
. . . . . .

Approximate Value Iteration Approximate Policy Iteration Analysis of sample-based algo

Introduction to Reinforcement Learning
and multi-armed bandits
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Part 2: Reinforcement Learning and dynamic programming
with function approximation

• Approximate policy iteration

• Approximate value iteration

• Analysis of sample-based algorithms
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Example: Tetris

• State: wall configuration + new piece

• Action: posible positions of the new
piece on the wall,

• Reward: number of lines removed

• Next state: Resulting configuration
of the wall + random new piece.

Size state space: ≈ 1061 states!
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Approximate methods

When the state space is finite and small, use DP or RL techniques.
However in most interesting problems, the state-space X is huge,
possibly infinite:

• Tetris, Backgammon, ...

• Control problems often consider continuous spaces

We need to use function approximation:

• Linear approximation F = {fα =
∑d

i=1 αiϕi , α ∈ IRd}
• Neural networks: F = {fα}, where α is the weight vector

• Non-parametric: k-nearest neighboors, Kernel methods, SVM,
...

Write F the set of representable functions.
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Approximate dynamic programming

General approach: build an approximation V ∈ F of the optimal
value function V ∗ (which may not belong to F), and then consider
the policy π greedy policy w.r.t. V , i.e.,

π(x) ∈ argmax
a∈A

[
r(x , a) + γ

∑
y

p(y |x , a)V (y)
]
.

(for the case of infinite horizon with discounted rewards.)

We expect that if V ∈ F is close to V ∗ then the policy π will be
close-to-optimal.
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Bound on the performance loss

Proposition 1.

Let V be an approximation of V ∗, and write π the policy greedy
w.r.t. V . Then

||V ∗ − V π||∞ ≤ 2γ

1− γ
||V ∗ − V ||∞.

Proof.
From the contraction properties of the operators T and T π and
that by definition of π we have T V = T πV , we deduce

∥V ∗ − V π∥∞ ≤ ∥V ∗ − T πV ∥∞ + ∥T πV − T πV π∥∞
≤ ∥T V ∗ − T V ∥∞ + γ∥V − V π∥∞
≤ γ∥V ∗ − V ∥∞ + γ(∥V − V ∗∥∞ + ∥V ∗ − V π∥∞)

≤ 2γ

1− γ
∥V ∗ − V ∥∞.
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Approximate Value Iteration

Approximate Value Iteration:
builds a sequence of Vk ∈ F :

Vk+1 = ΠT Vk ,

where Π is a projection operator
onto F (under some norm ∥ · ∥).

F

Vk

ΠV ∗

V
∗

T

T Vk

T
Vk+1 = ΠT Vk

Property: the algorithm may not converge.
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Performance bound for AVI

Apply AVI for K iterations.

Proposition 2 (Bertsekas & Tsitsiklis, 1996).

The performance loss ∥V ∗ − V πK ∥∞ resulting from using the
policy πK greedy w.r.t. VK is bounded as:

∥V ∗−V πK ∥∞ ≤ 2γ

(1− γ)2
max

0≤k<K
∥T Vk − Vk+1∥∞︸ ︷︷ ︸
projection error

+
2γK+1

1− γ
∥V ∗−V0∥∞.
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Proof of Proposition 2

Write ε = max0≤k<K ∥T Vk −Vk+1∥∞. For all 0 ≤ k < K , we have

∥V ∗ − Vk+1∥∞ ≤ ∥T V ∗ − T Vk∥∞ + ∥T Vk − Vk+1∥∞
≤ γ∥V ∗ − Vk∥∞ + ε,

thus, ∥V ∗ − VK∥∞ ≤ (1 + γ + · · ·+ γK−1)ε+ γK∥V ∗ − V0∥∞

≤ 1

1− γ
ε+ γK∥V ∗ − V0∥∞

and we conclude by using Proposition 1.
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A possible numerical implementation

Makes use of a generative model. At each round k ,

1. Sample n states (xi )1≤i≤n

2. From each state xi , for each action a ∈ A, use the model to
generate a reward r(xi , a) and m next-state samples
(y ji ,a)1≤j≤m ∼ p(·|xi , a)

3. Define

Vk+1 = arg min
V∈F

max
1≤i≤n

∣∣∣V (xi )−max
a∈A

[
r(xi , a) + γ

1

m

m∑
j=1

Vk(y
j
i ,a)

]
︸ ︷︷ ︸

sample estimate of T Vk(xi )

∣∣∣

This is still a numerically hard problem.
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Approximate Policy Iteration

Choose an initial policy π0 and iterate:

1. Approximate policy evaluation of πk :
compute an approximation Vk of V πk .

2. Policy improvement: πk+1 is greedy w.r.t. Vk :

πk+1(x) ∈ argmax
a∈A

[
r(x , a) + γ

∑
y∈X

p(y |x , a)Vk(y)
]
.

Property: the algorithm may not converge.
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Performance bound for API

Proposition 3 (Bertsekas & Tsitsiklis, 1996).

We have

lim sup
k→∞

||V ∗ − V πk ||∞ ≤ 2γ

(1− γ)2
lim sup
k→∞

||Vk − V πk ||∞

Thus if we are able to compute a good approximation of the value
function V πk at each iteration then the performance of the
resulting policies will be good.
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Proof of Proposition 3 [part 1]

Write ek = Vk − V πk the approximation error, gk = V πk+1 − V πk

the performance gain between iterations k and k + 1, and
lk = V ∗ − V πk the loss of using policy πk instead of π∗.
The next policy cannot be much worst that the current one:

gk ≥ −γ(I − γPπk+1)−1(Pπk+1 − Pπk ) ek (1)

Indeed, since Tπk+1Vk ≥ T πkVk (as πk+1 is greedy w.r.t. Vk), we
have:

gk = Tπk+1V πk+1 − T πk+1V πk + T πk+1V πk − Tπk+1Vk

+Tπk+1Vk − TπkVk + TπkVk − TπkV πk

≥ γPπk+1gk − γ(Pπk+1 − Pπk ) ek

≥ −γ(I − γPπk+1)−1(Pπk+1 − Pπk ) ek
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Proof of Proposition 3 [part 2]

The loss at the next iteration is bounded by the current loss as:

lk+1 ≤ γPπ∗
lk + γ[Pπk+1(I − γPπk+1)−1(I − γPπk )− Pπ∗

]ek

Indeed, since Tπ∗
Vk ≤ Tπk+1Vk ,

lk+1 = Tπ∗
V ∗ − Tπ∗

V πk + Tπ∗
V πk − Tπ∗

Vk

+T π∗
Vk − Tπk+1Vk + Tπk+1Vk − Tπk+1V πk

+T πk+1V πk − T πk+1V πk+1

≤ γ[Pπ∗
lk − Pπk+1gk + (Pπk+1 − Pπ∗

)ek ]

and by using (1),

lk+1 ≤ γPπ∗
lk + γ[Pπk+1(I − γPπk+1)−1(Pπk+1 − Pπk ) + Pπk+1 − Pπ∗

]ek

≤ γPπ∗
lk + γ[Pπk+1(I − γPπk+1)−1(I − γPπk )− Pπ∗

]ek .
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Proof of Proposition 3 [part 3]

Writing fk = γ[Pπk+1(I − γPπk+1)−1(I − γPπk )− Pπ∗
]ek , we have:

lk+1 ≤ γPπ∗
lk + fk .

Thus, by taking the limit sup.,

(I − γPπ∗
) lim sup

k→∞
lk ≤ lim sup

k→∞
fk

lim sup
k→∞

lk ≤ (I − γPπ∗
)−1 lim sup

k→∞
fk ,

since I − γPπ∗
is invertible. In L∞-norm, we have

lim sup
k→∞

||lk || ≤
γ

1− γ
lim sup
k→∞

||Pπk+1(I − γPπk+1)−1(I + γPπk ) + Pπ∗
|| ||ek ||

≤ γ

1− γ
(
1 + γ

1− γ
+ 1) lim sup

k→∞
||ek || =

2γ

(1− γ)2
lim sup
k→∞

||ek ||.
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Case study: TD-Gammon [Tesauro, 1994]

G
am

e 
co

nf
ig

ur
at

io
n

198 input 40 hidden units

= prediction of the 
probability to win

network
Neural

weight α
TD-erreur Vα(xt+1)− Vα(xt)

weight α

Output Vα(x)

State = game configuration x + player j → N ≃ 1020.
Reward 1 or 0 at the end of the game.

The neural network returns an approximation of V ∗(x , j):
probability that player j wins from position x , assuming that both
players play optimally.
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TD-Gammon algorithm

• At time t, the current game configuration is xt

• Roll dices and select the action that maximizes the value Vα

of the resulting state xt+1

• Set the temporal difference dt = Vα(xt+1, jt+1)− Vα(xt , jt)
(if this is a final position, replace Vα(xt+1, jt+1) by +1 or 0)

• Update αt according to a gradient descent

αt+1 = αt + ηtdt
∑

0≤s≤t

λt−s∇αVα(xs).

After several weeks of self playing → world best player.
According to human experts it developed new strategies, specially
in openings.
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Least Squares Temporal Difference (LSTD)
[Bradtke & Barto, 1996] Consider a linear space F .
Let Πµ be the projection onto F defined by a weighted norm L2(µ).
The Least Squares Temporal Difference solution VTD is the
fixed-point of ΠµT

π.

VTD = ΠµT
πVTD

ΠµV π

V π

T π

T πVTD

T π

F
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Performance bound for LSTD

In general, no guarantee that there exists a fixed-point to ΠµT π

(since T π is not a contraction in L2(µ)-norm).
However, when µ is the stationary distribution associated to π (i.e.,
such that µPπ = µ), then there exists a unique LSTD solution.

Proposition 4.

Consider µ to be the stationary distribution associated to π. Then
T π is a contraction mapping in L2(µ)-norm, thus ΠµT π is also a
contraction, and there exists a unique LSTD solution VTD . In
addition, we have the approximation error:

∥V π − VTD∥µ ≤ 1√
1− γ2

inf
V∈F

∥V π − V ∥µ. (2)
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Proof of Proposition 4 [part 1]

First let us prove that ∥Pπ∥µ = 1. We have:

∥PπV ∥2µ =
∑
x

µ(x)
(∑

y

p(y |x , π(x))V (y)
)2

≤
∑
x

∑
y

µ(x)p(y |x , π(x))V (y)2

=
∑
y

µ(y)V (y)2 = ∥V ∥2µ.

We deduce that T π is a contraction mapping in L2(µ):

∥T πV1 − T πV2∥µ = γ∥Pπ(V1 − V2)∥µ ≤ γ∥V1 − V2∥µ,

and since Πµ is a non-expansion in L2(µ), then ΠµT π is a
contraction in L2(µ). Write VTD its (unique) fixed-point.
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Proof of Proposition 4 [part 2]
We have ∥V π − VTD∥2µ = ∥V π − ΠµV

π∥2µ + ∥ΠµV
π − VTD∥2µ,

but ∥ΠµV
π − VTD∥2µ = ∥ΠµV

π − ΠµT πVTD∥2µ
≤ ∥T πV π − T VTD∥2µ ≤ γ2∥V π − VTD∥2µ.

Thus ∥V π − VTD∥2µ ≤ ∥V π − ΠµV
π∥2µ + γ2∥V π − VTD∥2µ,

from which the result follows.

VTD = ΠµT
πVTD

ΠµV π

V π

T π

T πVTD

T π

F
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Characterization of the LSTD solution

The Bellman residual T πVTD − VTD is orthogonal to the space F ,
thus for all 1 ≤ i ≤ d ,

⟨rπ + γPπVTD − VTD , ϕi ⟩µ = 0

⟨rπ, ϕi ⟩µ +
d∑

j=1

⟨γPπϕj − ϕj , ϕi ⟩µαTD,j = 0,

where αTD is the parameter of VTD . We deduce that αTD is
solution to the linear system (of size d):

Aα = b, with

{
Ai ,j = ⟨ϕi , ϕj − γPπϕj⟩µ
bi = ⟨ϕi , r

π⟩µ
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Empirical LSTD

Consider a trajectory (x1, x2, . . . , xn) generated by following π
Build the matrix Â and the vector b̂ as

Âij =
1

n

n∑
t=1

ϕi (xt)[ϕj(xt)− γϕj(xt+1)],

b̂i =
1

n

n∑
t=1

ϕi (xt)rxt .

and compute the empirical LSTD solution V̂TD whose parameter is
the solution to Âα = b̂.

We have V̂TD
a.s.→ VTD when n → ∞, since Â

a.s.→ A and b̂
a.s.→ b.
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Finite-time analysis of LSTD

Define the empirical norm ∥f ∥n =
√

1
n

∑n
t=1 f (xt)

2.

Theorem 1 (Lazaric et al., 2010).
With probability 1− δ (w.r.t. the trajectory),

||V π − V̂TD ||n ≤ 1√
1− γ2

inf
V∈F

||V π − V ||n︸ ︷︷ ︸
Approximation error

+
c

1− γ

√
d log(1/δ)

n︸ ︷︷ ︸
Estimation error

This type of bounds is similar to results in Statistical Learning.
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Least-Squares Policy Iteration

[Lagoudakis & Parr, 2003] Consider Q(x , a) =
∑d

i=1 αiϕi (x , a)

• Policy evaluation: At round k, run a trajectory (xt)1≤t≤n by

following policy πk . Build Â and b̂ as

Âij =
1

n

n∑
t=1

ϕi (xt , at)[ϕj(xt , at)− γϕj(xt+1, at+1)],

b̂i =
1

n

n∑
t=1

ϕi (xt , at)r(xt , at).

and Q̂k is the Q-function defined by the solution to Âα = b̂.

• Policy improvement:πk+1(x) ∈ argmaxa∈A Q̂k(x , a).

We would like guarantees on ∥Q∗ − QπK ∥
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Theoretical guarantees so far

Approximate Value Iteration:

∥V ∗ − V πK ∥∞ ≤ 2γ

(1− γ)2
max

0≤k<K
∥T Vk − Vk+1∥∞︸ ︷︷ ︸
projection error

+O(γK ).

Approximate Policy Iteration:

∥V ∗ − V πK ∥∞ ≤ 2γ

(1− γ)2
max

0≤k<K
∥V πk − Vk∥∞︸ ︷︷ ︸

approximation error

+O(γK ).

Problem: hard to control L∞-norm using samples. We could
minimize an empirical L∞-norm, but

• Numerically intractable

• Hard to relate L∞-norm to empirical L∞-norm.
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Instead use empirical L2-norm

• For AVI this is just a linear regression problem:

Vk+1 = arg min
V∈F

n∑
i=1

∣∣T̂ V k(xi )− V (xi )
∣∣2,

• For API this is just LSTD: fixed-point of an empirical Bellman
operator projected onto F using an empirical norm.

In both cases, Vk is solution to a linear problem, which is

• Numerically tractable

• For which generalization bounds exits (using VC theory):

∥T Vk − Vk+1∥22 ≤
1

n

n∑
i=1

∣∣T̂ V k(xi )− V (xi )
∣∣2 + c

√
VC (F)

n
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Lp-norm analysis of ADP

Under smoothness assumptions on the MDP, the propagation error
of all usual ADP algorithms can be analyzed in Lp-norm (p ≥ 1).

Proposition 5 (Munos, 2003, 2007).

• Approximate Value Iteration: Assume there is a constant
C ≥ 1 and a distribution µ such that ∀x ∈ X, ∀a ∈ A,

p(·|x , a) ≤ Cµ(·).

∥V ∗ − V πK ∥∞ ≤ 2γ

(1− γ)2
C 1/p max

0≤k<K
∥T Vk − Vk+1∥p,µ + O(γK ).

• Approximate Policy Iteration: Assume p(·|x , a) ≤ Cµπ(·),
for any policy π

∥V ∗ − V πK ∥∞ ≤ 2γ

(1− γ)2
C 1/p max

0≤k<K
∥Vk − V πk∥p,µπ

+ O(γK ).

We have all ingredients for a finite-sample analysis of RL/ADP.
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Finite-sample analysis of LSPI

Perform K policy iterations steps. At stage k, run one trajectory of
length n following πk and compute the LSTD solution V̂k (by
solving a linear system).

Proposition 6 (Lazaric et al., 2010).

For any δ > 0, with probability at least 1− δ, we have:

||V ∗ − V πK ||∞ ≤ 2γ

(1− γ)3
C 1/2 sup

k
inf
V∈F

∥V πk − V ∥2,µk

+O
(d log(1/δ)

n

)1/2
+ O(γK )
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Finite-sample analysis of AVI

K iterations of AVI with n samples xi ∼ µ. From each state xi ,
each a ∈ A, generate m next state samples y ji ,a ∼ p(·|xi , a).

Proposition 7 (Munos and Szepesvári, 2007).

For any δ > 0, with probability at least 1− δ, we have:

||V ∗ − V πK ||∞ ≤ 2γ

(1− γ)2
C 1/p d(T F ,F) + O(γK )

+O
(V (F) log(1/δ)

n

)1/4
+ O

( log(1/δ)
m

)1/2
,

where d(T F ,F)
def
= supg∈F inff ∈F ||T g − f ||2,µ is the Bellman

residual of the space F , and V (F) the pseudo-dimension of F .
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More works on finite-sample analysis of ADP/RL

This is important to know how many samples n are required to
build an ϵ-approximation of the optimal policy.

• Policy iteration using a single trajectory [Antos et al., 2008]

• BRM [Maillard et al., 2010]

• LSTD with random projections [Ghavamzadeh et al., 2010]

• Lasso-TD [Ghavamzadeh et al., 2011]

Active research topic which links RL and statistical learning
theory.


