▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Introduction to Reinforcement Learning and multi-armed bandits

Rémi Munos

INRIA Lille - Nord Europe Currently on leave at MSR-NE http://researchers.lille.inria.fr/~munos/

NETADIS Summer School 2013, Hillerod, Denmark

Outline of the course

- Part 1: Introduction to Reinforcement Learning and Dynamic Programming
 - Dynamic programming: value iteration, policy iteration
 - Q-learning.
- Part 2: Approximate DP and RL
 - L_{∞} -norm performance bounds
 - Sample-based algorithms.
 - Links with statistical learning
- Part 3: Intro to multi-armed bandits
 - The stochastic bandit: UCB
 - The adversarial bandit: EXP3
 - Approximation of Nash equilibrium
 - Monte-Carlo Tree Search

Part 1: Introduction to Reinforcement Learning and Dynamic Programming

A few general references:

- Neuro Dynamic Programming, Bertsekas et Tsitsiklis, 1996.
- Introduction to Reinforcement Learning, Sutton and Barto, 1998.
- Markov Decision Problems, Puterman, 1994.
- Algorithms for Reinforcement Learning, Szepesvári, 2009.

Introduction to Reinforcement Learning (RL)

- Learn to make good decisions in unknown environments
- Learning from experience: success or failures
- Examples: learning to ride a bicycle, play chess, autonomous robotics, operation research, playing in stochastic market, ...

A few applications

- TD-Gammon. [Tesauro 1992-1995]: Backgammon.
- KnightCap [Baxter et al. 1998]: chess (≃2500 ELO)
- Robotics: juggling, acrobots [Schaal and Atkeson, 1994]
- Mobile robot navigation [Thrun et al., 1999]
- Elevator controller [Crites et Barto, 1996],
- Packet Routing [Boyan et Littman, 1993],
- Job-Shop Scheduling [Zhang et Dietterich, 1995],
- Production manufacturing optimization[Mahadevan et al., 1998],
- Game of poker (Bandit algo for Nash computation)
- Game of go (hierarchical bandits, UCT)

http://www.ualberta.ca/~szepesva/RESEARCH/RLApplications.html

<ロト <回ト < 注ト < 注ト э

Reinforcement Learning

- **Environment:** can be stochastic (Tetris), adversarial (Chess), partially unknown (bicycle), partially observable (robot)
- Available information: the reinforcement (may be delayed)
- Goal: maximize the expected sum of future rewards.

Problem: How to sacrify a short term small reward to priviledge larger rewards in the long term?

Optimal value function

- · Gives an evaluation of each state if the agent plays optimally.
- Ex: in a stochastic environment:

- Bellman equation: $V^*(x_t) = \max_{a \in A} \left[r(x_t, a) + \sum_y p(y|x_t, a) V^*(y) \right]$
- Temporal difference: $\delta_t = V^*(x_{t+1}) + r(x_t, a_t) V^*(x_t)$
- If V^* is known, then when choosing the optimal action a_t , $\mathbb{E}[\delta_t] = 0$ (i.e., in average there is no surprise)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Challenges of RL

- Environment may be stochastic, adversarial, partially observable...
- The state-dynamics and reward functions are unknown: we need to combine
 - Learning
 - Planning
- The curse of dimensionality: We need to rely on *approximations* for representing the value function and the optimal policy.

Introduction to Dynamic Programming

A Markov Decision Process (X, A, p, r) defines a discrete-time process $(x_t) \in X$ where:

- X: state space
- A: action space (or decisions)
- State dynamics: All relevant information about future is included in the current state and action (Markov property)

$$\mathbb{P}(x_{t+1} | x_t, x_{t-1}, \dots, x_0, a_t, a_{t-1}, \dots, a_0) = \mathbb{P}(x_{t+1} | x_t, a_t)$$

Thus we define the **transition probabilities** p(y|x, a)

• **Reinforcement** (or **reward**): r(x, a) is obtained when choosing action *a* in state *x*.

DP algorithm

RL algorithms

Definition of policy

Policy
$$\pi = (\pi_1, \pi_2, \dots)$$
, where at time t ,

$$\pi_t: X \to A$$

maps an action $\pi_t(x)$ to any possible state x.

Given a policy π the process $(x_t)_{t\geq 0}$ is a Markov chain with transition probabilities

$$p(x_{t+1}|x_t) = p(x_{t+1}|x_t, \pi_t(x_t)).$$

When the policy is independent of time, $\pi = (\pi, \pi, \dots, \pi)$, the policy is called *stationary* (or *Markovian*).

◆□ → ◆昼 → ◆臣 → ◆臣 → ◆ ● ◆ ◆ ● ◆

Performance of a policy

For any policy π , define the **value function** V^{π} :

Infinite horizon:

• Discounted:
$$V^{\pi}(x) = \mathbb{E} \Big[\sum_{t=0}^{\infty} \gamma^{t} r(x_{t}, a_{t}) | x_{0} = x; \pi \Big],$$

where $0 \leq \gamma < 1$ is the discount factor

• Undiscounted:
$$V^{\pi}(x) = \mathbb{E} \big[\sum_{t=0}^{\infty} r(x_t, a_t) \, | \, x_0 = x; \pi \big]$$

• Average:
$$V^{\pi}(x) = \lim_{T \to \infty} \frac{1}{T} \mathbb{E} \Big[\sum_{t=0}^{T-1} r(x_t, a_t) \, | \, x_0 = x; \pi \Big]$$

Finite horizon: $V^{\pi}(x,t) = \mathbb{E}\left[\sum_{s=t}^{t-1} r(x_s,a_s) + R(x_T) | x_t = x; \pi\right]$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

э.

The dilemma of the Netadis SS student

You try to maximize the sum of rewards!

Solution of the Netadis SS student

 $V_5 = -10, V_6 = 100, V_7 = -1000,$ $V_4 = -10 + 0.9V_6 + 0.1V_4 \simeq 88.9.$ $V_3 = -1 + 0.5V_4 + 0.5V_3 \simeq 86.9.$ $V_2 = 1 + 0.7V_3 + 0.3V_1$ and $V_1 = \max\{0.5V_2 + 0.5V_1, 0.5V_3 + 0.5V_1\},$ thus: $V_1 = V_2 = 88.3.$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Infinite horizon, discounted problems

For any stationary policy π , define the **value function** V^{π} as:

$$V^{\pi}(x) = \mathbb{E}\big[\sum_{t=0}^{\infty} \gamma^{t} r(x_{t}, \pi(x_{t})) | x_{0} = x; \pi\big],$$

where $0 \le \gamma < 1$ a discount factor (which relates rewards in the future compared to current rewards).

Bellman equation for V^{π}

Proposition 1 (Bellman equation).

For any policy π , V^{π} satisfies:

$$V^{\pi}(x) = r(x,\pi(x)) + \gamma \sum_{y \in X} p(y|x,\pi(x)) V^{\pi}(y),$$

Thus V^{π} is the fixed point of the **Bellman operator** \mathcal{T}^{π} (i.e., $V^{\pi} = \mathcal{T}^{\pi}V^{\pi}$) where $\mathcal{T}^{\pi}W$ is defined as

$$\mathcal{T}^{\pi}W(x) = r(x,\pi(x)) + \gamma \sum_{y} p(y|x,\pi(x))W(y)$$

Using matrix notations, $\mathcal{T}^{\pi}W = r^{\pi} + \gamma P^{\pi}W$, where $r^{\pi}(x) = r(x, \pi(x))$ and $P^{\pi}(x, y) = p(y|x, \pi(x))$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

DP algorithms

RL algorithms

Proof of Proposition 1

$$V^{\pi}(x) = \mathbb{E}\Big[\sum_{t \ge 0} \gamma^{t} r(x_{t}, \pi(x_{t})) \,|\, x_{0} = x; \pi\Big]$$

= $r(x, \pi(x)) + \mathbb{E}\Big[\sum_{t \ge 1} \gamma^{t} r(x_{t}, \pi(x_{t})) \,|\, x_{0} = x; \pi\Big]$
= $r(x, \pi(x)) + \gamma \sum_{y} P(x_{1} = y \,|\, x_{0} = x; \pi)$
 $\mathbb{E}\Big[\sum_{t \ge 1} \gamma^{t-1} r(x_{t}, \pi(x_{t})) \,|\, x_{1} = y; \pi\Big]$
= $r(x, \pi(x)) + \gamma \sum_{y} p(y|x, \pi(x)) V^{\pi}(y).$

Bellman equation for V^*

Define the **optimal value function**: $V^* = \sup_{\pi} V^{\pi}$.

Proposition 2 (Dynamic programming equation). *V** *satisfies:*

$$V^*(x) = \max_{a \in A} \big[r(x, a) + \gamma \sum_{y \in X} p(y|x, a) V^*(y) \big].$$

Thus V^* is the fixed point of the **Dynamic programming** operator \mathcal{T} (i.e., $V^* = \mathcal{T}V^*$) where $\mathcal{T}W$ is defined as

$$\mathcal{TW}(x) = \max_{a \in A} \left[r(x, a) + \gamma \sum_{y \in X} p(y|x, a) W(y) \right]$$

Proof of Proposition 2

And for all policy $\pi = (a, \pi')$ (not necessarily stationary),

$$\mathcal{I}^{*}(x) = \max_{\pi} \mathbb{E} \Big[\sum_{t \ge 0} \gamma^{t} r(x_{t}, \pi(x_{t})) \, | \, x_{0} = x; \pi \Big] \\
= \max_{(a, \pi')} \Big[r(x, a) + \gamma \sum_{y} p(y | x, a) V^{\pi'}(y) \Big] \\
= \max_{a} \Big[r(x, a) + \gamma \sum_{y} p(y | x, a) \max_{\pi'} V^{\pi'}(y) \Big] \quad (1) \\
= \max_{a} \Big[r(x, a) + \gamma \sum_{y} p(y | x, a) V^{*}(y) \Big].$$

where (1) holds since:

•
$$\max_{\pi'} \sum_{y} p(y|x, a) V^{\pi'}(y) \le \sum_{y} p(y|x, a) \max_{\pi'} V^{\pi'}(y)$$

• Let $\bar{\pi}$ be the policy defined by $\bar{\pi}(y) = \arg \max_{\pi'} V^{\pi'}(y)$. Thus $\sum_{y} p(y|x, a) \max_{\pi'} V^{\pi'}(y) = \sum_{y} p(y|x, a) V^{\bar{\pi}}(y) \le \max_{\pi'} \sum_{y} p(y|x, a) V^{\pi'}(y)$.

Properties of the Bellman operators

• Monotonicity: If $W_1 \leq W_2$ (componentwise) then

 $\mathcal{T}^{\pi}W_1 \leq \mathcal{T}^{\pi}W_2, \text{ and } \mathcal{T}W_1 \leq \mathcal{T}W_2.$

• Contraction in max-norm: For any vectors W_1 and W_2 ,

$$\begin{aligned} ||\mathcal{T}^{\pi} W_1 - \mathcal{T}^{\pi} W_2||_{\infty} &\leq \gamma ||W_1 - W_2||_{\infty}, \\ ||\mathcal{T} W_1 - \mathcal{T} W_2||_{\infty} &\leq \gamma ||W_1 - W_2||_{\infty}. \end{aligned}$$

Indeed, for all $x \in X$,

$$\begin{aligned} |\mathcal{T}W_1(x) - \mathcal{T}W_2(x)| &= \left| \max_{a} \left[r(x,a) + \gamma \sum_{y} p(y|x,a) W_1(y) \right] \right. \\ &- \max_{a} \left[r(x,a) + \gamma \sum_{y} p(y|x,a) W_2(y) \right] \right| \\ &\leq \left. \gamma \max_{a} \sum_{y} p(y|x,a) |W_1(y) - W_2(y)| \right. \\ &\leq \left. \gamma ||W_1 - W_2||_{\infty} \end{aligned}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

Properties of the value functions

Proposition 3.

1. V^{π} is the unique fixed-point of \mathcal{T}^{π}

$$V^{\pi}=\mathcal{T}^{\pi}V^{\pi}.$$

2. V^* is the unique fixed-point of \mathcal{T} :

$$V^* = \mathcal{T}V^*$$

3. For any policy π , we have $V^{\pi} = (I - \gamma P^{\pi})^{-1} r^{\pi}$ 4. The policy defined by

$$\pi^*(x) \in \arg \max_{a \in A} \left[r(x, a) + \gamma \sum_{y} p(y|x, a) V^*(y) \right]$$

is optimal (and stationary)

Proof of Proposition 3

- 1. From Proposition 1, V^{π} is a fixed point of \mathcal{T}^{π} . Uniqueness comes from the contraction property of \mathcal{T}^{π} .
- 2. Idem for V^* .

3.
$$V^{\pi} = \mathcal{T}^{\pi} V^{\pi} = r^{\pi} + \gamma P^{\pi} V^{\pi}$$
. Thus $(I - \gamma P^{\pi}) V^{\pi} = r^{\pi}$. Now P^{π} is a stochastic matrix (whose eingenvalues have a modulus ≤ 1), thus the eing. of $(I - \gamma P^{\pi})$ have a modulus $\geq 1 - \gamma > 0$, thus is invertible.

4. From the definition of π^* , we have

$$\mathcal{T}^{\pi^*}V^* = \mathcal{T}V^* = V^*$$

Thus V^* is the fixed-point of \mathcal{T}^{π^*} . But, by definition, V^{π^*} is the fixed-point of \mathcal{T}^{π^*} and since there is uniqueness of the fixed-point, $V^{\pi^*} = V^*$ and π^* is optimal.

1 . .

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Value Iteration

Proposition 4.

- For any bounded π and V_0 , define $V_{k+1} = \mathcal{T}^{\pi}V_k$. Then $V_k \to V^{\pi}$.
- For any bounded V_0 , define $V_{k+1} = \mathcal{T}V_k$. Then $V_k \to V^*$.

Proof.

$$||V_{k+1} - V^*|| = ||\mathcal{T}V_k - \mathcal{T}V^*|| \le \gamma ||V_k - V^*|| \le \gamma^{k+1} ||V_0 - V^*|| \to 0$$

(idem for V^{π})

Variant: asynchronous iterations

Policy Iteration

Choose any initial policy π_0 . Iterate:

- 1. **Policy evaluation**: compute V^{π_k} .
- 2. **Policy improvement**: π_{k+1} greedy w.r.t. V^{π_k} :

$$\pi_{k+1}(x) \in \arg \max_{a \in A} \big[r(x, a) + \gamma \sum_{y} p(y|x, a) V^{\pi_k}(y) \big],$$

(i.e.
$$\pi_{k+1} \in rgmax_{\pi} \mathcal{T}^{\pi} \mathcal{V}^{\pi_k}$$
)

Stop when $V^{\pi_k} = V^{\pi_{k+1}}$.

Proposition 5.

Policy iteration generates a sequence of policies with increasing performance $(V^{\pi_{k+1}} \ge V^{\pi_k})$ and (in the case of finite state and action spaces) terminates in a finite number of steps with the optimal policy π^* .

Proof of Proposition 5

From the definition of the operators \mathcal{T} , \mathcal{T}^{π_k} , $\mathcal{T}^{\pi_{k+1}}$ and from π_{k+1} ,

$$V^{\pi_k} = \mathcal{T}^{\pi_k} V^{\pi_k} \le \mathcal{T} V^{\pi_k} = \mathcal{T}^{\pi_{k+1}} V^{\pi_k}, \tag{2}$$

and from the monotonicity of $\mathcal{T}^{\pi_{k+1}}$, we have

$$V^{\pi_k} \leq \lim_{n \to \infty} (\mathcal{T}^{\pi_{k+1}})^n V^{\pi_k} = V^{\pi_{k+1}}.$$

Thus $(V^{\pi_k})_k$ is a non-decreasing sequence. Since there is a finite number of possible policies (finite state and action spaces), the stopping criterion holds for a finite k; We thus have equality in (2), thus

$$V^{\pi_k} = \mathcal{T} V^{\pi_k}$$

so $V^{\pi_k} = V^*$ and π_k is an optimal policy.

Back to Reinforcement Learning

What if the transition probabilities p(y|x, a) and the reward functions r(x, a) are unknown? In DP, we used their knowledge

• in value iteration:

$$V_{k+1}(x) = \mathcal{T}V_k(x) = \max_{a} \left[r(x,a) + \gamma \sum_{y} p(y|x,a)V_k(y) \right].$$

- in policy iteration:
 - when computing V^{π_k} (which requires iterating \mathcal{T}^{π_k})
 - when computing the greedy policy:

$$\pi_{k+1}(x) \in rg\max_{a \in A} \big[r(x, a) + \gamma \sum_{y} p(y|x, a) V^{\pi_k}(y) \big],$$

RL = introduction of 2 ideas: **Q-functions** and **sampling**.

Definition of the Q-value function

Define the Q-value function $Q^{\pi}: X \times A \rightarrow R$: for a policy π ,

$$Q^{\pi}(x, a) = \mathbb{E}ig[\sum_{t \geq 0} \gamma^t r(x_t, a_t) | x_0 = x, a_0 = a, a_t = \pi(x_t), t \geq 1ig]$$

and the optimal Q-value function $Q^*(x, a) = \max_{\pi} Q^{\pi}(x, a)$. **Proposition 6.**

 Q^{π} and Q^{*} satisfy the Bellman equations:

$$Q^{\pi}(x,a) = r(x,a) + \gamma \sum_{y \in X} p(y|x,a) Q^{\pi}(y,\pi(y))$$
$$Q^{*}(x,a) = r(x,a) + \gamma \sum_{y \in X} p(y|x,a) \max_{b \in A} Q^{\pi}(y,b)$$

Idea: compute Q^* and then $\pi^*(x) \in \arg \max_a Q^*(x, a)$.

Q-learning algorithm [Watkins, 1989]

Builds a sequence of Q-value functions Q_k . Whenever a transition $x_t, a_t \xrightarrow{r_t} x_{t+1}$ occurs, update the Q-value:

$$Q_{k+1}(x_t, a_t) = Q_k(x_t, a_t) + \eta_k(x_t, a_t) \Big[\underbrace{r_t + \gamma \max_{b \in A} Q_k(x_{t+1}, b) - Q_k(x_t, a_t)}_{\text{temporal difference}} \Big].$$

Proposition 7 (Watkins et Dayan, 1992).

Assume that all state-action pairs (x, a) are visited infinitely often and that the learning steps satisfy for all x, a, $\sum_{k\geq 0} \eta_k(x, a) = \infty$, $\sum_{k\geq 0} \eta_k^2(x, a) < \infty$, then $Q_k \xrightarrow{a.s.} Q^*$.

The proof relies on Stochastic Approximation for estimating the fixed-point of a contraction mapping.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Q-learning algorithm

Deterministic case, discount factor $\gamma = 0.9$. Take steps $\eta = 1$.

After transition $x, a \xrightarrow{r} y$ update $Q_{k+1}(x, a) = r + \gamma \max_{b \in A} Q_k(y, b)$

Optimal Q-values

	0			0			0			0		
0	0 0.73			0.66 0.81			0.73 0.73			0.81 0		
0			0.81			0.9			0			
				0.73								
	0		0	(0.9		1			0		
				0								
0						0.9			0			
0		0		0		0	0.	73	0.	81	0	
0.59						0.73			0.66			
0.53			0			0.81			0.73			
0	0.	.66	0.59 0.73			0.66 0.66			0.73 0			
0			0			0			0			

Bellman's equation: $Q^*(x, a) = \gamma \max_{b \in A} Q^*(\text{next-state}(x, a), b).$

DP algorithm

First conclusions

When the state-space is finite and "small":

- If transition probabilities and rewards are known, then DP algorithms (value iteration, policy iteration) compute the optimal solution
- Otherwise, use sampling techniques and RL algorithms (Q-learning, $TD(\lambda)$) apply

2 main issues:

- Usually state-space is large (infinite)! We need to build approximate solutions.
- We need to design clever exploration strategies.