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Abstract

An important aspect of most decision making problems concerns the appro-
priate balance between exploitation (acting optimally according to the par-
tial knowledge acquired so far) and exploration of the environment (acting
sub-optimally in order to refine the current knowledge and improve future
decisions). A typical example of this so-called exploration versus exploita-
tion dilemma is the multi-armed bandit problem, for which many strategies
have been developed. Here we investigate policies based the choice of the
arm having the highest upper-confidence bound, where the bound takes
into account the empirical variance of the different arms. Such an algo-
rithm was found earlier to outperform its peers in a series of numerical
experiments. The main contribution of this paper is the theoretical investi-
gation of this algorithm. Our contribution here is twofold. First, we prove
that with probability at least 1− β, the regret after n plays of a variant of
the UCB algorithm (called β-UCB) is upper-bounded by a constant, that
scales linearly with log(1/β), but which is independent from n. We also
analyse a variant which is closer to the algorithm suggested earlier. We
prove a logarithmic bound on the expected regret of this algorithm and
argue that the bound scales favourably with the variance of the suboptimal
arms.

1 Introduction and notations

A K-armed bandit problem (K ≥ 2) is defined by random variables Xk,t (1 ≤ k ≤ K,
t ∈ N+), where each k is the index of an “arm” of the bandit and t represents time. Suc-
cessive plays of arm k yield rewards Xk,1, Xk,2, . . . which are independent and identically
distributed (i.i.d.) according to an unknown distribution. Independence also holds for re-
wards across the different arms, i.e. for any t ∈ N+ and 1 ≤ k < k′ ≤ K, (Xk,1, . . . , Xk,t)
and (Xk′,1, . . . , Xk′,t) are independent. Let µk and σ2

k be respectively the (unknown) expec-
tation and variance of the rewards coming from arm k. For any k ∈ {1, . . . ,K} and t ∈ N,
let Xk,t and Vk,t be their respective empirical estimates:

Xk,t , 1
t

∑t
i=1 Xk,i



and
Vk,t , 1

t

∑t
i=1(Xk,i −Xk,t)2,

where by convention Xk,0 , 0 and Vk,0 , 0. An optimal arm is an arm having the best
expected reward

k∗ ∈ argmax
k∈{1,...,K}

µk.

For the sake of simplicity we assume that there is a single optimal arm. The proofs and
hence the results hold when there are multiple such arms. We denote quantities related to
the optimal arm by putting ∗ in the upper index. In particular, µ∗ = maxk µk. The expected
regret of an arm k is

∆k , µ∗ − µk.

A policy is a way of choosing the next arm to play based on the sequence of past plays and
obtained rewards. More formally, it is a mapping from ∪t∈N{1, . . . , K}t×Rt into {1, . . . , K}.
Let Tk(t) be the number of times arm k is chosen by the policy during the first t plays. Let
It denote the arm played by the policy at time t.

We define the cumulative regret of the policy up to time n as

R̂n , nµ∗ −∑n
t=1 Xt,TIt (t).

We also define the cumulative pseudo-regret

Rn =
∑K

k=1 Tk(n)∆k.

The expected cumulative regret of the policy up to time n is

Rn , nµ∗ − E[ ∑n
t=1 Xt,TIt (t)

]
=

∑K
k=1 E[Tk(n)]∆k.

2 The β-UCB policy

2.1 The algorithm

Assume that the rewards are bounded. Then, without loss of generality, we may assume
that all the rewards are almost surely in [0, 1]. Let 0 < β < 1 be some fixed confidence level.
Consider the sub-confidence levels βs defined as

βs , β
4Ks(s+1) (1)

Let

Bk,s ,
(

Xk,s +
√

2Vk,s log(β−1
s )

s + 16 log(β−1
s )

3s

)
∧ 1

with the convention 1/0 = +∞.

β-UCB policy: At time t, play an arm maximizing Bk,Tk(t−1).

Let us now explain the choice of Bk,Tk(t−1). The quantity essentially comes from the fol-
lowing theorem.

Theorem 1 Let X1, . . . , Xt be i.i.d. random variables taking their values in [0; 1]. Let µ =
EX1 be their common expected value. Consider the empirical expectation µt and standard
deviation σt ≥ 0 defined respectively as

µt =
∑t

i=1 Xi

t
and σ2

t =
∑t

i=1(Xi − µt)2

t
.

With probability at least 1− β, we have

µ ≤ µt + σt

√
2 log(3β−1)

t + 16 log(3β−1)
3t . (2)

and
µ ≥ µt − σt

√
2 log(3β−1)

t − 16 log(3β−1)
3t . (3)
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Proof 1 See Section A.1.

Note that (2) is useless for t ≤ 5 since its r.h.s. is larger than 1. We may apply Theorem 1
to the rewards Xk,1, . . . , Xk,s and the confidence level 3βs. Since

∑
1≤k≤K;t≥1 3βk,t = 3β/4,

it gives that with probability at least 1− 3β/4 ≥ 1− β, for any s ∈ N and k ∈ {1, . . . , K},
we have µk ≤ Bk,s.It means that with confidence level β, for any time t ≥ 1, after the first
t−1 plays, the user of the policy knows that the expected reward of arm k is upper bounded
by Bk,Tk(t−1). The user of the β-UCB policy chooses his plays only through these upper
confidence bounds (UCB).

2.2 Properties of the β-UCB policy

We start with a deviation inequality for the number of plays of non-optimal arms.

Theorem 2 For any non-optimal arm k (i.e. ∆k > 0), consider uk the smallest integer
such that

uk

log[4Kuk(uk+1)β−1] >
8σ2

k

∆2
k

+ 16
∆k

. (4)

With probability at least 1− β, the β-UCB policy plays any non-optimal arm k at most uk

times.

Proof 2 See Section A.2.

This means that with high probability, the number of plays of non-optimal arms is bounded
by some quantity independent of the total number of plays.

Theorem 2 directly leads to upper bounds on the cumulative regret of the policy up to time
n and on its expected value.

Since uk depends on the parameter β, we will now write it uk,β . The following lemma gives
more explicit bounds on uk,β .

Lemma 1 Let wk = 8σ2
k

∆2
k

+ 16
∆k

. We have uk,β ≤ 5wk log(wkKβ−1)and uk,β ≤
wk log(4Kβ−1) + 2wk log

{
6wk log(wkKβ−1)

}
.

The first bound is the simplest but the least accurate. In the second one, the leading term
is the first one (when β goes to 0).

Proof 3 See Section A.3.

Theorem 3 With probability at least 1 − β, for any time n, the cumulative regret of the
β-UCB policy satisfies

∑K
k=1 Tk(n)∆k ≤

∑
k∈K [uk,β ∧ n]∆k (5)

Besides for any positive integer n, the expected cumulative regret of the 1/n-UCB up to time
n satisfies

∑K
k=1 E[Tk(n)]∆k ≤ ∑

k∈K

[
(1 + uk,1/n) ∧ n

]
∆k

≤ C1

∑
k∈K

{[( σ2
k

∆k
+ 1

)
log(Kn)

] ∧ [
n∆k

]}

≤ C2 log(2n)
∑

k 6=k∗
(
1 + σ2

k

∆k

) (6)

for some universal constants C1 and C2.

Proof 4 The first assertion is a direct consequence of Theorem 2. For the second assertion,
the first inequality comes from Tk(n) ≤ n and ETk(n) ≤ P[Tk(n) > uk]n + P[Tk(n) ≤ uk]uk.
The second inequality uses Lemma 1. The third inequality follows by considering two cases:
either K > n (i.e. not enough time to explore all the arms), then the property is trivial, or
K ≤ n which implies log(Kn) ≤ 2 log(n) for any n ≥ 1.
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3 Bounds for the expected regret

3.1 Adaptive β-UCB

As far as results in expectation are concerned (see second part of Theorem 3), we need to
take β dependent on the time horizon (i.e. the total number of arms to be drawn) to obtain
a regret bound of order C log n.

Schematically an algorithm which needs to know its time horizon to have a (log n)-
cumulative regret bound up to time n can be modified into an adaptive algorithm having
the same cumulative regret bound (up to a multiplicative constant close to 1). This is done
by the doubling trick (see [3, p.33] and references within) in which we cut the time space
into intervals of length 22k

. For each of this epoch, we launch the algorithm independently
of what happens in the other epochs. The policy knows its time horizon and leads to a
cumulative regret for epoch k of order 2k. Summing these regrets up to some time horizon
T = 22K

, we obtain a cumulative regret of order
∑K

i=1 2i = 2K+1 − 1, hence of order log T .

For the β-UCB policy, we need neither to restart at each epoch the policy nor to cut the
time space in epochs. Indeed, it suffices to take β = 1/t at time t. To decrease β when
the number of arms already drawn increases is natural: when the time t increases, the
exploitation of an almost optimal arm becomes more and more detrimental to the quality
of the policy, so we want to be a bit more sure that the optimal one is not in other arms.
Consequently, we need to have better upper confidence bound, which means that β should
be taken smaller. For this adaptive policy, one can show using the time cutting argument
presented above that the results given in (6) still holds.

3.2 UCB-tuned policy

Define the confidence sequences of arm k

c
(k)
t,s ,

√
2Vk,s log(4tp)

s
+

16 log(4tp)
3s

.

The following figure describes the UCB-tuned policy:

UCB-tuned policy: At time t, play an arm maximizing
(

Xk,Tk(t−1) + c
(k)
t,Tk(t−1)

)
∧ 1.

A slight variation (with different confidence sequences) was proposed in Section 4 of [1]. In
their experimental study these authors have found that this algorithms outperforms most
previous algorithms under a wide range of conditions. However, no theoretical analysis of
this algorithm has been attempted so far. (Theorem 4 of [1], which is a closely related
result that applies to normally distributed payoffs only, is not a complete proof since it
relies on some conjectures.) The next theorem shows that with p > 2, the regret of the
above algorithm scales with the logarithm of the number of steps. A crucial feature of this
result is that instead of scaling with 1/∆j , the regret scales with σ2

j /∆j . This shows that
the performance of UCB-tuned is less sensitive to whether the assumed payoff range is a
good match to the true range of payoffs.

Theorem 4 Let p > 2. For any time n, the expected regret of the UCB-tuned policy is
bounded by

Rn ≤ 16
[
log(4) + p log(n)

] ∑

k 6=k∗

(
1 +

σ2
k

2∆k

)
+ 2

(
1 +

1
p− 2

) ∑

k 6=k∗
∆k.
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A Proofs of the results

A.1 Proof of Theorem 1

The following inequality is a direct consequence of Bernstein’s inequality (see e.g. [2, p.124]).

Lemma 2 Let W1, . . . , Wt be i.i.d. random variables taking their values in [0; 1]. Let E =
EW1 and V = E(W1 − E)2 be the expectation and variance of these random variables. For
any ε > 0, with probability at least 1− ε, the empirical mean Ē = (

∑t
i=1 Xi)/t satisfies

Ē < E +
√

2V log(ε−1)
t + 2 log(ε−1)

3t . (7)

To prove Theorem 1, we apply Lemma 2 for ε = β/3 and three different i.i.d. random
variables: Wi = Xi, Wi = 1 −Xi and Wi = 1 − (Xi − EX1)2. Let σ denote the standard
deviation of X1: σ2 , E(Xi − EX1)2. Introduce V , Var

[
(X1 − EX1)2

]
. We obtain that

with probability at least 1− β, we simultaneously have

|µt − µ| ≤
(

σ
√

2 log(3β−1)
t + 2 log(3β−1)

3t

)
∧ 1 (8)

and
σ2 ≤ σ2

t + (µ− µt)2 +
√

2V log(3β−1)
t + 2 log(3β−1)

3t . (9)

Let δ be the r.h.s. of (8) and L , log(3β−1)/t Noting that V ≤ σ2, we have

σ2 ≤ σ2
t + δ2 + δ ≤ σ2

t + 2δ,

hence successively
σ2 − 2σ

√
2L− 4L/3− σ2

t ≤ 0,

and
σ ≤ √

2L +
√

σ2
t + 10L/3 ≤ σt + (

√
2 +

√
10/3)

√
L.

Plugging this inequality in (8), we obtain

µ ≤ µt + σt

√
2L +

[
2 +

√
20/3 + 2/3

]
L ≤ µt + σt

√
2L + 16L/3

The reverse inequality is obtained in a similar way.

A.2 Proof of Theorem 2

Let lt , log(β−1
t ) (remember that βt = β/(4kt(t + 1))). Consider the event E on which

∀t ∈ N+ ∀k ∈ {1, . . . ,K}




∣∣Xk,t − µk

∣∣ <

√
2σ2

klt
t + 2lt

3t∣∣Vk,t − σ2
k

∣∣ <

√
8σ2

klt
t + 4lt

3t

(10)

Let us show that this event holds with probability at least 1− β.

Proof 5 We apply Lemma 2 with ε = βt and different i.i.d. random variables: Wi = Xk,i,
Wi = 1 − Xk,i, Wi = (Xk,i − µk)2 and Wi = 1 − (Xk,i − µk)2. We use that the variance
of the last two random variables is bounded by E[(Xk,1 − µk)4] ≤ σ2

k and that the empirical
expectation of (Xk,i − µk)2 is

1
t

∑t
i=1(Xk,i − µk)2 = Vk,t + (Xk,t − µk)2.

We obtain that for any t ∈ N+ and k ∈ {1, . . . , K}, with probability at least 1− βt





∣∣Xk,t − µk

∣∣ <

√
2σ2

klt
t + 2lt

3t∣∣Vk,t + (Xk,t − µk)2 − σ2
k

∣∣ <

√
2σ2

klt
t + 2lt

3t
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Since |Xk,t − µk| ≤ 1, this last inequality leads to
∣∣Vk,t − σ2

k

∣∣ <
∣∣Xk,t − µk

∣∣ +
√

2σ2
klt
t + 2lt

3t ,

which gives the second inequality of (10). Using an union bound, all these inequalities hold
simultaneously with probability at least

1− 4
∑K

k=1

∑
t≥1 βt = 1− β.

Now let us prove that on the event E , we have µk ≤ Bk,t and

Bk,t ≤ µk + σk

√
8lt
t

+
8lt
t

(11)

Proof 6 For sake of simplicity, let us temporarily drop the k indices: e.g. Bk,t, µk, σ2
k and

Vk,t respectively become Bt, µ, σ2 and Vt. Introduce Lt = lt
t . By (10),

σ2 − Vt <
√

8σ2Lt + 4Lt

3 .

Let q(σ) = σ2−σ
√

2Lt +(−Vt− 4Lt

3 ). Since q(σ) is negative only between its two roots, the
largest root gives a bound on the values σ can take when q(σ) < 0 (the “square root trick”):

σ <
√

2Lt +
√

Vt + 10Lt

3 ≤ √
Vt + (1 +

√
5/3)

√
2Lt.

Plugging this inequality in the first inequality of (10), we obtain
∣∣µt − µ

∣∣ <
√

2VtLt + 16Lt

3 ,

and in particular µ ≤ Bt. For the second part of the assertion, we use
{

µt ≤ µ + σ
√

2Lt + 2Lt

3

Vt ≤ σ2 + σ
√

8Lt + 4Lt

3 ≤ (
σ +

√
2Lt

)2

and obtain
Bt ≤ µ + 2σ

√
2Lt + 8Lt,

which is the announced result.

Let Ǩ be the set of non-optimal arms: Ǩ =
{
k ∈ K : ∆k > 0

}
. For any integers uk where

k ∈ Ǩ, we have

P[∃k ∈ Ǩ Tk(t) > uk]
= P[∃k ∈ Ǩ Tk(t) > uk; E ] + P[∃k ∈ Ǩ Tk(t) > uk; Ec]
≤ P[∃k ∈ Ǩ ∃s < t Tk(s) = uk and Is+1 = k; E]

+ P(Ec)
≤ P[∃k ∈ Ǩ ∃s < t Tk(s) = uk and Bk,Tk(s) ≥ Bk∗,T∗k (s); E

]
+ β

≤ P[∃k ∈ Ǩ ∃s < t Bk,uk
≥ µk∗ or Bk∗,T∗k (s) < µk∗ ; E

]
+ β

≤ P[∃k ∈ Ǩ Bk,uk
≥ µk∗ ; E

]
+ P

[∃r < t Bk∗,r < µk∗ ; E
]
+ β

≤ P
(
∃k ∈ Ǩ µk +

√
8σ2

klk,uk

uk
+ 8lk,uk

uk
≥ µk∗

)
+ 0 + β

(12)

The probability in this last r.h.s. is equal to zero provided that the uk’s are large enough.
Precisely, we want uk such that tk =

√
lk,uk

/uk satisfies

8t2k + 2
√

2σ2
ktk −∆k < 0,

equivalently dropping the k indices: t < (
√

2σ2 + 8∆−
√

2σ2)/8. We get

u
lu

> 64

(
√

2σ2+8∆−
√

2σ2)2
= 1

∆2

(√
2σ2 + 8∆ +

√
2σ2

)2
.

This inequality is at least satisfied when
u
lu

> 8σ2

∆2 + 16
∆ ,

which ends the proof.
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A.3 Proof of Lemma 1

Proof 7 By the definition of uk, we have uk−1
log[4Kuk(uk−1)β−1] ≤ wk.This implies

uk ≤ 1 + wk log[4Ku2
kβ−1]. (13)

Basic computations leads to uk ≤ w2
kKβ−1. This very rough upper bound can be used to

have a tight upper bound of uk. Indeed, after some simple computations using that wk ≥ 16,
the first two recursive uses of (13) gives

uk ≤ 5wk log(wkKβ−1)
and

uk ≤ wk log(4Kβ−1) + 2wk log
{
6wk log(wkKβ−1)

}
,

which are the announced results.

B Proof of Theorem 4 (UCB-tuned’s regret)

The choice of this confidence sequence is such that, for any fixed arm index k, any pairs
(s, t) satisfying 1 ≤ s ≤ t, the following holds:

P(µk ≤ Xk,s + c
(k)
t,s ) ≥ 1− t−p, P(Xk,s + c

(k)
t,s ≤ µk + d

(k)
t,s ) ≥ 1− t−p. (14)

Here

d
(k)
t,s ,

√
8σ2

k log(4tp)
s

+
8 log(4tp)

s
.

Indeed, following the proof of Theorem 2, we derive that with probability 1 − β, we have
for any fixed k,

∣∣Xk,t − µk

∣∣ <

√
2σ2

k log(4β−1)

t + 2 log(4β−1)
3t and

∣∣Vk,t − σ2
k

∣∣ <

√
8σ2

k log(4β−1)

t + 4 log(4β−1)
3t .

(15)

¿From this we deduce, similarly to what is done in the proof of Theorem 2, that for any
s ≥ 1, with probability 1− β, we have the two inequalities

µk ≤ Xk,s +

√
2Vk,s log(4β−1)

s
+

16 log(4β−1)
3s

≤ µk +

√
8σ2

k log(4β−1)
s

+
8 log(4β−1)

s
and (14) follows when choosing β = t−p.

Now, pick a suboptimal arm, k (i.e., µk < µ∗). Then defining uk,n ≥ 1 an integer-valued
sequence that will be selected later, we have:

Tk(n) =
n∑

t=1

I{It=k}

≤ uk,n − 1 +
n∑

t=1

I{It=k,Tk(t)≥uk,n}

≤ uk,n − 1 +
n∑

t=1

In
X
∗
T∗(t)+c∗

t,T∗(t)≤Xk,Tk(t)+c
(k)
t,Tk(t),Tk(t)≥uk,n

o

≤ uk,n − 1 +
n∑

t=1

In
X
∗
T∗(t)+c∗

t,T∗(t)≤µ∗
o

+
n∑

t=1

In
Xk,Tk(t)+c

(k)
t,Tk(t)−d

(k)
t,Tk(t)≥µk

o +
n∑

t=1

In
µ∗<µk+d

(k)
t,Tk(t),Tk(t)≥uk,n

o (16)

≤ uk,n − 1 +
n∑

t=1

t∑
s=1

I{X
∗
s+c∗t,s≤µ∗}

+
n∑

t=1

t∑
s=1

In
Xk,s+c

(k)
t,s−d

(k)
t,s≥µk

o +
n∑

t=1

t∑
s=uk,n

In
d
(k)
t,s >∆k

o (17)

7



where (16) follows as follows: Assume that X
∗
T∗(t) + c∗t,T∗(t) > µ∗ and Xk,Tk(t) + c

(k)
t,Tk(t) −

d
(k)
t,Tk(t) < µk, and X

∗
T∗(t) + c∗t,T∗(t) ≤ Xk,Tk(t) + c

(k)
t,Tk(t). Then µ∗ < X

∗
T∗(t) + c∗t,T∗(t) ≤

Xk,Tk(t)+c
(k)
t,Tk(t) < µk+d

(k)
t,Tk(t) and so under these conditions we must have µ∗ < µk+d

(k)
t,Tk(t).

The two first sums in the expression (17) are upper-bounded, in expectation, by

∑

t≥1

t∑
s=1

P(X
∗
s + c∗t,s ≤ µ∗) + P(Xk,s + c

(k)
t,s − d

(k)
t,s ≥ µk)

which, from (14), is upper-bounded by 2
∑

t≥1

∑t
s=1 t−p = 2

∑
t≥1 t−p+1 ≤ 2(1 + 1/(p− 2))

(bounding the sum by an integral) for p > 2.

Now, the last sum in (17) equals zero for some appropriate value of uk,n. Indeed, thanks to
the increasing monotonicity of d

(k)
·,s and the decreasing monotonicity of d

(k)
t,· , the event

d
(k)
t,s > ∆k

for any 1 ≤ uk,n ≤ s ≤ t ≤ n implies the event

d(k)
n,uk,n

> ∆k.

But this last event never holds for a large enough value of uk,n. Indeed, using the same
argument as in the proof of Theorem 2, i.e. the fact that

√
8σ2l

u
+

8l

u
< ∆

whenever u/l > 8σ2/∆2 + 16/∆, we deduce that for

uk,n

log(4np)
>

8σ2
k

∆2
k

+
16
∆k

we have d
(k)
n,uk,n < ∆k thus d

(k)
t,s < ∆k for all 1 ≤ uk,n ≤ s ≤ t ≤ n, and the third term of

the sum in (17) is zero.

Thus, defining uk,n , 1 + log(4np)
( 8σ2

k

∆2
k

+ 16
∆k

)
and summing the three terms of (17) yields

the logarithmic expected number of times a suboptimal arm is chosen:

E[Tk(n)] ≤ log(4np)
(

8σ2
k

∆2
k

+
16
∆k

)
+ 2 +

2
p− 2

,

and the logarithmic bound on the expected regret:

Rn ≤
[
log(4) + p log(n)

] ∑

k 6=k∗

(
8σ2

k

∆k
+ 16

)
+ (2 +

2
p− 2

)
∑

k 6=k∗
∆k.
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