
.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Introduction to Reinforcement Learning
and multi-armed bandits

Rémi Munos

INRIA Lille - Nord Europe
Currently on leave at MSR-NE

http://researchers.lille.inria.fr/∼munos/

NETADIS Summer School 2013, Hillerod, Denmark

http://researchers.lille.inria.fr/~munos/

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Outline of the course

• Part 1: Introduction to Reinforcement Learning and Dynamic
Programming

• Dynamic programming: value iteration, policy iteration
• Q-learning.

• Part 2: Approximate DP and RL
• L∞-norm performance bounds
• Sample-based algorithms.
• Links with statistical learning

• Part 3: Intro to multi-armed bandits
• The stochastic bandit: UCB
• The adversarial bandit: EXP3
• Approximation of Nash equilibrium
• Monte-Carlo Tree Search

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Part 1: Introduction to Reinforcement Learning and
Dynamic Programming

A few general references:

• Neuro Dynamic Programming, Bertsekas et Tsitsiklis, 1996.

• Introduction to Reinforcement Learning, Sutton and Barto,
1998.

• Markov Decision Problems, Puterman, 1994.

• Algorithms for Reinforcement Learning, Szepesvári, 2009.

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Introduction to Reinforcement Learning (RL)

• Learn to make good decisions in unknown environments

• Learning from experience: success or failures

• Examples: learning to ride a bicycle, play chess, autonomous
robotics, operation research, playing in stochastic market, ...

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

A few applications

• TD-Gammon. [Tesauro 1992-1995]: Backgammon.

• KnightCap [Baxter et al. 1998]: chess (≃2500 ELO)

• Robotics: juggling, acrobots [Schaal and Atkeson, 1994]

• Mobile robot navigation [Thrun et al., 1999]

• Elevator controller [Crites et Barto, 1996],

• Packet Routing [Boyan et Littman, 1993],

• Job-Shop Scheduling [Zhang et Dietterich, 1995],

• Production manufacturing optimization[Mahadevan et al.,
1998],

• Game of poker (Bandit algo for Nash computation)

• Game of go (hierarchical bandits, UCT)

http://www.ualberta.ca/∼szepesva/RESEARCH/RLApplications.html

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Reinforcement Learning

Action

Decision making agent

State

Reinforcement

Environment

Stochastic

Partially observable

Adversarial

• Environment: can be stochastic (Tetris), adversarial (Chess),
partially unknown (bicycle), partially observable (robot)

• Available information: the reinforcement (may be delayed)

• Goal: maximize the expected sum of future rewards.

Problem: How to sacrify a short term small reward to priviledge
larger rewards in the long term?

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Optimal value function

• Gives an evaluation of each state if the agent plays optimally.

• Ex: in a stochastic environment:

actions

0.70.5

Transition probabilities

0.3

0.2

0.1
0.2

V
∗(xt)

V
∗(xt+1)

• Bellman equation:

V ∗(xt) = maxa∈A

[
r(xt , a) +

∑
y p(y |xt , a)V ∗(y)

]
• Temporal difference: δt = V ∗(xt+1) + r(xt , at)− V ∗(xt)

• If V ∗ is known, then when choosing the optimal action at ,
E[δt] = 0 (i.e., in average there is no surprise)

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Challenges of RL

• Environment may be stochastic, adversarial, partially
observable...

• The state-dynamics and reward functions are unknown: we
need to combine

• Learning
• Planning

• The curse of dimensionality: We need to rely on
approximations for representing the value function and the
optimal policy.

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Introduction to Dynamic Programming

A Markov Decision Process (X ,A, p, r) defines a discrete-time
process (xt) ∈ X where:

• X : state space

• A: action space (or decisions)

• State dynamics: All relevant information about future is
included in the current state and action (Markov property)

P(xt+1 | xt , xt−1, . . . , x0, at , at−1, . . . , a0) = P(xt+1 | xt , at)

Thus we define the transition probabilities p(y |x , a)
• Reinforcement (or reward): r(x , a) is obtained when
choosing action a in state x .

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Definition of policy

Policy π = (π1, π2, . . .), where at time t,

πt : X → A

maps an action πt(x) to any possible state x .

Given a policy π the process (xt)t≥0 is a Markov chain with
transition probabilities

p(xt+1|xt) = p(xt+1|xt , πt(xt)).

When the policy is independent of time, π = (π, π, . . . , π), the
policy is called stationary (or Markovian).

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Performance of a policy

For any policy π, define the value function V π:

Infinite horizon:

• Discounted: V π(x) = E
[∞∑
t=0

γtr(xt , at) | x0 = x ;π
]
,

where 0 ≤ γ < 1 is the discount factor

• Undiscounted: V π(x) = E
[∞∑
t=0

r(xt , at) | x0 = x ;π
]

• Average: V π(x) = lim
T→∞

1

T
E
[T−1∑

t=0

r(xt , at) | x0 = x ;π
]

Finite horizon: V π(x , t) = E
[T−1∑

s=t

r(xs , as) + R(xT) | xt = x ;π
]

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

The dilemma of the Netadis SS student

Sleep

Think
Think

Sleep

Sleep

Think

Think

Sleep

p=0.5

0.4

0.3

0.7

0.5

0.50.5

0.5

0.4

0.6

0.6

1
0.5

r=1

r=−1000

r=0

r=−10

r=100

r=−10

0.9

0.1

r=−1

1

2

3

4

5

6

7

You try to maximize the sum of rewards!

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Solution of the Netadis SS student

Sleep

Think
Think

Sleep

Think
Sleep

Think

Sleep

p=0.5

0.4

0.3

0.7

0.5

0.50.5

0.5

0.4

0.6

0.6

1
0.5

r=−1000

r=0

r=−10

r=100

0.9

0.1

r=−1

V = 88.31

V = 86.93

r=−10

V = 88.94

r=1
V = 88.32

V = −105

V = 1006

V = −10007

V5 = −10, V6 = 100, V7 = −1000,
V4 = −10 + 0.9V6 + 0.1V4 ≃ 88.9.
V3 = −1 + 0.5V4 + 0.5V3 ≃ 86.9. V2 = 1 + 0.7V3 + 0.3V1 and
V1 = max{0.5V2 + 0.5V1, 0.5V3 + 0.5V1}, thus: V1 = V2 = 88.3.

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Infinite horizon, discounted problems

For any stationary policy π, define the value function V π as:

V π(x) = E
[∞∑
t=0

γtr(xt , π(xt)) | x0 = x ;π
]
,

where 0 ≤ γ < 1 a discount factor (which relates rewards in the
future compared to current rewards).

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Bellman equation for V π

Proposition 1 (Bellman equation).

For any policy π, V π satisfies:

V π(x) = r(x , π(x)) + γ
∑
y∈X

p(y |x , π(x))V π(y),

Thus V π is the fixed point of the Bellman operator T π (i.e.,
V π = T πV π) where T πW is defined as

T πW (x) = r(x , π(x)) + γ
∑
y

p(y |x , π(x))W (y)

Using matrix notations, T πW = rπ + γPπW , where
rπ(x) = r(x , π(x)) and Pπ(x , y) = p(y |x , π(x)).

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Proof of Proposition 1

V π(x) = E
[∑
t≥0

γtr(xt , π(xt)) | x0 = x ;π
]

= r(x , π(x)) + E
[∑
t≥1

γtr(xt , π(xt)) | x0 = x ;π
]

= r(x , π(x)) + γ
∑
y

P(x1 = y | x0 = x ;π)

E
[∑
t≥1

γt−1r(xt , π(xt)) | x1 = y ;π
]

= r(x , π(x)) + γ
∑
y

p(y |x , π(x))V π(y).

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Bellman equation for V ∗

Define the optimal value function: V ∗ = supπ V
π.

Proposition 2 (Dynamic programming equation).

V ∗ satisfies:

V ∗(x) = max
a∈A

[
r(x , a) + γ

∑
y∈X

p(y |x , a)V ∗(y)
]
.

Thus V ∗ is the fixed point of the Dynamic programming
operator T (i.e., V ∗ = T V ∗) where T W is defined as

T W (x) = max
a∈A

[
r(x , a) + γ

∑
y∈X

p(y |x , a)W (y)
]
.

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Proof of Proposition 2
And for all policy π = (a, π′) (not necessarily stationary),

V ∗(x) = max
π

E
[∑
t≥0

γtr(xt , π(xt)) | x0 = x ;π
]

= max
(a,π′)

[
r(x , a) + γ

∑
y

p(y |x , a)V π′
(y)

]
= max

a

[
r(x , a) + γ

∑
y

p(y |x , a)max
π′

V π′
(y)

]
(1)

= max
a

[
r(x , a) + γ

∑
y

p(y |x , a)V ∗(y)
]
.

where (1) holds since:

• maxπ′
∑

y p(y |x , a)V π′
(y) ≤

∑
y p(y |x , a)maxπ′ V π′

(y)

• Let π̄ be the policy defined by π̄(y) = argmaxπ′ V π′
(y).

Thus
∑

y p(y |x , a)maxπ′ V π′
(y) =

∑
y p(y |x , a)V π̄(y) ≤

maxπ′
∑

y p(y |x , a)V π′
(y).

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Properties of the Bellman operators

• Monotonicity: If W1 ≤ W2 (componentwise) then

T πW1 ≤ T πW2, and T W1 ≤ T W2.

• Contraction in max-norm: For any vectors W1 and W2,

||T πW1 − T πW2||∞ ≤ γ||W1 −W2||∞,

||T W1 − T W2||∞ ≤ γ||W1 −W2||∞.

Indeed, for all x ∈ X ,

|T W1(x)− T W2(x)| =
∣∣max

a

[
r(x , a) + γ

∑
y

p(y |x , a)W1(y)
]

−max
a

[
r(x , a) + γ

∑
y

p(y |x , a)W2(y)
]∣∣

≤ γmax
a

∑
y

p(y |x , a)|W1(y)−W2(y)|

≤ γ||W1 −W2||∞

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Properties of the value functions

Proposition 3.

1. V π is the unique fixed-point of T π

V π = T πV π.

2. V ∗ is the unique fixed-point of T :

V ∗ = T V ∗.

3. For any policy π, we have V π = (I − γPπ)−1rπ

4. The policy defined by

π∗(x) ∈ argmax
a∈A

[
r(x , a) + γ

∑
y

p(y |x , a)V ∗(y)
]

is optimal (and stationary)

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Proof of Proposition 3

1. From Proposition 1, V π is a fixed point of T π. Uniqueness
comes from the contraction property of T π.

2. Idem for V ∗.

3. V π = T πV π = rπ + γPπV π. Thus (I − γPπ)V π = rπ. Now
Pπ is a stochastic matrix (whose eingenvalues have a modulus
≤ 1), thus the eing. of (I − γPπ) have a modulus
≥ 1− γ > 0, thus is invertible.

4. From the definition of π∗, we have

T π∗
V ∗ = T V ∗ = V ∗

Thus V ∗ is the fixed-point of T π∗
. But, by definition, V π∗

is
the fixed-point of T π∗

and since there is uniqueness of the
fixed-point, V π∗

= V ∗ and π∗ is optimal.

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Value Iteration

Proposition 4.

• For any bounded π and V0, define Vk+1 = T πVk . Then
Vk → V π.

• For any bounded V0, define Vk+1 = T Vk . Then Vk → V ∗.

Proof.

||Vk+1−V ∗|| = ||T Vk−T V ∗|| ≤ γ||Vk−V ∗|| ≤ γk+1||V0−V ∗|| → 0

(idem for V π)

Variant: asynchronous iterations

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Policy Iteration

Choose any initial policy π0. Iterate:

1. Policy evaluation: compute V πk .

2. Policy improvement: πk+1 greedy w.r.t. V πk :

πk+1(x) ∈ argmax
a∈A

[
r(x , a) + γ

∑
y

p(y |x , a)V πk (y)
]
,

(i.e. πk+1 ∈ argmaxπ T πV πk)

Stop when V πk = V πk+1 .

Proposition 5.

Policy iteration generates a sequence of policies with increasing
performance (V πk+1 ≥ V πk) and (in the case of finite state and
action spaces) terminates in a finite number of steps with the
optimal policy π∗.

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Proof of Proposition 5

From the definition of the operators T , T πk , T πk+1 and from πk+1,

V πk = T πkV πk ≤ T V πk = T πk+1V πk , (2)

and from the monotonicity of T πk+1 , we have

V πk ≤ lim
n→∞

(T πk+1)nV πk = V πk+1 .

Thus (V πk)k is a non-decreasing sequence. Since there is a finite
number of possible policies (finite state and action spaces), the
stopping criterion holds for a finite k; We thus have equality in (2),
thus

V πk = T V πk

so V πk = V ∗ and πk is an optimal policy.

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Back to Reinforcement Learning

What if the transition probabilities p(y |x , a) and the reward
functions r(x , a) are unknown?
In DP, we used their knowledge

• in value iteration:

Vk+1(x) = T Vk(x) = max
a

[
r(x , a) + γ

∑
y

p(y |x , a)Vk(y)
]
.

• in policy iteration:
• when computing V πk (which requires iterating T πk)
• when computing the greedy policy:

πk+1(x) ∈ argmax
a∈A

[
r(x , a) + γ

∑
y

p(y |x , a)V πk (y)
]
,

RL = introduction of 2 ideas: Q-functions and sampling.

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Definition of the Q-value function

Define the Q-value function Qπ : X × A → IR: for a policy π,

Qπ(x , a) = E
[∑
t≥0

γtr(xt , at)|x0 = x , a0 = a, at = π(xt), t ≥ 1
]

and the optimal Q-value function Q∗(x , a) = maxπ Q
π(x , a).

Proposition 6.

Qπ and Q∗ satisfy the Bellman equations:

Qπ(x , a) = r(x , a) + γ
∑
y∈X

p(y |x , a)Qπ(y , π(y))

Q∗(x , a) = r(x , a) + γ
∑
y∈X

p(y |x , a)max
b∈A

Qπ(y , b)

Idea: compute Q∗ and then π∗(x) ∈ argmaxa Q
∗(x , a).

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Q-learning algorithm [Watkins, 1989]

Builds a sequence of Q-value functions Qk .

Whenever a transition xt , at
rt−→ xt+1 occurs, update the Q-value:

Qk+1(xt , at) = Qk(xt , at)+ηk(xt , at)
[
rt + γmax

b∈A
Qk(xt+1, b)− Qk(xt , at)︸ ︷︷ ︸

temporal difference

]
.

Proposition 7 (Watkins et Dayan, 1992).

Assume that all state-action pairs (x , a) are visited infinitely often
and that the learning steps satisfy for all x , a,∑

k≥0 ηk(x , a) = ∞,
∑

k≥0 η
2
k(x , a) < ∞, then Qk

a.s.−→ Q∗.

The proof relies on Stochastic Approximation for estimating the
fixed-point of a contraction mapping.

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Q-learning algorithm

Deterministic case, discount factor γ = 0.9. Take steps η = 1.

1 0

0

0

0.9

After transition x , a
r−→ y update Qk+1(x , a) = r + γmaxb∈A Qk(y , b)

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Optimal Q-values

1 0

0

0

0
0

0

0

0

0.53
0.59

0

0 0 0

00.66 0.66

0.660.73

0 0.73
0

0.73

0.73 0.730.66

0

0

0

0
0 0 0 0

0

0

0
0.9

0.81

0.81
0.73

0.73
0.730.66

0.59

0.9

0.81

0.81

0.9

0.810.73

Bellman’s equation: Q∗(x , a) = γmax
b∈A

Q∗(next-state(x , a), b).

.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

First conclusions

When the state-space is finite and “small”:

• If transition probabilities and rewards are known, then DP
algorithms (value iteration, policy iteration) compute the
optimal solution

• Otherwise, use sampling techniques and RL algorithms
(Q-learning, TD(λ)) apply

2 main issues:

• Usually state-space is large (infinite)! We need to build
approximate solutions.

• We need to design clever exploration strategies.

	Intro to Reinforcement Learning
	Intro to Dynamic Programming
	DP algorithms
	RL algorithms

