Approximate Value Iteration Approximate Policy Iteration Analysis of sample-based algo

Introduction to Reinforcement Learning
and multi-armed bandits

Rémi Munos

INRIA Lille - Nord Europe
Currently on leave at MSR-NE
http://researchers.lille.inria.fr/~munos/

NETADIS Summer School 2013, Hillerod, Denmark

http://researchers.lille.inria.fr/~munos/

Approximate Value Iteration Approximate Policy Iteration Analysis of sample-based algo

Part 2: Reinforcement Learning and dynamic programming
with function approximation

e Approximate policy iteration
e Approximate value iteration

e Analysis of sample-based algorithms

Approximate Value Iteration Approximate Policy Iteration Analysis of sample-based algo

|

Example: Tetris

State: wall configuration 4+ new piece

Action: posible positions of the new
piece on the wall,

Reward: number of lines removed

Next state: Resulting configuration
of the wall 4+ random new piece.

Size state space: &~ 10%! states!

Approximate methods

When the state space is finite and small, use DP or RL techniques.
However in most interesting problems, the state-space X is huge,
possibly infinite:

e Tetris, Backgammon, ...

e Control problems often consider continuous spaces
We need to use function approximation:

e Linear approximation F = {f, = 2?;1 ai¢i,a € R}

e Neural networks: F = {f,}, where a is the weight vector

e Non-parametric: k-nearest neighboors, Kernel methods, SVM,

Write F the set of representable functions.

Approximate dynamic programming

General approach: build an approximation V € F of the optimal
value function V* (which may not belong to F), and then consider
the policy 7 greedy policy w.r.t. V, i.e.,

m(x) € argmax [r(x,2) + 7> _ p(ylx,) V(y)]-

(for the case of infinite horizon with discounted rewards.)

We expect that if V € F is close to V* then the policy 7 will be
close-to-optimal.

Approximate Value Iteration Approximate Policy Iteration Analysis of sample-based algo

Bound on the performance loss

Proposition 1.

Let V' be an approximation of V*, and write w the policy greedy
w.r.t. V. Then

2y
V¥ — VTl < ——||V* = V]|
I | _1_7|| I
Proof.

From the contraction properties of the operators 7 and 7™ and
that by definition of © we have TV = T7V, we deduce

[VF= VT < V=T " V]oo + TV =TV
< TV =TV +7[V = VTl
< AV = Voo +(IV = Vo + V" = VTlx)
2y X
< lil\V — Vlloo-
-

Approximate Value lteration Approximate Policy Iteration Analysis of sample-based algo

Approximate Value lteration

Approximate Value lteration:
builds a sequence of V, € F:

Vigr = NT Vi,

where 1 is a projection operator
onto F (under some norm || - |]).

Property: the algorithm may not converge.

Approximate Value lteration Approximate Policy Iteration Analysis of sample-based algo

Performance bound for AVI

Apply AVI for K iterations.
Proposition 2 (Bertsekas & Tsitsiklis, 1996).

The performance loss ||V* — V™|, resulting from using the
policy mk greedy w.r.t. Vi is bounded as:

2,}/K+1
V* V7K < — Vi — V,
Vo=Vl £ o s [TVe— Vil + 5

projection error

V"= Volloo-

Approximate Value lteration Approximate Policy Iteration Analysis of sample-based algo

Proof of Proposition 2

Write € = maxo<k<k ||T Vik — Vik+1l|oo- For all 0 < k < K, we have

[V* = Viqillo < 1TV =T Villoo + IT Vk = Vsl
< AIVF = Vil + &,
thus, [V* = Vklloo < (T+7+ -+ eV = Vol
< e+IV* = Vollso

1—v

and we conclude by using Proposition 1.

Approximate Value lteration

A possible numerical implementation

Makes use of a generative model. At each round k,
1. Sample n states (xi)i1<i<n

2. From each state x;, for each action a € A, use the model to
generate a reward r(x;,a) and m next-state samples
(v Di<j<m ~ p(-|xi; a)

3. Define

m

V(xi)— ma/>\<[Xj, a Z

=1

V = arg min max
ktl & VEeF 1<i<n

sample estimate of TV,(x)

This is still a numerically hard problem.

Approximate Policy Iteration

Approximate Policy lteration

Choose an initial policy mg and iterate:

1. Approximate policy evaluation of 7y:
compute an approximation Vj of V7,

2. Policy improvement: 7,1 is greedy w.r.t. Vj:

Th1(x) € argmax [r(x,a) +7 Y _ p(ylx, @) Vi(y)]-
yeX

Property: the algorithm may not converge.

Approximate Value Iteration Approximate Policy Iteration Analysis of sample-based algo

Performance bound for API

Proposition 3 (Bertsekas & Tsitsiklis, 1996).

We have
, « - 2y -
limsup [V — Voo < 1 limsup [Vi — V™||oo
k—o0 (-) k— 00

Thus if we are able to compute a good approximation of the value
function V™« at each iteration then the performance of the
resulting policies will be good.

Approximate Policy Iteration

Proof of Proposition 3 [part 1]

Write ex = Vi — V™ the approximation error, g = V7«1 — V7k
the performance gain between iterations k and k + 1, and

Ix = V* — V7™ the loss of using policy 7y instead of 7*.

The next policy cannot be much worst that the current one:

gk > =y (I —yPTe) TH(PTHL — PTH) gy (1)

Indeed, since T™ 1V > T™ V) (as w1 is greedy w.r.t. Vi), we
have:

8k = TTet1 /Tl _ TTht1\/Tk 4 TTh+1\/Th _ TTktl Vk
F TV — TV TRV — T/
YPT ge — (P — PTX) e

—(I — ry’Dﬂ'kJrl)*l(Pﬂ'kJrl — P™) ¢

AV

Approximate Value Iteration Approximate Policy Iteration Analysis of sample-based algo

Proof of Proposition 3 [part 2]
The loss at the next iteration is bounded by the current loss as:
bt < AP I AP (] — yP™) (] — 4 PTR) — P ey
Indeed, since T™ V) < TTk1V,
hyr = TV =TT VL TV - TTV,
FT™ Vi — TV TV, — TtV

+ T71'k+1 Vﬂ'k _ T71'k+1 V7Tk+1
< AP = P+ (P — P)]

and by using (1),

hor < ,Ypfr*/k _|_,-Y[P7Tk+1(l _ ,Ypmﬂ)fl(pmﬂ _ pm) 4 P pW*]ek
< AP A [P = APT) T = AP = PT e

Approximate Value Iteration Approximate Policy Iteration Analysis of sample-based algo

Proof of Proposition 3 [part 3]
Writing i = y[P™+1 (] — yP™+1)~1(] — vP™) — P™ |ey, we have:
lerr < AP™ I + £
Thus, by taking the limit sup.,

(I —~P™)limsup [y < limsup f;

k—00 k—00
limsup I < (I — 'yP”*)_1 limsup fg,
k—o00 k—o00

. * . . .
since | —yP™ is invertible. In L,,-norm, we have

limsup || /||

IN

lim sup [Pt (1 — 4 P™e+) (1 4y P™) + P

€k
k—o00 17’7 k— 00 || H
v 147 . 2y .
< ——(—— 4+ 1)limsup||lek|| = ——— limsup ||ek]|-
1—7(1—7) k00 el (1-7)? kseo el

Approximate Value Iteration Approximate Policy Iteration Analysis of sample-based algo

Case study: TD-Gammon [Tesauro, 1994]

weight @ <---oo TD-ervenr Va(wpa1) — Valar)

weight a

i Output Va(x)

= prediction of the
1 probability towin

Game configuration

State = game configuration x + player j — N ~ 10%.
Reward 1 or 0 at the end of the game.

The neural network returns an approximation of V*(x, j):
probability that player j wins from position x, assuming that both
players play optimally.

Approximate Policy Iteration

TD-Gammon algorithm

At time t, the current game configuration is x;

Roll dices and select the action that maximizes the value V,
of the resulting state x;y1

Set the temporal difference d; = Vo (xt+1,Jt+1) — Va(Xt,Jt)
(if this is a final position, replace Vi (x¢4+1,J:+1) by +1 or 0)

Update a; according to a gradient descent

Q1 = O + 77tdt Z)\t*SVa Va(XS).

0<s<t

After several weeks of self playing — world best player.
According to human experts it developed new strategies, specially
in openings.

Approximate Value Iteration Approximate Policy Iteration Analysis of sample-based algo

Least Squares Temporal Difference (LSTD)

[Bradtke & Barto, 1996] Consider a linear space F.
Let M, be the projection onto F defined by a weighted norm Lo(1).
The Least Squares Temporal Difference solution Vrp is the

fixed-point of I, T™.

Approximate Policy Iteration

Performance bound for LSTD

In general, no guarantee that there exists a fixed-point to 1,77
(since 7™ is not a contraction in La(u)-norm).

However, when p is the stationary distribution associated to 7 (i.e.,
such that uP™ =), then there exists a unique LSTD solution.

Proposition 4.

Consider 1 to be the stationary distribution associated to w. Then
T™ is a contraction mapping in Ly(y)-norm, thus M, T™ is also a
contraction, and there exists a unique LSTD solution V1p. In
addition, we have the approximation error:

VT = Vol < inf_[[VT = V|, (2)

1
/1 —~2 VEF

Approximate Policy Iteration

Proof of Proposition 4 [part 1]

First let us prove that ||P||, = 1. We have:

IPTV|2 = Zu<x)(zp(y|x,7r(x))wy))2
< ZZM (vIx, T(x)) V(y)?
= Zu)2 =[|V|2.

We deduce that 7™ is a contraction mapping in Lp(u):
[T7"Ve = T"Vallp = AIIPT (Vi = Vo)l < yI[V2 = Val|,

and since [1,, is a non-expansion in Ly(x), then I, 77 is a
contraction in Ly(p). Write Vrp its (unique) fixed-point.

Approximate Value Iteration Approximate Policy Iteration Analysis of sample-based algo

Proof of Proposition 4 [part 2]
We have ||V™ — Vrpl[f, = [V = M, VT|[E + M, V™ = Vo3,
but M, V™ = Vil = [NV = NT" Vol
IT7V™ — TVl <7?IV™ = Vipll2.

A

Thus [|V™ = Vrpli < VT = MLVTE + 2%V = Vrplfp,

from which the result follows.

T

Vrp =1, T"Vrp

Approximate Value Iteration Approximate Policy Iteration Analysis of sample-based algo

Characterization of the LSTD solution

The Bellman residual 7™ V1p — V7p is orthogonal to the space F,
thus for all 1 < < d,

(r" +~P"Vip — V1p,0i)p = 0
d
<r7ra¢i>ll+

J

(YP"¢; — ¢j, di)pxtDj = O,
1

where a1p is the parameter of Vrp. We deduce that a7p is
solution to the linear system (of size d):

o owind A = (i 05— YPT)
Aa = b, with { b,jJ (61, r7jr>u I

Approximate Policy Iteration

Empirical LSTD

Consider a trajectory (x1, X2, ..., X,) generated by following 7
Build the matrix A and the vector b as

i = =3 oibaldix) —10i(xee)]
t=1

DI

and compute the empirical LSTD solution VTD whose parameter is
the solution to Aa = b.

o~
I

We have Vp 23 Vrp when n — oo, since A 23 A and b 23 b.

Approximate Value Iteration Approximate Policy Iteration Analysis of sample-based algo

Finite-time analysis of LSTD

Define the empirical norm ||f[|, = /% 37, f(x)2.

Theorem 1 (Lazaric et al., 2010).
With probability 1 — § (w.r.t. the trajectory),

¢ . c dlog(1/9)
VT -V < fllVT—V
V=Vl < = V7=Vl)
—_——— —_————
Approximation error Estimation error

This type of bounds is similar to results in Statistical Learning.

Approximate Policy Iteration

Least-Squares Policy Iteration

[Lagoudakis & Parr, 2003] Consider Q(x, a) = Zfl:l a;pi(x, a)

e Policy evaluation: At round k, run a trajectory (x)i<t<n by
following policy 7. Build A and b as

l n
Aij = " Z ¢f(Xt7 at)[¢j(Xta at) - ’Y¢j(xt+1; at+1)]7

t=1

~

b;

% ; @i(Xe, ar) r(xe, at).

and Qy is the Q-function defined by the solution to Ao = b.

e Policy improvement:m,1(x) € arg max,ca @k(x, a).

We would like guarantees on ||@* — Q™ ||

Analysis of sample-based algo

Theoretical guarantees so far

Approximate Value lteration:

Ly 2y
[VF = V] < A=) 0T 1T Vi = Viegalloo +0(75).

~~

projection error

Approximate Policy Iteration:

[V = VTl < V™ = Vidlos +0().
—_———

approximation error

(1 —)2 02kok

Problem: hard to control L,,-norm using samples. We could
minimize an empirical Lo.-norm, but

e Numerically intractable

e Hard to relate L,,-norm to empirical L,,-norm.

Analysis of sample-based algo

Instead use empirical Ly,-norm

e For AVI this is just a linear regression problem:

2

)

Viy1 = arg {}25‘:2 I TVi(x) — V(x)
i=1

e For API this is just LSTD: fixed-point of an empirical Bellman
operator projected onto JF using an empirical norm.
In both cases, Vj is solution to a linear problem, which is

e Numerically tractable
e For which generalization bounds exits (using VC theory):

1T Vi = Vi |13 < %Z I TVi(x) - V(x,-)|2 +c velr)

i=1

n

Analysis of sample-based algo

L,-norm analysis of ADP

Under smoothness assumptions on the MDP, the propagation error
of all usual ADP algorithms can be analyzed in Ly-norm (p > 1).

Proposition 5 (Munos, 2003, 2007).

e Approximate Value lteration: Assume there is a constant
C > 1 and a distribution i such that Vx € X, Va € A,

p(-x,a) < Cpu(:).

2
TP max 1T Vi = Viallpyu + O(F5).

V= Vo <
| oo = (1—~)? 0<k<K

e Approximate Policy lteration: Assume p(:|x,a) < Cpux(+),
for any policy ©

2
IV = Voo < —L— CY/P max ||Vi— V™

K
(11— 7)2 0<k<K |p,u7r + O('y)

We have all ingredients for a finite-sample analysis of RL/ADP.

Approximate Value Iteration Approximate Policy Iteration Analysis of sample-based algo

Finite-sample analysis of LSPI

Perform K policy iterations steps. At stage k, run one trajectory of
length n following 7 and compute the LSTD solution V/ (by
solving a linear system).

Proposition 6 (Lazaric et al., 2010).
For any § > 0, with probability at least 1 — §, we have:

* ™ 2y 1/2 : ™
_ V7K < 7 Kk
VF =Vl < TE ¢ sup dnf V™ = V|2,
dlog(1/6)\1/2
+o(g,(1 LV 4 o)

Approximate Value Iteration Approximate Policy Iteration Analysis of sample-based algo

Finite-sample analysis of AVI

K iterations of AVI with n samples x; ~ p. From each state x;,
each a € A, generate m next state samples y/ | ~ p(:|x;, a).

Proposition 7 (Munos and Szepesvari, 2007).
For any § > 0, with probability at least 1 — §, we have:

V* — V7K <

+0(

2y € d(TF.F) + 0(7")

V(F) Izg(l/é))l/4 N O(Iog(,;L7/6)>1/27

where d(T F,F) o supgerinfrer ||Tg — fll2,. is the Bellman

residual of the space F, and V/(F) the pseudo-dimension of F.

Analysis of sample-based algo

More works on finite-sample analysis of ADP/RL

This is important to know how many samples n are required to
build an e-approximation of the optimal policy.

Policy iteration using a single trajectory [Antos et al., 2008]
BRM [Maillard et al., 2010]

LSTD with random projections [Ghavamzadeh et al., 2010]
Lasso-TD [Ghavamzadeh et al., 2011]

Active research topic which links RL and statistical learning
theory.

