from the reuse of the data throughout all the iterations: Hence we see that
data reuse causes only a slow degradation of performance, a point that
was made just recently by Munos and Szepesvári (2006) in the analysis of
approximate value iteration. Interestingly, the optimal value of K depends
on, e.g., the capacity of the function set, the mixing rate, and the number of
samples, but it does not depend on the approximation-power of the function
set.

In order to arrive at our results, we need to make some assumptions
on the controlled system. In particular, we assume that the state space
is compact and the action space is finite. The compactness condition is
purely technical and can be relaxed, e.g., by making assumptions about
the stability of the system. The finiteness condition on the action space,
on the other hand, seems to be essential for our analysis to go through.
We also need to make a certain controllability (or rather uncontrollability)
assumption. This particular assumption is used in the method proposed by
Munos (2003) for bounding the final weighted-norm error as a function of
the weighted-norm errors made in the intermediate steps of the algorithm.
If we were to use an L∞-analysis then the controllability assumption would
not be needed. The difficulty is that since the policy evaluation-functions
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are obtained via a least-squares approach, it can be difficult to derive good
L∞-bounds on the errors of the intermediate steps.

The particular controllability assumption studied here requires that the
maximum rate at which the future-state distribution can be concentrated
by selecting some non-stationary Markov policy should be sub-exponential.
In general, this holds for systems with “noisy” transitions, but, as argued by
Munos and Szepesvári (2006), under certain conditions even deterministic
systems can meet this condition.

The organization of the paper is as follows: In the next section (Sec-
tion 2) we introduce the basic concepts, definitions and symbols needed in
the rest of the paper. The algorithm along with its motivation is given in
Section 3. This is followed by some additional definitions necessary for the
presentation of the main result. The main result is given at the beginning of
Section 4. The rest of this section is divided into three parts, each devoted
to one major step of the proof. In particular, in Section 4.1 a finite-sample
bound is given on the error of the particular policy evaluation procedure
proposed here. This bound makes the dependence on the complexity of the
function space, the mixing rate of the trajectory, and the number of samples
explicit. In Section 4.2 we prove a bound on how errors propagate through-
out the iterations of the procedure. The proof of the main result is finished
in Section 4.3. We discuss the main result, in the context of previous work
in Section 5. Finally, our conclusions are drawn and possible directions for
future work are outlined in Section 6.

2 Definitions

As we shall work with continuous spaces we will need some simple mea-
sure theoretic concepts. These are introduced first. This is followed by the
introduction of Markovian Decision Problems (MDPs) and the associated
concepts and the necessary notation.

For a measurable space with domain S we let M(S) denote the set of
all probability measures over S. Fix p ≥ 1. For a measure ν ∈ M(S) and a
measurable function f : S → R we let ‖f‖p,ν denote the Lp(ν)-norm of f :

‖f‖p
p,ν =

∫
|f(s)|pν(ds).

We shall also write ‖f‖ν to denote the L2(ν)-norm of f . We denote the
space of bounded measurable functions with domain X by B(X ), and the
space of measurable functions with bound 0 < K < ∞ by B(X ; K). We
let ‖f‖∞ denote the supremum norm: ‖f‖∞ = supx∈X |f(x)|. The symbol
I{E} shall denote the indicator function: For an event E, I{E} = 1 iff E
holds and I{E} = 0, otherwise. We use 1 to denote the function that takes
on the constant value one everywhere over its domain and use 0 to denote
the likewise function that takes zero everywhere.
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A discounted MDP is defined by a quintuple (X ,A, P, S, γ), where X is
the (possibly infinite) state space, A = {a1, a2, . . . , aL} is the set of actions,
P : X × A → M(X ) is the transition probability kernel, P (·|x, a) defining
the next-state distribution upon taking action a in state x, S(·|x, a) gives
the corresponding distribution of immediate rewards, and γ ∈ (0, 1) is the
discount factor.

We make the following assumptions on the MDP:

Assumption 1 (MDP Regularity) X is a compact subspace of the s-
dimensional Euclidean space. We assume that the random immediate re-
wards are bounded by R̂max and the expected immediate rewards r(x, a) =∫

rS(dr|x, a) are bounded by Rmax: ‖r‖∞ ≤ Rmax. (Note that Rmax ≤

R̂max.)

A policy is defined as a (measurable) mapping from past observations to
a distribution over the set of actions (for details, see Bertsekas and Shreve,
1978). A policy is called Markov if the distribution depends only on the last
state of the observation sequence. A policy is called stationary Markov if
this dependency does not change by time. For a stationary Markov policy,
the probability distribution over the actions given some state x will be
denoted by π(·|x). A policy is deterministic if the probability distribution
concentrates on a single action for all histories. Deterministic stationary
Markov policies will be identified by mappings from states to actions, i.e.,
functions of the form π : X → A.

The value of a policy π when it is started from a state x is defined as
the total expected discounted reward that is encountered while the policy
is executed:

V π(x) = Eπ

[
∞∑

t=0

γtRt

∣∣∣∣∣X0 = x

]
.

Here Rt denotes the reward received at time step t; Rt ∼ S(·|Xt, At) and
Xt evolves according to Xt+1 ∼ P (·|Xt, At) where At is sampled from the
distribution assigned to the past observations by π. For a stationary Markov
policy π, At ∼ π(·|Xt), while if π is deterministic stationary Markov then,
by our previous remark, we write At = π(Xt). The function V π is also
called the (state) value function of policy π. Closely related to state value
functions are the action-value functions, defined by

Qπ(x, a) = Eπ

[
∞∑

t=0

γtRt

∣∣∣∣∣X0 = x, A0 = a

]
.

In words, the action-value function underlying π assigns to the pair (x, a)
the total expected discounted return encountered when the decision process
is started from state x, the first action is a while all the subsequent actions
are determined by the policy π. It is known that for any policy π, the
functions V π,Qπ are bounded by Rmax/(1 − γ).
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Given and MDP, the goal is to find a policy that attains the best possible
values,

V ∗(x) = sup
π

V π(x),

for all states x ∈ X . Function V ∗ is called the optimal value function. A
policy is called optimal if it attains the optimal values V ∗(x) for any state
x ∈ X , i.e., if V π(x) = V ∗(x) for all x ∈ X .

In order to characterize optimal policies it will be useful to define the
optimal action-value function, Q∗(x, a):

Q∗(x, a) = sup
π

Qπ(x, a).

We say that a (deterministic stationary) policy π is greedy w.r.t. an action-
value function Q ∈ B(X ×A) and write

π = π̂(·; Q),

if, for all x ∈ X and a ∈ A,

π(x) ∈ argmax
a∈A

Q(x, a).

Since A is finite, a greedy policy always exists. Greedy policies are impor-
tant because the greedy policy w.r.t. Q∗ is optimal (e.g., Bertsekas and
Shreve, 1978). Hence it suffices to determine Q∗. Further, without the loss
of generality we can restrict our attention to the set of deterministic, sta-
tionary Markov policies. In what follows we shall use the word ’policy’ to
mean such policies.

In the policy iteration algorithm (Howard, 1960), Q∗ is found by com-
puting a series of policies, each policy being greedy w.r.t. the action-value
function of the previous policy. The algorithm converges at a geometric rate.
The action-value function of a policy can be found by solving a fixed point
equation. For a (deterministic stationary Markov) policy π, we define the
operator T π : B(X ×A) → B(X ×A) by

(T πQ)(x, a) = r(x, a) + γ

∫
Q(y, π(y))P (dy|x, a).

It is easy to see that T π is a contraction operator w.r.t. the supremum-norm
with index γ: ‖T πQ − T πQ′‖∞ ≤ γ‖Q − Q′‖∞. Moreover, the action-value
function of π is the unique fixed point of T π:

T πQπ = Qπ. (1)

For our analysis we shall need a few more operators. We define the
projection operator Eπ : B(X ×A) → B(X ) by

(EπQ)(x) = Q(x, π(x)), Q ∈ B(X ×A).
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We define two operators corresponding to the transition probability kernel
P as follows: The right-linear operator, P · : B(X ) → B(X ×A), is defined
by

(PV )(x, a) =

∫
V (y)P (dy|x, a).

Hence, for a function V , PV represents an action-value function such that
(PV )(x, a) is the expected value of choosing action a in state x and given
that future states are evaluated by V and there are no immediate rewards.
The left-linear operator, ·P : M(X × A) → M(X ), is defined by

(ρP )(dy) =

∫
P (dy|x, a)ρ(dx, da). (2)

This operator is also extended to act on measures over X via

(ρP )(dy) =
1

L

∑

a∈A

∫
P (dy|x, a)ρ(dx),

For a measure ρ defined over the set of state-action pairs, ρP represents the
measure of the future state sampled from the transition probability kernel
P and given that the initial state and action is sampled from ρ.

By composing P and Eπ , we define P π:

P π = PEπ.

Note that this equation defines two operators: a right- and a left-linear
one. The interpretation of the right-linear operator is as follows: For the
action-value function Q, PEπQ gives the expected values of future states
when the future values of the actions are given by the action-value function
Q and after the first step policy π is followed. The left-linear operator,
·P π : M(X ×A) → M(X ×A), is defined as follows: Let U be a measurable
subset of X × A. Given ρ ∈ M(X × A), (ρP π)(U) = ρPEπ

I{U}. This can
be given a probabilistic interpretation, too, but we have not found this
interpretation very intuitive and hence it is omitted.

Throughout the paper F ⊂ { f : X → R } will denote some subset of
real-valued functions over the state-space X . For convenience, we will treat
elements of FL as real-valued functions f defined over X × A with the
obvious identification f ≡ (f1, . . . , fL), f(x, aj) = fj(x), j = 1, . . . , L. The
set FL will denote the set of admissible functions used in the optimization
step of our algorithm.

Finally, for ν ∈ M(X ), we extend ‖·‖p,ν (p ≥ 1) to FL by

‖f‖p
p,ν =

1

L

L∑

j=1

‖fj‖
p
p,ν .

Alternatively, we define ν(dx, da), the extension of ν to X ×A via

∫
Q(x, a)ν(dx, da) =

1

L

L∑

j=1

∫
Q(x, aj)ν(dx). (3)
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FittedPolicyQ(D,K,Q−1,PEval,π)
// D: samples (e.g., trajectory)
// K: number of iterations
// Q−1: Initial action-value function
// PEval: Policy evaluation routine
Q← Q−1 // Initialization
for k = 0 to K − 1 do

Q′ ← Q
Q←PEval(π̂(·; Q′), D, π)

end for

return Q // or π̂(·; Q), the greedy policy w.r.t. Q

Fig. 1 Model-free Fitted Policy Iteration

For real numbers a and b, a ∨ b shall denote the maximum of a and b.
Similarly, a∧b shall denote the minimum of a and b. The ceil value of a real
number a is denoted by ⌈a⌉, while for x > 0, log+(x) = 0 ∨ log(x).

3 Algorithm

The algorithm studied in this paper is an instance of the generic fitted policy
iteration method, whose pseudo-code is shown in Figure 1. By assumption,
the training sample, D, used by the algorithm consists of a finite trajectory

{(Xt, At, Rt)}1≤t≤N

of some stochastic stationary policy π: At ∼ π(·|Xt), Xt+1 ∼ P (·|Xt, At),
Rt ∼ S(·|Xt, At). We assume that this trajectory is sufficiently representa-
tive in a sense that will be made precise in the next section. For now, let
us make the assumption that Xt is stationary and is distributed according
to some (unknown) distribution ν. The action-evaluation function Q−1 is
used to initialize the first policy (alternatively, one may start with an ar-
bitrary initial policy at the price of making the algorithm somewhat more
complicated). Procedure PEval takes data in the form of a long trajectory
and some policy π̂ and should return an approximation to the action-value
function of π̂. In this case the policy is just the greedy policy with respect
to Q′: π̂ = π̂(·; Q′).

There are many possibilities to design PEval. In this paper we consider
an approach based on Bellman-residual minimization (BRM). Let π denote
the policy to be evaluated. The basic idea of BRM comes from rewriting
the fixed point equation (1) for Qπ in the form Qπ − T πQπ = 0. When
Qπ is replaced by some other function Q, Q − T πQ becomes non-zero.
This quantity is called the Bellman-residual of Q. It is known that if the
magnitude of Q− T πQ is small then Q is a good approximation to Qπ (for
an analysis using supremum norms see, e.g., Williams and Baird, 1994).
Hence it is expected that a smaller risk, ‖Q − T πQ‖, yields better estimates.
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where ‖·‖ is some norm chosen appropriately. We choose here the L2-norm
as it leads to an optimization problem with favourable characteristics and
makes the connection to regression function estimation easier. Hence, let us
consider the loss function

L(Q; π) = ‖Q − T πQ‖2
ν ,

where the weighting is determined by ν, the stationary distribution underly-
ing the states in the input data and the uniform distribution over the actions.
(Remember that ‖Q‖2

ν = 1/L
∑L

j=1 ‖Q(·, aj)‖ν .) Since Xt follows the dis-
tribution ν, the choice of ν in the loss function facilitates its sample-based
approximation. The choice of the uniform distribution over the actions over
the distribution underlying the sample {At} expresses our a priori disbelief
in the action-choices made by the behavior policy: Since the behavior policy
may well prefer suboptimal actions over the optimal ones, we have no reason
to give more weights to the actions that are sampled more often. Of course,
the same issue exists for the state distribution, or the joint state-action
distribution. However, correcting for the bias involving the states would be
possible only if ν had a known density (a very unrealistic assumption) or
if this density was learnt from the samples. Thus while the correction for
the sampling “bias” of actions requires only the (mild) assumption of the
knowledge of the behavior policy and is very cheap (as we shall see below),
the correction for the states’ bias would be quite expensive and risky due
to the additional learning component. To simplify the presentation and the
analysis we do not consider such a correction here. In fact, if the behavior
policy were not known, we could still use the joint distribution of (Xt, At)
in the above norm without changing much in our algorithm and results.

When evaluating π, we chase Q = argminf∈FL L(f ; π).1 A simple idea
to derive a sample based loss to L(f ; π) could be to first replace ‖·‖ν by its
empirical counterpart,

‖f‖ν,N =
1

NL

N∑

t=1

L∑

j=1

I{At=aj}

π(aj |Xt)
f(Xt, At),

(since the states in the trajectory {Xt} follow ν, ‖f‖ν,N is expected to con-
verge to ‖f‖ν as N → ∞) and then plug in Rt+γf(Xt+1, π(Xt+1) in place of
(T πf)(Xt, At) (since E [Rt + γf(Xt+1, π(Xt+1))|Xt, At] = (T πf)(Xt, At)).
This results in the loss function

L̂N(f ; π) =
1

NL

N∑

t=1

L∑

j=1

I{At=aj}

π(aj |Xt)
(f(Xt, aj) − (Rt + γf(Xt+1, π(Xt+1))))

2
.

(4)

1 In order to simplify the presentation we assume sufficient regularity of F so
that we do not need to worry about the existence of a minimizer which can be
guaranteed under fairly mild conditions, such as the compactness of F w.r.t. ‖·‖

ν
,

or if F is finite dimensional (Cheney, 1966).
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However, as it is well known (see Sutton and Barto, 1987, pp. 200, Munos,
2003, or Lagoudakis and Parr, 2003 for discussions), L̂N is not an unbiased

estimate of the L2 Bellman-error: E

[
L̂N (f ; π)

]
6= L(f ; π). Indeed, elemen-

tary calculus shows that for Y ∼ P (·|x, a), R ∼ S(·|x, a),

E

[(
f(x, a) − (R + γf(Y, π(Y )))

)2
]

= (f(x, a) − (T πf)(x, a))2 + Var [R + γf(Y, π(Y ))] .

It follows that minimizing L̂N (f ; π) in the limit when N → ∞ is equiva-

lent to minimizing the sum of γ2 1
L

∑L
j=1 E [Var [f(Y, π(Y ))|X, A = aj ]] and

L(f ; π) with Y ∼ P (·|X, A). The unwanted variance term acts like a penalty
factor, favoring smooth solutions (if f is constant then the variance term
Var [f(Y, π(Y ))|X, A = aj ] becomes zero). Although smoothness penalties
are often used as a means of complexity regularization, in order to arrive
at a consistent procedure one needs a way to control the influence of the
penalty. Here we do not have such a control and hence the procedure will
yield biased estimates even as the number of samples grows without a limit.
Hence, we need to look for alternative ways to approximate the loss L.

A common suggestion is to use uncorrelated or “double” samples in L̂N .
According to this proposal, for each state and action in the sample at least
two next states should be generated (see, e.g., Sutton and Barto, 1987, pp.
200). However, this is neither realistic nor sample efficient unless there is
a (cheap) way to generate samples – a framework that we do not consider
here. Another possibility, motivated by the double-sample proposal, would
be to reuse samples that are close in space (e.g., use nearest neighbors). The
difficulty with this approach is that it requires a definition of ‘proximity’.
Hence, we pursue here an alternative approach that avoids these pitfalls.

The trick is to introduce an auxiliary function h to cancel the unwanted
variance term. The new loss function is

L(f, h; π) = L(f ; π) − ‖h − T πf‖2
ν (5)

and we propose to solve for

f̂ = argmin
f∈FL

sup
h∈FL

L(f, h; π), (6)

where the supremum in h comes from the negative sign of ‖h − T πf‖2
ν (our

aim is to push h close to T πf). There are two issues to worry about: One is if
the optimization of this new loss function still makes sense and the other is
if the empirical version of this loss is unbiased. A quick heuristic explanation
of why the second issue is resolved is as follows: In the sample based estimate
of ‖h − T πf‖2

ν the same variance term appears that we wanted to get rid

of. Since ‖h − T πf‖2
ν is subtracted from the original loss function, when

considering the empirical loss the unwanted terms cancel each other. A
precise reasoning will be given below in Lemma 1.
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Now let us consider the issue if optimizing the new loss makes sense. Let
h∗

f ∈ FL be a function that minimizes ‖h − T πf‖2
ν . Then

L(f ; π) = L(f, h∗
f ; π) +

∥∥h∗
f − T πf

∥∥2

ν
.

Thus if
∥∥∥h∗

f − T πf
∥∥∥

2

ν
is “small” independently of the choice of f then mini-

mizing L(f, h∗
f ; π) should give a solution whose loss as measured by L(f ; π)

is small, too.
Before returning to the unbiasedness issue let us just note that for f ∈

FL, L(f, h∗
f ; π) ≥ 0. This inequality holds because by the definition of h∗

f ,

L(f, h∗
f ; π) ≥ L(f, h; π) holds for any h ∈ FL. Thus substituting h = f we

get L(f, h∗
f ; π) ≥ L(f, f ; π) = 0.

Let us now define the empirical version of L(f, h; π) by

L̂N(f, h; π) =
1

NL

N∑

t=1

L∑

j=1

I{At=aj}

π(aj |Xt)

(
(f(Xt, aj) − (Rt + γf(Xt+1, π(Xt+1))))

2

−(h(Xt, aj) − (Rt + γf(Xt+1, π(Xt+1))))
2
)
. (7)

and we shall let PEval solve for

Q = argmin
f∈FL

sup
h∈FL

L̂N(f, h; π). (8)

The key attribute of the new loss function is that its empirical version
is unbiased:

Lemma 1 (Unbiased Empirical Loss) Assume that the behaviour pol-
icy πb samples all actions in all states with positive probability. Then for
any f ,h ∈ FL, policy π, L̂N(f, h; π) as defined by (7) provides an unbiased
estimate of L(f, h; π):

E

[
L̂N(f, h; π)

]
= L(f, h; π). (9)

Proof Let us define Ctj =
I{At=aj}

πb(aj |Xt)
and Q̂f,t = Rt + γf(Xt+1, π(Xt+1)). By

(7), the tth term of L̂N (f, h; π) can be written as

L(t) =
1

L

L∑

j=1

Ctj

(
(fj(Xt) − Q̂f,t)

2 − (hj(Xt) − Q̂f,t)
2
)

. (10)

Note that E [Ctj |Xt] = 1 and

E

[
CtjQ̂f,t

∣∣∣Xt

]
= E

[
Q̂f,t

∣∣∣Xt, At = aj

]
(11)

= rj(Xt) + γ

∫

y

f(y, π(y)) dP (y|Xt, aj) = (T πf)j(Xt)
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since all actions are sampled with positive probability in any state. (In (10)
and (11), we use the convention f(x, aj) = fj(x) introduced earlier.)

Consider now t = 1 and L(1). Taking expectations,

E

[
L(1)

]
= E

[
E

[
L(1)

∣∣∣ X1

]]

=
1

L

L∑

j=1

E

[
E

[
C1j

(
(fj(X1) − Q̂f,1)

2 − (hj(X1) − Q̂f,1)
2
)∣∣∣X1

]]
.

By Steiner’s rule (which is, essentially, the bias-variance decomposition) if
U ,V are conditionally independent given W ,

E
[
(U − V )2|W

]
= E

[
(U − E [V |W ])2|W

]
+ Var [V |W ] ,

where Var [V |W ] = E
[
(V − E [V |W ])2|W

]
. Using this and (11), we get

E

[
C1j

(
(fj(X1) − Q̂f,1)

2 − (hj(X1) − Q̂f,1)
2
)∣∣∣X1

]

= (fj(X1) − (T πf)j(X1))
2
+ Var

[
Q̂f,1|X1, A1 = aj

]

−
(
(hj(X1) − (T πf)j(X1))

2 + Var
[
Q̂f,1|X1, A1 = aj

])

= (fj(X1) − (T πf)j(X1))
2 −

(
hj(X1) − (T πf)j(X1)

)2

.

Taking expectations of both sides we get that

E

[
L(1)

]
=

1

L

L∑

j=1

(
‖fj − (T πf)j‖

2
ν − ‖hj − (T πf)j‖

2
ν

)

= L(f ; π) − ‖h − T πf‖2
ν (12)

= L(f, h; π).

Because of stationarity, we also have E
[
L(t)

]
= E

[
L(1)

]
for any t, thus

finishing the proof of (9). ⊓⊔

It can be observed that the unbiasedness is achieved because the quadratic
terms Q̂2

f,t and (T πf)2j are cancelled in the new loss functions (both in the
sample based and the population based versions).

For linearly parameterized function classes the solution of the optimiza-
tion problem (8) can be obtained in closed form. Perhaps surprisingly, more
is true in this case: The new method gives the same solutions as LSTD! In
order to formally state this result let us first review the LSTD procedure.
(We introduce LSTD quite differently from how it is done in the literature,
though our treatment is close and is strongly influenced by the description
provided in Lagoudakis and Parr (2003).)

Instead aiming at minimizing the distance of Q and T πQ, one may alter-
natively look for a value function Q in the space of admissible functions FL

such that the backprojection of the image of Q under T π onto FL comes
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Q ΠT πQ

T πQ

FL

Fig. 2 Comparing the modified Bellman-error and the LSTD criterion. The
function space, FL, is represented by the horizontal line. Under the operator, T π, a
value function, Q ∈ FL, is mapped to a function, T πQ. The vector connecting T πQ
and its back-projection to FL, ΠT πQ, is orthogonal to the function space FL. The
Bellman-error is the distance of Q and T πQ. In order to get the modified Bellman-
error, the distance of T πQ and ΠT πQ is subtracted from the Bellman-error. LSTD
aims at picking a function Q such that its distance to ΠT πQ is minimal. For
a linear space, FL, the solution of this is Q = ΠT πQ, which simultaneously
minimizes the modified Bellman-error.

the closest to Q. Formally, we want to minimize ‖Q − ΠT πQ‖ and this is
the criterion used by LSTD (see Figure 2). Here the projection operator
Π : B(X ×A) → B(X ×A) is defined by ΠQ = argminQ′∈FL ‖Q − Q′‖. In
order to make the minimization problem practical it is customary to assume
a linear parameterization of the value functions: FL =

{
wT φ : w ∈ R

p
}
,

where φ : X ×A → R
p is some function extracting features of state-action

pairs. Note that FL is a linear subspace (hyperplane) of B(X ×A). Denote
by wπ the weights of the solution of the minimization problem and let Qwπ =
(wπ)T φ. Then due to the properties of projection, Qwπ − T πQwπ must be
perpendicular to the space FL with respect to the inner product underlying
the chosen norm.2 Formally this means that 〈Qwπ − T πQwπ , wT φ 〉 = 0
must hold for any weight-vector w. However, this can hold only if for any
j ∈ {1, . . . , L},

〈Qwπ − T πQwπ , φj 〉 = 0. (13)

These are the so-called normal equations and the linearity of the inner
product can be used to solve them for wπ .

2 This is because the projection of a vector to a linear subspace is the unique
element of the subspace such that the vector connecting the element and the
projected vector is perpendicular to the subspace. Hence if for some Q ∈ FL,
Q− T πQ happens to be perpendicular to FL then Q and ΠT πQ must coincide.
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When LSTD is used in practice, T π and the inner product are approxi-
mated based on the samples. Then (13) becomes

0 =
1

NL

N,L∑

t=1,j=1

Ctj φj(Xt, At)

(
Qwπ(Xt, At)−

[
Rt+γQwπ(Xt+1, π(Xt+1))

])
,

(14)

where Ctj =
I{At=aj}

πb(aj |Xt)
is used to stay in par with our previous conven-

tion to normalize with respect to the non-uniform action frequencies. Note
that unlike in the case of the straightforward empirical loss (4), there is no
biasedness issue here and hence asymptotic consistency is easy to obtain
(Bradtke and Barto, 1996).

For our purposes it is important to note that (14) can be derived in a
reasoning that is entirely analogous to the argument used to derive (13).
For this, define SN : B(X × A) → R

N , T̂ π
N : B(X × A) → R

N and 〈 · , · 〉N
by

SNQ = (Q(X1, A1), . . . , Q(XN , AN ))T ,

T̂ π
NQ = (R1 + γQ(X2, π(X2)), . . . , RN + Q(XN+1, π(XN+1)))

T ,

〈 q , q′ 〉N =
1

NL

N∑

t=1

L∑

j=1

Ctj qt q′t,

where q, q′ ∈ R
N . Further, let ‖·‖N denote the ℓ2-norm on R

N that corre-
sponds to 〈 · , · 〉N .

Then (14) can be written in the compact form 0 = 〈SNQwπ−T̂ π
NQwπ , φj 〉N .

Further, the solution minimizes
∥∥∥SNQ − ΠN T̂ π

NQwπ

∥∥∥
N

, where the projec-

tion operator ΠN : R
N → R

N is defined by ΠNq = argminq′∈SNFL ‖q − q′‖N ,

where SNFL =
{

SNQ : Q ∈ FL
}

is a linear space as before. The reasoning
is the same as previously.

Now we are ready to state our equivalence result:

Proposition 2 When linearly parameterized functions are used, the solu-
tion of (8) and that of LSTD coincide and the algorithm proposed becomes
equivalent to LSPI.

Proof We use the same notation as above: φj is the jth component of the ba-
sis function φ that generates FL. We prove the statement for the population
based losses, LLSTD(Q; π) = ‖Q − ΠT πQ‖, LBRM(Q; π) = ‖Q − T πQ‖ −
inf h ∈ FL ‖h − T πQ‖, where ‖·‖ is an norm derived from some inner prod-
uct 〈 · , · 〉. The argument for the empirical losses is an exact parallel of this
argument, just one must use SN , ΠN and 〈 · , · 〉N as defined above.

Let Q ∈ FL solve the equations 〈Q − T πQ , φj 〉 = 0 simultaneously
for all j. For this Q, both LLSTD(Q; π) = ‖Q − ΠT πQ‖ and LBRM(Q; π) =
‖Q − T πQ‖−‖ΠT πQ − T πQ‖ = ‖Q − T πQ‖−infh∈FL ‖h − T πQ‖ are zero.
Since both are nonnegative, Q minimizes both of them. In order to finish
the proof we still need to show that both losses have a unique minima. This



16 András Antos et al.

is evident for the LSTD loss function. To see that the statement holds for
the BRM loss function let us remark that Q is a minimizer for it if and only
if ‖Q − T πQ‖ = ‖ΠT πQ − T πQ‖. Since projection minimizes the distance
to FL and Q ∈ FL, we must then have Q − ΠT πQ = 0. But this means
that Q is the unique minimizer of the LSTD loss, finishing the proof. ⊓⊔

As a consequence of this equivalence all our results derived for the BRM
loss transfer to LSTD/LSPI.

One problem with the LSTD loss is that it is defined in terms of the
projection Π which makes its numerical minimization difficult when a non-
linear parameterization is used (e.g., when a neural network is used to rep-
resent the action-value functions). On the other hand, the BRM criterion
proposed here avoids the direct use of the projection operator and hence it
is easier to use it with non-linear parameterizations. This can be advanta-
geous when there is a reason to believe that a non-linear parameterization
is useful. Of course, for such a parameterizations the optimization problem
can be difficult to solve.

It is interesting to note that the proposed modification to the BRM loss
is not the only one that allows one to achieve the unbiasedness property.
In fact, one can replace Rt by any function of Xt,At (such as, e.g., zero!).
However, this way the equivalence property would be lost. For the sake of
compactness we do not pursue this direction any further here.

4 Main Result

Before describing the main result we need some more definitions.
We start with a mixing-property of stochastic processes. Informally, a

process is mixing if ‘future’ depends weakly on the ‘past’. The particular
mixing concept we use here is called β-mixing:

Definition 1 (β-mixing) Let {Zt}t=1,2,... be a stochastic process. Denote
by Z1:n the collection (Z1, . . . , Zn), where we allow n = ∞. Let σ(Zi:j)
denote the sigma-algebra generated by Zi:j (i ≤ j). The m-th β-mixing
coefficient of {Zt}, βm, is defined by

βm = sup
t≥1

E

[
sup

B∈σ(Zt+m:∞)

|P (B|Z1:t) − P (B)|

]
.

{Zt} is said to be β-mixing if βm → 0 as m → ∞. In particular, we say that
a β-mixing process mixes at an exponential rate with parameters β,b,κ > 0
if βm ≤ β exp(−bmκ) holds for all m ≥ 0.

Note that besides β-mixing, many other definitions of mixing exist in the
literature (see, e.g., Doukhan, 1994). The weakest among those most com-
monly used is called α-mixing. Another commonly used one is φ-mixing
which is stronger than β-mixing (see Meyn and Tweedie, 1993).

Our assumptions regarding the sample path are as follows:
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Assumption 2 (Sample Path Properties) Assume that

{(Xt, At, Rt)}t=1,...,N

is the sample path of πb, a stochastic stationary policy. Further, assume that
{Xt} is strictly stationary (Xt ∼ ν ∈ M(X )) and exponentially β-mixing
with the actual rate given by the parameters (β, b, κ). We further assume

that the sampling policy πb satisfies πb0
def
= mina∈A infx∈X πb(a|x) > 0.

The β-mixing property will be used to establish tail inequalities for certain
empirical processes. Note that if Xt is β-mixing then the hidden-Markov
process {(Xt, (At, Rt))} is also β-mixing with the same rate (see, e.g., the
proof of Proposition 4 by Carrasco and Chen (2002) for an argument that
can be used to prove this).

Our next assumption concerns the average concentrability of the future-
state distribution. Remember that ν denotes the stationary distribution
underlying {Xt}. We shall also need a distribution, chosen by the user, that
is used when assessing the performance. We shall denote this distribution
by ρ. It turns out that in the technique that we use to bound the final
error as a function of the intermediate errors we need to change distribu-
tions between future state-distributions started from ρ and ν. Now, an easy
way to bound the effect of changing from measure α to measure β is to
use the Radon-Nikodym derivative of α w.r.t. β:3 for any nonnegative mea-
surable function f ,

∫
f dα =

∫
f dα

dβ dβ ≤ ‖ dα
dβ ‖∞

∫
f dβ. This motivates the

following definition introduced in Munos and Szepesvári (2006):

Definition 2 (Discounted-average Concentrability of Future-State
Distribution) Given ρ, ν, m ≥ 0 and an arbitrary sequence of stationary
policies {πm}m≥1, let

cρ,ν(m) = sup
π1,...,πm

∥∥∥∥
d(ρP π1P π2 . . . P πm)

dν

∥∥∥∥
∞

, (15)

with the understanding that if the future state distribution ρP π1P π2 . . . P πm

is not absolutely continuous w.r.t. ν then we take cρ,ν(m) = ∞. The second-
order discounted-average concentrability of future-state distributions is de-
fined by

Cρ,ν = (1 − γ)2
∑

m≥1

mγm−1cρ,ν(m).

In general cρ,ν(m) diverges to infinity as m → ∞. However, thanks to the
discounting, Cρ,ν will still be finite whenever γm converges to zero faster
than cρ,ν(m) converges to ∞. In particular, if the rate of divergence of
cρ,ν(m) is sub-exponential, i.e., if Γ = lim supm→∞ 1/m log cρ,ν(m) ≤ 0

3 The Radon-Nikodym (RN) derivative is a generalization of the notion of prob-
ability densities. According to the Radon-Nikodym Theorem, dα/dβ, the RN
derivative of α w.r.t. β is well-defined if β is σ-finite and if α is absolute con-
tinuous w.r.t. β. In our case β is a probability measure, so it is finite.
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then Cρ,ν will be finite. In the stochastic process literature, Γ is called the
top-Lyapunov exponent of the system and the condition Γ ≤ 0 is inter-
preted as a stability condition. Hence, our condition on the finiteness of the
discounted-average concentrability coefficient Cρ,ν can also be interpreted
as a stability condition. Further discussion of this concept and some exam-
ples of how to estimate Cρ,ν for various system classes can be found in the
report by Munos and Szepesvári (2006).

The concentrability coefficient Cρ,ν will enter our bound on the weighted
error of the algorithm. In addition to these weighted-error bounds, we shall
also derive a bound on the L∞-error of the algorithm. This bound requires
a stronger controllability assumption. In fact, the bound will depend on

Cν = sup
x∈X ,a∈A

dP (·|x, a)

dν
,

i.e., the supremum of the density of the transition kernel w.r.t. the state-
distribution ν. Again, if the system is “noisy” then Cν is finite: In fact, the
noisier the dynamics is (the less control we have), the smaller Cν is. As a
side-note, let us remark that Cρ,ν ≤ Cν holds for any measures ρ, ν. (This
follows directly from the definitions.)

Our bounds also depend on the capacity of the function set F . Let us
now develop the necessary concepts. We assume that the reader is familiar
with the concept of VC-dimension.4 The VC-dimension of a set system C
shall be denoted by VC . To avoid any confusions we introduce the definition
of covering numbers:

Definition 3 (Covering Numbers) Fix ε > 0 and a semi-metric space
M = (M, d). We say that M is covered by m discs D1, . . . , Dm if M ⊂
∪jDj. We define the covering number N (ε,M, d) of M as the smallest
integer m such that M can be covered by m discs each of which having a
radius less than ε. If no such finite m exists then we let N (ε,M, d) = ∞.

In particular, for a class F of real-valued functions with domain X and
points x1:N = (x1, x2, . . . , xN ) in X , we use the empirical covering numbers,
i.e., the covering number of F equipped with the empirical L1 semi-metric

lx1:N (f, g) =
1

N

N∑

t=1

|f(xt) − g(xt)|.

In this case N (ε,F , lx1:N ) shall be denoted by N1(ε,F , x1:N ).
Another capacity measure widely used in the nonparametric statistics

literature is the pseudo-dimension of function sets:

Definition 4 (Pseudo-dimension) The pseudo-dimension VF+ of F is
defined as the VC-dimension of the subgraphs of functions in F (hence it
is also called the VC-subgraph dimension of F).

4 Readers not familiar with VC-dimension are suggested to consult a book, such
as the one by Anthony and Bartlett (1999).
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In addition to the pseudo-dimension, we will need a new capacity con-
cept:

Definition 5 (VC-crossing Dimension) Let C2 = { { x ∈ X : f1(x) ≥ f2(x) } : f1, f2 ∈ F }.
The VC-crossing dimension of F , denoted by VF× , is defined as the VC-

dimension of C2: VF×
def
= VC2 .

The rationale of this definition is as follows: Remember that in the kth

iteration of the algorithm we want to compute an approximate (action-
value) evaluation of the policy greedy w.r.t. a previously computed action-
value function Q′. Thus, if π̂ denotes the chosen greedy policy, then we will
jointly select L functions (one for each action of A) from F through (7) and
(8). It follows that we will ultimately need a covering number bound for the
set

F∨
π̂ =

{
f : f(·) = Q(·, π̂(·)) and Q ∈ FL

}
.

Since Q′ depends on the data (a collection of random variables), Q′ is ran-
dom, hence π̂ is random, and thus the above set is random, too. In order to
deal with this, we consider the following, non-random superset of F∨

π̂ :

F∨ =
⋃

Q′∈FL

F∨
π̂(·;Q′)

=
{

f : f(·) = Q(·, π̂(·)), π̂ = π̂(·; Q′) and Q, Q′ ∈ FL
}

.

Ultimately, we will bound the estimation error of the procedure using the
capacity of this class. Note that F∨ can be written in the equivalent form:

F∨ =






L∑

j=1

I{fj(x)=max1≤k≤L fk(x)}gj(x) : fj, gj ∈ F






(ties should be broken in a systematic, but otherwise arbitrary way). If we
define the set of partitions of X induced by elements of F as

ΞF ,L =

{
ξ : ξ = {Aj}

L
j=1, Aj ⊂ X , x ∈ Aj ⇔ fj(x) = max

1≤k≤L
fk(x), fj ∈ F

}

(16)
then we see that

F∨ =






L∑

j=1

I{Aj} gj : {Ak} = ξ ∈ ΞF ,L, gj ∈ F




 . (17)

It turns out that the capacity of this class ultimately depends on the capacity
(i.e., VC-dimension) of the set-system C2 defined above. The form (17)
suggests to view the elements of the set F∨ as regression trees defined by
the partition system ΞF ,L and set F . Actually, as the starting point for our
capacity bounds we will use a result from the regression tree literature due
to Nobel (1996).

Having introduced this new capacity measure, the first question is if it
is really different from previous measures. The next statement, listing basic
properties of VC-crossing dimension answers this question affirmatively.
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FL

T πFL

FL

T πFL

Fig. 3 Illustration of the concepts used to measure the approximation power of
the function space FL. On the left side the vectors represent the mapping T π. On
this figure, the measure E∞(FL; π) is the length of the shortest vector. On the
right side the vectors represent the shortest distances of selected points of T πFL

to FL. The measure E1(F
L; π) is the length of the shortest of such vectors.

Proposition 3 (Properties of VC-crossing Dimension) For any class
F of X → R functions the following statements hold:
a) VF+ ≤ VF× . In particular, if VF× < ∞ then VF+ < ∞.
b) If F is a vector space then VF+ = VF× = dim(F). In particular, if F is
a subset of a finite dimensional vector space then VF× < ∞.
c) There exists F with VF× < ∞ which is not a subset of any finite dimen-
sional vector space.
d) There exists F with X = [0, 1], VF+ < ∞ but VF× = ∞. In particular,
there exists F with these properties such that the following properties also
hold for F : (i) F is countable, (ii) { { x ∈ X : f(x) ≥ a } : f ∈ F , a ∈ R }
is a VC-class (i.e., F is VC-major class), (iii) each f ∈ F is monotonous,
bounded, and continuously differentiable with uniformly bounded derivatives.

The proof of this proposition is given in the Appendix. Our assumptions on
the function set F are as follows:

Assumption 3 (Assumptions on the Function Set) Assume that F ⊂
B(X ; Qmax) for Qmax > 0 and VF× < +∞.

Let us now turn to the definition of the quantities measuring the ap-
proximation power of F . Like in regression, we need F to be sufficiently
powerful to closely approximate the evaluation functions of the policies en-
countered during the iterations. We shall define the approximation power
of the function space in terms of two measures, its inherent Bellman-error
and its inherent one-step Bellman-error.

The Bellman-error of an action-value function Q w.r.t. a policy eval-
uation operator T π is commonly defined as the supremum norm of the
difference Q − T πQ in analogy with the definition where the operators act
on state-value functions. If the Bellman-error is small then Q is close to the
fixed point of T π thanks to T π being a contraction. Hence, it is natural to
expect that the final error of fitted policy iteration will be small if for all
policies π encountered during the run of the algorithm, we can find some
admissible action-value function Q ∈ FL such that Q − T πQ is small. For
a fixed policy π, the quantity

E∞(FL; π) = inf
Q∈FL

‖Q − T πQ‖ν
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can be used to measure the power of F in this respect (see Figure 4). Since
we do not know in advance the policies seen during the execution of the
algorithm, taking a pessimistic approach, we characterize the approximation
power of F in terms of

E∞(FL)
def
= sup

Q′∈FL

E∞(FL; π̂(·; Q′)),

called the inherent Bellman-error of F . The subindex ‘∞’ is meant to convey
the view that the fixed points of an operator can be obtained by repeating
the operator an infinite number of times.

Another related quantity is the inherent one-step Bellman-error of F .
For a fixed policy π, the one-step Bellman-error of F w.r.t. T π is defined as
the deviation of FL from T πFL:

E1(F
L; π) = sup

Q∈FL

inf
Q′∈FL

‖Q′ − T πQ‖ν .

The right-hand subfigure of Figure 4 illustrates this concept. Taking again
a pessimistic approach, the inherent one-step Bellman-error of F is defined
as

E1(F
L) = sup

Q′′∈FL

E1(F
L; π̂(·; Q′′)).

The rationale of the ‘one-step’ qualifier is that T π is applied only once
and then we look at how well the function in the resulting one-step image-
space can be approximated by elements of FL. It is the additional term,
‖h − T πf‖ν that we subtracted in (5) to the unmodified Bellman-error that
causes the inherent one-step Bellman-error to enter our bounds.

The final error will actually depend on the squared sum of the inherent
Bellman-error and the inherent one-step Bellman-error of F :

E2(FL) = E2
∞(FL) + E2

1(FL).

E(FL) is called the total inherent Bellman-error of F .
We are now ready to state the main result of the paper:

Theorem 4 (Finite-sample Error Bounds) Let (X ,A, P, S, γ) be a dis-
counted MDP satisfying Assumption 1. In particular, let Rmax denote a
bound on the expected immediate rewards and let R̂max denote a bound on
the random immediate rewards. Fix the set of admissible functions F satis-
fying Assumption 3 with Qmax ≤ Rmax/(1−γ). Consider the fitted policy it-
eration algorithm with the modified Bellman-residual minimization criterion
defined by (8) and the input {(Xt, At, Rt)}, satisfying the mixing assump-
tion, Assumption 2. Let Qk ∈ FL be the kth iterate (k = −1, 0, 1, 2, . . .) and
let πk+1 be greedy w.r.t. Qk. Choose ρ ∈ M(X ), a measure used to evaluate
the performance of the algorithm and let 0 < δ ≤ 1. Then

‖Q∗ − QπK‖ρ ≤

2γ

(1 − γ)2

(
C1/2

ρ,ν



E(FL) +

(
ΛN ( δ

K ) (ΛN ( δ
K )/b ∨ 1)1/κ

C2N

)1/4


+ γK/2 Rmax

)

(18)
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holds with probability at least 1−δ. Here E(FL) is the total inherent Bellman-
error of F , ΛN (δ) quantifies the dependence of the estimation error on N ,
δ, and the capacity of the function set F :

ΛN (δ) = V
2 log N + log(e/δ) + log+ (C1C

V/2
2 ∨ β),

V being the “effective” dimension of F :

V = 3LVF+ + L2VF× ,

L2 = L(L − 1),

log C1 = V log

(
512eQmaxR̃max

Lπb0

)
+ VF× L2 log L2 + VF+ L log 2 + L2

+L2 log(VF× + 1) + L log(VF+ + 1) + 2 log(LVF+ + 1) + 2 log(4e),

C2 =
1

2

(
Lπb0

32R̃2
max

)2

,

and
R̃max = (1 + γ)Qmax + R̂max.

Further, ‖Q∗ − QπK‖∞ can be bounded with probability at least 1 − δ by a

bound identical to (18), except that C
1/2
ρ,ν has to be replaced by C

1/2
ν .

Before developing the proof, let us make some comments on the form
of the bound (18). The bound has three terms, the first two of which are
similar to terms that should be familiar from regression function estimation:
In particular, the first term that depends on the total inherent Bellman-
error of F , E(FL), quantifies the approximation power of F as discussed
beforehand. The next term, apart from logarithmic and constant factors
and terms and after some simplifications can be written in the form

(
(V log N + log(K/δ))1+1/κ

N

)1/4

.

This term bounds the estimation error. Note that the rate obtained (as a
function of the number of samples, N) is worse than the best rates available
in the regression literature. However, we think that this is only a proof arti-
fact. Just like in regression, using a different proof technique (cf. Chapter 11
of Györfi et al., 2002), it seems possible to get a bound that scales with the
reciprocal of the square-root of N , though this has the price that E(FL) is
replaced by (1 + α)E(FL) with α > 0. The last term does not have a coun-
terpart in regression settings, as it is a bound on the error remaining after
running the policy iteration algorithm for a finite number (K) of iterations.
It can be readily observed that the optimal value of K will depend amongst
other factors on the capacity of the function set, the mixing rate, and the
number of samples. However, it will not depend on the approximation-power
of the function set.
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Finally, let us comment on the multipliers of the bound. The multiplier
2γ/(1−γ)2 appears in previous L∞-performance bounds for policy iteration,
too (cf. Bertsekas and Tsitsiklis, 1996). As discussed previously, the concen-

trability coefficient, C
1/2
ρ,ν , enters the bound due to the change-of-measure

argument that we use when we propagate the error bounds through the
iterations.

Note that a bound on the difference of the optimal action-value function,
Q∗, and the action-value function of πK , QπK , does not immediately yield a
bound on the difference of V ∗ and V πK . However, with some additional work
(by using similar techniques to the ones used in the proof of Theorem 4) it is
possible to derive such a bound by starting with the elementary point-wise
bound

|V ∗ − V πK | ≤ Eπ∗

(Q∗ − QπK−1 + QπK−1 − QK−1)

+EπK (QK−1 − QπK−1 + QπK−1 − Q∗ + Q∗ − QπK ).

For the sake of compactness this bound is not explored here in further
details.

The following sections are devoted to develop the proof of the above
theorem.

4.1 Bounds on the Error of the Fitting Procedure

The goal of this section is to derive a bound on the error introduced due
to using a finite sample in the main optimization routine minimizing the
(modified) sample-based Bellman-residual criterion defined by (7). If the
samples were identically distributed and independent of each other, we could
use the results developed for empirical processes (e.g., Pollard’s inequality)
to arrive at such a bound. However, since the samples are dependent these
tools cannot be used. Instead, we will use the blocking device of Yu (1994).
For simplicity assume that N = 2mNkN for appropriate positive integers
mN , kN (the general case can be taken care of as was done by Yu, 1994).
The technique of Yu partitions the samples into 2mN blocks, each having
kN samples. The samples in every second block are replaced by “ghost”
samples whose joint marginal distribution is kept the same as that of the
original samples (for the same block). However, these new random variables
are constructed such that the new blocks are independent of each other. In
order to keep the flow of the developments continuous, the proofs of the
statements of these results are given in the Appendix.

We start with the following lemma, which refines a previous result of
Meir (2000):

Lemma 5 Suppose that Z1, . . . , ZN ∈ Z is a stationary β-mixing process
with mixing coefficients {βm}, Z ′

t ∈ Z (t ∈ H) are the block-independent
“ghost” samples as done by Yu (1994), and H = { 2ikN + j : 0 ≤ i < mN , 1 ≤ j ≤ kN },
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and that F is a permissible class of Z → [−K, K] functions. Then

P

(
sup
f∈F

∣∣∣∣∣
1

N

N∑

t=1

f(Zt) − E [f(Z1)]

∣∣∣∣∣ > ε

)

≤ 16E [N1(ε/8,F , (Z ′
t; t ∈ H))] e−

mN ε2

128K2 + 2mNβkN +1.

Note that this lemma is based on the following form of a lemma due to
Yu (1994). This lemma is stated without a proof:5

Lemma 6 (Yu, 1994, 4.2 Lemma) Suppose that Hi = { 2kN (i − 1) + j : 1 ≤ j ≤ kN },
{Zt}, {Z ′

t}, and H =
⋃mN

i=1 Hi are as in Lemma 5, and that F is a permis-
sible class of bounded Z → R functions. Then

P

(
sup
f∈F

∣∣∣∣∣
1

N

N∑

t=1

f(Zt)

∣∣∣∣∣ > ε

)
≤ 2P

(
sup
f∈F

∣∣∣∣∣
1

N

mN∑

i=1

∑

t∈Hi

f(Z ′
t)

∣∣∣∣∣ >
ε

2

)
+2mNβkN +1.

Let us now develop the tools used to bound the capacity of the function
set of interest. For this, let Ξ be a family of partitions of X . By a partition
of X we mean an ordered list of disjoint subsets of X whose union covers X .
Note that the empty set may enter multiple times the list. Following Nobel
(1996), we define the cell count of a partition family Ξ by

m(Ξ) = max
ξ∈Ξ

| {A ∈ ξ : A 6= ∅ } |.

We will work with partition families that have finite cell counts. Note that
we may always achieve that all partitions have the same number of cells by
introducing the necessary number of empty sets. Hence, in what follows we
will always assume that all partitions have the same number of elements. For
x1:N ∈ XN , let ∆(x1:N , Ξ) be the number of distinct partitions (regardless
the order) of x1:N that are induced by the elements of Ξ. The partitioning
number of Ξ, ∆∗

N (Ξ), is defined as max
{

∆(x1:N , Ξ) : x1:N ∈ XN
}
. Note

that the partitioning number is a generalization of shatter-coefficient.
Given a class G of real-valued functions on X and a partition family Ξ

over X , define the set of Ξ-patched functions of G as follows:

G ◦ Ξ =




 f =
∑

Aj∈ξ

gjI{Aj} : ξ = {Aj} ∈ Ξ, gj ∈ G




 .

Note that from this, (16), and (17), we have F∨ = F ◦ΞF ,L. We quote here
a result of Nobel (with any domain X instead of R

s and with minimized
premise):

5 Note that both Yu (1994) and Meir (2000) give a bound that contains βkN

instead of βkN +1 which we have here. Actually, a careful investigation of the
original proof of Yu (1994) leads to the bound that is presented here.
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Proposition 7 (Nobel, 1996, Proposition 1) Let Ξ be any partition fam-
ily with m(Ξ) < ∞, G be a class of real-valued functions on X , x1:N ∈ XN .
Let φN : R

+ → R
+ be a function that upper-bounds the empirical covering

numbers of G on all subsets of the multi-set [x1, . . . , xN ] at all scales:

N1(ε,G, A) ≤ φN (ε), A ⊂ [x1, . . . , xN ], ε > 0.

Then, for any ε > 0,

N1(ε,G ◦ Ξ, x1:N ) ≤ ∆(x1:N , Ξ)φN (ε)m(Ξ) ≤ ∆∗
N (Ξ)φN (ε)m(Ξ). (19)

For the arbitrary sets A, B, let A △ A denote the symmetric difference
of A and B. In our next result we refine this bound by replacing the parti-
tioning number by the covering number of the partition family:

Lemma 8 Let Ξ, G, x1:N , φN : R
+ → R

+ be as in Proposition 7. More-
over, let G be bounded: ∀g ∈ G, |g| ≤ K. For ξ = {Aj}, ξ′ = {A′

j} ∈ Ξ,
introduce the semi-metric

d(ξ, ξ′) = dx1:N (ξ, ξ′) = µN (ξ △ ξ′),

where

ξ △ ξ′ =
{

x ∈ X : ∃j 6= j′; x ∈ Aj ∩ A′
j′
}

=

m(Ξ)⋃

j=1

Aj △ A′
j ,

and where µN is the empirical measure corresponding to x1:N defined by
µN (A) = 1

N

∑N
i=1 I{xi∈A} (here A is any measurable subset of X ). Then,

for any ε > 0, α ∈ (0, 1),

N1(ε,G ◦ Ξ, x1:N ) ≤ N
( αε

2K
, Ξ, dx1:N

)
φN ((1 − α)ε)m(Ξ).

Note that from this latter bound, provided that φN is left-continuous, the
conclusion of Proposition 7 follows in the following limiting sense: Since
N (ε, Ξ, dx1:N ) ≤ ∆(x1:N , Ξ) holds for any ε > 0, we have

N1(ε,G ◦ Ξ, x1:N ) ≤ ∆(x1:N , Ξ)φN ((1 − α)ε)m(Ξ).

Thus, letting α → 0 yields the bound (19).
Lemma 8 is used by the following result that develops a capacity bound

on the function set of interest:

Lemma 9 Let F be a class of uniformly bounded functions on X (∀f ∈ F ,
|f | ≤ K), x1:N ∈ XN , φN : R

+ → R
+ be an upper-bound on the empirical

covering numbers of F on all subsets of the multi-set [x1, . . . , xN ] at all
scales as in Proposition 7. Let G1

2 denote the class of indicator functions
I{f1(x)≥f2(x)} : X → {0, 1} for any f1, f2 ∈ F . Then for F∨ defined in (17),
L2 = L(L − 1), for every ε > 0, α ∈ (0, 1),

N1(ε,F
∨, x1:N ) ≤ N1

(
αε

L2K
,G1

2 , x1:N

)L2

φN ((1 − α)ε)L.
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We shall use the following lemma due to Haussler (1995) (see also, An-
thony and Bartlett, 1999, Theorem 18.4) to bound the empirical covering
numbers of our function sets in terms of their pseudo-dimensions:

Proposition 10 (Haussler, 1995, Corollary 3) For any set X , any points
x1:N ∈ XN , any class F of functions on X taking values in [0, K] with
pseudo-dimension VF+ < ∞, and any ε > 0,

N1(ε,F , x1:N ) ≤ e(VF+ + 1)

(
2eK

ε

)VF+

.

Define
Ẽ2

1(FL; π) = E2
1(FL; π) − inf

f,h∈FL
‖h − T πf‖2

ν .

Certainly, Ẽ2
1(FL; π) ≤ E2

1 (FL; π). The following lemma is the main result
of this section:

Lemma 11 Let Assumption 1 and 2 hold, and fix the set of admissible
functions F satisfying Assumption 3. Let Q′ be a real-valued random func-
tion over X × A, Q′(ω) ∈ FL (possibly not independent from the sample
path). Let π̂ = π̂(·; Q′) be a policy that is greedy w.r.t. Q′. Let f ′ be defined
by

f ′ = argmin
f∈FL

sup
h∈FL

L̂N (f, h; π̂).

For 0 < δ ≤ 1, N ≥ 1, with probability at least 1 − δ,

∥∥f ′ − T π̂f ′
∥∥2

ν
≤ E2

∞(FL; π̂) + Ẽ2
1(FL; π̂) +

√
ΛN (δ)(ΛN (δ)/b ∨ 1)1/κ

C2N
,

where ΛN (δ) and C2 are defined as in Theorem 4. Further, the bound re-
mains true if E2

∞(FL; π̂) + Ẽ2
1 (FL; π̂) above is replaced by E2(FL).

By considering the case when γ = 0 and L = 1 we get an interesting
side-result for regression function estimation (we use r = r(x) since there
are no actions):

Corollary 12 Let Assumption 1 hold. Assume that {(Xt, Rt)}t=1,...,N is
the sample path, {Xt} is strictly stationary (Xt ∼ ν ∈ M(X )) and β-mixing
with exponential rate (β, b, κ). Assume that F ⊂ B(X ; Qmax) for Qmax ≥ 0
and VF+ < ∞. Let f ′ be defined by

f ′ = argmin
f∈F

1

N

N∑

t=1

(f(Xt) − Rt)
2.

Then, for 0 < δ ≤ 1, N ≥ 1, with probability at least 1 − δ,

‖f ′ − r‖
2
ν ≤ inf

f∈F
‖f − r‖2

ν +

√
ΛN(δ)(ΛN (δ)/b ∨ 1)1/κ

C2N
,

where ΛN (δ) = (VF+/2 ∨ 1) log N + log(e/δ) + log+ (C1C
VF+/2
2 ∨ β), C1 =

16e(VF+ + 1)(128eQmaxR̃max)
VF+ , C2 =

(
1

32R̃2
max

)2

, R̃max = Qmax + R̂max.
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4.2 Propagation of Errors

The main result of the previous section shows that if the approximation
power of F is good enough and the number of samples is high then for any
policy π the optimization procedure will return a function Q with small
weighted error. Now, let Q0, Q1, Q2, . . . denote the iterates returned by our
algorithm, with Q−1 being the initial action-value function:

Qk = argmin
Q∈FL

sup
h∈FL

L̂N(Q, h; πk), k = 0, 1, 2, . . . ,

πk = π̂(·; Qk−1), k = 0, 1, 2, . . . .

Further, let

εk = Qk − T πkQk, k = 0, 1, 2, . . . (20)

denote the Bellman-residual of the kth step. By the main result of the pre-
vious section, in any iteration step k the optimization procedure will find
with high probability a function Qk such that ‖εk‖

2
ν is small. The purpose

of this section is to bound the final error as a function of the intermediate
errors. This is done in the following lemma without actually making any
assumptions about how the sequence Qk is generated:

Lemma 13 Let p ≥ 1, and let K be a positive integer, Qmax ≤ Rmax/(1 −
γ). Then, for any sequence of functions {Qk} ⊂ B(X ; Qmax), 0 ≤ k < K
and εk defined by (20) the following inequalities hold:

‖Q∗ − QπK‖p,ρ ≤
2γ

(1 − γ)2

(
C1/p

ρ,ν max
0≤k<K

‖εk‖p,ν + γK/p Rmax

)
, (21)

‖Q∗ − QπK‖∞ ≤
2γ

(1 − γ)2

(
C1/p

ν max
0≤k<K

‖εk‖p,ν + γK/p Rmax

)
. (22)

Proof We have Cν ≥ Cρ,ν for any ρ. Thus, if the bound (21) holds for
any ρ, choosing ρ to be a Dirac at each state implies that (22) also holds.
Therefore, we only need to prove (21).

Let

Ek = P πk+1(I − γP πk+1)−1 − P π∗

(I − γP πk)−1.

Closely following the proof of Lemma 4 in (Munos, 2003) we get

Q∗ − Qπk+1 ≤ γP π∗

(Q∗ − Qπk) + γEkεk.

Thus, by induction,

Q∗ − QπK ≤ γ

K−1∑

k=0

(γP π∗

)K−k−1Ekεk + (γP π∗

)K (Q∗ − Qπ0). (23)

Now, let

Fk = P πk+1(I − γP πk+1)−1 + P π∗

(I − γP πk)−1.
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By taking the absolute value point-wise in (23) we get

Q∗ − QπK ≤ γ

K−1∑

k=0

(γP π∗

)K−k−1Fk|εk| + (γP π∗

)K |Q∗ − Qπ0 |.

From this, using the fact that Q∗ − Qπ0 ≤ 2
1−γ Rmax1, we arrive at

|Q∗ − QπK | ≤
2γ(1 − γK+1)

(1 − γ)2

[
K−1∑

k=0

αkAk|εk| + αKAKRmax1

]
. (24)

Here we introduced the positive coefficients

αk =
(1 − γ)γK−k−1

1 − γK+1
, for 0 ≤ k < K, and αK =

(1 − γ)γK

1 − γK+1
,

and the operators

Ak =
1 − γ

2
(P π∗

)K−k−1Fk, for 0 ≤ k < K, and AK = (P π∗

)K .

Note that
∑K

k=0 αk = 1 and the operators Ak are stochastic when considered
as a right-linear operators. It is clear that Ak are non-negative: AkQ ≥ 0
whenever Q ≥ 0. It is also clear that Ak are linear operators. It remains to
see that they are stochastic, i.e., that (Ak1)(x, a) = 1 holds for all (x, a) ∈
X × A. From the definition of Ak it is easy to see that it suffices to check
that 1−γ

2 Fk is stochastic. For this, it suffices to notice that (1 − γ)(I −
γP πk+1)−1 and (1 − γ)(I − γP πk)−1 are stochastic. This follows, however,
by, e.g., the Neumann-series expansion of these inverse operators. It is known
that Jensen’s inequality holds for stochastic operators: If A is a stochastic
operator and g is a convex function then g(AkQ) ≤ Ak(g ◦ Q), where g is
applied point-wise, as is done the comparison between the two sides.

Let λK =
[

2γ(1−γK+1)
(1−γ)2

]p
. Taking the pth power of both sides of (24),

using Jensen’s inequality twice and then integrating both sides w.r.t. ρ(x, a)
(using ρ’s extension to X ×A defined by (3)) we get

‖Q∗ − QπK‖p
p,ρ =

1

L

∑

a∈A

∫
ρ(dx) |Q∗(x, a) − QπK (x, a)|p

≤ λK ρ

[
K−1∑

k=0

αkAk|εk|
p + αKAK(Rmax)

p1

]
,

where we used the shorthand notation introduced in (2). From the definition
of the coefficients cρ,ν(m),

ρAk ≤ (1 − γ)
∑

m≥0

γmcρ,ν(m + K − k)ν
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and hence

‖Q∗ − QπK‖p
p,ρ

≤ λK



(1 − γ)

K−1∑

k=0

αk

∑

m≥0

γmcρ,ν(m + K − k) ‖εk‖
p
p,ν + αK (Rmax)

p



 .

Let ε
def
= max0≤k<K ‖εk‖p,ν . Using the definition of αk, Cρ,ν and λK we

get

‖Q∗ − QπK‖p
p,ρ ≤ λK

[
1

1 − γK+1
Cρ,ν εp +

(1 − γ)γK

1 − γK+1
(Rmax)

p

]

≤ λK

[
Cρ,ν εp + γK (Rmax)

p
]

≤
[

2γ
(1−γ)2

]p [
Cρ,ν εp + γK (Rmax)

p
]
,

leading to the desired bound:

‖Q∗ − QπK‖p,ρ ≤
2γ

(1 − γ)2
C1/p

ρ,ν ε + γK/p Rmax.⊓⊔

4.3 Proof of the Main Result

Now we are ready to prove Theorem 4.

Proof As in the case of the previous proof, we only need to prove the state-
ment for the weighted ρ-norm.

Fix N, K > 0, and let ρ and F be as in the statement of Theorem 4.
Consider the iterates Qk generated by model-free policy iteration with PEval
defined by (8), when running on the trajectory {(Xt, At, Rt)} generated
by some stochastic stationary policy πb. Let ν be the invariant measure
underlying the stationary process {Xt}. Let πK be a policy greedy w.r.t.
QK . Our aim is to derive a bound on the distance of QπK and Q∗. For
this, we use Lemma 13. Indeed, if one defines εk = Qk − T πkQk then by
Lemma 13 with p = 2,

‖Q∗ − QπK‖ρ ≤
2γ

(1 − γ)2

(
C1/2

ρ,ν max
0≤k<K

‖εk‖ν + γK/2 Rmax

)
. (25)

Now, from Lemma 11, we conclude that for any fixed integer 0 ≤ k < K
and for any δ′ > 0,

‖εk‖ν ≤ E(FL) +

(
ΛN (δ′) (ΛN (δ′)/b ∨ 1)1/κ

C2N

)1/4

(26)

holds everywhere except on a set of probability at most δ′. (ΛN (δ′) and
C2 are defined as in the theorem.) Take δ′ = δ/K. By the choice of δ′,
the total probability of the set of exceptional events for 0 ≤ k < K is at
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most δ. Outside of this failure set, we have that Equation (26) holds for all
0 ≤ k < K. Combining this with (25), we get

‖Q∗ − QπK‖ρ ≤

2γ

(1 − γ)2

(
C1/2

ρ,ν




E(FL) +





ΛN ( δ
K )

(
ΛN (

δ
K )

b ∨ 1

)1/κ

C2N





1/4


+ γ

K
2 Rmax

)
,

thus finishing the proof of the weighted-norm bound. ⊓⊔

5 Related Work

The idea of using value function approximation goes back to the early days
of dynamic programming (Samuel, 1959; Bellman and Dreyfus, 1959). With
the recent growth of interest in reinforcement learning, work on value func-
tion approximation methods flourished (Bertsekas and Tsitsiklis, 1996; Sut-
ton and Barto, 1998). Recent theoretical results mostly concern supremum-
norm approximation errors (Gordon, 1995; Tsitsiklis and Van Roy, 1996),
where the main condition on the way intermediate iterates are mapped (pro-
jected) to the function space is that the corresponding operator, Π , must
be a non-expansion. Practical examples when Π satisfies the said property
include certain kernel-based methods, see, e.g., the works by Gordon (1995);
Tsitsiklis and Van Roy (1996); Guestrin et al. (2001); Ernst et al. (2005).
However, the restriction imposed on Π rules out many popular algorithms,
such as regression-based approaches that were found, however, to behave
well in practice (e.g., Wang and Dietterich, 1999; Dietterich and Wang,
2002; Lagoudakis and Parr, 2003). The need for analyzing the behaviour of
such algorithms provided the basic motivation for this work.

To the best of our knowledge there are no previous theoretical results on
the finite-sample performance of off-policy control-learning algorithms for
infinite horizon problems that use function-approximation and learn from
a single trajectory. In fact, the only paper where finite-sample bounds are
derived in an off-policy setting and which uses function approximators is the
paper by Murphy (2005) who considered fitted Q-iteration in finite-horizon,
undiscounted problems. A major relief that comes from the finite-horizon
assumption is that the training data consists of multiple independent tra-
jectories. As a result the samples for any fixed stage are independent of each
other. Proceeding backwards via a stage-wise analysis it is then possible to
eliminate the complications resulting from working with dependent samples
completely.

Another interesting theoretical development concerning off-policy con-
trol learning with value-function approximation is the paper by Ormoneit
and Sen (2002) who considered kernel-regression in conjunction with Q-
learning and obtained asymptotic rates on weak-convergence. Q-learning
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with interpolative function approximation was considered by Szepesvári and
Smart (2004), where only asymptotic convergence and performance bounds
were given. Both these works carry out the analysis with respect to the
L∞ norm and exploit that the function-approximation operator Π is a non-
expansion. Precup et al. (2001) considers the use of likelihood ratios to
evaluate policies and arrive at asymptotic convergence results, though only
for policy evaluation.

As to the methods, the closest to the present work is the paper of
Szepesvári and Munos (2005). However, unlike there here we dealt with
a fitted policy iteration algorithm and worked with dependent samples and
a single sample-path. All these resulted in a much more complex analysis
and the need to develop new tools: For dealing with dependant data, we
used the blocking device originally proposed by Yu (1994). We had to intro-
duce a new capacity concept to deal with the complications arising from the
use of policy iteration. The error propagation technique used in Section 4.2
is an extension of a similar technique due to Munos (2003). However, while
the analysis in Munos (2003) was restricted to the case when the transition
probability kernel is point-wise absolute continuous w.r.t. the stationary
distribution of the states (i.e., under the assumption Cν < +∞), here the
analysis was carried out under a weaker condition (namely, Cρ,ν < ∞). Al-
though this condition was studied earlier by Szepesvári and Munos (2005),
but only for analyzing approximate value iteration.

6 Conclusions and Future Work

We have considered fitted policy iteration with Bellman-residual minimiza-
tion. To our best knowledge this is the first theoretical paper where high-
probability finite-sample bounds are derived on the performance of a rein-
forcement learning algorithm for infinite-horizon control learning in an off-
policy setting, using function approximators over a continuous state-space.
In order to derive our results we had to introduce a novel sample-based
approximation to the Bellman-residual criterion, a capacity concept, deal
with dependent samples, and work out a method to propagate weighted
norm errors in a policy iteration setting. Our main result quantifies the de-
pendency of the final error on the number of samples, the mixing rate of the
process, the average-discounted concentrability of the future-state distribu-
tion, the number of iterations, the capacity and the approximation power
of the function set used in the embedded least-squares problem.

Although we believe that the present work represents a significant step
towards understanding what makes efficient reinforcement learning possible,
it appears that much remains to be done.

Although we made some initial steps towards finding out the properties
of VC-crossing dimensions, bounds on the VC-crossing dimension of pop-
ular function classes, such as regression trees or neural networks are yet to
be seen. The present work also leaves open the question of how to design
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appropriate function sets that have controlled capacity but large approxi-
mation power. When the MDP is noisy and the dynamics is “smooth” then
it is known that the class of value functions of all stationary policies will be
uniformly smooth. Hence, for such MDPs, at least in theory, as the sample
size growth to infinity by choosing a sequence of increasing function sets
whose union covers the space of smooth functions (like in the method of
sieves in regression) it is possible to recover the optimal policy with the
presented method. One open question is how to design a method that adap-
tively chooses the function set so as to fit the actual smoothness of the
system. One idea, borrowed from the regression literature, is to use penal-
ized least-squares. It remains to be seen if this method is indeed capable to
achieve adaptation to unknown smoothness.

Another possibility is to use different function sets for the representation
of the fixed point candidates and the auxiliary function candidates, or in the
successive iterations of the algorithm. How to choose these function sets?
Also, at many points in the analysis we took a pessimistic approach (e.g.,
in the derandomization of F∨

π̂ or when bounding the approximation error).
It might be possible to improve our bounds by a great extent by avoiding
these pessimistic steps.

One major challenge is to extend our results to continuous action spaces
as the present analysis heavily builds on the finiteness of the action set.

It would also be desirable to remove the condition that the function set
must admit a bounded envelope. One idea is to use the truncation tech-
nique of Chapter 11 by (Györfi et al., 2002) for this purpose. The technique
presented there could also be used to try to improve the rate of our current
estimate. Borrowing further ideas from the regression literature, it might
be possible to achieve even greater improvement by, e.g., using localization
techniques or data-dependent bounds.

Although in this paper we considered Bellman-residual minimization,
the techniques developed could be applied to least-squares fixed point ap-
proximation based approaches such as the LSPI algorithm of Lagoudakis
and Parr (2003), or least-squares fitted Q-iteration considered recently by
Ernst et al. (2005). Another direction is to relax the condition that the
states are observable. Indeed, this assumption can be lifted easily since the
algorithm never works directly with the states. The assumption that the tra-
jectory is sufficient representative certainly fails when the behaviour policy
does not sample all actions with positive probability in all states. Still, the
result can be extended to this case, but the statement has to be modified ap-
propriately since it is clear that in this case convergence to near-optimality
cannot be guaranteed.

Finally, it would be interesting to compare the result that we obtained
with γ = 0 and L = 1 for the regression-case (Corollary 12) with similar
results available in the regression literature. In connection to this, let us
remark that our method applies and can be used to derive bounds to the
solution of inverse problems of the form Pf = r, f =? with P being a
stochastic operator and when the data consists of samples from r and P .
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Appendix

6.1 Proofs of the Auxiliary Lemmata

Proof of Proposition 3. a) Since VF+ is the VC-dimension of the
subgraphs of functions in F , there exist VF+ points, z1,. . . ,zV

F+
in X ×

R that are shattered by these subgraphs (see, e.g., Devroye et al., 1996
or Anthony and Bartlett, 1999). This can happen only if the projections,
x1,. . . ,xVF+ , of these points to X × {0} are all distinct. Now, for any A ⊆
{x1,. . . ,xVF+ }, there is an f1 ∈ F such that f1(xi) > zi for xi ∈ A and
f1(xi) ≤ zi for xi 6∈ A, and also there is an f2 ∈ F such that f2(xi) ≤ zi

for xi ∈ A and f2(xi) > zi for xi 6∈ A. That is, f1(xi) > f2(xi) for xi ∈ A
and f1(xi) < f2(xi) for xi 6∈ A. Thus, the set in C2 corresponding to (f1, f2)
contains exactly the same xi’s as A does. This means that x1,. . . ,xV

F+
is

shattered by C2, that is, VF× = VC2 ≥ VF+ . The second part of the statement
is obvious.

b) According to Theorem 11.4 of Anthony and Bartlett (1999), VF+ =
dim(F). On the other hand, since now for f1,f2 ∈ F also f1 − f2 ∈ F , it
is easy to see that C2 = { { x ∈ X : f(x) ≥ 0 } : f ∈ F }. By taking g ≡ 0
in Theorem 3.5 of Anthony and Bartlett (1999), we get the desired VF× =
VC2 = dim(F). The second statement follows obviously.

c) Let F =
{

I{(a,∞)} : a ∈ R
}
. Then VF× = 2 and F generates an

infinite dimensional vector space.
d) Let X = [0, 1]. Let {aj} be monotonously decreasing with

∑∞
j=1 aj =

1, 0 ≤ aj ≤ 1/ log2 j, and 3aj+1 > aj . For an integer n ≥ 2, let k ≥ 1 and
0 ≤ i ≤ 2k − 1 be the unique integers defined by n = 2k + i. Define

fn(x) = x +

n∑

j=1

aj and

f̃n(x) = x +

n∑

j=1

aj +
an

4
(−1)⌊i/2⌊kx⌋⌋ sin2(kπx),

where π = 3.14159.. is Ludolf’s number. Certainly, fn and f̃n are both dif-
ferentiable. Note that an ≤ a2k ≤ 1/k, thus the gradient of the last term of
f̃n(x) is bounded in absolute value by kπ/(4k) < 1. Hence the functions f̃n

(and obviously fn) are strictly monotonously increasing, and have range in

[0, 2]. Let F1 = { fn : n ≥ 2 }, F̃1 =
{

f̃n : n ≥ 2
}
, and F = F1 ∪ F̃1. F is

certainly countable. By the monotonicity of fn and f̃n, the VC-dimension
of { { x ∈ X : f(x) ≥ a } : f ∈ F , a ∈ R } is 1. Observe that the sequence
fn is point-wise monotonously increasing also in n, and this remains true
also for f̃n, since the last modifying term is negligible (less than an/4 in
absolute value). (Moreover, for any n,n′, n > n′, fn > f̃n′ and f̃n > fn′

everywhere.) This point-wise monotonicity implies that VF+
1

= VF̃+
1

= 1,

and thus VF+ ≤ 3. On the other hand, since
{

x ∈ X : f̃n(x) ≥ fn(x)
}

=
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{
x ∈ X : (−1)⌊i/2⌊kx⌋⌋ ≥ 0

}
=
{

x ∈ X : ⌊i/2⌊kx⌋⌋ is even
}
, C2 ⊇

{{
x ∈ X : f̃n(x) ≥ fn(x)

}
: n ≥ 2

}
=

{{
x ∈ X : ⌊i/2⌊kx⌋⌋ is even

}
: n ≥ 2

}
, and this class contains the unions

of {1} and any of the intervals {[0, 1/k), [1/k, 2/k), . . . [1−1/k, 1)} for any k.
Thus it shatters the points {0, 1/k, 2/k, . . .1−1/k}, hence VF× = VC2 = ∞.
⊓⊔

Proof of Lemma 5. Define the block-wise functions f̄ : ZkN → R as

f̄(z1:kN ) = f̄(z1, . . . , zkN )
def
=

kN∑

t=1

f(zt)

for f ∈ F and z1:kN = (z1, . . . , zkN ) and let F̄
def
=
{

f̄ : f ∈ F
}
.

We use Lemma 6 of Yu to replace the original process by the block-
independent one, implying

P

(
sup
f∈F

∣∣∣∣∣
1

N

N∑

t=1

f(Zt) − E [f(Z1)]

∣∣∣∣∣ > ε

)

= P

(
sup
f∈F

∣∣∣∣∣
1

N

N∑

t=1

(f(Zt) − E [f(Z1)])

∣∣∣∣∣ > ε

)

≤ 2P

(
sup
f∈F

∣∣∣∣∣
1

N

mN∑

i=1

(f̄(Z ′(i)) − kNE [f(Z1)])

∣∣∣∣∣ >
ε

2

)
+ 2mNβkN +1

= 2P

(
sup
f∈F

∣∣∣∣∣
1

mN

mN∑

i=1

f̄(Z ′(i)) − kNE [f(Z1)]

∣∣∣∣∣ > kNε

)
+ 2mNβkN +1.(27)

Here Z ′(i) def
= {Z ′

t}t∈Hi = (Z ′
2kN (i−1)+1, . . . , Z

′
2kN (i−1)+kN

).

Now, since any f̄ ∈ F̄ is bounded by kNK, Pollard’s inequality (cf.
Pollard, 1984) applied to the independent blocks implies the bound

P

(
sup
f∈F

∣∣∣∣∣
1

mN

mN∑

i=1

f̄(Z ′(i)) − kNE [f(Z1)]

∣∣∣∣∣ > kNε

)

≤ 8E

[
N1(kNε/8, F̄, (Z ′(1), . . . , Z ′(mN )))

]
e−

mN ε2

128K2 .

(28)

Following Lemma 5.1 by Meir (2000) (or the proof of part (i) of 4.3 Lemma

of Yu (1994)), we get that for any f ,f̃ ∈ F , the distance of f̄ and
¯̃
f can be

bounded as follows:

1

mN

mN∑

i=1

|f̄(Z ′(i)) − ¯̃f(Z ′(i))| =
1

mN

mN∑

i=1

∣∣∣∣∣
∑

t∈Hi

f(Z ′
t) −

∑

t∈Hi

f̃(Z ′
t)

∣∣∣∣∣

≤
1

mN

mN∑

i=1

∑

t∈Hi

|f(Z ′
t) − f̃(Z ′

t)|

=
kN

N/2

∑

t∈H

|f(Z ′
t) − f̃(Z ′

t)|,



Policy iteration using a single sample path 35

implying6

N1(kNε/8, F̄, (Z ′(1), . . . , Z ′(mN ))) ≤ N1(ε/8,F , (Z ′
t; t ∈ H)).

This, together with (27) and (28) gives the desired bound. ⊓⊔

Proof of Lemma 8. Fix x1, . . . , xN ∈ X and ε > 0. Let Ξ̂ be an αε/(2K)-

cover for Ξ according to d such that |Ξ̂| = N
(

αε
2K , Ξ, d

)
. If f ∈ G ◦Ξ, then

there is a partition ξ = {Aj} ∈ Ξ and functions gj ∈ G such that

f =
∑

Aj∈ξ

gjI{Aj}. (29)

Let ξ′ ∈ Ξ̂ such that d(ξ, ξ′) < αε
2K , and let f ′ =

∑
A′

j∈ξ′ gjI{A′
j}

. Then

1

N

N∑

i=1

|f(xi) − f ′(xi)|

=
1

N

N∑

i=1

∣∣∣∣∣∣

∑

Aj∈ξ

gj(xi)I{xi∈Aj} −
∑

A′
j∈ξ′

gj(xi)I{xi∈A′
j}

∣∣∣∣∣∣

=
1

N

∑

i:xi∈ξ△ξ′

∣∣∣∣∣∣

∑

Aj∈ξ

gj(xi)I{xi∈Aj} −
∑

A′
j∈ξ′

gj(xi)I{xi∈A′
j}

∣∣∣∣∣∣

≤
2K

N
| { i : xi ∈ ξ △ ξ′ } | = 2Kd(ξ, ξ′)

< αε.

Let Fj be an (1 − α)ε-cover for G on Âj = {x1, . . . , xN} ∩ A′
j such that

|Fj | ≤ φN ((1−α)ε). To each function gj appearing in (29) there corresponds
an approximating function fj ∈ Fj such that

1

Nj

∑

xi∈ bAj

|gj(xi) − fj(xi)| < (1 − α)ε,

where Nj = |Âj |. If we define f ′′ =
∑

A′
j∈ξ′ fjI{A′

j}
, then it is easy to see

that

1

N

N∑

i=1

|f ′(xi) − f ′′(xi)| < (1 − α)ε.

Hence

1

N

N∑

i=1

|f(xi) − f ′′(xi)| < ε.

6 Note that neither Meir (2000), nor Yu (1994) exploit that it is enough to use
half of the ghost samples in the upper bound above. Also Meir (2000) makes a
slight mistake of considering (Z′

t; t ∈ H) below as having N (instead of N/2)
variables.
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When the functions fj ∈ Fj are suitably chosen, every function f̃ ∈ G ◦ Ξ
defined in terms of a partition closer to ξ′ than ε in d-metric can be approx-
imated by a similar estimate f ′′. Thus the collection of all such functions

f̃ can be covered on x1:N by no more than
∏|ξ′|

j=1 |Fj| ≤ φN ((1 − α)ε)|ξ
′|

approximating functions. As ξ′ is chosen from N
(

αε
2K , Ξ, d

)
partitions, the

result follows. ⊓⊔

Proof of Lemma 9. Since F∨ = F ◦ Ξ for Ξ = ΞF ,L defined in (16),

N1(ε,F
∨, x1:N ) = N1(ε,F ◦ Ξ, x1:N ).

We apply Lemma 8 to bound this by

N
( αε

2K
, Ξ, dx1:N

)
φN ((1 − α)ε)L,

where N (ε, Ξ, dx1:N ) is the ε-covering number of Ξ regarding the metric
dx1:N defined in Lemma 8.

For f : X ×A → R (f ∈ FL), define the indicator function If : X ×A →
{0, 1}

If (x, a) = I{maxa′∈A f(x,a′)=f(x,a)}

(ties should be broken in an arbitrary systematic way) and their class G ={
If : f ∈ FL

}
.

Now the distance dx1:N of two partitions in Ξ is L/2-times the L1-
distance of the corresponding two indicator functions in G regarding to the
empirical measure supported on the NL points x1:N ×A. Hence the metric
dx1:N on Ξ corresponds to this L1-metric on G. So

N (ε, Ξ, dx1:N ) = N1

(
2ε

L
,G, x1:N ×A

)
.

Furthermore, if G1
L denotes the class of indicator functions

I{maxa′∈A f(x,a′)=f1(x)} : X → {0, 1} for any f : X × A → R (f ∈ FL),
then, since the support of a function from G is the disjoint union of the
supports (on different instances of X ) of L functions from G1

L, it is easy to
see that (cf., e.g., Devroye et al. (1996, Theorem 29.6))

N1(ε,G, x1:N ×A) ≤ N1(ε,G
1
L, x1:N )L.

Now, since a function from G1
L is the product of L − 1 indicator functions

from G1
2 , it is easy to see that (cf., e.g., the generalization of Devroye et al.,

1996, Theorem 29.7, Pollard, 1990)

N1(ε,G
1
L, x1:N ) ≤ N1

(
ε

L − 1
,G1

2 , x1:N

)L−1

.

The equations above together give the bound of the lemma. ⊓⊔
We shall need the following technical lemma in the next proof:
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Lemma 14 Let βm ≤ β exp(−bmκ), N ≥ 1, kN = ⌈(C2Nε2/b)
1

1+κ ⌉, mN =
N/(2kN), 0 < δ ≤ 1, V ≥ 2, and C1, C2, β, b, κ > 0. Further, define ε and
Λ by

ε =

√
Λ(Λ/b ∨ 1)1/κ

C2N
(30)

with Λ = (V/2) log N + log(e/δ) + log+ (C1C
V/2
2 ∨ β). Then

C1

(
1

ε

)V

e−4C2mN ε2

+ 2mNβkN < δ.

Proof of Lemma 14. We have

max((C2Nε2/b)
1

1+κ , 1) ≤ kN ≤ max(2(C2Nε2/b)
1

1+κ , 1)

and so

N

4
min

(
b

C2Nε2
, 1

) 1
1+κ

≤
N

4
min

((
b

C2Nε2

) 1
1+κ

, 2

)
≤ mN =

N

2kN
≤

N

2
.

Obviously, Λ ≥ 1 and from (30),

ε ≥
√

Λ/(C2N) ≥
√

1/(C2N) and C2Nε2 = Λ(Λ/b∨ 1)1/κ. (31)

Substituting the proper bounds for βm, kN , and mN , we get

C1

(
1

ε

)V

e−4C2mN ε2

+ 2mNβkN

≤ C1

(
1

ε

)V

e
−( b

C2Nε2 ∧1)
1

1+κ C2Nε2

+ Nβe−b(
C2Nε2

b ∨1)
κ

1+κ

= C1

(
1

ε

)V

e
−( b

C2Nε2 ∧1)
1

1+κ C2Nε2

+ Nβe
−b(

C2Nε2

b ∨1)( b
C2Nε2 ∧1)

1
1+κ

≤

(
C1

(
1

ε

)V

+ Nβ

)
e
−( b

C2Nε2 ∧1)
1

1+κ C2Nε2

,

which, by (31), is upper bounded by

(
C1(C2N)V/2 + Nβ

)
e
−( b

Λ (Λ/b∨1)1/κ
∧1)

1
1+κ Λ(Λ/b∨1)1/κ

.

It is easy to check that the exponent of e in the last factor is just −Λ. Thus,

substituting Λ, this factor is N−V/2δ/(e(C1C
V/2
2 ∨ β ∨ 1)), and our bound

becomes

(
C1(C2N)V/2 + Nβ

)
N−V/2 δ

e(C1C
V/2
2 ∨ β ∨ 1)

≤ (1 + 1)
δ

e
< δ.⊓⊔
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6.2 Proof of Lemma 11

Proof Recall that (see the proof of Lemma 1) Q̂f,t = Rt+γf(Xt+1, π̂(Xt+1)),
and that, for fixed, deterministic f and π̂,

E

[
Q̂f,t|Xt, At

]
= (T π̂f)(Xt, At),

that is, T π̂f is the regression function of Q̂f,t given (Xt, At). What we have

to show is that the chosen f ′ is close to the corresponding T π̂(·;Q′)f ′ with
high probability, noting that Q′ may not be independent from the sample
path.

We can assume that |F| ≥ 2 (otherwise the bound is obvious). This
implies VF+ , VF× ≥ 1, and thus V ≥ L(L + 2) ≥ 3. Let ε and ΛN (δ) be
chosen as in (30):

ε =

√
ΛN(δ)(ΛN (δ)/b ∨ 1)1/κ

C2N

with ΛN (δ) = (V/2) log N + log(e/δ) + log+ (C1C
V/2
2 ∨ β) ≥ 1. Define

P0
def
= P

(∥∥f ′ − T π̂f ′
∥∥2

ν
− E2

∞(FL; π̂) − Ẽ2
1(FL; π̂) > ε

)
.

It follows that it is sufficient to prove that P0 < δ.

Remember that for π̂ arbitrary, we defined the following losses:

L(f ; π̂) =
∥∥f − T π̂f

∥∥2

ν
,

L(f, h; π̂) = L(f ; π̂) −
∥∥h − T π̂f

∥∥2

ν
.

Let us now introduce the following additional shorthand notations:

L(f ; Q′) = L(f ; π̂(·; Q′)),

L(f, h; Q′) = L(f, h; π̂(·; Q′)),

L̂N (f, h; Q′) = L̂N (f, h; π̂(·; Q′))

where L̂N was defined in (7). Further, define

L̄(f ; Q′)
def
= sup

h∈FL

L(f, h; Q′) = L(f ; Q′) − inf
h∈FL

∥∥h − T π̂f
∥∥2

ν
.
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Now,

∥∥f ′ − T π̂f ′
∥∥2

ν
− E2

∞(FL; π̂) − Ẽ2
1(FL; π̂)

= L(f ′; Q′) − inf
f∈FL

L(f ; Q′) − Ẽ2
1(FL; π̂)

= L̄(f ′; Q′) + inf
h∈FL

∥∥h − T π̂f ′
∥∥2

ν

− inf
f∈FL

(
L̄(f ; Q′) + inf

h∈FL

∥∥h − T π̂f
∥∥2

ν

)
− Ẽ2

1(FL; π̂)

≤ L̄(f ′; Q′) + inf
h∈FL

∥∥h − T π̂f ′
∥∥2

ν

− inf
f∈FL

L̄(f ; Q′) − inf
f,h∈FL

∥∥h − T π̂f
∥∥2

ν
− Ẽ2

1(FL; π̂)

= L̄(f ′; Q′) − L̄F ,Q′ + inf
h∈FL

∥∥h − T π̂f ′
∥∥2

ν
− sup

f∈FL

inf
h∈FL

∥∥h − T π̂f
∥∥2

ν

≤ L̄(f ′; Q′) − L̄F ,Q′ ,

where L̄F ,Q′ = inff∈FL L̄(f ; Q′) is the error of the function with minimum
loss in our class. Define also

¯̂
LN(f ; Q′)

def
= sup

h∈FL

L̂N(f, h; Q′).

Now, since f ′ = argminf∈FL
¯̂
LN(f ; Q′),

L̄(f ′; Q′) − L̄F ,Q′

= L̄(f ′; Q′) −
¯̂
LN(f ′; Q′) +

¯̂
LN(f ′; Q′) − inf

f∈FL
L̄(f ; Q′)

≤ |
¯̂
LN (f ′; Q′) − L̄(f ′; Q′)| + inf

f∈FL

¯̂
LN(f ; Q′) − inf

f∈FL
L̄(f ; Q′)

(by the definition of f ′)

≤ 2 sup
f∈FL

|
¯̂
LN (f ; Q′) − L̄(f ; Q′)|

= 2 sup
f∈FL

| sup
h∈FL

L̂N (f, h; Q′) − sup
h∈FL

L(f, h; Q′)|

≤ 2 sup
f,h∈FL

|L̂N (f, h; Q′) − L(f, h; Q′)|

≤ 2 sup
Q′,f,h∈FL

|L̂N(f, h; Q′) − L(f, h; Q′)|.

Thus we get

P0 ≤ P

(
sup

Q′,f,h∈FL

|L̂N(f, h; Q′) − L(f, h; Q′)| > ε/2

)
.

Hence, in the subsequent statements, Q′ denotes an arbitrary (deterministic)
function in FL.
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We follow the line of proof due to Meir (2000). For any f ,h,Q′ ∈ FL, de-
fine the loss function lf,h,Q′ : X ×A× [−R̂max, R̂max]×X → R in accordance
with (7) as

lf,h,Q′(z) = lf,h,Q′(x, a, r, y)

def
=

1

L

L∑

j=1

I{a=aj}

πb(aj |x)

(
|fj(x) − r − γf(y, π̂(y; Q′))|2

− |hj(x) − r − γf(y, π̂(y; Q′))|2
)

for z = (x, a, r, y) and LF
def
=
{

lf,h,Q′ : f, h, Q′ ∈ FL
}
. Introduce Zt =

(Xt, At, Rt, Xt+1) for t = 1,. . . ,N . Note that the process {Zt} is β-mixing
with mixing coefficients {βm−1}.

Observe that by (10)

lf,h,Q′(Zt) =
1

L

L∑

j=1

I{At=aj}

πb(aj |Xt)
((fj(Xt) − Q̂f,t)

2 − (hj(Xt) − Q̂f,t)
2) = L(t),

hence we have for any f ,h,Q′ ∈ FL

1

N

N∑

t=1

lf,h,Q′(Zt) = L̂N(f, h; Q′),

and (by (12))

E [lf,h,Q′(Zt)] = E

[
L(t)

]
= L(f, h; Q′)

(coincidentally with (9), but note that E

[
¯̂
LN (f ; Q′)

]
6= L̄(f ; Q′)). This

reduces the bound to a uniform tail probability of an empirical process over
LF :

P0 ≤ P

(
sup

Q′,f,h∈FL

∣∣∣∣∣
1

N

N∑

t=1

lf,h,Q′(Zt) − E [lf,h,Q′(Z1)]

∣∣∣∣∣ > ε/2

)
.

Since the samples are correlated, Pollard’s tail inequality cannot be used
directly. Hence we use the method of Yu (1994), as mentioned previously.
For this we split the N samples into 2mN blocks which come in pairs (for
simplicity we assume that splitting can be done exactly), i.e., N = 2mNkN .
Introduce the following blocks, each having the same length, kN :

Z1, . . . , ZkN︸ ︷︷ ︸
H1

, ZkN+1, . . . , Z2kN︸ ︷︷ ︸
T1

, Z2kN+1, . . . , Z3kN︸ ︷︷ ︸
H2

, Z3kN+1, . . . , Z4kN︸ ︷︷ ︸
T2

, . . .

. . . , Z(2mN−2)kN+1, . . . , Z(2mN−1)kN︸ ︷︷ ︸
HmN

, Z(2mN−1)kN+1, . . . , Z2mN kN︸ ︷︷ ︸
TmN

.
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Here Hi
def
= {2kN(i − 1) + 1, . . . , 2kN (i − 1) + kN} and Ti

def
= {2ikN − (kN −

1), . . . , 2ikN}. Next, we introduce the block-independent “ghost” samples
as it was done by Yu (1994) and Meir (2000):

Z ′
1, . . . , Z

′
kN︸ ︷︷ ︸

H1

, Z ′
2kN +1, . . . , Z

′
3kN︸ ︷︷ ︸

H2

, . . . Z ′
(2mN−2)kN +1, . . . , Z

′
(2mN−1)kN︸ ︷︷ ︸

HmN

,

where any particular block has the same marginal distribution as originally,
but the mN blocks are independent of one another. Introduce H =

⋃mN

i=1 Hi.
For this ansatz we use Lemma 5 above with Z = X ×A×R×X , F = LF

noting that any lf,h,Q′ ∈ LF is bounded by

K =
R̃2

max

Lπb0

with R̃max = (1 + γ)Qmax + R̂max, to get the bound

P

(
sup

Q′,f,h∈FL

∣∣∣∣∣
1

N

N∑

t=1

lf,h,Q′(Zt) − E [lf,h,Q′(Z1)]

∣∣∣∣∣ > ε/2

)

≤ 16E [N1(ε/16,LF , (Z ′
t; t ∈ H))] e

−
mN
2

„
Lπb0ε

16R̃2
max

«2

+ 2mNβkN .

By some calculation, the distance in LF can be bounded as follows:

2

N

∑

t∈H

|lf,h,Q′(Z ′
t) − lg,h̃,Q̃′(Z

′
t)|

≤
2R̃max

Lπb0

(
2

N

∑

t∈H

|f(X ′
t, A

′
t) − g(X ′

t, A
′
t)| +

2

N

∑

t∈H

|h̃(X ′
t, A

′
t) − h(X ′

t, A
′
t)|

+ 2
2

N

∑

t∈H

|f(X ′
t+1, π̂(X ′

t+1; Q
′)) − g(X ′

t+1, π̂(X ′
t+1; Q̃

′))|

)
.

Note that the first and second terms are D′ = ((X ′
t, A

′
t); t ∈ H)-based L1-

distances of functions in FL, while the last term is just twice the D′
+ =

(X ′
t+1; t ∈ H)-based L1-distance of two functions in F∨ corresponding to

(f, Q′) and (g, Q̃′). This leads to

N1

(
8R̃max

Lπb0
ε′,LF , (Z ′

t; t ∈ H)

)
≤ N 2

1 (ε′,FL,D′)N1(ε
′,F∨,D′

+).

Applying now Lemma 9 with α = 1/2,7 the covering number of F∨ is
bounded by

N1

(
ε′

2L2Qmax
,G1

2 ,D′
+

)L2

φN/2(ε
′/2)L,

7 The optimal choice α = VF×/(VF× + VF+/(L− 1)) would give slightly better
constants.
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where L2 = L(L − 1), G1
2 is the class of the indicator functions of the sets

from C2, and the empirical covering numbers of F on all subsets of D′
+ are

majorized by φN/2(·).
To bound these factors, we use Corollary 3 from Haussler (1995) that was

cited here as Proposition 10. The pseudo-dimensions of F and G1
2 are VF+ ,

VF× < ∞, respectively, and the range of functions from F has length 2Qmax.
By the pigeonhole principle, it is easy to see that the pseudo-dimension of
FL cannot exceed LVF+ . Thus

N1

(
8R̃max

Lπb0
ε′,LF , (Z ′

t; t ∈ H)

)
≤

(
e(LVF+ + 1)

(
4eQmax

ε′

)LVF+
)2

·

(
e(VF× + 1)

(
4eL2Qmax

ε′

)VF×
)L2

(
e(VF+ + 1)

(
8eQmax

ε′

)VF+
)L

= eL2+2(LVF+ + 1)2(VF+ + 1)L(VF× + 1)L22LVF+ L
L2VF×

2

(
4eQmax

ε′

)V

,

where V = 3LVF+ + L2VF× is the “effective” dimension, and thus

N1(ε/16,LF , (Z ′
t; t ∈ H)) ≤ eL2+2(LVF+ + 1)2(VF+ + 1)L(VF× + 1)L2 ·

· 2LVF+ L
L2VF×

2

(
512eQmaxR̃max

Lπb0ε

)V

=
C1

16

(
1

ε

)V

,

with C1 = C1(L, VF+ , VF× , Qmax, R̂max, γ, πb0). It can be easily checked
that log C1 matches the corresponding expression given in the text of the
theorem.

Putting together the above bounds we get

P0 ≤ C1

(
1

ε

)V

e−4C2mN ε2

+ 2mNβkN , (32)

where C2 = 1
2

(
Lπb0

32R̃2
max

)2

. Defining kN = ⌈(C2Nε2/b)
1

1+κ ⌉ and mN =

N/(2kN), the proof is finished by Lemma 14, which, together with (32),
implies P0 < δ.

The last statement follows obviously from Q′ ∈ FL and the definitions
of E(FL), E∞(FL), E1(F

L), and Ẽ1(F
L; π̂). ⊓⊔
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