▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Introduction to Reinforcement Learning and multi-armed bandits

Rémi Munos

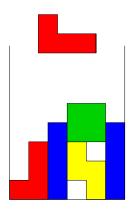
INRIA Lille - Nord Europe Currently on leave at MSR-NE http://researchers.lille.inria.fr/~munos/

NETADIS Summer School 2013, Hillerod, Denmark

Part 2: Reinforcement Learning and dynamic programming with function approximation

- Approximate policy iteration
- Approximate value iteration
- Analysis of sample-based algorithms

Example: Tetris



- **State**: wall configuration + new piece
- Action: posible positions of the new piece on the wall,
- Reward: number of lines removed
- **Next state**: Resulting configuration of the wall + random new piece.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

Size state space: $\approx 10^{61}$ states!

. . .

Approximate methods

When the state space is finite and small, use DP or RL techniques. However in most interesting problems, the state-space X is huge, possibly infinite:

- Tetris, Backgammon, ...
- Control problems often consider continuous spaces

We need to use function approximation:

- Linear approximation $\mathcal{F} = \{f_{\alpha} = \sum_{i=1}^{d} \alpha_i \phi_i, \alpha \in \mathbb{R}^d\}$
- Neural networks: $\mathcal{F} = \{f_{\alpha}\}$, where α is the weight vector
- Non-parametric: *k*-nearest neighboors, Kernel methods, SVM,

Write \mathcal{F} the set of representable functions.

Approximate dynamic programming

General approach: build an approximation $V \in \mathcal{F}$ of the optimal value function V^* (which may not belong to \mathcal{F}), and then consider the policy π greedy policy w.r.t. V, i.e.,

$$\pi(x) \in \arg \max_{a \in A} [r(x, a) + \gamma \sum_{y} p(y|x, a)V(y)].$$

(for the case of *infinite horizon with discounted rewards*.)

We expect that if $V \in \mathcal{F}$ is close to V^* then the policy π will be close-to-optimal.

Bound on the performance loss

Proposition 1.

Let V be an approximation of V^{*}, and write π the policy greedy w.r.t. V. Then

$$||V^*-V^\pi||_\infty\leq rac{2\gamma}{1-\gamma}||V^*-V||_\infty.$$

Proof.

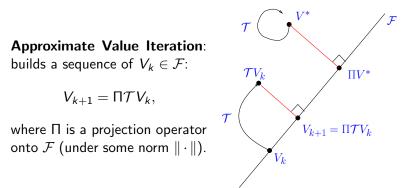
From the contraction properties of the operators \mathcal{T} and \mathcal{T}^{π} and that by definition of π we have $\mathcal{T}V = \mathcal{T}^{\pi}V$, we deduce

$$\begin{split} \|V^* - V^{\pi}\|_{\infty} &\leq \|V^* - \mathcal{T}^{\pi}V\|_{\infty} + \|\mathcal{T}^{\pi}V - \mathcal{T}^{\pi}V^{\pi}\|_{\infty} \\ &\leq \|\mathcal{T}V^* - \mathcal{T}V\|_{\infty} + \gamma\|V - V^{\pi}\|_{\infty} \\ &\leq \gamma\|V^* - V\|_{\infty} + \gamma(\|V - V^*\|_{\infty} + \|V^* - V^{\pi}\|_{\infty}) \\ &\leq \frac{2\gamma}{1 - \gamma}\|V^* - V\|_{\infty}. \end{split}$$

Approximate Policy Iteration

Analysis of sample-based algo

Approximate Value Iteration



Property: the algorithm may not converge.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Performance bound for AVI

Apply AVI for K iterations.

Proposition 2 (Bertsekas & Tsitsiklis, 1996).

The performance loss $||V^* - V^{\pi_K}||_{\infty}$ resulting from using the policy π_K greedy w.r.t. V_K is bounded as:

$$\|V^* - V^{\pi_{\mathcal{K}}}\|_{\infty} \leq \frac{2\gamma}{(1-\gamma)^2} \max_{0 \leq k < \mathcal{K}} \underbrace{\|\mathcal{T}V_k - V_{k+1}\|_{\infty}}_{\text{projection error}} + \frac{2\gamma^{\mathcal{K}+1}}{1-\gamma} \|V^* - V_0\|_{\infty}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Proof of Proposition 2

Write $\varepsilon = \max_{0 \le k < K} \|\mathcal{T}V_k - V_{k+1}\|_{\infty}$. For all $0 \le k < K$, we have

$$\begin{split} \|V^* - V_{k+1}\|_{\infty} &\leq \|\mathcal{T}V^* - \mathcal{T}V_k\|_{\infty} + \|\mathcal{T}V_k - V_{k+1}\|_{\infty} \\ &\leq \gamma \|V^* - V_k\|_{\infty} + \varepsilon, \end{split}$$

thus,
$$\|V^* - V_{\mathcal{K}}\|_{\infty} \leq (1 + \gamma + \dots + \gamma^{\mathcal{K}-1})\varepsilon + \gamma^{\mathcal{K}}\|V^* - V_0\|_{\infty}$$

 $\leq \frac{1}{1 - \gamma}\varepsilon + \gamma^{\mathcal{K}}\|V^* - V_0\|_{\infty}$

and we conclude by using Proposition 1.

A possible numerical implementation

Makes use of a generative model. At each round k,

- 1. Sample *n* states $(x_i)_{1 \le i \le n}$
- From each state x_i, for each action a ∈ A, use the model to generate a reward r(x_i, a) and m next-state samples (y^j_{i,a})_{1≤j≤m} ~ p(·|x_i, a)

3. Define

$$V_{k+1} = \arg\min_{V \in \mathcal{F}} \max_{1 \le i \le n} \left| V(x_i) - \max_{a \in A} \left[r(x_i, a) + \gamma \frac{1}{m} \sum_{j=1}^m V_k(y_{i,a}^j) \right] \right|$$
sample estimate of $\mathcal{T}_{V_k(x_i)}$

This is still a numerically hard problem.

Approximate Policy Iteration

Choose an initial policy π_0 and iterate:

- 1. Approximate policy evaluation of π_k : compute an approximation V_k of V^{π_k} .
- 2. **Policy improvement**: π_{k+1} is greedy w.r.t. V_k :

$$\pi_{k+1}(x) \in \arg \max_{a \in A} \big[r(x, a) + \gamma \sum_{y \in X} p(y|x, a) V_k(y) \big].$$

Property: the algorithm may not converge.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Performance bound for API

Proposition 3 (Bertsekas & Tsitsiklis, 1996). *We have*

$$\limsup_{k\to\infty}||V^*-V^{\pi_k}||_{\infty}\leq \frac{2\gamma}{(1-\gamma)^2}\limsup_{k\to\infty}||V_k-V^{\pi_k}||_{\infty}$$

Thus if we are able to compute a good approximation of the value function V^{π_k} at each iteration then the performance of the resulting policies will be good.

Proof of Proposition 3 [part 1]

Write $e_k = V_k - V^{\pi_k}$ the approximation error, $g_k = V^{\pi_{k+1}} - V^{\pi_k}$ the performance gain between iterations k and k + 1, and $l_k = V^* - V^{\pi_k}$ the loss of using policy π_k instead of π^* . The next policy cannot be much worst that the current one:

$$g_k \ge -\gamma (I - \gamma P^{\pi_{k+1}})^{-1} (P^{\pi_{k+1}} - P^{\pi_k}) e_k$$
 (1)

Indeed, since $T^{\pi_{k+1}}V_k \ge T^{\pi_k}V_k$ (as π_{k+1} is greedy w.r.t. V_k), we have:

$$g_{k} = T^{\pi_{k+1}}V^{\pi_{k+1}} - T^{\pi_{k+1}}V^{\pi_{k}} + T^{\pi_{k+1}}V^{\pi_{k}} - T^{\pi_{k+1}}V_{k} + T^{\pi_{k+1}}V_{k} - T^{\pi_{k}}V_{k} + T^{\pi_{k}}V_{k} - T^{\pi_{k}}V^{\pi_{k}} \geq \gamma P^{\pi_{k+1}}g_{k} - \gamma (P^{\pi_{k+1}} - P^{\pi_{k}})e_{k} \geq -\gamma (I - \gamma P^{\pi_{k+1}})^{-1} (P^{\pi_{k+1}} - P^{\pi_{k}})e_{k}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Proof of Proposition 3 [part 2]

The loss at the next iteration is bounded by the current loss as:

$$I_{k+1} \leq \gamma P^{\pi^*} I_k + \gamma [P^{\pi_{k+1}} (I - \gamma P^{\pi_{k+1}})^{-1} (I - \gamma P^{\pi_k}) - P^{\pi^*}] e_k$$

Indeed, since $T^{\pi^*}V_k \leq T^{\pi_{k+1}}V_k$,

$$\begin{split} & \mathcal{I}_{k+1} = T^{\pi^*} V^* - T^{\pi^*} V^{\pi_k} + T^{\pi^*} V^{\pi_k} - T^{\pi^*} V_k \\ & + T^{\pi^*} V_k - T^{\pi_{k+1}} V_k + T^{\pi_{k+1}} V_k - T^{\pi_{k+1}} V^{\pi_k} \\ & + T^{\pi_{k+1}} V^{\pi_k} - T^{\pi_{k+1}} V^{\pi_{k+1}} \\ & \leq \gamma [P^{\pi^*} I_k - P^{\pi_{k+1}} g_k + (P^{\pi_{k+1}} - P^{\pi^*}) e_k] \end{split}$$

and by using (1),

$$\begin{split} I_{k+1} &\leq \gamma P^{\pi^*} I_k + \gamma [P^{\pi_{k+1}} (I - \gamma P^{\pi_{k+1}})^{-1} (P^{\pi_{k+1}} - P^{\pi_k}) + P^{\pi_{k+1}} - P^{\pi^*}] e_k \\ &\leq \gamma P^{\pi^*} I_k + \gamma [P^{\pi_{k+1}} (I - \gamma P^{\pi_{k+1}})^{-1} (I - \gamma P^{\pi_k}) - P^{\pi^*}] e_k. \end{split}$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Proof of Proposition 3 [part 3]

Writing
$$f_k = \gamma [P^{\pi_{k+1}} (I - \gamma P^{\pi_{k+1}})^{-1} (I - \gamma P^{\pi_k}) - P^{\pi^*}] e_k$$
, we have:
 $I_{k+1} \leq \gamma P^{\pi^*} I_k + f_k.$

Thus, by taking the limit sup.,

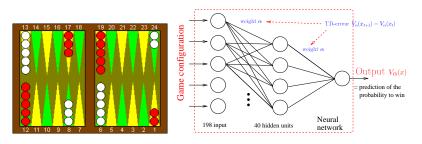
$$(I - \gamma P^{\pi^*}) \limsup_{k \to \infty} I_k \leq \limsup_{k \to \infty} f_k$$
$$\limsup_{k \to \infty} I_k \leq (I - \gamma P^{\pi^*})^{-1} \limsup_{k \to \infty} f_k,$$

since $I - \gamma P^{\pi^*}$ is invertible. In L_∞ -norm, we have

$$\begin{split} \limsup_{k \to \infty} ||I_k|| &\leq \frac{\gamma}{1-\gamma} \limsup_{k \to \infty} ||P^{\pi_{k+1}} (I - \gamma P^{\pi_{k+1}})^{-1} (I + \gamma P^{\pi_k}) + P^{\pi^*} || ||e_k|| \\ &\leq \frac{\gamma}{1-\gamma} (\frac{1+\gamma}{1-\gamma} + 1) \limsup_{k \to \infty} ||e_k|| = \frac{2\gamma}{(1-\gamma)^2} \limsup_{k \to \infty} ||e_k||. \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Case study: TD-Gammon [Tesauro, 1994]



State = game configuration x + player $j \rightarrow N \simeq 10^{20}$. **Reward** 1 or 0 at the end of the game.

The neural network returns an approximation of $V^*(x, j)$: probability that player j wins from position x, assuming that both players play optimally.

TD-Gammon algorithm

- At time t, the current game configuration is x_t
- Roll dices and select the action that maximizes the value V_{α} of the resulting state x_{t+1}
- Set the temporal difference $d_t = V_{\alpha}(x_{t+1}, j_{t+1}) V_{\alpha}(x_t, j_t)$ (if this is a final position, replace $V_{\alpha}(x_{t+1}, j_{t+1})$ by +1 or 0)
- Update α_t according to a gradient descent

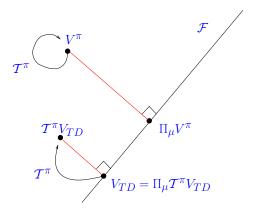
$$\alpha_{t+1} = \alpha_t + \eta_t d_t \sum_{0 \le s \le t} \lambda^{t-s} \nabla_\alpha V_\alpha(x_s).$$

After several weeks of self playing \rightarrow world best player. According to human experts it developed new strategies, specially in openings.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Least Squares Temporal Difference (LSTD)

[Bradtke & Barto, 1996] Consider a linear space \mathcal{F} . Let Π_{μ} be the projection onto \mathcal{F} defined by a weighted norm $L_2(\mu)$. The **Least Squares Temporal Difference** solution V_{TD} is the fixed-point of $\Pi_{\mu}T^{\pi}$.



Performance bound for LSTD

In general, no guarantee that there exists a fixed-point to $\Pi_{\mu}\mathcal{T}^{\pi}$ (since \mathcal{T}^{π} is not a contraction in $L_2(\mu)$ -norm). However, when μ is the stationary distribution associated to π (i.e., such that $\mu P^{\pi} = \mu$), then there exists a unique LSTD solution.

Proposition 4.

Consider μ to be the stationary distribution associated to π . Then \mathcal{T}^{π} is a contraction mapping in $L_2(\mu)$ -norm, thus $\Pi_{\mu}\mathcal{T}^{\pi}$ is also a contraction, and there exists a unique LSTD solution V_{TD} . In addition, we have the approximation error:

$$\|V^{\pi} - V_{TD}\|_{\mu} \le \frac{1}{\sqrt{1 - \gamma^2}} \inf_{V \in \mathcal{F}} \|V^{\pi} - V\|_{\mu}.$$
 (2)

Proof of Proposition 4 [part 1]

First let us prove that $\|P_{\pi}\|_{\mu} = 1$. We have:

$$\|P^{\pi}V\|_{\mu}^{2} = \sum_{x} \mu(x) \left(\sum_{y} p(y|x, \pi(x))V(y)\right)^{2}$$

$$\leq \sum_{x} \sum_{y} \mu(x)p(y|x, \pi(x))V(y)^{2}$$

$$= \sum_{y} \mu(y)V(y)^{2} = \|V\|_{\mu}^{2}.$$

We deduce that \mathcal{T}^{π} is a contraction mapping in $L_2(\mu)$:

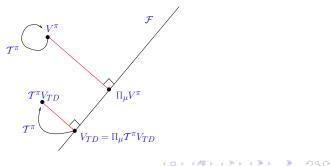
$$\|\mathcal{T}^{\pi}V_{1} - \mathcal{T}^{\pi}V_{2}\|_{\mu} = \gamma \|P^{\pi}(V_{1} - V_{2})\|_{\mu} \leq \gamma \|V_{1} - V_{2}\|_{\mu},$$

and since Π_{μ} is a non-expansion in $L_2(\mu)$, then $\Pi_{\mu}\mathcal{T}^{\pi}$ is a contraction in $L_2(\mu)$. Write V_{TD} its (unique) fixed-point.

 $\begin{array}{l} \begin{array}{l} \text{Proof of Proposition 4 [part 2]} \\ \text{We have } \|V^{\pi} - V_{TD}\|_{\mu}^{2} = \|V^{\pi} - \Pi_{\mu}V^{\pi}\|_{\mu}^{2} + \|\Pi_{\mu}V^{\pi} - V_{TD}\|_{\mu}^{2}, \\ \text{but } \|\Pi_{\mu}V^{\pi} - V_{TD}\|_{\mu}^{2} &= \|\Pi_{\mu}V^{\pi} - \Pi_{\mu}\mathcal{T}^{\pi}V_{TD}\|_{\mu}^{2} \\ &\leq \|\mathcal{T}^{\pi}V^{\pi} - \mathcal{T}V_{TD}\|_{\mu}^{2} \leq \gamma^{2}\|V^{\pi} - V_{TD}\|_{\mu}^{2}. \end{array}$

Thus
$$\|V^{\pi} - V_{TD}\|_{\mu}^{2} \leq \|V^{\pi} - \Pi_{\mu}V^{\pi}\|_{\mu}^{2} + \gamma^{2}\|V^{\pi} - V_{TD}\|_{\mu}^{2}$$

from which the result follows.



Characterization of the LSTD solution

The Bellman residual $\mathcal{T}^{\pi}V_{TD} - V_{TD}$ is orthogonal to the space \mathcal{F} , thus for all $1 \leq i \leq d$,

$$\langle r^{\pi} + \gamma P^{\pi} V_{TD} - V_{TD}, \phi_i \rangle_{\mu} = 0$$

$$\langle r^{\pi}, \phi_i \rangle_{\mu} + \sum_{j=1}^{d} \langle \gamma P^{\pi} \phi_j - \phi_j, \phi_i \rangle_{\mu} \alpha_{TD,j} = 0,$$

where α_{TD} is the parameter of V_{TD} . We deduce that α_{TD} is solution to the linear system (of size *d*):

$$A\alpha = b, \text{ with } \begin{cases} A_{i,j} = \langle \phi_i, \phi_j - \gamma P^{\pi} \phi_j \rangle_{\mu} \\ b_i = \langle \phi_i, r^{\pi} \rangle_{\mu} \end{cases}$$

Empirical LSTD

Consider a trajectory $(x_1, x_2, ..., x_n)$ generated by following π Build the matrix \hat{A} and the vector \hat{b} as

$$\hat{A}_{ij} = \frac{1}{n} \sum_{t=1}^{n} \phi_i(x_t) [\phi_j(x_t) - \gamma \phi_j(x_{t+1})],$$

$$\hat{b}_i = \frac{1}{n} \sum_{t=1}^{n} \phi_i(x_t) r_{x_t}.$$

and compute the empirical LSTD solution \hat{V}_{TD} whose parameter is the solution to $\hat{A}\alpha = \hat{b}$.

We have $\hat{V}_{TD} \stackrel{a.s.}{\to} V_{TD}$ when $n \to \infty$, since $\hat{A} \stackrel{a.s.}{\to} A$ and $\hat{b} \stackrel{a.s.}{\to} b$.

Finite-time analysis of LSTD

Define the empirical norm $||f||_n = \sqrt{\frac{1}{n} \sum_{t=1}^n f(x_t)^2}.$

Theorem 1 (Lazaric et al., 2010). With probability $1 - \delta$ (w.r.t. the trajectory),

$$||V^{\pi} - \hat{V}_{TD}||_{n} \leq \frac{1}{\sqrt{1 - \gamma^{2}}} \underbrace{\inf_{V \in \mathcal{F}} ||V^{\pi} - V||_{n}}_{Approximation \ error} + \frac{c}{1 - \gamma} \underbrace{\sqrt{\frac{d \log(1/\delta)}{n}}}_{Estimation \ error}$$

This type of bounds is similar to results in Statistical Learning.

Least-Squares Policy Iteration

[Lagoudakis & Parr, 2003] Consider $Q(x, a) = \sum_{i=1}^{d} \alpha_i \phi_i(x, a)$

Policy evaluation: At round k, run a trajectory (x_t)_{1≤t≤n} by following policy π_k. Build and b̂ as

$$\hat{A}_{ij} = \frac{1}{n} \sum_{t=1}^{n} \phi_i(x_t, a_t) [\phi_j(x_t, a_t) - \gamma \phi_j(x_{t+1}, a_{t+1})],$$

$$\hat{b}_i = \frac{1}{n} \sum_{t=1}^{n} \phi_i(x_t, a_t) r(x_t, a_t).$$

and \hat{Q}_k is the Q-function defined by the solution to $\hat{A}\alpha = \hat{b}$. • Policy improvement: $\pi_{k+1}(x) \in \arg \max_{a \in A} \hat{Q}_k(x, a)$.

We would like guarantees on $\|Q^* - Q^{\pi_K}\|$

Theoretical guarantees so far

Approximate Value Iteration:

$$\|V^* - V^{\pi_{\kappa}}\|_{\infty} \leq \frac{2\gamma}{(1-\gamma)^2} \max_{0 \leq k < \kappa} \underbrace{\|\mathcal{T}V_k - V_{k+1}\|_{\infty}}_{\text{projection error}} + O(\gamma^{\kappa}).$$

Approximate Policy Iteration:

$$\|V^* - V^{\pi_{\mathcal{K}}}\|_{\infty} \leq \frac{2\gamma}{(1-\gamma)^2} \max_{\substack{0 \leq k < \mathcal{K}}} \underbrace{\|V^{\pi_k} - V_k\|_{\infty}}_{\text{approximation error}} + O(\gamma^{\mathcal{K}}).$$

Problem: hard to control L_{∞} -norm using samples. We could minimize an empirical L_{∞} -norm, but

- Numerically intractable
- Hard to relate L_{∞} -norm to empirical L_{∞} -norm.

Instead use empirical L_2 -norm

• For AVI this is just a linear regression problem:

$$V_{k+1} = \arg \min_{V \in \mathcal{F}} \sum_{i=1}^{n} |\widehat{\mathcal{TV}}_k(x_i) - V(x_i)|^2,$$

• For API this is just LSTD: fixed-point of an empirical Bellman operator projected onto \mathcal{F} using an empirical norm.

In both cases, V_k is solution to a linear problem, which is

- Numerically tractable
- For which generalization bounds exits (using VC theory):

$$\|\mathcal{T}V_k - V_{k+1}\|_2^2 \leq \frac{1}{n} \sum_{i=1}^n \left|\widehat{\mathcal{T}V}_k(x_i) - V(x_i)\right|^2 + c\sqrt{\frac{VC(\mathcal{F})}{n}}$$

L_p -norm analysis of ADP

Under smoothness assumptions on the MDP, the propagation error of all usual ADP algorithms can be analyzed in L_p -norm ($p \ge 1$). **Proposition 5 (Munos, 2003, 2007).**

• Approximate Value Iteration: Assume there is a constant $C \ge 1$ and a distribution μ such that $\forall x \in X$, $\forall a \in A$,

$$p(\cdot|x,a) \leq C\mu(\cdot).$$

$$\|V^* - V^{\pi_K}\|_{\infty} \leq \frac{2\gamma}{(1-\gamma)^2} C^{1/p} \max_{0 \leq k < K} \|\mathcal{T}V_k - V_{k+1}\|_{p,\mu} + O(\gamma^K).$$

 Approximate Policy Iteration: Assume p(·|x, a) ≤ Cμ_π(·), for any policy π

$$\|V^* - V^{\pi_K}\|_{\infty} \leq rac{2\gamma}{(1-\gamma)^2} C^{1/p} \max_{0 \leq k < K} \|V_k - V^{\pi_k}\|_{p,\mu_{\pi}} + O(\gamma^K).$$

We have all ingredients for a finite-sample analysis of RL/ADP.

Finite-sample analysis of LSPI

Perform K policy iterations steps. At stage k, run one trajectory of length n following π_k and compute the LSTD solution \hat{V}_k (by solving a linear system).

Proposition 6 (Lazaric et al., 2010).

For any $\delta > 0$, with probability at least $1 - \delta$, we have:

$$||V^* - V^{\pi_K}||_{\infty} \le rac{2\gamma}{(1-\gamma)^3} C^{1/2} \sup_k \inf_{V \in \mathcal{F}} ||V^{\pi_k} - V||_{2,\mu_k} + O\Big(rac{d\log(1/\delta)}{n}\Big)^{1/2} + O(\gamma^K)$$

Finite-sample analysis of AVI

K iterations of AVI with *n* samples $x_i \sim \mu$. From each state x_i , each $a \in A$, generate *m* next state samples $y_{i,a}^j \sim p(\cdot|x_i, a)$.

Proposition 7 (Munos and Szepesvári, 2007). For any $\delta > 0$, with probability at least $1 - \delta$, we have:

$$\begin{split} ||V^* - V^{\pi_{\mathcal{K}}}||_{\infty} &\leq \frac{2\gamma}{(1-\gamma)^2} \, C^{1/p} \, d(\mathcal{TF}, \mathcal{F}) + O(\gamma^{\mathcal{K}}) \\ &+ O\Big(\frac{V(\mathcal{F})\log(1/\delta)}{n}\Big)^{1/4} + O\Big(\frac{\log(1/\delta)}{m}\Big)^{1/2}, \end{split}$$

where $d(\mathcal{TF}, \mathcal{F}) \stackrel{\text{def}}{=} \sup_{g \in \mathcal{F}} \inf_{f \in \mathcal{F}} ||\mathcal{T}g - f||_{2,\mu}$ is the Bellman residual of the space \mathcal{F} , and $V(\mathcal{F})$ the pseudo-dimension of \mathcal{F} .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

More works on finite-sample analysis of ADP/RL

This is important to know how many samples n are required to build an ϵ -approximation of the optimal policy.

- Policy iteration using a single trajectory [Antos et al., 2008]
- BRM [Maillard et al., 2010]
- LSTD with random projections [Ghavamzadeh et al., 2010]
- Lasso-TD [Ghavamzadeh et al., 2011]

Active research topic which links RL and statistical learning theory.