Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Introduction to Reinforcement Learning
and multi-armed bandits

Rémi Munos

INRIA Lille - Nord Europe
Currently on leave at MSR-NE
http://researchers.lille.inria.fr/~munos/

NETADIS Summer School 2013, Hillerod, Denmark

http://researchers.lille.inria.fr/~munos/

Outline of the course

e Part 1: Introduction to Reinforcement Learning and Dynamic
Programming
e Dynamic programming: value iteration, policy iteration
e Q-learning.
e Part 2: Approximate DP and RL
e [.,-norm performance bounds

e Sample-based algorithms.
e Links with statistical learning

e Part 3: Intro to multi-armed bandits

e The stochastic bandit: UCB

e The adversarial bandit: EXP3

e Approximation of Nash equilibrium
e Monte-Carlo Tree Search

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Part 1: Introduction to Reinforcement Learning and
Dynamic Programming

A few general references:
e Neuro Dynamic Programming, Bertsekas et Tsitsiklis, 1996.

e Introduction to Reinforcement Learning, Sutton and Barto,
1998.

e Markov Decision Problems, Puterman, 1994.

e Algorithms for Reinforcement Learning, Szepesvaéri, 2009.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Introduction to Reinforcement Learning (RL)

e Learn to make good decisions in unknown environments
e Learning from experience: success or failures

e Examples: learning to ride a bicycle, play chess, autonomous
robotics, operation research, playing in stochastic market, ...

| learned to ride with RL™

Intro to Reinforcement Learning

A few applications

e TD-Gammon. [Tesauro 1992-1995]: Backgammon.

e KnightCap [Baxter et al. 1998]: chess (~2500 ELO)

¢ Robotics: juggling, acrobots [Schaal and Atkeson, 1994]
e Mobile robot navigation [Thrun et al., 1999]

e Elevator controller [Crites et Barto, 1996],

e Packet Routing [Boyan et Littman, 1993],

e Job-Shop Scheduling [Zhang et Dietterich, 1995],

e Production manufacturing optimization[Mahadevan et al.,
1998],

e Game of poker (Bandit algo for Nash computation)
e Game of go (hierarchical bandits, UCT)

http://www.ualberta.ca/~szepesva/RESEARCH/RLApplications.html

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Intro to Reinforcement Learning

Reinforcement Learning

Decision making agent

State Action

A
Reinforcement

Stochastic

Partially observable
Environment Adversaria

e Environment: can be stochastic (Tetris), adversarial (Chess),
partially unknown (bicycle), partially observable (robot)

e Available information: the reinforcement (may be delayed)

e Goal: maximize the expected sum of future rewards.

Problem: How to sacrify a short term small reward to priviledge
larger rewards in the long term?

Intro to Reinforcement Learning

Optimal value function

e Gives an evaluation of each state if the agent plays optimally.

e Ex: in a stochastic environment:

® Vi

Transition probabilities
0.3

e Bellman equation:
V*(xc) = maxaea |r(x,3) + 32, pylxe, a) V()]
o Temporal difference: d; = V*(xpy1) + r(xe, ar) — V*(x¢)

e If V* is known, then when choosing the optimal action ay,
E[d:] = 0 (i.e., in average there is no surprise)

Intro to Reinforcement Learning

Challenges of RL

e Environment may be stochastic, adversarial, partially
observable...

e The state-dynamics and reward functions are unknown: we
need to combine
e Learning
e Planning
e The curse of dimensionality: We need to rely on
approximations for representing the value function and the
optimal policy.

Intro to Dynamic Programming

Introduction to Dynamic Programming

A Markov Decision Process (X, A, p, r) defines a discrete-time
process (x¢) € X where:

e X: state space

A: action space (or decisions)

State dynamics: All relevant information about future is
included in the current state and action (Markov property)

]P(Xt+1 \ Xty Xt—1y-++,X0,dt, dt—1,-- -, 30) = P(Xt—i—l ‘ Xt at)

Thus we define the transition probabilities p(y|x, a)

Reinforcement (or reward): r(x, a) is obtained when
choosing action a in state x.

Intro to Dynamic Programming

Definition of policy

Policy m = (71,72, ...), where at time t,
Tt . X —=A
maps an action m¢(x) to any possible state x.

Given a policy 7 the process (x¢)¢>0 is a Markov chain with
transition probabilities

P(Xt+1|Xt) = P(Xt+1|Xt7 7Tt(Xt))-

When the policy is independent of time, 7 = (m, 7, ...,), the
policy is called stationary (or Markovian).

Intro to Dynamic Programming
Performance of a policy

For any policy 7, define the value function V™:
Infinite horizon:
o0
e Discounted: V7 (x) = E[Z*ytr(xt, at) | xo = x; 7,

t=0
where 0 < < 1 is the discount factor

e Undiscounted: V™(x Z r(xe, at) | xo = x; 77]
t=0
T-1
e Average: V™(x) = lim —E[Z r(xe,at) | xo = x; 7|
Tooo T -
T-1

Finite horizon: V7(x,t) =E[) r(xs,as) + R(x7)|xt = x; 7]

S=t

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

The dilemma of the Netadis SS student

p=0.5
Sleeg|
Sleep) 0. D —QA» r=-10
hink
M//Oll 0.6
0 > r=100

Sleep
Thlnk Iee
r==100I
10 Th|nk
7

You try to maximize the sum of rewards!

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Solution of the Netadis SS student

Vs = —10, Vi = 100, V5 = —1000,
Vy=-104+09Vs + 0.1V, ~ 88.9.
Vs=—1+05V,+05Vs~869. Vso=1+0.7Vs+03V; and
Vi = max{0.5V, +0.5V;,0.5V3 +0.5V;}, thus: V; = V, = 88.3.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Infinite horizon, discounted problems

For any stationary policy 7, define the value function V™ as:
VT(x) = Z’y r(xe, 7(xt)) | X0 = x; 7,
t=0

where 0 < v < 1 a discount factor (which relates rewards in the
future compared to current rewards).

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Bellman equation for V7

Proposition 1 (Bellman equation).
For any policy w, V™ satisfies:

VT(x) = r(x,m(x) +7 D plylx, w(x))V7(y),

yeX

Thus V™ is the fixed point of the Bellman operator 7™ (i.e.,
T =T"V™) where T™W is defined as

TTW(x) = r(x,7m(x)) +7 Y plylx, 7(x)) W(y)

Using matrix notations, 7" W = r™ +~yP™ W, where
r(x) = r(x,m(x)) and P™(x, y) = p(y|x, 7(x)).

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Proof of Proposition 1

VT(x) = E[nytr(xt,w(xt)) | x0 = x; |

t>0

= r(x,m(x)) + E[Z’ytr(xt, (%)) | X0 = x; 7|

t>1
= r(x,7r(x))+WZP(X1 =ylx =x;m)

E[Z’ytflr(xt, m(x)) | x1 = y; 7]

t>1

= (6 m(x)) +7 Y plylx, m(x))VT(y).
y

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Bellman equation for V*

Define the optimal value function: V* =sup, V7.
Proposition 2 (Dynamic programming equation).
V* satisfies:

V*(x) = max [r(x,a) +7 Y pylx, a)V*(y)].

acA
yeX

Thus V* is the fixed point of the Dynamic programming
operator 7 (i.e., V* =T V*) where TW is defined as

TW()—max (x;a) +7 Y plylx,a) W(y)].

yeX

Intro to Dynamic Programming

Proof of Proposition 2
And for all policy m = (a,7’) (not necessarily stationary),

Vi(x) = mﬁxE[thr(xt, (%)) | X0 = x; 7

t>0

= max [r(x, a)+v > plylx,a)v™ (y)]
y

(a,’

= max [r(x, a)+ 7; p(y|x, a) max Vﬂ'(y)] (1)

= max [r(x,a) + IR V()]
where (1) holds since:
o maxy 3, p(ylx,)V (y) < 32, p(ylx, a) maxy V™ (y)
o Let 7 be the policy defined by 7(y) = arg max, V™ (y).
Thus -, p(ylx, a) maxe V™ (y) = 3, p(ylx, a) V7 (y) <
max. 3, p(y|x,a) V™ (y).

/

Intro to Dynamic Programming

Properties of the Bellman operators
e Monotonicity: If Wi < W, (componentwise) then
T™Wi1 <T"™Wha, and TW; < T Ws.
e Contraction in max-norm: For any vectors W; and W,
[T"WL = T™Walleo < 7[|Wh — Wh|w,
[TWL =TWalloe < 7[[W1 = Wa|oo.
Indeed, for all x € X,
[TWA(x) = T Wa(x)|

| max [r(x,a) +7)_ plylx, a) Wa(y)]

—max [r(x,a) +7) plylx,) Wa(y)]]

IN

mexz p(ylx; a)|Wi(y) — Wa(y)|

Y|[Wh — Wal|oo

IN

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Properties of the value functions
Proposition 3.
1. V™ is the unique fixed-point of T™
Vi =TTVT,
2. V* is the unique fixed-point of T :
Vi=TV*

3. For any policy w, we have V™ = (I —yP™)~1r"
4. The policy defined by

T (x) € argmax [r(x,2) + 7> _ p(ylx,) V*(y)]

is optimal (and stationary)

Intro to Dynamic Programming

Proof of Proposition 3

. From Proposition 1, V™ is a fixed point of 77. Uniqueness
comes from the contraction property of 7™.

2. ldem for V*.
3. VI =T"VT =" 4+ ~P™V7. Thus (I —yP™)V™ = r™. Now

P™ is a stochastic matrix (whose eingenvalues have a modulus
< 1), thus the eing. of (I —yP™) have a modulus
> 11— >0, thus is invertible.

. From the definition of 7*, we have

Thus V* is the fixed-point of T . But, by definition, V™ is
the fixed-point of 7™ and since there is uniqueness of the
fixed-point, V™ = V* and 7* is optimal.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Value lteration

Proposition 4.

e For any bounded m and Vy, define Vi1 = T™ V. Then
Vi — V™.
e For any bounded Vy, define Vi1 =T V. Then V) — V*.

Proof.
[Vig1= V¥ = |IT V=T V*|| < 4| Vie=V*|| < +* [Vo—V*[| = 0

(idem for V) O

Variant: asynchronous iterations

DP algorithms

Policy lteration

Choose any initial policy 7. Iterate:

1. Policy evaluation: compute V7,

2. Policy improvement: 7,1 greedy w.r.t. V7k:

VK
Thi1(x) € argmax [r(x,a) + ; py|x, a) VT (y)],
(i.e. Tyq1 € argmax,; T V7k)
Stop when V7™ = V71,
Proposition 5.

Policy iteration generates a sequence of policies with increasing
performance (V™1 > V™) and (in the case of finite state and
action spaces) terminates in a finite number of steps with the
optimal policy 7*.

DP algorithms

Proof of Proposition 5

From the definition of the operators 7, 7™, T ™1 and from 7,1,
VT = Tk Tk < T VT = T+l V7Tk7 (2)
and from the monotonicity of 77«1, we have

\/Tk S lim (Tﬁkﬂ)”\/ﬂk = V/Tk+1
n—oo
Thus (V™) is a non-decreasing sequence. Since there is a finite
number of possible policies (finite state and action spaces), the
stopping criterion holds for a finite k; We thus have equality in (2),
thus
Vﬂ'k — Tvﬂ'k

so V™ = V* and 7 is an optimal policy.

RL algorithms

Back to Reinforcement Learning

What if the transition probabilities p(y|x, a) and the reward
functions r(x, a) are unknown?
In DP, we used their knowledge

e in value iteration:
Vier1(x) = T Vi(x) = max [r(x,a) + vzp(y\x, a)Vi(y)].
y

e in policy iteration:
e when computing V™ (which requires iterating 7 ™)
e when computing the greedy policy:

Thea(x) € argmax [r(x,8) +5 Y pylx, V™ ()],

RL = introduction of 2 ideas: Q-functions and sampling.

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Definition of the Q-value function

Define the Q-value function Q@™ : X x A — R: for a policy T,

Q™ (x,a) = E[Z'ytr(xt, at)|xo = x,a0 = a,ar = m(x), t > 1]
>0
and the optimal Q-value function Q*(x, a) = max, Q™(x, a).
Proposition 6.
Q™ and Q* satisfy the Bellman equations:

Q"(x,a) = r(x,a)+7v Y plylx,a)Q"(y,(y))

yeXx

Q*(x,a) = r(x,a +WZ y|x,a maxQ’T(y, b)

yeXx

Idea: compute Q* and then 7*(x) € arg max, Q*(x, a).

Intro to Reinforcement Learning Intro to Dynamic Programming DP algorithms RL algorithms

Q-learning algorithm [Watkins, 1989]

Builds a sequence of Q-value functions Q.
- Ig
Whenever a transition x;, a; — x¢11 occurs, update the Q-value:

Quy1(xe, ac) = Qu(xe, ae)+iu(xe, ar) [re + max Qu(Xe41, b) = Qu(xt; ar) |-

temporal difference

Proposition 7 (Watkins et Dayan, 1992).
Assume that all state-action pairs (x, a) are visited infinitely often

and that the learning steps satisfy for all x, a,
Pkoo(x,2) = 00, o0 75 (x,8) < 00, then Qc == Q*.

The proof relies on Stochastic Approximation for estimating the
fixed-point of a contraction mapping.

Intro to Reinforcement Learning

Intro to Dynamic Programming

DP algorithms RL algorithms

Q-learning algorithm

Deterministic case, discount factor v = 0.9. Take steps n = 1.

After transition x,a — y update Qx;1(x,a) = r + v maxpea Qx(y, b)

[m]

=

N
0
i)

Intro to Reinforcement Learning

Intro to Dynamic Programming

DP algorithms
Optimal Q-values

RL algorithms

Bellman's equation: Q*(x,a) =~ max Q" (next-state(x, a), b).
€

RL algorithms

First conclusions

When the state-space is finite and “small”:

o If transition probabilities and rewards are known, then DP
algorithms (value iteration, policy iteration) compute the
optimal solution

e Otherwise, use sampling techniques and RL algorithms
(Q-learning, TD())) apply

2 main issues:

e Usually state-space is large (infinite)! We need to build
approximate solutions.

e We need to design clever exploration strategies.

	Intro to Reinforcement Learning
	Intro to Dynamic Programming
	DP algorithms
	RL algorithms

