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Abstract

We introduce a class of deterministic sequential top-down tree-to-word transduc-
ers (stws) and investigate a number of its fundamental properties and related
problems. First, we investigate the problem of normalization of stws: we identify
a subclass of earliest stws (estws) that is as expressive as stws and present an
effective procedure for converting an arbitrary stw into an equivalent estw. We
then present a Myhill-Nerode characterization of the class of the transformations
definable with stws which also shows that every transformation defined with an
stw has a unique canonical representative estw. This canonical estw is the
minimal estw defining the same transformation, and consequently, we present a
polynomial minimization procedure for estws, thus giving an effective procedure
for constructing the canonical representative of any transformation definable
with stws. Finally, we use the Myhill-Nerode characterization to devise an
algorithm for inference (learning) of estws from examples of transformation
given by the user.

Keywords: Language Theory, Transducers, Grammatical Inference

1. Introduction

The classical problems relating to transducers are equivalence, minimization,
learning, type checking, and functionality [2, 22, 23, 12]. Except for the latter two
questions, one usually studies deterministic transducers because non-determinism
quickly leads to fundamental limitations. For instance, equivalence of non-
deterministic string transducers is known to be undecidable [15]. We thus follow
this tradition to study classes of deterministic transducers. The problems of
equivalence, minimization, and learning are often solved using a unique normal
representation of transformations definable with a transducer from a given
class [16, 13, 11, 20]. Such normal forms are typically obtained with the help
of a Myhill-Nerode characterization, which is of independent interest and has a
number of important applications.



In this paper, we investigate the class of deterministic sequential top-down
tree-to-word transducers (stws) and study the problems of normalization, min-
imization, and inference for this class of transducers. stws are finite state
machines that traverse the input tree in top-down fashion and at every node
produce words obtained by the concatenation of constant words and the results
from processing the child nodes. The main motivation to study this model lays
in the fact that tree-to-word transformations are better suited to model general
xml transformations as opposed to tree-to-tree transducers [11, 20, 23]. This
follows from the observation that general purpose xml transformation languages,
like xslt, allow to define transformations from xml documents to arbitrary,
not necessarily structured, formats. Also, stws capture a large subclass of
deterministic nested-word to word transducers (dn2w), which have recently been
the object of an enlivened interest [12, 27, 31].

Expressiveness of stws suffers from two limitations: 1) every node is visited
exactly once, and 2) the nodes are visited in the fix left-to-right preorder traversal
of the input tree. Consequently, stws cannot express transformations that reorder
the nodes of the input tree or make multiple copies of a part of the input tree.
Nevertheless stws are very powerful and capable of: concatenation in the output,
producing arbitrary context-free languages, deleting inner nodes, and verifying
that the input tree belongs to the domain even when deleting parts of it. These
features are often missing in tree-to-tree transducers, and for instance, make
stws incomparable with the class of top-down tree-to-tree transducers [11, 20].

Unique normal forms of transducers are typically obtained in two steps:
output normalization followed by minimization. A natural way of output nor-
malization is (re)arranging output words among the transitions rules so that
the output is produced as soon as possible when reading the input, and thus
transducers producing output in this fashion are called earliest. Our method
subscribes to this approach but we note that it is a challenging direction that
is not always feasible in the context of tree transformations. For instance, it
fails for bottom-up tree-to-tree transducers, where ad-hoc solutions need to be
employed [13].

We propose a natural normal form for stws based on being earliest and define
the corresponding class of earliest stws (estws) using easy to verify structural
requirements. The first contribution of the present paper is an effective procedure
to convert an stw to an equivalent estw. This process is very challenging and
requires novel tools on word languages. We point out that while this procedure
works in time polynomial in the size of the output estw, we only know a doubly-
exponential upper-bound and a single-exponential lower bound of the size of
the output estw. This high complexity comes from the fact that the output
language of an stw may be an arbitrary context-free language.

Then, we investigate the problem of minimizing estws and show that it is
in PTIME thanks to a fundamental property: two equivalent estws have rules
of the same form and allow bisimulation. General stws are unlikely to enjoy
a similar property because their minimization is NP-complete, which further
validates the proposed normal form for stws. Next, we present a Myhill-Nerode
characterization of transformations definable with stws. It proves that the
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result of normalization of an stw followed by subsequent minimization of the
obtained estw yields a unique canonical estw representative. The Myhill-
Nerode characterization is in fact a semantic characterization of tree-to-word
transformation that can be captured with stws and provides a direct way of
constructing the canonical estw using the notion of residual of a transformation
and a Myhill-Nerode equivalence relation on paths of the input trees.

Finally, we use the Myhill-Nerode characterization to devise a learning
algorithm for estw from examples of a tree-to-word transformation given by the
user. The algorithm is essentially an adaptation of the construction of canonical
transducer to the setting where only a finite fragment of the transformation
is know, in the form of a finite set of examples consisting of the input tree
and the corresponding output word. One of the consequences of the Myhill-
Nerode characterization is that for any transformation definable with an estw,
there exists a characteristic set of examples for which the learning algorithm
constructs the correct transducer, and furthermore, we show that there exists
a characteristic set of examples whose number is polynomial in the size of the
goal transducer. It must be pointed out, however, that inference of estws from
examples is not a trivial matter: given a set of examples it is NP-complete to
decide if there even exists an estw that is consistent with the given examples.
Consequently, we propose a novel learning model where the learning algorithm
may abstain from constructing a consistent transducer, thus indicating to the user
that more examples are necessary. However, once the user provides sufficiently
informative examples (i.e., a characteristic set of examples), the algorithm is
no longer allowed to abstain, which prevents the learning setting for admitting
trivial solutions of learning algorithms that always abstain.

Related Work. The problems of normalization, minimization, Myhill-Nerode
characterization, and inference are fundamental problems that have been studied
for a large number of classes of transducers. Rational transducers, which are
essentially automata whose transitions additionally specify output words, are
the basic class of finite machines used to model word-to-word transformations.
However, in their generality they are non-deterministic, which precludes the
existence of a unique normal form and unique minimal transducers for the same
reason why a non-deterministic word automaton does not have in general a unique
minimal equivalent automaton [17]. Subsequential transducers are rational
transducers that are deterministic w.r.t. the input word and this restriction
enables a normal form, called the onward form (cf. [7] for a survey). It basically
requires the output to be produced as soon as possible in the process of reading
the input. In fact, one can consider this development to be the original earliest
normal form at which normal forms for a number of classes of transducers
take roots, for instance the normal form for the class of functional rational
transformations [28]. The normal form for subsequential transducers is also a
clear inspiration to normal forms for tree-to-tree transducers, such as the class of
deterministic top-down transducers for which a normal form has been presented
in [11], which has further led to a Myhill-Nerode characterization [20]. Also the
normal form for the class of bottom-up tree-to-tree transducers [13], and the
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corresponding Myhill-Nerode characterization, has been originally inspired by
the earliestness approach, however the normal form needs to account for the
specific bottom-up operation of this class of transducers, and in the end, it is
not an exact instance of the earliestness approach.

Naturally, the normal form for stws that we propose in this paper is inspired
by the normal form for subsequent transducers, however, it should be pointed
out that it is not an adaptation of the normal forms for the classes of tree-to-tree
transducers discussed above. This is because, in general, tree-to-word transducers
generalize tree-to-tree transducers because the former can produce a word that
is a serialization of a tree. We point out, however, that the restrictions imposed
by the class of stw i.e., each node of the input tree is visited exactly once in a
fixed predefined order, make the class incomparable to the classes of tree-to-tree
transducers discussed above.

Existence of normal forms for more complex classes is generally an open
question, as for instance for the class of Macro Tree Transducers (MTTs) [10],
which are essentially top-down tree-transducers with an output that can use
accumulators (macros). The use of accumulators is a generalization of output
concatenation and as such stws can be seen as a very specific restricted subclass
of MTTs. This suggest that a normal form for MTTs, if it exists, will be
considerably more complex and constructing it will very likely pose a much
higher challenge. Our results also offer a step towards a better understanding
of the challenges in formulating a normal form for the class of deterministic
nested-word-to-word transducers (dn2ws) [12] because stws capture a large class
of top-down dn2ws modulo the standard first-child next-sibling encoding and
the conversion from one model to another can be done efficiently [31]. We point
out, however, that there exist arguments suggesting that arbitrary dn2ws are
unlikely to have natural normal forms [1].

The approach we employ for learning estws subscribes to general area of
grammatical inference. Originally proposed by Gold [14] for languages of words,
and later on adapted to a number of other concepts including inference of
regular languages of words and trees [24, 26] (see also [9] for survey of the
area), learning of DTDs and XML Schema [4, 3], and XML queries [6, 30].
The existence of a unique normal form, typically obtained with the help of a
Myhill-Nerode characterization, has been the basis of learning algorithms for
a number of classes of transducers, including subsequential transducers [25],
functional rational transducers [5], and top-down tree-to-tree transducers [20].
While a normal unique form and a Myhill-Nerode characterization for bottom-up
tree-to-tree transducers exists [13], the existence of a suitable learning algorithm
remains an open question. Inference of more general Macro Tree Transducers is
also an open question.

Organization. Section 2 contains the basic notions and notations we use
throughout the paper. In Section 3 we present the class of deterministic sequential
tree-to-word transducers (stws) and define their normal form, the earliest
deterministic sequential tree-to-word transducers (estws). In Section 4 we
investigate the normalization problem i.e., converting an arbitrary stw to an
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equivalent estw and present an effective normalization procedure. In Section 5
we present a Myhill-Nerode characterization of transformation definable with
stws, investigate the problem of minimizing estws (and stws), and show that
the unique canonical representative of a transformation defined by an arbitrary
stw is the minimal equivalent estw, which can be effectively constructed by
normalizing the given stw and then minimizing the intermediate estw. In
Section 6 we investigate the problem of learning of estws from a finite set
of examples. Finally, in Section 7 we summarize our work and outline future
directions. A number of results in this paper is of combinatorial nature and
while their validity is relatively easy to see, their proofs require detailed and
technical arguments. Consequently, for the sake of the presentation, we briefly
outline a number of proofs and present detailed versions in the appendix.

2. Preliminaries

We begin by recalling a number of standard notions. More detailed presenta-
tion can be found, for instance, in [8].

Words. For a finite set ∆ of symbols, we denote by ∆∗ the free monoid on ∆,
i.e. the set of finite words over ∆ with the concatenation operator · and the
empty word ε. For a word u, |u| is its length. For u = up · uf · us, up is a prefix
of u, uf a factor of u, and us a suffix of u. The longest common prefix of a set
of words L, denoted lcp(L), is the longest word u that is a prefix of every word
in L. Also, lcs(L) is the longest common suffix of L. For w = u · v, the left
quotient of w by u is u−1 ·w = v and the right quotient of w by v is w · v−1 = u.

Trees. A ranked alphabet is a finite set of ranked symbols Σ =
⋃
k≥0 Σ(k), where

Σ(k) is the set of k-ary symbols. We assume that every symbol has a unique arity,
i.e. Σ(i) ∩ Σ(j) = ∅ for i 6= j. We sometimes write f (k) to indicate explicitly that
f ∈ Σ(k). A tree is a ranked ordered term over Σ and we use t, t0, t1, . . . to range
over trees. For instance, t0 = f(a, g(b)) is a tree over Σ = {f (2), g(1), a(0), b(0)}.
By TΣ we denote the set of all trees over Σ. A tree language is a subset of TΣ.
We use T, T0, . . . to range over tree languages.

Paths. A (labeled) path is a word over
⋃
k>0 Σ(k) × {1, . . . , k}, which identifies

a node in a tree by the positions and the labels of its ancestors: ε is the root
node and if a node at path p is labeled with f , then p · (f, i) is the i-th child of
the node. By paths(t) we denote the set of paths of a tree t. For instance, for
t0 = f(a, g(b)) we get paths(t0) = {ε, (f, 1), (f, 2), (f, 2) · (g, 1)}. Similarly, for a
set of trees T , paths(T ) =

⋃
t∈T paths(t).

Contexts. A tree context over Σ is a tree over Σ ∪ {x(0)} having exactly one
occurrence of a distinguished placeholder x, a symbol of arity 0 not present in Σ.
We use c, c0, c1, . . . to range over tree contexts (c is also used as an example of
symbol in ∆ but this use never leads to confusion) and C,C0, C1, . . . to range
over sets of contexts. By CΣ we denote the set of all contexts over Σ. By c[t]
we denote the result of replacing x with t. For instance, if we take the context
c0 = f(g(a), x), then c0[t0] = f(g(a), f(a, g(b))).

5



Canonical orders. Words, trees, paths and contexts have canonical well-
founded orders that are consistent with the size of object and can be tested
efficiently. Using these orders, functions minPath , minTree and minCtx allow to
obtain the minimal element of a set of resp. paths, trees or contexts. A precise
example of such orders is given in the appendix.

Transformations. Given a ranked tree alphabet Σ and a finite set of symbols
∆, a tree-to-word transformation (or simply transformation) is a possibly partial
function τ that maps trees over Σ to words over ∆. By dom(τ) we denote
the domain of τ i.e., set of all trees for which τ is defined and ran(τ) is the
range of τ i.e., the set of all words returned by τ . In the sequel, we work with
transformations having a nonempty domain only and use τ, τ0, τ1, . . . to range
over transformations.

Deterministic top-down tree automata. The transducer model that we
propose and study in this paper is based on, and can be viewed as a natural ex-
tension of, deterministic top-down tree automata which we recall next. Formally,
a deterministic top-down tree automaton is a tuple A = (Σ, Q, q0, δ), where Σ
is a ranked alphabet of input trees, Q is a finite set of states, q0 ∈ Q is the
initial state and δ is a partial transition function from Q× Σ to Q∗ such that if
δ(q, f (k)) is defined, then it belongs to Qk. Rather than using the notion of a
run to define the semantics of dtas, we employ a recursive definition that we
adapt later to define the semantics of stws. Essentially, for every state q ∈ Q
we define the set of trees [[A]]q recognized by q. We bind those sets with the
following set of mutually recursive assertions (with q ∈ Q):

f(t1, . . . , tk) ∈ [[A]]q ⇐⇒ δ(q, f) = q1 · . . . · qk and ∀i ∈ {1, . . . , k} ti ∈ [[A]]qi .

Then, the language defined by A is [[A]] = [[A]]q0 . The size of A, denoted |A|, is
the sum of the number of states of A and the sizes of the rules of A, where the
size of the rule δ(q, f) = q1 · . . . · qk is k + 2.

3. Sequential tree-to-word transducers

The model of transducer we propose is essentially an extension of the de-
terministic tree automata whose rules additionally indicate the words to be
produced in the output (which are concatenated according to the standard
left-to-right traversal of the input tree).

Definition 3.1 A deterministic sequential top-down tree-to-word transducer
(stw) is a tupleM = (Σ,∆, Q, init , δ), where Σ is a ranked alphabet of input trees,
∆ is a finite alphabet of output words, Q is a finite set of states, init ∈ ∆∗ ·Q ·∆∗
is the initial rule, and δ is a partial transition function from Q× Σ to (∆ ∪Q)∗

such that if δ(q, f (k)) is defined, then it has k occurrences of elements from Q.
In the sequel, we call the state of the initial rule the initial state. We denote
by stws the class of deterministic sequential top-down tree-to-word transducers
and by ST W the class of transformations represented by an stw.
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We often view δ as a set of transition rules , i.e. a subset of Q×Σ× (∆∪Q)∗,
which allows us to quantify over δ. Also, the transition function is extended
to paths over Σ as follows: δ(q, ε) = q and δ(q, (f, i) · p) = δ(qi, p), where
δ(q, f) = u0 · q1 · u1 · . . . · qk · uk. The size of the stw M is the number of its
states and the length of its rules, including the length of words used in the rules.
The semantic of the stw M is the transformation [[M ]] defined with the help of
auxiliary transformations (for q ∈ Q) in a mutual recursion:

[[M ]]q(f(t1, . . . , tk)) =


u0 · [[M ]]q1(t1) · u1 · . . . · ·[[M ]]qk(tk) · uk,

if δ(q, f) = u0 · q1 · u1 . . . · qk · uk,

undefined, if δ(q, f) is undefined.

Now, [[M ]](t) = u0 · [[M ]]q0(t) · u1, where init = u0 · q0 · u1. Two transducers are
equivalent iff they define the same transformation. The size of an stw is the sum
of the number the states and the lengths of the rules, including the sizes of the
words used in rules. More precisely, the size of the rule δ(q, f) = u0·q1·u1·. . .·qk·uk
is k + 1 + |u1|+ . . .+ |uk|.

Example 3.2 We fix the input alphabet Σ = {f (2), g(1), a(0)} and the output
alphabet ∆ = {a, b, c}. The stw M1 uses the states Q = {q0, q1}, the initial
rule q0, and the following transition rules:

δ(q0, f) = q1 · ac · q1, δ(q1, g) = q1 · abc, δ(q1, a) = ε.

It defines the transformation [[M1]](f(gm(a), gn(a))) = (abc)mac(abc)n, where
m,n ≥ 0, and [[M1]] is undefined on all other input trees.

The stw M2 has the states Q = {q0, q1, q2, q3}, the initial rule q0, and these
transition rules:

δ(q0, f) = q1 · q3 · ab, δ(q1, g) = a · q2, δ(q2, g) = ab · q3, δ(q3, g) = q3,

δ(q0, a) = ba, δ(q1, a) = ε, δ(q2, a) = ε, δ(q3, a) = ε.

Now, [[M2]](a) = ba and for n ≥ 0, the result of [[M2]](f(gm(a), gn(a)) is ab for
m = 0, aab for m = 1, and aabab for m ≥ 2; [[M2]] is undefined for all other
input trees. Note that q3 is a deleting state: it does not produce any output but
allows to check that the input tree belongs to the domain of the transducer. �

Recall that a path is a word over
⋃
k>0 Σ(k) × {1, . . . , k}, which identifies a

node in an input tree together with the labels of its ancestors: ε is the root node
and if a node p is labeled with f , then p · (f, i) is its i-th child. We extend the
transition function δ to identify the state reached at a path p: δ(q, ε) = q and
δ(q, p · (f, i)) = qi, where δ(q, p) = q′ and δ(q′, f) = u0 · q1 · u1 · . . . · qk · uk.

We say that a state q of an stw M is productive if dom([[M ]]q) is non-empty
and that q is accessible if δ(q0, p) = q for some p ∈ paths(dom([[M ]])). In
the sequel, w.l.o.g. we consider only trimmed stws, i.e. transducers whose
all states are productive and accessible. Naturally, this restriction is merely
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technical: every stw, that defines a nonempty transformation, can be converted
to an equivalent trimmed transducer in time polynomial in the size of the input
transducer.

We point out that stws is a very specific class of tree-to-word transducers
and note that in general tree-to-word transducers are more general tree-to-tree
transducers because the output word can be used to represent a tree with a simple
serialization (cf. Appendix A): indeed, any deterministic top-down tree-to-tree
transducer that visits every node of the input tree can be easily represented with
an equivalent stw. In fact, stws can capture arbitrary context-free languages
with their output range. On the other hand, while the standard deterministic
top-down tree-to-tree transducers [8] can visit a node an arbitrary number of
times, they are not capable of capture tree languages representing context-free
language. Consequently, stws and the standard deterministic top-down tree-to-
tree transducers are closely related but incomparable. We finish by pointing out
that the general model of Macro Tree Transducers can capture stws with their
use of accumulator registers that permits to express concatenation.

Earliest Transducers. Next, we introduce a normal form of the transducers
that allows to identify a canonical representative for every stw. The commonly
employed method is to require the transducer to produce the output as early as
possible. This method has been initially introduced in the context of normal-
ization of the word-to-word transducers [7], and has been successfully applied
to classes of tree-to-tree transducers [20, 13]. Adapting this method to stws is,
however, a challenging task, because the output string produced by an stw is
obtained in a nontrivial manner, by concatenating the output factors indicated
by the rules in the standard preorder left-to-right traversal of the tree. As we
illustrate in the following example, a näıve overeager notion of being earliest
may result in not every stw having an equivalent early model, and consequently,
a more diligent and carefully crafted notion will be necessary.

Example 3.3 Take, for instance, the transformation turn that takes a tree over
Σ = {a(1), b(1),⊥(0)} and returns the sequence of its labels in the reverse order
e.g., turn(a(b(b(⊥)))) = bba. It is definable with a simple stw Mturn :

δ(qturn , a) = qturn · a, δ(qturn , b) = qturn · b, δ(qturn ,⊥) = ε.

One way to view the transformation is a preorder traversal of the input tree
that produces one output word upon entering the node and another word prior
to leaving the node. When analyzing turn from this perspective, the earliest
moment to produce any output is when the control reaches ⊥, and in fact, the
whole output can be produced at that point because all labels have been seen.
This requires storing the label sequence in memory. Since the label sequence can
be of arbitrary length, a finite memory of any stw is insufficient to store it, and
thus, turn cannot be captured with a transducer satisfying this notion of being
earliest. �

We propose a notion of being earliest that is also based on preorder traversal
but with the difference that both output words are specified on entering the node
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and the output of a node is constructed right before leaving the node. Intuitively,
we wish to push up all possible factors in the rules. Clearly, the stw Mturn in
the example above satisfies the condition. We remark, however, that in some
cases the output words in the rule can be placed in several positions, e.g. the
rule δ(q1, g) = q1 ·abc in M1 (Examples 3.2) can be replaced by δ(q1, g) = abc · q1

without changing the semantics of M1. Consequently, we need an additional
requirement that resolves this ambiguity: intuitively, we wish to push left the
words in a rule as much as possible. We formalize these conditions as follows.

Definition 3.4 An stw M = (Σ,∆, Q, init , δ) is earliest (estw) iff:

(E1) lcp(ran([[M ]]q)) = ε and lcs(ran([[M ]]q)) = ε for every state q,

(E2) for the initial rule init = u0 · q0 · u1 we have lcp(ran([[M ]]q0) · u1) = ε and
for every transition δ(q, f) = u0 · q1 · . . . · qk · uk and every 1 ≤ i ≤ k we
have lcp(ran([[M ]]qi) · ui · . . . · ran([[M ]]qk) · uk) = ε. �

Essentially, (E1) ensures that the output is produced as up as possible during
the parsing while (E2) ensures output is produced as left as possible. We also
observe that in an estw, transformations [[M ]]q associated with states have the
property that the lcp an lcs of their output is empty. We note that (E1) and
(E2) can be efficiently checked in an stw because we need only to check that
the longest common prefix and suffix of a context-free grammar is the empty
word. The empty word is the longest common prefix of a nonempty language if
and only if the language contains an empty word or it contains two words that
differ on the first position. These conditions can be easily and efficiently checked
for context-free languages.

One of the main contribution of the present paper is that, for every stw,
there exists a unique equivalent estw i.e., its canonical representative, that can
be effectively constructed. The proof consists of an effective procedure that
works in two stages: In the first stage we normalize the outputs, i.e. from the
input stw we construct an equivalent estw, and in the second stage we minimize
it thus obtaining the canonical estw. We illustrate it on the following example.

Example 3.5 (cont’d. Example 3.2) M1 is not earliest because (E1) is not
satisfied at q0: every word of Lq0 = (abc)∗ac(abc)∗ begins with a i.e., lcp(Lq0) = a,
and ends with c i.e., lcs(Lq0) = c. Consequently, we need to push up these two
symbols to the new initial rule a ·q′0 · c, but we also need to retract them from the
rule δ(q0, f) = q1 · ac · q1 producing a new state q′0 and new rules for this state.
Essentially, we need to push the symbol a to the left through the first occurrence
of q1 and push the symbol c to the right through the second occurrence of q1.
Pushing symbols through states produces again new states with rules obtained
by reorganizing the output words. Finally, we obtain

δ′(q′0, f) = q′1 · q′′1 , δ′(q′1, g) = bca · q′1,
δ′(q′′1 , g) = cab · q′′1 , δ′(q′1, a) = δ′(q′′1 , a) = ε.

M2 is not earliest because (E2) is not satisfied by δ(q0, f) = q1 · q3 · ab: every
word produced by this rule starts with a. First, we push the word ab through the
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state q3, and then we push the symbol a through the state q1. Pushing through
q3 is easy because it is a deleting state and the rules do not change. Pushing
through q1 requires a recursive push through the states of the rules of q1 and
this process affects the rules of q2. Finally, we obtain an estw with the initial
rule q′0 and the transition rules

δ′(q′0, f) = a · q′1 · b · q′3, δ′(q′1, g) = a · q′2, δ′(q′2, g) = ba · q′3, δ′(q′3, g) = q′3,

δ′(q′0, a) = ba, δ′(q′1, a) = ε, δ′(q′2, a) = ε, δ′(q′3, a) = ε.
�

Finally, we add that the construction of the canonical transducer requires us
to formulate a Myhill-Nerode characterization of ST W , which we use as a basis
for a learning algorithm for the class of estws.

4. Normalization

In this section, we present an effective normalization procedure that converts
an stw into an equivalent estw. The normalization is the first and the most
involved part of the process of constructing a canonical representative of an
stw. Once an equivalent estw for a given stw is constructed, we minimize it
to obtain the canonical representative. The minimization of estw is relatively
simple and follows the general outline of minimizing deterministic automata
thanks to the constraints imposed on earliest stws.

Normalization of an stw involves changing the placement of the output
factors in the transition rules of the transducer in order to satisfy the conditions
(E1) and (E2), and this process deals mainly with the output. Consequently,
we begin with several notions and constructions inspired by the conditions (E1)
and (E2) but set in a simpler setting of word languages. We consider only
nonempty languages because in trimmed stws the ranges of the states are always
nonempty, and when investigating the feasibility of the constructions, we consider
context-free languages only.

4.1. Reducing languages

Enforcement of (E1) corresponds to what we call constructing the reduced
decomposition of a language (cf. the notions of reduced transformations intro-
duced in Section 5.1). A nonempty language L is reduced iff lcp(L) = ε and
lcs(L) = ε. Note that the assumption that we work with a nonempty language
is essential here. Now, take a nonempty language L, that is not necessarily
reduced. We decompose L into its core denoted Core(L) and two words Left(L)
and Right(L) such that Core(L) is reduced and

L = Left(L) · Core(L) · Right(L). (1)

We observe that different decompositions are possible. For instance, L =
{a, aba} has two decompositions L = a · {ε, ba} · ε and L = ε · {ε, ab} · a.
We resolve the ambiguity by choosing the former decomposition because it is
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consistent with (E1) and (E2) which indicate to push to the left. Formally,
Left(L) = lcp(L) and Right(L) = lcs(L′), where L = Left(L) ·L′. Then Core(L)
is obtained from (1). As an example, the reduced decomposition of Lq0 =
ran([[M1]]q0) = (abc)∗ac(abc)∗ from Example 3.2 is Left(Lq0) = a, Right(Lq0) = c,
and Core(Lq0) = (bca)∗(cba)∗.

It is a folklore result that if L is context free, then lcp(L) (and lcs(L)) can
be of size exponential in the size of the grammar defining L (cf. Example 4.8).
Consequently, the lower bound for computing the reduced core is exponential.
We remark, however, that the reduced decomposition can be computed in time
polynomial in |Left(L)|+ |Right(L)|. Also, it is known that the words Left(L)
and Right(L) can be represented with singleton grammars of size polynomial in
the size of the grammar defining L (cf. [18]), however, it remains to be seen if
they can be constructed in polynomial time.

4.2. Pushing words through languages

In this subsection, we work with nonempty and reduced languages only.
Condition (E2) introduces the problem that we call pushing words through
languages. To illustrate it, suppose we have a language L = {ε, a, aa, aaab} and
a word w = aab, which together give L · w = {aab, aaab, aaaab, aaabaab}. The
goal is to find the longest prefix v of w such that L ·w = v ·L′ ·u, where w = v ·u
and L′ is some derivative of L. Intuitively speaking, we wish to push (a part
of) the word w forward i.e., from right to left, through the language L. In the
example above, the solution is v = aa, L′ = {ε, a, aa, abaa}, and u = b (note
that L′ is different from L). In this section, we show that this process is always
feasible and for context free languages, it is constructive.

The result of pushing a word w through a language L will consist of three
words: push(L,w) the longest part of w that can be pushed through L, rest(L,w)
the part that cannot be pushed through, and offset(L,w) a special word that
allows to identify the corresponding derivative of L. There are three classes of
languages that need to be considered, which we present next together with an
outline of how the pushing is done.

The first class contains only the trivial language L = {ε}. This is the range
of a deleting state e.g., Lq3 = ran([[M1]]q3), the range of the state q3 of M2 in
Example 3.2. This language allows every word to be pushed through and it
never changes in the process. For instance, if w0 = ab, then push(Lq3 , w0) = ab,
rest(Lq3 , w0) = ε, and offset(Lq3 , w0) = ε.

The second class consists of nontrivial periodic languages, essentially lan-
guages contained in the Kleene closure of some period word. An example is
Lq1 = ran([[M1]]q1) = (abc)∗ = {ε, abc, abcabc, . . .} whose period is abc. Periodic
languages allow to push multiplicities of the period and then some prefix of
the period e.g., if we take w1 = abcabcaba, then push(Lq1 , w1) = abcabcab and
rest(Lq1 , w1) = a. The offset here is the corresponding prefix of the period:
offset(Lq1 , w1) = ab.

The third class contains all remaining languages i.e., nontrivial non-periodic
languages. Interestingly, we show that for a language in this class there exists a
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word that is the longest word that can be pushed fully through the language,
and furthermore, every other word that can be pushed through is a prefix of
this word. For instance, for Lq1 = ran([[M2]]q1) = {ε, a, aab} from Example 3.2,
aa is the longest word that can be pushed through. If we take w2 = ab, then
we get push(Lq1 , w2) = a and rest(Lq1 , w2) = b. Here, the offset is the prefix of
aa that has been already pushed through: offset(Lq1 , w2) = a. Note that this
class also contains the languages that do not permit any pushing through e.g.,
Lq0 = ran([[M2]]q0) = {ba, ab, aab} does not allow pushing through because it
contains two words that start with a different symbol.

We now define formally the pushing process. First, for L ⊆ ∆∗ we define the
set of words that can be pushed fully through L:

Shovel(L) = {w ∈ ∆∗ | w is a common prefix of L · w}.

For instance, Shovel(Lp1) = {ε, a, aa} and Shovel(Lq0) = (abc)∗ · {ε, a, ab}. We
note that Shovel({ε}) = ∆∗ and Shovel(L) always contains at least one element
ε because L is assumed to be nonempty. Also, if Shovel(L) contains a nonempty
word, then L contains the empty word. Indeed, if a · w ∈ Shovel(L), then a is
the first letter of every nonempty word in L, and since L is reduced, L must
contain the empty word, or otherwise lcp(L) would be different from ε. Another
significant observation follows.

Lemma 4.1 If L is reduced and nontrivial, then Shovel(L) is prefix-closed and
totally ordered by the prefix relation.

Prefix-closedness follow from the definition. The fact that Shovel(L) is
ordered can be proved with a simple induction over the length of words in
Shovel(L).

Next, we define periodic languages (cf. [21]). A language L ⊆ ∆∗ is periodic
iff there exists a nonempty word v ∈ ∆∗, called a period of L, such that L ⊆ v∗.
A word w is primitive if there is no v and n ≥ 0 such that w = vn. Recall
from [21] that every nontrivial periodic language L has a unique primitive period,
which we denote Period(L). For instance, the language {ε, abab, abababab} is
periodic and its primitive period is ab; abab is also its period but not primitive.
In the sequel, by Prefix (w) we denote the set of prefixes of the word w. Below
we present an alternative characterization of periodic languages which is useful
later on.

Lemma 4.2 A language L is periodic iff any pair of its words commute i.e.,
w1 · w2 = w2 · w1 for every w1, w2 ∈ L.

The result above is a direct consequence of know facts about periodic languages
[21, Proposition 1.3.2]. Next, we point out an important characterization of
periodic languages in terms of the sets of words we can push through them.

Lemma 4.3 Given a reduced and nontrivial language L, Shovel(L) is infinite
iff L is periodic. Furthermore, if L is periodic then Shovel(L) = Period(L)∗ ·
Prefix (Period(L)).
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This result and the observations beforehand lead to three relevant cases in
the characterization of Shovel(L) for a language L.

0o L = {ε} (trivial language), and then Shovel(L) = ∆∗,
1o L is periodic, L 6= {ε}, and then Shovel(L) = Period(L)∗·Prefix (Period(L)).
2o L is non-periodic, and Shovel(L) = Prefix (v) for some v ∈ Shovel(L).

Now, suppose we wish to push a word w ∈ ∆∗ through a reduced language
L ⊆ ∆∗. Let s be the longest prefix of w that is present in Shovel(L) and r
the reminder i.e., w = s · r. Note that because Shovel(L) is closed under prefix,
the definition of s is unambiguous. Now, we define push(L,w), rest(L,w), and
offset(L,w) depending on the class L belongs to:

0o L = {ε}: push(L,w) = w, rest(L,w) = ε, and offset(L,w) = ε.
1o L is nontrivial and periodic: s = Period(L)k · o for some (maximal) proper

prefix o of Period(L), and we assign push(L,w) = s, rest(L,w) = r, and
offset(L,w) = o.

2o L is non-periodic: push(L,w) = s, rest(L,w) = r, and offset(L,w) = s.

Offsets play a central role in the output normalization procedure, which is feasible
thanks to the following result.

Lemma 4.4 The set Offsets(L) = {offset(L,w) | w ∈ ∆∗} is finite for any
reduced L.

The set Offsets(L) can actually be generated by a context-free grammar
from a specific word that we denote Kernel(L). When L = ε, Kernel(L) =
Offsets(L) = ε. When L is periodic, then Kernel(L) = Period(L) and Offsets(L) =
Kernel(L)∗Prefix (Kernel(L)). And for other case, we take Kernel(L) as the
longest word of Shovel(L) and Offsets(L) = Prefix (Kernel(L). The size of
Offsets(L) is at most doubly-exponential in the size of the context-free grammar
obtained, and Offsets(L) can be constructed in time polynomial in its size.

4.3. Pushing words backwards

Until now, we have considered the problem of pushing a word through a
language from right to left. However, in Example 3.2 if we consider the second
occurrence of q1 in the rule δ(q0, f) = q1 · ac · q1, we realize that pushing words
in the opposite direction needs to be investigated as well. These two processes
are dual but before showing in what way, we present a natural extension of the
free monoid ∆∗ to a pregroup (or groupoid) G∆. It allows to handle pushing
in two directions in a unified manner and simplifies the output normalization
algorithm.

A pregroup of words over ∆ is the set G∆ = ∆∗ ∪ {w−1 | w ∈ ∆+}, where
w−1 is a term representing the inverse of an nonempty word w. This set comes
with two operators, a unary inverse operator: (w)−1 = w−1, ε−1 = ε, and
(w−1)−1 = w for w ∈ ∆∗, and a partial extension of the standard concatenation
that satisfies the following equations: w−1 ·w = ε and w·w−1 = ε for w ∈ ∆∗, and
v−1·u−1 = (uv)−1 for u, v ∈ ∆∗. In the sequel, we use w, u, v, . . . to range over ∆∗
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only and z, z1, . . . to range over elements of G∆. We note that some expressions
need to be evaluated diligently e.g., ab · (cb)−1 · cd = ab · b−1 · c−1 · cd = ad,
while some are undefined e.g., ab · a−1. Furthermore, some expressions may be
undefined unless we employ axioms properly. For instance, ab · (cb)−1 · cd may be
evaluated as ab · [(cb)−1 · cd] = ab · [b−1 ·d] which is undefined but when evaluated
diligently we get ab · b−1 · c−1 · cd = ad.

Now, we come back to pushing a word w backwards through L, which consists
of finding u · v = w and L′ such that w · L = u · L′ · v. We view this process
as pushing the inverse w−1 through L i.e., we wish to find u · v = w such that
L · w−1 = v−1 · L′ · u−1 because then L · v−1 = v−1 · L′, and consequently,
w · L = (u · v) · (v−1 · L′ · v) = u · L′ · v.

To define pushing backwards more properly we use yet another view based
on the standard reverse operation of a word e.g., (abc)rev = cba. Namely,
pushing w backwards through L is essentially pushing wrev through Lrev because
(w ·L)rev = Lrev ·wrev and if Lrev ·wrev = v0 ·L0 ·u0, then w ·L = urev

0 ·Lrev
0 ·vrev

0 .
Thus we define

push(L,w−1) = (push(Lrev, wrev)rev)−1,

rest(L,w−1) = (rest(Lrev, wrev)rev)−1,

offset(L,w−1) = (offset(Lrev, wrev)rev)−1.

The main equation of pushing words through languages is: for every nonempty L
and z ∈ G∆ we have L ·z = push(L, z) ·(offset(L, z)−1 ·L ·offset(L, z)) ·rest(L, z).
Because the output normalization procedure works on stws and not languages,
to prove its correctness we need a stronger statement treating independently
every word of the language.

Proposition 4.5 Given a reduced and nonempty language L ⊆ ∆∗ and z ∈ G∆,
for any word u ∈ L

u · z = push(L, z) · (offset(L, z)−1 · u · offset(L, z)) · rest(L, z).

4.4. Normalization algorithm

We can now describe the whole normalization algorithm. We fix an stw
M = (Σ,∆, Q, init , δ) and first introduce the following macros:

Lq = ran([[M ]]q), L◦q = Core(Lq), Left(q) = Left(Lq), Right(q) = Right(Lq),

push(q, z) = push(L◦q , z), offset(q, z) = offset(L◦q , z), rest(q, z) = rest(L◦q , z).

Also, let Offsets(q) = {offset(q, z) | z ∈ G∆} and note that by Proposition 4.4 it
is finite. The constructed stw M ′ = (Σ,∆, Q′, init ′, δ′) has the following states

Q′ = {〈q, z〉 | q ∈ Q, z ∈ Offsets(q)}.

Our construction ensures that [[M ]] = [[M ′]] and for every q ∈ Q, every z ∈
Offsets(q), and every t ∈ dom([[M ]]q)

[[M ′]]〈q,z〉(t) = z−1 · Left(q)−1 · [[M ]]q(t) · Right(q)−1 · z
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If init = u0 · q0 · u1, then init ′ = u′0 · q′0 · u′1, where u′0, u′1, and q′0 are calculated
as follows:

1:v := Right(q0) · u1

2:q′0 := 〈q0, offset(q0, v)〉
3:u′0 := u0 · Left(q0) · push(q0, v)
4:u′1 := rest(q0, v)

For a transition rule δ(q, f) = u0 · q1 ·u1 · . . . ·uk−1 · qk ·uk and any z ∈ Offsets(q)
we introduce a rule δ′(〈q, z〉, f) = u′0 · q′1 · u′1 · . . . · u′k−1 · q′k · u′k, where u′0, . . . , u

′
k

and q′1, . . . q
′
k are calculated as follows:

1:zk := Right(pk) · uk · Right(p)−1 · z
2:for i := k, . . . , 1 do
3: u′i := rest(pi, zi)
4: p′i := 〈pi, offset(pi, zi)〉
5: zi−1 := Right(pi−1) · ui−1 · Left(pi) · push(pi, zi)
6:u′0 := z−1 · Left(p)−1 · z0

where (for convenience of the presentation) we let Right(q0) = ε. The complete
stw normalization algorithm is presented below.

Algorithm 1 stw normalization.

program normalize(M)
1: let M = (Σ,∆, Q, init , δ)
2: let init = u0 · q0 · u1

3: Q′ := {〈q, z〉 | q ∈ Q, z ∈ Offsets(q)}
4: v := Right(q0) · u1

5: q′0 := 〈q0, offset(q0, v)〉
6: u′0 := u0 · Left(q0) · push(q0, v)
7: u′1 := rest(q0, v)
8: init ′ := u′0 · q′0 · u′1
9: for q ∈ Q, δ(q, f) = u0 · q1 · u1 · . . . · uk−1 · qk · uk, and z ∈ Offsets(q) do

10: zk := Right(qk) · uk · Right(q)−1 · z
11: for i := k, . . . , 1 do
12: u′i := rest(qi, zi)
13: q′i := 〈qi, offset(qi, zi)〉
14: zi−1 := Right(qi−1) · ui−1 · Left(qi) · push(qi, zi)
15: u′0 := z−1 · Left(q)−1 · z0

16: δ′(〈q, z〉, f) = u′0 · q′1 · u′1 · . . . · u′k−1 · q′k · u′k
17: end for
18: M ′ := (Σ,∆, Q′, init ′, δ′)
19: return M ′

end program

We remark that not all states in Q′ need to be reachable from the initial rule,
and in fact, the conversion procedure can identify the reachable states on the fly.
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This observation is the basis of a conversion algorithm that is polynomial in the
size of the output.

Example 4.6 We normalize the stw M1 from Example 3.2. The initial rule q0

becomes a ·〈q0, ε〉·c with Left(q0) = a and Right(q0) = c being pushed up from q0

but with nothing pushed through q0. The construction of the state 〈q0, ε〉 triggers
the normalization algorithm for the rule δ(q0, f) = q1 · ac · q1 with Left(q0) = a
and Right(q0) = c to be retracted from left and right side resp. (and nothing
pushed through since z = ε). This process can be viewed as a taking the left hand
side of the original rule with the inverses of retracted words a−1 ·q1 ·ac·q1 ·c−1 and
pushing words forward as much as possible, which gives a−1 ·q1 ·ac ·c−1 · 〈q1, c

−1〉
and then a−1 ·a·〈q1, a〉·〈q1, c

−1〉. This gives δ′(〈q0, ε〉, f) = 〈q1, a〉·〈q1, c
−1〉. Note

that while Offsets(q1) = {(bc)−1, c−1, ε, a, ab}, only two states are constructed.
Next, we need to construct rules for the new state 〈q1, a〉 with z = a and

Left(q1) = Right(q1) = ε. We start with the rule δ(q1, a) = ε and add a−1 at the
beginning and a at the end of its right hand side: a−1 · ε · a = ε, which yields
the rule δ′(〈q1, a〉, a) = ε. Now, for the rule δ(q1, g) = q1 · abc we obtain the
expression a−1 · q1 · abca. Recall that Lq1 = (abc)∗ is a periodic language, so
push(q1, abca) = abca, rest(q1, abca) = ε, and offset(q1, abca) = a. Consequently,
we obtain the rule δ′(〈q1, a〉, g) = bca·〈q1, a〉. Here, it is essential to use the offsets
to avoid introducing a redundant state 〈q1, abca〉 and entering an infinite loop.
Similarly, we obtain: δ′(〈q1, c

−1〉, g) = cab · 〈q1, c
−1〉 and δ′(〈q1, c

−1〉, a) = ε. �

Theorem 4.7 For an stw M let M ′ be the stw obtained with the method
described above. Then, M ′ is equivalent to M and satisfies (E1) and (E2).
Furthermore, M ′ can be constructed in time polynomial in the size M ′, which is
at most doubly-exponential in the size of M .

To prove this theorem, one essentially needs to prove four points:

• the set of states of M ′ is finite: this is a direct consequence of lemma 4.4

• the languages of the states are correct, technically, For every q ∈ Q, every
z ∈ Offsets(q), and every t ∈ dom([[M ]]q)

[[M ′]]〈q,z〉(t) = z−1 · Left(q)−1 · [[M ]]q(t) · Right(q)−1 · z (2)

This can be proved by induction on the structure of terms t

• (E1) and (E2) is satisfied in M ′. This essentially comes from the fact that
L〈q,z〉 are reduced

• and finally, M is equivalent to M ′, i.e. for each t, u0[[M ]]q(t)u1 =
u′0[[M ′]]q(t)u

′
1.

A complete proof can be found in the appendix.
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4.5. Exponential lower bound

First, we show that the size of a rule may increase exponentially.

Example 4.8 For n ≥ 0 define an stw Mn over the input alphabet Σ =
{f (2), a(0)} with the initial rule q0, and these transition rules (with 0 ≤ i < n):

δ(qi, f) = qi+1 · qi+1, δ(qn, a) = a.

The transformation defined by Mn maps a perfect binary tree of height n to a
string a2n . Mn is not earliest. To make it earliest we need to replace the initial
rule by a2n · q0(x0) and the last transition rule by δ(qn, a) = ε. �

The next example shows that also the number of states may become exponential.

Example 4.9 For n ≥ 0 and take the stw Nn with Σ = {g(1)
1 , g

(1)
0 , a

(0)
1 , a

(0)
0 },

the initial rule q0, and these transition rules (with 0 ≤ i < n):

δ(qi, g0) = qi+1, δ(qn, a0) = ε,

δ(qi, g1) = qi+1 · a2i , δ(qn, a1) = a2n ·#.

While the size of this transducer is exponential in n, one can easily compress the
exponential factors a2iand obtain an stw of size linear in n (cf. Example 4.8).
Mn satisfies (E1) but it violates (E2), and defines the following transformation.

[[Nn]] = {(gb0(gb1(. . . gbn−1
(a0) . . .)), ab) | b = (bn−1, . . . , b0)2} ∪

{(gb0(gb1(. . . gbn−1(a1) . . .)), a2n ·# · ab) | b = (bn−1, . . . , b0)2},

where (bn−1, . . . , b0)2 =
∑
i bi ∗ 2i. The normalized version N ′n has the initial

rule 〈q0, ε〉 and these transition rules:

δ′(〈qi, aj〉, g0) = 〈qi+1, a
j〉, δ′(〈qn, ak〉, a0) = ε,

δ′(〈qi, aj〉, g1) = a2i · 〈qi+1, a
j+2i〉, δ′(〈qn, ak〉, a1) = a2n−k#ak,

where 0 ≤ i < n, 0 ≤ j < 2i, and 0 ≤ k < 2n. We also remark that N ′n is the
minimal estw that recognizes [[Nn]]. �

5. Myhill-Nerode Characterization and Minimization

The final step in constructing a canonical estw representative of a transfor-
mation defined by an arbitrary stw is minimization of the normalized estw
obtained with the procedure detailed in the previous section. The connection
between minimization and the existence of canonical representative is generally
established with the help of a Myhill-Nerode theorem, which has a number
of other interesting applications, including inference which we present in Sec-
tion 6. In this section we present a Myhill-Nerode characterization for the class
of transformation definable with stws and show how to use this development
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to devise a polynomial procedure for minimizing estws. Together with the
normalization procedure this gives us an effective method for constructing a
canonical representative for any transformation definable with an arbitrary stw.

Because stws process the input tree in a top-down fashion, we decompose
τ into several transformations that capture the transformation performed by
τ on the children of root of the input tree. This (one-step) decomposition is
then used to recursively define the notion of residual p−1τ of τ w.r.t. a path
p, essentially the transformation performed by τ at the node reached with p
of its input tree. Residuals are then used to define in the standard way the
Myhill-Nerode equivalence relation on paths and the canonical transducer.

5.1. Decompositions

The residual construction is based on the notion of decomposition of the
transformation, which essentially attempts to express the transformation with a
simple production rule (involving factor words and other transformations). First,
analogously to defining reduced languages in the previous section, we define
reduced transformations: τ is reduced iff lcp(ran(τ)) = ε and lcs(ran(τ)) = ε.
While not every transformation is reduced, we can reduce any transformation
while preserving its essence. Given a transformation τ we define its core, denoted
Core(τ), as follows:

Left(τ) = lcp(ran(τ)), Right(τ) = lcs(Left(τ)−1 · ran(τ)),

Core(τ) = {(t,Left(τ)−1τ(t) · Right(τ)−1) | (t, w) ∈ τ}.

Example 5.1 Take the transformation τ1(f(gm(a), gn(a))) = (abc)mac(abc)n

for n,m ≥ 0 (defined by M1 from Example 3.2). It is not reduced because
Left(τ1) = a and Right(τ1) = c. Its core is τ◦1 = Core(τ1) with τ◦1 (f(gm(a), gn(a))) =
(bca)m(cba)n for n,m ≥ 0. Clearly, τo1 is reduced, and furthermore, τ1(t) =
a · τo1 (t) · c. �

We state this simple observation in the following.

Proposition 5.2 For every transformation τ its core τo = Core(τ) is reduced,
dom(τ) = dom(τo), and furthermore, τ(t) = Left(τ) · τo(t) · Right(τ) for every
t ∈ dom(τ).

Now, we define the decomposition of a transformation at a given symbol, which
essentially expresses the transformation using a number of (factor) words and
(residual) transformations.

Definition 5.3 Given a reduced transformation τ and a symbol f (k) ∈ npaths(dom(τ)),
a decomposition of τ for f is a tuple (u0, τ1, u1, . . . , τk, uk), where ui’s are words
over ∆ and τi’s are transformations, such that:

(D1) f(t1, . . . , tk) ∈ dom(τ) if and only if ti ∈ dom(τi) for all 1 ≤ i ≤ k and for
all trees t1, . . . , tk;
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(D2) τ(f(t1, . . . , tk)) = u0 · τ1(t1) · . . . · τ(tk) · uk for all f(t1, . . . , tk) ∈ dom(τ);

(C1) τi is reduced for every 1 ≤ i ≤ k;

(C2) lcp(ran(τi) · ui · . . . · ran(τk) · uk) = ε for every 1 ≤ i ≤ k.

The conditions (D1) and (D2) ensure that the original transformation can be
precisely reproduced from the decomposition, and the conditions (C1) and (C2)
are reformulations of (E1) and (E2) that ensure uniqueness of decompositions.
We observe, however, that a transformation needs not have a decomposition for
every symbol as shown in the following example.

Example 5.4 Consider the reduced transformation τ given with the following
equations

τ(f(a, a)) = abc, τ(f(a, b)) = abac, τ(f(b, a)) = aabc, τ(f(b, b)) = aabac,

τ(g(a, a)) = ε, τ(g(b, a)) = b, τ(g(a, b)) = bb, τ(g(b, b)) = bbb.

The decomposition of τ at f is the tuple (a, τ ′, b, τ ′, c), where τ ′(a) = ε and
τ ′(b) = a (otherwise τ ′ is undefined). On the other hand, τ does not have a
decomposition at g. �

We can, however, show that if there exists a decomposition then it is unique
because the conditions (C1) and (C2) ensure the canonicity of decomposition.

Lemma 5.5 For any transformation τ and any f ∈ npaths(dom(τ)), τ has at
most one decomposition for f .

This claim is proved by contradiction by assuming two different decomposi-
tions which leads to a violation of (C1) when the decompositions differ on some
factor or a violation of (C2) when the decomposition differ with the residual
transformations. A complete proof can be found in appendix.

The analogy between the conditions of (C1) and (C2) and the conditions
(E1) and (E2) allows us to make an important connection between decomposi-
tions of rules an estws.

Proposition 5.6 For an estw M , any state q of M , [[M ]]q is reduced, and
furthermore for any f ∈ Σ such that δ(q, f) is defined, the decomposition of
[[M ]]q for f is (u0, [[M ]]q1 , u1, . . . , [[M ]]qk , uk), where δ(q, f) = u0 ·q1 ·u1 ·. . .·qk ·uk.

Proof We note that [[M ]]q is reduced by (E1), while (D1) and (D2) follow
directly from the definition of [[M ]]q. (C1) follows immediately from (E1) and
(C2) from (E2). �

5.2. Residuals

The notion of decomposition plays a central role in the definition of a residual
of a transformation.

Definition 5.7 The residual of a transformation τ at a path p is defined recur-
sively: ε−1τ = Core(τ) and (p · (f, i))−1τ = τi if u0 · τ1 . . . τn · un is the unique
decomposition of p−1τ for f .
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We illustrate this important notion on the example of the transformation τ1
defined by M1 in Example 3.2.

Example 5.8 Recall that τ1(f(gm(a), gn(a))) = (abc)mac(abc)n for n,m ≥ 0
(Example 3.2) and its core τ◦1 (f(gm(a), gn(a))) = (bca)m(cab)n for n,m ≥
0 (Example 5.1). Naturally, ε−1τ1 = τ◦1 . The decomposition of τ◦1 at f is
(ε, τ1,1, ε, τ1,2, ε), where τ1,1(gm(a)) = (bca)m for m ≥ 0 and τ1,2(gn(a)) = (cab)n

for n ≥ 0. Naturally, (f, 1)−1τ1 = τ1,1 and (f, 2)−1τ1 = τ1,2. The decomposition
of τ1,1 at g is (bca, τ1,1, ε) and the decomposition of τ1,1 at a is ε (a is a input
symbol of arity 0). Analogously, he decomposition of τ1,2 at g is (cba, τ1,2, ε)
and the decomposition of τ1,2 at a is ε. Therefore, [(f, 1) · (g, 1)n]−1τ = τ1,1 and
[(f, 2) · (g, 1)n]−1τ = τ1,2 for any n ≥ 0.

Again, we point out an important connection between the residuals and the
transformations defined by the states of estws.

Lemma 5.9 Take an estw M and let q0 be its initial state. For every p ∈
paths(dom([[M ]])) the residual p−1[[M ]] exists and is equal to [[M ]]δ(q0,p).

This is essentially an inductive extension of Proposition 5.6. Its complete prove
is in Appendix. Naturally, not every transformation has well-defined residuals.
The above result shows, however, that any transformation definable by an stw
has them and there is a strict correspondence between the residuals and the
states of an equivalent estw defining the transformation.

5.3. Myhill-Nerode characterization

In the remainder of this section, we are interested in transformations that
have a residual for every path of their domain.

Definition 5.10 A tree-to-word transformation τ is sequential top-down if p−1τ
exists for every p ∈ dom(τ). By ST W we denote the class of all sequential
top-down transformations.

Having defined residuals, the construction of the canonical transducer Can(τ)
for a transformation τ is standard. The Myhill-Nerode equivalence relation ≡τ
on paths of τ is defined in the standard manner: p1 ≡τ p2 iff p−1

1 τ = p−1
2 τ

for p1, p2 ∈ paths(dom(τ)). The Myhill-Nerode equivalence class of a path p
w.r.t. τ is [p]τ = {p′ ∈ paths(dom(τ)) | p ≡τ p′}. We say that τ has finite
Myhill-Nerode index if ≡τ has a finite number of equivalence classes. The
canonical transducer of an ST W τ with a finite Myhill-Nerode index is an
estws Can(τ) = (Σ,∆, Q, init , δ), whose states are equivalence classes of the
Myhill-Nerode equivalence relation ≡τ :

Q = {[p]τ | p ∈ paths(dom(τ))},

the initial state is constructed simply as

init = Left(τ) · [ε]τ · Right(τ).
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and for p · f ∈ npaths(dom(τ)) to define the transition rule δ([p]τ , f) we take
the decomposition (u0, τ1, u1, . . . , τk, uk) of p−1τ for f and assign

δ([p]τ , f) = u0 · [p · (f, 1)]τ · u1 · . . . · [p · (f, k)]τ · uk.

Note that this assignment is independent of the choice of the representative of
the equivalence class because if p1 ≡τ p2 the residuals p−1

1 τ and p−1
2 τ are the

same, and in particular, have the same decompositions.

Theorem 5.11 A transformation τ is sequential top-down and has a finite
Myhill-Nerode index if and only if τ is defined an estw.

Proof For the if part, we observe that if τ is defined by estw M , then by
Lemma 5.9 τ is sequential top-down and its Myhill-Nerode index is bounded by
the number of states of M . For the only if part, we show that the canonical
transducer of τ indeed defines τ . This is done with a simple induction (over
the height of the input tree) showing that that [[Can(τ)]][p]τ = p−1τ for every
p ∈ paths(dom(τ)). �

5.4. Minimization

We next show that Can(τ) is in fact the unique minimal estw that recognizes
τ . For that, we first need to establish a bisimulation property for pairs of
equivalent estws which also allows us to devise a polynomial procedure for
minimizing estws.

Lemma 5.12 Take two estwsM = (Σ,∆, Q, init , δ) and M ′ = (Σ,∆, Q′, init ′, δ′)
defining the same transformation τ = [[M ]] = [[M ′]] and let init = u0 · q0 · u1 and
init ′ = u′0 ·q′0 ·u′1. Then, u0 = u′0 and u1 = u′1, and for every p ∈ paths(dom(T )),
we let q = δ(q0, p) and q′ = δ′(q′0, p), and we have

1. [[M ]]q = [[M ′]]q′ ,

2. δ(q, f) is defined if and only if δ′(q′, f) is, for every f ∈ Σ, and

3. if δ(q, f) = u0 · q1 · u1 · . . . · qk · uk and δ′(q′, f) = u′0 · q′1 · u′1 · . . . · q′k · u′k,
then ui = u′i for 0 ≤ i ≤ k.

Those three points can be proved conjointly by a recursion on p (a complete
proof in Appendix).

For the reminder of this subsection we fix an estw M = (Σ,∆, Q, init , δ)
and let init = u0 · q0 · u1 be its initial rule. We define the following equivalence
relation on states of M : q ≡M q′ if and only if [[M ]]q = [[M ]]q′ . This equivalence
relation can be precomputed using PTIME equivalence tests for estws [31]. In
the sequel, by [q]≡M = {q′ ∈ Q | q ≡M q′} we denote the equivalence class
of state q w.r.t. ≡M . The result of minimization is the quotient transducer
M/≡M = (Σ,∆, Q′, init ′, δ′), where Q′ = {[q]≡M | q ∈ Q}, init ′ = u0 · [q]≡M · c1,
δ([q]≡M , f) = u0·[q1]≡M ·u1·. . .·[qk]≡M ·uk for any rule δ(q, f) = u0·q1·u1·. . .·qk·uk
of M . Note that Lemma 5.12 (with M ′ = M) guarantees that the construction
of a rules of M/≡M is independent on the choice of the representative rule of M .
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Lemma 5.13 M/≡M is the minimal unique estw defining [[M ]].

The proof of this lemma uses the standard minimization arguments that are
enabled by the conditions (E1) and (E2) (complete proof in Appendix). As a
consequence we obtain an important result.

Theorem 5.14 Minimization of estws is in PTIME i.e, for every estw there
exists a unique minimal equivalent estw that can be constructed in polynomial
time.

The developments presented in this section have a broader impact if we observe
the observation that the equivalence relation ≡M is close representation of the
Myhill-Nerode equivalence relation ≡[[M ]], which can be stated as

∀p1, p2 ∈ paths(dom([[M ]])). δ(q0, p1) ≡M δ(q0, p2) iff p1 ≡[[M ]] p2.

which shows that the quotient transducer is in fact the canonical transducer
(complete proof in Appendix).

Lemma 5.15 For any estw M , Can([[M ]]) = M/≡M .

We summarize the results obtained in the following corollary.

Corollary 5.16 (Myhill-Nerode characterization for stw) For any tree-
to-word transformation τ the following three conditions are equivalent:

1. τ is definable by an stw;

2. τ is sequential top-down and has a finite Myhill-Nerode index;

3. Can(τ) is the unique minimal estw defining τ .

We finish by pointing out that the conditions (E1) and (E2) play an impor-
tant role in enabling a tractable minimization because for arbitrary stws the
output words may be arbitrarily distributed among the rules, which is a major
challenge and is unlikely to be easy to overcome as suggested by the following
result.

Theorem 5.17 Minimization of stws i.e., deciding whether for an stw M
and k ≥ 0 there exists an equivalent stw M ′ of size at most k, is NP-complete.

This is proved using a reduction of the problem SATONE-IN-THREE, known to be
NP-complete (complete proof in Appendix).

6. Learning STWs

In this section we present a learning algorithm for ST W transformations.
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6.1. Learning framework

First, we investigate the question of the meaning of what learning a transfor-
mation means and pursue an answer that is inspired by the Gold learning model
in polynomial time and data [14]. Essentially, we are interested in a polynomial
time algorithm that takes a finite sample S ⊆ TΣ ×∆∗ and constructs an stw
M transducer consistent with S i.e., S ⊆ [[M ]]. Unfortunately, unless P = NP,
the following result precludes the existence of such an algorithm.

Theorem 6.1 Checking if there exists an stw consistent with a given sample
is NP-complete.

Proof of this theorem is in the appendix. To overcome this difficulty, we shall
allow the algorithm to abstain i.e., return a special Null for cases when an stw
consistent with the input sample cannot be easily constructed. Naturally, this
opens the door to a host of trivial algorithms that return Null for all but a
finite number of hard-coded inputs. To remove such trivial algorithms from
consideration we shall essentially require that the learning algorithm of interest
can infer any ST W τ from sufficiently informative samples, called characteristic
sample of τ : the learning algorithm should be able to output an estw defining τ .
Furthermore, we require the characteristic sample to use a number of examples
bounded by a polynomial of the number of equivalence classes of ≡τ .

Another obstacle comes from the fact that dtas are not learnable from
positive examples alone and learning dta from a set of positive examples can be
easily reduced to learning stw. To remove this obstacle, we assume that a dta
D capturing the domain of the goal transformation is given on the input. Note
that this domain automaton could also be obtained by learning method, such as
the RPNI algorithm for trees [24].

If a class of transformation satisfies all the above properties, we say that it is
learnable with abstain from polynomial time and data. In the following, we aim
to obtain the following result.

Theorem 6.2 ST W transformations represented by estw are learnable with
abstain from polynomial time and data.

6.2. Learning Algorithm

We now present the learning algorithm for ST W . This algorithm essentially
attempts to emulate the construction of the canonical transducer, using a finite
sample of the transformation.

The Core Algorithm The main procedure of the learning algorithm follows
closely the construction of the canonical transducer. It takes as an input a sample
S of a target transformation τ , as well as a dta D that represents dom(τ).

The algorithm consists of 2 parts. First, in lines 3 to 11, it attempts to identify
the set of states of the canonical transducer. For this, it builds a function state
that associates with every path the minimal path in its equivalence class that
represents the corresponding residual. This is based on the predicate 'S,D which
is an emulation of the Myhill-Nerode equivalence relation ≡τ on an finite sample
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of τ . Note that if 'S,D behaves exactly as ≡τ , and assuming paths(dom(S))
contains all smallest paths representative of each residual, this procedure produces
exactly the set Q of states of Can(τ). The exact implementation of the predicate
'S,D is explained later.

Second part, line 12, builds the other elements of the transducer. This
uses the procedure decomp to compute decomposition of samples in a manner
emulating decomposition of transformations and is explained in detail later.

Algorithm 2 learnerD(S)

1: P := paths(dom(S)) ; Q := ∅
2: state := new hashtable〈Path,Path〉()
3: while P 6= ∅ do
4: p := minPath(P )
5: P ′ := {p′ ∈ Q | p 'S,D p′}
6: if P ′ 6= ∅ then (*p can be merged*)
7: P := P \ {p′ ∈ P | p is prefix of p′}
8: state[p] := minPath(P ′)
9: else

10: P := P \ {p} ; Q := Q ∪ {p}
11: state[p] := p
12: init := Left(S) · state[ε] · Right(S)
13: for p ∈ Q do
14: for f ∈ Σ s.t. ∃i with p.(f, i) ∈ paths(dom(S)) do
15: for i ∈ 1, ...k, Let pi = state[p.(f, i)]
16: (u0, , u1, . . . , uk) := decomp(residual(S, p), f)
17: δ(p, f) := u0 · p1 · u1 · . . . · pk · uk
18: M := (Σ,∆, Q, init , δ)
19: if S ⊆ [[M ]] and dom([[M ]]) ⊆ [[D]] then return M else return Null

We point out the algorithm may fail to produce an estw consistent with S.
Therefore, in line 19 the consistence of the constructed estw is verified and the
algorithm abstains from answer if the test fails. The following lemma is therefore
trivial.

Lemma 6.3 For a sample S and a dta D, learnerD(S) produces an estw M
in time polynomial in the size of S or abstains from answer.

This results assumes the existence of polynomial procedures for 'S,D, decomp
and residual, which we present next.

Decomposition The above learning algorithm relies on the ability to decompose
a sample. This is done by the following procedure. It takes as an input a sample
S which is supposed to be representative of a transformation τ , and a symbol
f (k) such that there are f rooted trees in S. From this, it outputs a sequence
u0 · S1 · u1 . . . Sk · uk which ideally is the proper decomposition of S w.r.t. to τ .
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Algorithm 3 decomp(S, f (k))

1: Let Sf = {(t, w) ∈ S | t is of the form f(t1, . . . tk)}
2: Let s = f(s1, . . . , sk) be the tree minTree(dom(Sf )) and ws := S(s)
3: for i := 1, . . . , k do Di := {ti | f(s1, . . . , si−1, ti, si+1, . . . , sk) ∈ dom(Sf )}
4: u0 := lcp({w | (t, w) ∈ Sf})
5: prefix 0 = u0

6: for i := 1, . . . , k do
7: prefix i := lcp{w | ∃ti+1, . . . , tk. (f(s1, . . . , si, ti+1, . . . , tk), w) ∈ Sf}
8: suffix i := prefix−1

i · ws
9: S′i := ∅

10: for t ∈ Di do
11: w := prefix−1

i−1 · S(f(s1, . . . , si−1, t, si+1, . . . , sk)) · suffix−1
i

12: S′i := S′i ∪ {(t, w)}
13: ui := lcs(ran(S′i))
14: Si := {(t, w · u−1

i ) | (t, w) ∈ S′i}
15: return (u0, S1, u1 . . . , Sk, uk)

From the minimal tree s = f(s1, . . . , sk) of dom(S) rooted by f , the algorithm
essentially tries to decompose ws = S(s) into u0S1(s1) . . . Sk(sk)uk, as defined
by the formal definition of decomp(S, f). Note this is defined only if there
are some f rooted trees in dom(S). The word u0 is simply Left(Sf ). Then,
for each i, prefix i is built such that it is equal to u0S1(s1) . . . Si(si)ui and so
suffix i = prefix−1

i ws = Si+1(si+1) . . . uk. From this, residual transformations
Si and words ui can be built simultaneously. For any tree ti ∈ (f, i)−1dom(S),
we consider the tree t = f(s1, . . . , si−1, ti, si+1, . . . , sk)) (which belongs to
dom(S) if is path-closed or well constructed) and compute S′i(ti) = Si(ti) · ui =
prefix−1

i−1S(t)suffix−1
i . The word ui is obtained as lcs(ran(S′i)), which allow to

obtain Si(ti) = S′i(ti) · u
−1
i .

If the sample is rich enough (a notion that will be made precise in the next
section), the lcp and lcs of the different elements are computed correctly and the
algorithm outputs exactly what it supposed to. If the sample is not rich enough,
it may possibly produce a decomposition which is not necessarily sound: there
may be a tree t = f(t1, . . . , tk) such that which S(t) 6= u0 ·S1(t1)·u1 . . . Sk(tk)·uk.
However, in any case, the algorithm answers in time polynomial in the size of S.

Residuals and Equivalence From the decomposition procedure, it is possible
to build the residual of a sample for a path p. residual(S, p) is computed in
a manner analogous to p−1τ : for p = ε, residual(S, p) = reduce(S), and for
p = p′ · (f, i), we compute S′ = residual(S, p) and residual(S, p) = Si, where
decomp(S′, f) = u1 · · ·S1 . . . Sk · uk. Note that again, residual(S, p) is a polyno-
mial time procedure.

From this, we can define the relation 'S,D which tries to emulate ≡τ . Recall
that p1 ≡τ p2 iff p−1

1 τ = p−1
2 τ and note that two transformations are identical

if they have the same domain and agree on every tree. Because the residuals
p−1

1 τ and p−1
2 τ are represented with finite samples S1 = residual(S, p1) and
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S2 = residual(S, p2) and their domains need not be necessarily equal, the predicate
p1 'S,D p2 uses the dta D to verify that the domains of the residuals p−1

1 τ and
p−1

2 τ are equal and then checks that for every tree in common both samples S1

and S2 produce the same results.
Again, all those procedures are polynomial. Note however that they behave

correctly (i.e. p 'S,D p′ ⇔ p ≡τ p′ for instance) only if the sample is rich enough.
What it means exactly is defined in the next section.

6.3. A Characteristic Sample

In the following, we identify a characteristic sample for stw transformation
τ : CharSet(τ) is a finite set of examples such that whenever learner is provided
a superset of CharSet(τ) as input, it outputs can(τ).

The Characteristic Sample We first introduce some notations and definitions.
For p ∈ paths(dom(τ)) let cp be the minimal context with x at path p. The finite
set of all minimal representatives of equivalence classes of ≡τ is StatePath(τ) =
{minPath([p]τ ) | p ∈ paths(dom(τ))}. We also define Kernel(τ), which adds to
the shortest paths their extensions with one additional step i.e., Kernel(τ) =
StatePath(τ) ∪ {p · (f, i) ∈ paths(dom(τ)) | p ∈ StatePath(τ)}.

Example 6.4 Consider the transformation τ1 that takes as an input a tree t
over the signature Σ = {f (2), a(0), b(0)} and output a word on ∆ = {c} that
counts the number of symbols in t (i.e. τ1(f(f(a, b), a)) = ccccc). The canonical
transducer of τ1 is M1 = (Σ,∆, Q1 = {q}, init1 = c · q, δ1) with δ1(q, a) = ε,
δ1(q, b) = ε and δ1(q, f) = cc · q · q.

The transformation τ1 has 3 distincts residuals: ε−1τ1, (f, 1)−1τ1 and
(f, 2)−1τ1. Therefore, StatePath(τ1) = {ε, (f, 1), (f, 2)} and Kernel(τ1) = StatePath(τ1)∪
{(f, 1)(f, 1), (f, 1)(f, 2), (f, 2)(f, 1), (f, 2)(f, 2)}.

Let us consider a path p ∈ Kernel(τ), and a set of trees T ⊆ TΣ. Then, T is
structurally representative for τ with respect to p if

(S0) the tree minTree(dom(p−1τ)) belongs to T ;

(S1) lcp((p−1τ)(T )) = ε and lcs((p−1τ)(T )) = ε;

(S2) lcp(ran(p−1τ) \ {ε}) = lcp((p−1τ)(T ) \ {ε}).

Additionally, we say that T is discriminant for τ with respect to p if

(DI) for any p0 ∈ StatePath(τ), if Tp,p0 = {t ∈ dom(p−1τ) ∩ dom(p−1
0 τ) |

p−1τ(t) 6= p−1
0 τ(t)} is nonempty, then minTree(Tp,p0) belongs to T .

For a path p, conditions (S0), (S1) and (S2) ensure that T contains all
elements needed to correctly decompose the residual transformation p−1τ . Con-
dition (DI) ensures that T contains witnesses necessary to distinguish different
equivalence classes.
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Example 6.5 Consider transformation τ1 of example 6.4 and take for instance
p = (f, 1). The tree Tp,ε is the smallest tree whose image differs in p−1τ1 and
ε−1τ1. In fact, Tp,ε = f(a, a) as p−1τ1(f(a, a)) = cc and ε−1τ1(f(a, a)) = ccc.
For other p′ ∈ {(f, 2), (f, 2)(f, 1), (f, 2)(f, 2)}, Tp,p′ = a.

To satisfy condition (S1) and (S2), one can take {a, b, f(a, a)} ∈ Tp. This
allows to satisfy (S1) as lcp({(p−1τ1)(a), (p−1τ1)(b), (p−1τ1)(f(a, a))}) = lcp({c,
ε, ccc}) = ε and the same for lcs . For (S2), we have lcp({(p−1τ1)(a), (p−1τ1)(b),
(p−1τ1)(f(a, a))} \ {ε}) = lcp({c, ε, ccc} \ {ε}) = c which is indeed equal to
lcp(ran(p−1τ1) \ {ε}).

Let τ be a transformation in ST W and let p be a path in Kernel(τ). A
sample S is characteristic for τ at path p if (i) S ⊆ p−1τ and ; (ii) for all paths
p0 such that p · p0 ∈ Kernel(τ), the set of trees c−1

p0 dom(S) is discriminant and
structurally representative for τ with respect to p · p0. A sample is characteristic
for τ if it is characteristic for τ at path ε.

An important property is that it is possible to build a characteristic sample
whose cardinality is with a polynomial bound on the number of distinct residuals
of τ . Indeed, to have property (DI), one need a quadratic number of trees
while conditions (S0), (S1), and (S2) all require a linear number of trees. We
denote by CharSet(τ, p) the minimal characteristic sample for τ at path p and
by CharSet(τ) the set CharSet(τ, ε). This yields the following lemma.

Lemma 6.6 For any estwM there exists a characteristic sample CharSet([[M ]])
of cardinality polynomial in the size of M .

We also point out that any sample S consistent with [[M ]] that contains
CharSet([[M ]]) is also characteristic for [[M ]].

Example 6.7 From previous example, one can build a characteristic sample
for τ1. In particular, the minimal context for (f, 1) is f(x, a). In example 6.5,
it is argued that trees {a, b, f(a, a)} are in Tp, which means that CharSet(τ1 )
contains (f(a, a), ccc), (f(b, a), cc) (f(f(a, a), a), ccccc). A similar approach has
to be also considered for all other elements of Kernel(τ1) to obtain the full
CharSet(τ1 ).

Decomposition of Characteristic Samples It remains to see that from the
characteristic sample of a transduction, the procedures used by the learning
algorithm behave as expected. We begin with the decomposition. The first
lemma shows that the factors of a decomposition are identified whenever a
superset of the characteristic sample is provided to the decomposition procedure.

Lemma 6.8 Let τ ∈ ST W and p ∈ StatePath(τ). Let S be a characteristic
set for τ at path p, For any f ∈ Σ(k) such that the decomposition of p−1τ at
f is u0 · τ1 . . . τk · uk, then decomp(S, f) = u0 · S1 . . . Sk · uk where each Si is
characteristic for τ at path p · (f, i)

This decomposition lemma relies on the idea that the properties required
by the formal definition can be observed locally on a characteristic sample: for

27



instance property (D1) and (D2) simply comes from consistency of the sample
(S ⊆ τ), while (C1) is observable on S thanks to property (S1). However, (C2)
does not translate directly into a property that a characteristic sample should
fulfill. This is of course the role played by property (S2).

The link between (S2) and (C2) is actually an indirect consequence of
following property: let W and W ′ be two sets of words in ∆∗, if lcp(W \ {ε}) =
lcp(W ′ \ {ε}), and lcp(W ) = lcp(W ′), then lcp({w · u | w ∈ W}) = ε for a
u ∈ ∆∗ implies that lcp({w′ · u | w′ ∈W ′}) = ε.

Now, consider a transformation τ ∈ ST W, a path p ∈ StatePath(τ) and a
sample S characteristic for τ in a path p. If we consider decomp(p−1τ, f) =
u0τ1 . . . τkuk, then for any i ∈ {1, . . . , k} we have lcp{τi(ti) · ui · . . . · τk(tk) · uk |
ti ∈ (f, i)−1dom(S), . . . , tk ∈ (f, k)−1dom(S)} = ε.. This is a direct consequence
of above property and the fact that S satisfy (S1) and (S2), and allows us to
prove Lemma 6.8.

As the construction of residuals residual(S, p) relies on the decomposition,
Lemma 6.8 has the important consequence that those residuals can be computed
properly for any p ∈ Kernel(τ). This gives the following two results. First, if S
is characteristic for τ , and p ∈ Kernel(τ), then residual(S, p) is characteristic for
τ w.r.t. p. Second, as a consequence and because of (DI), if p, p′ ∈ Kernel(τ)
then p 'S,D p′ ⇔ p ≡τ p′. Ultimately, this indicates that from a sample S
characteristic for τ , the learning algorithm builds Can(τ):

Lemma 6.9 Let τ ∈ ST W and D a dta with [[D]] = dom(τ). From any sample
S characteristic with τ , learnerD(S) = Can(τ).

This, along with Lemmas 6.3 and 6.6 proves Theorem 6.2.

7. Conclusion

We have proposed and studied the class of deterministic top-down sequential
tree-to-word transducers (stws). The core contribution of this paper, and
virtually the source of all contributions of this paper, is a normal form for stws:
we have identified two syntactic conditions that yield a proper subclass of earliest
stws. The conditions are easily to verify and furthermore do not restrict the
expressive power the transducers: we show that for an stw an equivalent estw
can be constructed. One important ramification of the normal form for stws

is that when adapted to tree-to-word transformations (semantic rather than
syntactic object), it yields a Myhill-Nerode characterization of transformations
definable with stws that allows to identify a unique canonical estw representative
of any transformation from this class. This connection becomes clear when we
observe that the conditions (C1) and (C2) in Definition 5.3 that ensure unique
canonical estw are essentially reformulations of the conditions (E1) and (E2)
in Definition 3.4 (that defined the normal form for stws). Naturally, we also
provide a (polynomial) minimization algorithm for estws, which together yields
an effective procedure for converting any stw into its unique canonical estw
representative. The Myhill-Nerode characterization has a number of other uses
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and applications, and in this paper, we use it to devise a learning algorithm for
the class of earliest stws. To the best of our knowledge this is the first learning
algorithm allowing to infer tree-to-word transducers.

We envision a number of possible directions of further study. First, we would
like to adapt the results to more generalized models of top-down tree-to-word
transducers. Our preliminary results suggest that allowing arbitrary order (a
permutation) in which the subtrees are processed by the transducer may still
allow for an analogous normal form, albeit slightly more developed. Allowing
the transducer to visit a node more than posses, however, a more significant
challenge which we are yet to see if it can be overcome with techniques analogous
to those presented in this paper. This naturally leads us to the open problem
of normalizing the general class of Macro Tree Transducers. Finally, we would
like to explore studing learning subclasses of stws under alternative learning
frameworks, in particular approximate and probabilistic learning frameworks. It
should be noted, however, that intractability of the consistency problem for a
given class of concepts makes it generally difficult to render it learnable in the
popular framework of PAC-learnability [32].
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A. Canonical orders

We give here a precise definition of an example of canonical well-founded
orders that can be used on trees, words and paths. First, we let Σ♦ = Σ ×
{open, close} and define the preorder traversal of a tree t over Σ as a word over
Σ♦ obtained in a recursive fashion:

traverse(f(t1, . . . , tk)) = (f, open) · traverse(t1) · . . . · traverse(tk) · (f, close).

We extend the notion of traversal to context in the natural fashion (by adding
x(0) to the alphabet).

We recall next a general procedure for extending a total order ≤A on A
to a canonical well-founded order ≤can

A on words over A. The lexicographical
order ≤lex

A on A∗ induced by ≤A is defined as follows: w ≤lex
A u iff w is a prefix

of u or w = v · a · z, u = v · b · z′, and a ≤A b, where u,w, v, z, z′ ∈ A∗ and
a, b ∈ A. We observe that lexicographic orders are generally not well-founded e.g.,
if a ≤ b, then . . . ≤lex aab ≤lex ab ≤lex b. Consequently, to obtain a canonical
well-founded order we order the words by their length and then order the words
of the same length with the use of the lexicographical order i.e., u ≤can

A w iff
|u| ≤ |w| or |u| = |w| and u ≤lex

A w. In our constructions, we also employ the
(lexicographic) composition of two total orders ≤A on A and ≤B on B to obtain
a total order ≤A×B on A×B defined as (a1, b1) ≤A×B (a2, b2) iff a1 ≤A a2 or
a1 = a2 and b1 ≤B b2.

The basic orders that we use are: 1) An arbitrary total order ≤Σ on Σ that
is efficiently testable; 2) The standard total order ≤ on natural numbers; 3) the
total order ≤♦ on {open, close} such that open ≤♦ close. As usually, given an
order ≤A on A, when we write a <A b we mean a ≤A b and a 6= b. Analogously,
a ≥A b is b ≤A b, and a >A b is a ≥A b and a 6= b.

Now, we compose ≤Σ and ≤ (on N) to obtain the total order ≤Σ×N on Σ×N.
Next, we extend ≤Σ×N to the canonical well-founded order ≤Path on words over
Σ× N i.e., labeled paths.

Next, we take the total ordering ≤♦ on {open, close} such that open ≤♦ close
and construct the total order ≤Σ♦ by the composition of ≤Σ and ≤♦. We
extend ≤Σ♦ to the canonical order ≤can

Σ♦
on words over Σ♦ and define the

well-founded order on trees induced by preorder traversal: t1 ≤Tree t2 iff
traverse(t1) ≤can

Σ♦
traverse(t2). Analogously to ≤Tree , we define a well-founded

order ≤Ctx on contexts: in the construction above we extend ≤Σ to the place-
holder x(0) and make x(0) the minimal element of ≤Σ, the reminder of the
construction remains unchanged.

B. Pushing Words Through Languages

Lemma 4.1 If L is reduced and nontrivial, then Shovel(L) is prefix-closed and
totally ordered by the prefix relation.

Proof Showing that Shovel(L) is prefix-closed follows from the definition. Take
any w ∈ Shovel(L) and a prefix w′ of w whose length is |w′| = k. Now, fix
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a word v ∈ L and observe that w is a prefix of v · w. Since w′ is a prefix of
w, then v · w′ is a prefix of v · w and furthermore v · w′ is of length at least k.
Consequently, w′ is a prefix of v · w′.

We show that Shovel(L) is ordered with a simple induction over the length of
words in Shovel(L). Take two words w ·a,w ·b ∈ Shovel(L). Since L is nontrivial,
there is some nonempty word u ∈ L. Now, w · a is a prefix of u ·w · a and w · b is
a prefix of u ·w · b. Since u has length at least 1, both w · a and w · b are prefixes
of u · w. Consequently, a = b. �

Lemma 4.3 Given a reduced and nontrivial language L, Shovel(L) is infinite
iff L is periodic. Furthermore, if L is periodic then Shovel(L) = Period(L)∗ ·
Prefix (Period(L)).

Proof For the if part, take any nontrivial L ⊆ w∗ and observe that wk ∈
Shovel(L) for any k ≥ 0. Furthermore, by Proposition 4.1 we get that Shovel(L) =
w∗ · Prefix (w).

For the only if part we point out that Proposition 4.2 characterizes nontrivial
periodic languages as exactly those that self-commute i.e., a nontrivial L is
periodic iff w1 · w2 = w2 · w1 for any two words w1, w2 ∈ L.

First, we observe that ε ∈ L. Since Shovel(L) contains a nonempty word
a · w ∈ Shovel(L), then a is the first letter of every nonempty word in L, and
since L is trimmed, L must contain the empty word, or otherwise lcp(L) would
not be ε.

Next, take any w1, w2 ∈ L. Since Shovel(L) is infinite, there exists a word
v ∈ Shovel(L) whose length is greater than |w1|+ |w2|. In addition we remark
that v is a prefix of v, w1 · v, and w2 · v. This allows us to infer that v = w1 · v′
and v = w2 · v′′, which implies that w1 · v = w1 ·w2 · v′′ and w2 · v = w2 ·w1 · v′.
Since the length of v is greater than |w1|+ |w2|, the aforementioned two words
agree on the first |w1|+ |w2| letters and hence w1 · w2 = w2 · w1. �

Lemma 4.4 The set Offsets(L) = {offset(L,w) | w ∈ ∆∗} is finite for any
reduced L. Furthermore, if L is defined by a context-free grammar G, then the
size of Offsets(L) is at most doubly-exponential in the size of G and Offsets(L)
can be constructed in time polynomial in its size.

Proof The fact that the set Offsets(L) is finite follows directly from the defini-
tions in all three cases. We just show that this set can be constructed in time
doubly-exponential in the size of a context-free grammar G defining L. The
algorithms outlined below allow also to classify the case the language L belongs
to.

For the case 0o we note that the condition L = {ε} can be easily checked
on G by testing that every (reachable) nonterminal of G does not produce the
non-empty word. This can be done with a simple closure algorithm working in
time polynomial in the size of G.

We handle the remaining two cases together and let wmin a shortest word
in L. First, we observe that L is periodic if and only if its primitive period
Period(L) is also the primitive period of wmin. Now, let v be the shortest prefix
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v of wmin such that wmin = vk for some k > 0 (possibly equal to wmin). One
can easily see that Period({wmin}) is the shortest prefix v of wmin such that
wmin = vk for some k > 0. Consequently, L is periodic if and only if L ⊆ v∗.

We observe that wmin may be of length exponential in the size of G (cf.
Example 4.8), and that may be also the length of v. Testing the inclusion
L ⊆ v∗, when G is a cfg defining L, can be done using standard automata
techniques: we construct a push-down automaton AG defining L, a dfa Av
defining v∗, and its complement A{v defining ∆∗ \ v∗. Now, we take the product
P = AG ×A{v and test it for emptiness. Clearly, L ⊆ v∗ iff P defines an empty
language. As for complexity, we note that the size of AG is poly(|G|), the sizes
of Av and A{v are poly(|v|) = exp(|G|), and thus the product automaton P is of
size exp(|G|).

If L is periodic, then O = Prefix (Period(L)) = Prefix (v) and its size is
single-exponential in the size of G. If L is not periodic, then the test described
above fails i.e., P is nonempty and accepts an non-empty word w0. Note that
because P is a push-down automaton whose size is exp(|G|) the shortest word
recognized by P may be of size doubly-exponential in the size of G. We claim
that if a word can be pushed through L, then it cannot be longer than w0. The
proof is combinatorial and we omit it here. �

Lemma 4.5 Given a reduced and nonempty language L ⊆ ∆∗ and z ∈ G∆, for
any word u ∈ L

u · z = push(L, z) · (offset(L, z)−1 · u · offset(L, z)) · rest(L, z).

Proof We distinguish 3 cases: L is trivial or L is periodic and nontrivial or L
is non periodic. If L is trivial, then push(L, z) = rest(L, z) = offset(L, z) = ε
and the proposition holds.

Let us assume that L is periodic and nontrivial. Let us first consider the
case where z = w ∈ ∆∗. Let p = Period(L). We have:

Shovel(L,w) = p∗ · Prefix (p)

push(L,w) = pi · o for some i > 0 and o ∈ Prefix (p)

offset(L,w) = (pi · o) mod p = o

Let us recall that push(L,w) is also a prefix of w. Note that for any prefix u of
a word v we have u · (u−1 · v) = v. Any word u in L is of the form pk for some
k > 0, and we have

push(L,w)·(offset(L,w)−1 · u · offset(L,w)) · rest(L,w)

= pi · o · (o−1 · pk · o) · (pi · o)−1 · w
= pk · pi · o · (pi · o)−1 · w
= pk · w = u · w
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Let us now consider the case where z = w−1 and w ∈ ∆∗. Let prev =
Period(Lrev). We have:

Shovel(Lrev, w−1) = (prev)∗ · Prefix (prev)

push(Lrev, w−1) = (prev)i · o for some i > 0 and o ∈ Prefix (prev)

offset(Lrev, w−1) = ((prev)i · o) mod (prev) = o.

Let u = pk ∈ L

push(L,w−1) ·
(
offset(L,w−1)−1 · u · offset(L,w−1)

)
· rest(L,w−1)

= (push(Lrev, wrev)rev)−1 ·
(
offset(Lrev, wrev)rev · u · (offset(Lrev, wrev)rev)−1

)
· (rest(Lrev, wrev)rev)−1

= (orev · pi)−1 ·
(
orev · pk · (orev)−1

)
·
((

((prev)i · o)−1 · wrev)
)rev

)−1

Now, recall that for any u and v in ∆∗, (u−1 · v)rev = vrev · (urev)−1 and
(u · v−1)−1 = v · u−1. Thus we have((

((prev)i · o)−1 · wrev)
)rev

)−1

=

(
(wrev)rev ·

(
((prev)i · o)rev

)−1
)−1

=
(
(prev)i · o

)rev · w−1

= orev ·
(
(prev)i

)rev · w−1

= orev · pi · w−1

Hence,

push(L,w−1) ·
(
offset(L,w−1)−1 · u · offset(L,w−1)

)
· rest(L,w−1)

= (orev · pi)−1 ·
(
orev · pk · (orev)−1

)
· orev · pi · w−1

=
(
pk−i · (orev)−1

)
· orev · pi · w−1

Since, orev is a suffix of p, this gives pk · w−1 = u · w−1 and the lemma holds.
Consider L is non periodic and the case where z = w ∈ ∆∗. Then there exists

some word s such that Shovel(L) = Prefix (s). Note that s is also Kernel(L).
In this case, push(L,w) = lcp({w, s}) and therefore push(L,w) is a prefix
of s. We obtain that offset(L,w) = push(L,w) and thus for all u ∈ L we
have push(L,w) · (offset(L,w)−1 · u · offset(L,w)) · rest(L,w) = push(L,w) ·
(push(L,w)−1 · u · push(L,w)) · push(L,w)−1 · w. Recall that push(L,w) is in
Shovel(L) and by the definition of Shovel we have that push(L,w) is a prefix of
u·push(L,w). Also, push(L,w) is a prefix of w. Thus push(L,w)·(push(L,w)−1 ·
u · push(L,w)) · push(L,w)−1 · w = u · w.

The case where z = w−1 and w ∈ ∆∗ is similar. There exists some word
s = Kernel(Lrev) such that Shovel(Lrev) = Prefix (s), and push(Lrev, wrev) =

35



lcp({w, s}) = offset(Lrev, wrev). Thus, for all u ∈ L we have

push(L,w−1) · (offset(L,w−1)−1 · u · offset(L,w−1)) · rest(L,w−1)

= (push(Lrev, wrev)rev)−1 ·
(
push(Lrev, wrev)rev · u · (push(Lrev, wrev)rev)−1

)
·
(
(push(Lrev, wrev)−1 · wrev)rev

)−1

=
(
u · (push(Lrev, wrev)rev)−1

)
· push(Lrev, wrev)rev · w−1

= u · w−1 �

C. Normalization

We prove here the Theorem 4.7, that we recall here:
Theorem 4.7 For an stw M let M ′ be the stw obtained with the method
described in section 4.4. Then, M ′ is equivalent to M and satisfies (E1) and
(E2).

This theorem is proven with the help of several auxiliary results.

Lemma C.1 For any reduced language L we have

1. ∀w ∈ Prefix (Kernel(L)) the language w−1 · L · w is reduced,
2. ∀w ∈ Suffix (Kernel(Lrev)) the language w · L · w−1 is reduced as well.

Proof We only prove 1 since 2 is a consequence of 1. If ε ∈ L then ε ∈ w−1 ·L·w
and the proposition is trivial. Otherwise, there exists two words u and v that
differ on the first letter. But in this case Kernel(L) is reduced to ε and the
proposition is also trivially true. �

Lemma C.2 offset(L, z) belongs to the set Prefix (Kernel(L))∪Suffix (Kernel(Lrev))

Proof We prove the lemma for z = w ∈ ∆∗, the other case being simi-
lar. We proceed by a case analysis depending on the class of L. If L is
trivial then offset(L, z) = ε. If L is periodic, then Shovel(L) = Kernel(L)∗ ·
Prefix (Kernel(L)). Therefore, push(L,w) is of the form Kernel(L)i · o where
i ≥ 0 and o is a prefix of Kernel(L). Therefore offset(L,w) = (Kernel(L)i · o)
mod Kernel(L) = o. Otherwise, L is not periodic and not trivial, push(L,w) =
lcp({w,Kernel(L)}) and therefore it is a prefix of Kernel(L). By the definition
of offset we have offset = push(L,w) and the Lemma holds. �

Lemma C.3 For every q ∈ Q, every z ∈ Offsets(q), and every t ∈ dom(q)

[[M ]]〈q,z〉(t) = z−1 · Left(q)−1 · [[M ]]q(t) · Right(q)−1 · z (C.1)

Proof Rules are built using the following algorithm.

1:zk := Right(pk) · uk · Right(p)−1 · z
2:for i := k, . . . , 1 do
3: u′i := rest(pi, zi)
4: p′i := 〈pi, offset(pi, zi)〉
5: zi−1 := Right(pi−1) · ui−1 · Left(pi) · push(pi, zi)
6:u′0 := z−1 · Left(p)−1 · z0
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We prove the lemma by induction on the structure of terms. For the base
case, we consider constants and therefore rules of the form δ′(〈q, z〉, a) = u and
Tq(a) = u. The algorithm just realizes the affectation1:

u′ = z−1 · Left(q)−1 · u · Right(q)−1 · z

Therefore [[M ]]〈q,z〉(a) = z−1 · Left(q)−1 · u · Right(q)−1 · z and the lemma holds.
Let us now consider a term t = f(t1, . . . , tk), a word z and a rule δ(q, f) =

u0 · q1 · · · qk · uk. Let us assume as our induction hypothesis that Equation (2)
holds for each subterm in t1, . . . , tk. We need to prove that:

u′0 · [[M ]]q′1(t1) · u′1 · · · [[M ]]q′k(tk) · u′k =

z−1 · Left(q)−1 · u0 · [[M ]]q1(t1) · · · [[M ]]qk(tk) · uk · Right(q)−1 · z

To apply our induction hypothesis, we need to verify the following offset(qi, zi)
belongs to the set Prefix (Kernel(Lqi))∪Suffix (Kernel(Lrev

qi )) and this is obtained
by Lemma C.2.

Fact push(qi, zi) · [[M ]]q′i(ti) · rest(qi, zi) = Left(qi)
−1 · [[M ]]qi(ti) ·Right(qi)

−1 ·zi

Proof By induction hypothesis, we develop [[M ]]q′i(ti) = offset(qi, zi)
−1·Left(qi)

−1·
[[M ]]qi(ti) · Right(qi)

−1 · offset(qi, zi). We observe that Left(qi)
−1 · [[M ]]qi(ti) ·

Right(qi)
−1 is a word of L◦qi , thus we conclude using Proposition 4.5. �

We prove the following invariant of the algorithm for every 1 ≤ i ≤ k:

zi−1 · [[M ]]q′i(ti) · u
′
i · · · [[M ]]q′k(tk) · u′k =

Right(qi−1) · ui−1 · [[M ]]qi(ti) · ui · · · [[M ]]qk(tk) · uk · Right(q)−1 · z (C.2)

We proceed by induction on i from k to 1. For the base case i = k we have:

zk−1 · [[M ]]q′k(tk) · u′k
= Right(qk−1) · uk−1 · Left(qk) · push(qk, zk) · [[M ]]q′k(tk) · rest(qk, zk)

= Right(qk−1) · uk−1 · Left(qk)·
Left(qk)−1 · [[M ]]qk(tk) · Right(qk)−1 · Right(qk) · uk · Right(q)−1 · z

= Right(qk−1) · uk−1 · [[M ]]qk(tk) · uk · Right(q)−1 · z

Thus the invariant (C.2) holds for the base case. Let us now consider it holds

1maybe make this case more clear in section Normalisation
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for some 1 ≤ i ≤ k. For i− 1 we have

zi−1 · [[M ]]q′i(ti) · u
′
i · · · [[M ]]q′k(tk) · u′k

= Right(qi−1) · ui−1 · Left(qi) · push(qi, zi) · [[M ]]q′i(ti) · rest(qi, zi)

· · · [[M ]]q′k(tk) · u′k
= Right(qi−1) · ui−1 · Left(qi) · Left(qi)

−1 · [[M ]]qi(ti) · Right(qi)
−1 · zi

· · · [[M ]]q′k(tk) · u′k
= Right(qi−1) · ui−1 · [[M ]]qi(ti) · Right(qi)

−1 · Right(qi) · ui
· · · [[M ]]qk(tk) · uk · Right(q)−1 · z

= Right(qi−1) · ui−1 · [[M ]]qi(ti) · ui · · · [[M ]]qk(tk) · uk · Right(q)−1 · z

This proves the invariant. Now, since u′0 = z−1 · Left(q)−1 · z0, we obtain that

u′0 · [[M ]]q′1 · u
′
1 · · · [[M ]]q′k · u

′
k =

z−1 · Left(q)−1 · u0 · [[M ]]q1(t1) · · · [[M ]]qk(tk) · uk · Right(q)−1 · z

�

Lemma C.4 (E1) is satisfied by M ′.

Proof To prove (E1), we need to prove that L〈q,z〉 is reduced. By previous
lemma, we have for every q ∈ Q, every z ∈ Offsets(q), and every t ∈ dom(q)

L〈q,z〉 = z−1 · Left(q)−1 · Lq · Right(q)−1 · z

Since z ∈ Offsets(q), then z = w ∈ Shovel(L◦q) or z = w−1 with w ∈
Shovel(L◦rev

q ). The languages Left(q)−1 · Lq · Right(q)−1 = L◦q are reduced.
Therefore using Proposition C.1, we obtain that (E1) is satisfied. �

Lemma C.5 Let L be a reduced language. For any w ∈ Prefix (Left(L · L′)) we
have w ∈ Prefix (L′), push(L,w) = w and rest(L,w) = ε.

Proof If w = ε then the lemma is trivial. Otherwise, we know that ε ∈ L
otherwise L would not be reduced. Hence, w is a common prefix of all words in L′.
Therefore, L ·w has also w as a common prefix and by definition w ∈ Shovel(L).
It follows that push(L,w) = w and rest(L,w) = ε. �

Lemma C.6 For any rule δ′(〈q, z〉, f) = u′0 · q′1 · u′1 · · ·u′k−1 · q′k · u′k of M ′, for
every 0 ≤ i ≤ k u′i ∈ ∆∗.

Proof We consider a rule δ′(〈q, z〉, f) = u′0 · q′1 · u′1 · · ·u′k−1 · q′k · u′k of M ′ and
w ∈ Suffix (Kernel(L◦rev

q )) ∪ Prefix (Kernel(L◦q)). We essentially have to show

that for all zi computed by the normalisation algorithm, if zi = w−1
i with

wi ∈ ∆∗, then ui = rest(L◦rev
qi , w

rev
i ) = ε.
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Let us consider Li defined by:

Li = z−1 · Left(q)−1 · u0 · Left(Lq1) · L◦q1 · Right(Lq1) · u1 · · ·ui−1 · Left(Lqi)

Observe that if wi is a suffix of Right(Li ·L◦qi) then wrev
i is a prefix of Left(L◦rev

qi ·
Lrev
i ). The language L◦rev

qi is reduced and by Lemma C.5, rest(Lrev
qi , w

rev
i ) = ε

and push(Lrev
qi , w

rev
i ) = wrev

i . So it suffices to prove that for every i, wi is a suffix
of Right(Li · L◦qi).

We proceed by induction on i from k to 1. For the base case, zk = w−1
k =

Right(qk) · uk ·Right(q)−1 · z. We have L〈q,z〉 = Lk ·L◦qk ·w
−1
k and according to

Lemma C.4, L〈q,z〉 is reduced. Therefore wk = Right(Lk · L◦qk).
For the induction case, we have by induction hypothesis that wi is a suf-

fix of Right(Li · L◦qi), and from Lemma C.5, wi is a suffix of Right(Li) and
push(Lrev

qi , w
rev
i ) = wrev

i . From the algorithm zi−1 = Right(qi−1) ·ui−1 ·Left(qi) ·
push(qi, zi). Hence, zi−1 = Right(qi−1) · ui−1 · Left(qi) · w−1

i . If zi−1 ∈ ∆∗

we are done. Otherwise zi−1 = w−1
i−1 with wi−1 ∈ ∆∗. Since wi is a suffix of

Right(Li) = Right(Li−1 · Right(qi−1) · ui−1 · Left(qi)), then zi−1 is a suffix of
Right(Li−1 · L◦qi−1). �

Lemma C.7 Given a reduced language L ⊆ ∆∗ and a word z ∈ G∆

lcp((offset(L, z)−1 · L · offset(L, z)) · rest(L, z)) = ε

Proof Let us consider the case where z = w ∈ ∆∗, the other case being
symmetric. Let us remark using Lemma C.1, that L′ = offset(L, z)−1 · L ·
offset(L, z) is reduced. If L′ does not contain ε then the Lemma is trivial. So let
us consider the case where ε ∈ L′.

We prove the lemma by contradiction and consider u 6= ε such that u =
lcp((offset(L,w)−1 · L · offset(L,w)) · rest(L,w)). Let v = push(L,w) · u. We
prove that v is a prefix of w. Indeed, since ε ∈ L′, u is a prefix of rest(L,w) =
push(L,w)−1 · w. Using Proposition 4.5, we have that v is a common prefix of
L · w. Therefore, v belongs to Shovel(L). This contradicts the fact that is the
maximum prefix of w that belongs to Shovel(L). �

Lemma C.8 (E2) is satisfied by M ′.

Proof According to Lemma C.4, each L〈q,z〉 is reduced. For the init rule, (E2)
is direct consequence of Lemma C.7.

Consider a rule δ′(f, q′) = u′0 · q1 · · · qk · u′k. We know from Lemma C.6 that
each u′i is either ε or a word in ∆∗. Moreover, according to line 3 of the algorithm,
for for each i > 0, u′i = rest(qi, zi). Therefore, by Lemma C.7, lcp(Lq′i · u

′
i) = ε.

Note that if two languages L and L′ are such that lcp(L) = lcp(L′) = ε then
lcp(L · L′) = ε. So, lcp(Lq′i · u

′
i · · ·Lq′k · u

′
k) = ε and (E2) is thus satisfied for

every rule. �

Lemma C.9 M is equivalent to M ′
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Proof We prove that for all t, u0 · [[M ]]q0(t) · u1 = u′0 · [[M ]]q′0(t) · u′1. To
do that, we first inspect the initial rule. Using Lemma C.3, we have, with
v = Right(q0) · u1:

u′0 · [[M ]]q′0(t) · u′1 = u0 · Left(q0) · push(q0, v)

· offset(q0, v)−1 · Left(q0)−1 · [[M ]]q0(t) · Right(q0)−1 · offset(q0, v)

· rest(q0, v)

= u0 · Left(q0) · Left(q0)−1 · [[M ]]q0(t) · Right(q0)−1 · v
(using Prop. 4.5)

= u0 · [[M ]]q0(t) · u1

�

D. Myhill-Nerode Theorem

We present here omitted proof of section 5
Lemma 5.5 For any transformation τ and any f ∈ npaths(dom(τ)), τ has at
most one decomposition for f .

Proof Take any two decompositions (u0, τ1, u1, . . . , τk, uk) and (u′0, τ
′
1, u
′
1, . . . , τ

′
k, u
′
k)

of τ for f . We first observe that dom(τi) = dom(τ ′i) for 1 ≤ i ≤ n by (D1).
Next, we show with an inductive argument that the corresponding components
of the two decomposition are equal.

Assume then, that for some 0 ≤ i ≤ k two conditions hold (IH): 1) uj = u′j
for 0 ≤ j < i and 2) τj = τ ′j for 0 < j < i. We first show that ui = u′i. Observe
that by (D2) for f(t1, . . . , tk) ∈ dom(τ)

u0 · τ1(t1) · . . . · τk(tk) · uk = u′0 · τ ′1(t1) · . . . · τ ′k(tk) · u′k,

and by IH we get

ui · τi(ti) · . . . · τk(tk) · uk = u′i · τ ′i(ti) · . . . · τ ′k(tk) · u′k.

Therefore ui is a prefix of u′i or vice versa. W.l.o.g. assume that ui is a prefix of
u′i i.e., u′i = ui · v, and hence for any f(t1, . . . , tk) ∈ dom(τ)

u′i · v · τi(ti) · . . . · τk(tk) · uk = u′i · τ ′i(ti) · . . . · τ ′k(tk) · u′k.

Consequently, v is a prefix common to ran(τi) · ui . . . ran(τk) · uk which by (C2)
may only be ε, and hence, ui = u′i. This also shows that for any f(t1, . . . , tk) ∈
dom(τ) we have

τi(ti) · . . . · τk(tk) · uk = τ ′i(ti) · . . . · τ ′k(tk) · u′k. (D.1)

Now, we fix some f(s1, . . . , sk) ∈ dom(τ) and assign

w = ui · τi+1(si+1) · . . . · τk(sk) · uk w′ = u′i · τ ′i+1(si+1) · . . . · τ ′k(sk) · u′k.
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By (D.1) w is a suffix of w′ or vice versa. W.l.o.g. we assume that w is a suffix
of w′ i.e., w′ = v · w. Now, for every ti ∈ dom(τi) = dom(τ ′i) we have

τi(ti) · w = τ ′i(t
′
i) · w′, and thus, τi(ti) = τ ′i(ti) · v.

By (C1) τi is reduced, and in particular, lcs(ran(τi)) = ε. Note that v is a suffix
common to all images of τi must be ε, and therefore, τi = τ ′i . �

Lemma 5.13 M/≡M is the minimal unique estw defining [[M ]].

Proof Let M/≡M = (Σ,∆, Q′, init ′, δ′) and init ′ = u′0 ·q′0 ·u′1. We take any estw
M ′′ = (Σ,∆, Q′′, init ′′, δ′′) that is equivalent to M and let init ′′ = u′′0 · q′′0 · u′′1 .

First, we show that M ′′ has at least as many states as M/≡M . For every
q′ ∈ Q′ we chose an arbitrary path pq′ such that δ′(q′0, pq′) = q′ (there is at
least one such path because we work with trimmed transducers) and we define
λ(q′) = δ′′(q′′0 , pq′), essentially the corresponding state of M ′′. We claim that λ is
injective i.e., λ(q′1) = λ(q′2) implies q′1 = q′2. Let q′′1 = λ(q′1) and q′′2 = λ(q′2). Note
that [[M ′′]]q′′1 = [[M ′′]]q′′2 , which by Lemma 5.12 gives us [[M ′]]q′1 = [[M ′]]q′2 . Recall
that q′1 and q′2 are collections of states of M and from the construction of M/≡M
we have that [[M ]]q1 = [[M ]]q2 for any q1 ∈ q′1 and any q2 ∈ q′2. Consequently,
q1 ≡M q2 for any q1 ∈ q′1 and any q2 ∈ q′2, which shows that q′1 = q′2.

Similarly, we use Lemma 5.12 to show that for every rule of M/≡M the
transducer M ′′ contains its exact copy (modulo state renaming λ). Therefore,
either M ′′ contains more states or rules than M/≡M M ′′ or M ′′ has the same
number of states, the same number of rules that are identical to those of M/≡M
(modulo state renaming λ). �

Lemma 5.12 Take two estwsM = (Σ,∆, Q, init , δ) andM ′ = (Σ,∆, Q′, init ′, δ′)
defining the same transformation τ = [[M ]] = [[M ′]] and let init = u0 · q0 · u1 and
init ′ = u′0 · q′0 ·u′1. Then, u0 = u′0 and u1 = u′1, and for every p ∈ paths(dom(T )),
we let q = δ(q0, p) and q′ = δ′(q′0, p), and we have

1. [[M ]]q = [[M ]]q′ ,

2. δ(q, f) is defined if and only if δ′(q′, f) is, for every f ∈ Σ, and

3. if δ(q, f) = u0 · q1 · u1 · . . . · qk · uk and δ′(q′, f) = u′0 · q′1 · u′1 · . . . · q′k · u′k,
then ui = u′i for 0 ≤ i ≤ k.

Proof First, note that for every t ∈ dom(τ) we have that

[[M ]](t) = u0 · [[M ]]q0(t) · u1 = u′0 · [[M ′]]q′0(t) · u′1 = [[M ′]](t).

Therefore, u0 is a prefix of u′0 or u′0 is a prefix of u0. W.l.o.g. we assume that u0 is
a prefix of u′0 i.e., u′0 = u0·v. Thus, we obtain u0·[[M ]]q0(t)·u1 = u0·v·[[M ′]]q′0(t)·u′1,
and [[M ]]q0(t) · u1 = v · [[M ′]]q′0(t) · u′1. Consequently, v is also a prefix of Lq0 · u1

which by (E2) implies that v = ε.
Also, we note that u1 is a suffix of u′1 or u′1 is a suffix of u′1. Again,

w.l.o.g. we assume that u1 is a suffix of u′1 i.e., u′1 = v · u1. We get that
u0 · [[M ]]q0(t) · u1 = u0 · [[M ′]]q′0(t) · v · u1 and [[M ]]q0(t) = [[M ′]]q′0(t) · v. This
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implies that v is a suffix of Lq0 but by (E1) we get that v must be an empty
word, and so u1 = u′1 and [[M ]]q0 = [[M ′]]q′0 .

Next, we prove the following inductive argument. If for a path p ∈ paths(dom(τ)),
q = δ(q0, p), and q′ = δ′(q′0, p) we have [[M ]]q = [[M ′]]q′ , then

1. δ(q, f) is defined if and only if δ′(q′, f) is, for every f ∈ Σ, and
2. if δ(q, f) = u0 · q1 · u1 · . . . · qk · uk and δ′(q′, f) = u′0 · q′1 · u′1 · . . . · q′k · u′k,

then ui = u′i for 0 ≤ i ≤ k and [[M ]]qi = [[M ′]]q′i for every 1 ≤ i ≤ k.

The first condition follows trivially from equality of the domains of [[M ]]q and
[[M ′]]q′ . We prove the second condition with induction over i: we assume that
uj = u′j and [[M ]]qj = [[M ′]]q′j for every 0 ≤ j < i ≤ k and show that ui = u′i and

then [[M ]]qi+1
= [[M ]]q′i+1

. The arguments we use are analogous to those used to
show equalities for the initial rules.

Since [[M ]]q = [[M ′]]q′ , for every t = f(t1, . . . , tk) ∈ dom([[M ]]q)

[[M ]]q(t) = u0 · [[M ]]q1(t1) · u1 · . . . · [[M ]]qk(tk) · uk
= u′0 · [[M ′]]q′1(t1) · u′1 · . . . · [[M ′]]q′k(tk) · u′k = [[M ′]]q′(t),

which by IH give us the following equality

ui · [[M ]]qi+1
(ti+1) · ui+1 · . . . · [[M ]]qk(tk) · uk

=u′i · [[M ′]]q′i+1
(ti+1) · u′i+1 · . . . · [[M ′]]q′k(tk) · u′k.

Because of this equality we have that ui is a prefix of u′i or u′i is a prefix of ui.
W.l.o.g. we assume that ui is a prefix of u′i i.e., u′i = ui · v. Then, v is also a
prefix of Lqi+1

· ui+1 · . . . · Lqk · uk and by (E2) v = ε. Thus, ui = u′i.
Now, we fix t = f(t1, . . . , tk) ∈ dom([[M ]]q) and let w = ui+1 · [[M ]]qi+2

(ti+2) ·
. . . · [[M ]]qk(tk) ·uk and w′ = u′i+1 · [[M ′]]q′i+2

(ti+2) · . . . · [[M ′]]q′k(tk) ·u′k. Note that

w is a suffix of w′ or w′ is a suffix of w. W.l.o.g. we assume that w is a suffix of
w′ i.e., w′ = v · w. We observe that for every t′i+1 ∈ (f, i+ 1)−1dom([[M ]]q) =
(f, i+ 1)−1dom([[M ′]]q′) we have

[[M ]]qi+1
(t′i+1) · w = [[M ′]]q′i+1

(t′i+1) · w′

and then
[[M ]]qi+1

(t′i+1) = [[M ′]]q′i+1
(t′i+1) · v,

which implies that v is a suffix of Lqi+1
(since (f, i+1)−1dom([[M ]]q) = dom([[M ]]qi+1

)).
By (E1) we have, however, that v = ε. Thus, [[M ]]qi+1

= [[M ′]]q′i+1
. �

Lemma 5.15 For any estw M , Can([[M ]]) = M/≡M .

Proof Let M/≡M = (Σ,∆, Q′, init ′, δ′) and init ′ = u′0 · q′0 · u′1. First, we note
that by Lemma 5.9 for any p1, p2 ∈ paths(dom([[M ]])) we have that p1 ≡[[M ]] p2

if and only if δ(q′0, p1) = δ(q′0, p2). Next, we define a mapping λ of the states
of Can([[M ]]) to the states M/≡M as λ([p][[M ]]) = δ(q′0, p). Clearly, λ is properly
defined and it is easy to see that λ is fact a bijection (a state renaming). By
Lemma 5.12 we get that both transducers are identical (modulo the state
renaming λ). �
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Theorem 5.17 Minimization of stws i.e., deciding whether for a given stw
and K ≥ 0 there exists an equivalent stw of size at most K, is NP-complete.

Proof We show NP-completeness of MINIMIZEstw by reduction from the fol-
lowing variant of satisfiability, which is known to be NP-complete [29].

Problem: SATONE-IN-THREE
Input: ϕ ∈ 3CNF, i.e. a conjunction of clauses, where each clause is
a disjunction of 3 literals (a literal is a variable or its negation).
Question: Does there exists a valuation satisfying ϕ and such that
in every clause of ϕ exactly one literal is true?

Take any 3CNF formula ϕ = c1 ∧ . . . ∧ ck over the set of Boolean variables
x1, . . . , xn, where cj = Lj,1 ∨ Lj,2 ∨ Lj,3 is a disjunction of exactly 3 literals for
j ∈ {1, . . . , k}. We assume that k ≥ 1 and that no two clauses are the same
(modulo reordering). The constructed stw Mϕ essentially takes on the input the
clauses of the formula ϕ and outputs a single character t. Additionally, the stw
Mϕ accepts (multiple copies) of the trivial clauses xi∨¬xi and also produces the
single character output t. To prevent the retraction of the single character to
the initial rule the transformation defined by the transducer also maps a simple
constant d to the empty word.

To make the semantics of the constructed transducer clear we use input
symbols that are very similar to the notations introduced above. In particular,
the ternary symbols c1, . . . , ck are used to represent clauses together with the
constants x1,¬x1, . . . , xn,¬xn (where ¬xi is a single constant). Each trivial
clause xi ∧ ¬xi is represented three times with the use of binary symbols ci,1,
ci,2, and ci,3. Formally, we use the input alphabet Σ = Σ(3) ∪Σ(2) ∪Σ(0), where

Σ(3) = {c1, . . . , ck}, Σ(2) = {c1,1, c1,2, c1,3, . . . , cn,1, cn,2, cn,3},

Σ(0) = {x1,¬x1, . . . , xn,¬xn} ∪ {d}.

The output alphabet contains exactly one symbol ∆ = {t}. First, we present
an example of the transformation that the constructed transducer defined. For
ϕ0 = (x1 ∨ ¬x2 ∨ x3) ∧ (x2 ∨ x4 ∨ ¬x3) the transformation τϕ0

= [[Mϕ0
]] is

τϕ0(c1(x1,¬x2, x3)) = t, τϕ0(c2(x2, x4,¬x3)) = t,

τϕ0(d) = ε, τϕ0(ci,`(xi,¬xi)) = t, for i ∈ {1, 2, 3, 4} and ` ∈ {1, 2, 3}.

The transducer Mϕ = (Σ,∆, Q, init , δ) is constructed as follows. The states of
Mϕ are

Q = {q0} ∪ {qx1 , . . . , qxn} ∪ {q¬x1 , . . . , q¬xn}.

Its initial rule is init = q0 and the transition function is defined as follows:

1. δ(q0, cj) = t·qLj,1 ·qLj,2 ·qLj,3 for every 1 ≤ j ≤ k with cj = Lj,1∨Lj,2∨Lj,3;

2. δ(q0, ci,`) = t · qpi · q¬pi for 1 ≤ i ≤ n and 1 ≤ ` ≤ 3;

3. δ(qxi , xi) = ε and δ(q¬xi ,¬xi) = ε for 1 ≤ i ≤ n;
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4. δ(q0, d) = ε.

The transducer Mϕ defines a transformation τϕ satisfying exactly the following
equations (and no other equation):

τϕ(cj(Lj,1, Lj,2, Lj,3)) = t, for j ∈ {1, . . . , k},
τϕ(ci,`(xi,¬xi)) = t, for i ∈ {1, . . . , n} and ` ∈ {1, 2, 3},
τϕ(d) = ε.

We observe that the size of Mϕ is 16k + 5k + 3. Essentially, the reduction relies
on the use of the trivial clauses xi ∨ ¬xi with three separate symbols ci,1, ci,2,
and ci,3 which allows a more compact representation of the transformation τϕ if
there exists a satisfying valuation. The main claim is

ϕ ∈ SATONE-IN-THREE ⇐⇒ (Mϕ, 14n+ 4k + 3) ∈ MINIMIZEstw.

For the only if part we take the valuation V : {x1, . . . , xn} → {true, false}
witnessing ϕ ∈ SATONE-IN-THREE and construct an stw MV obtained essentially
from Mϕ by pushing down the symbols t to the subtrees that correspond to the
literals satisfied by V . Formally, the transducer MV differs from Mϕ only on
the transition function:

1. δV (q0, cj) = qLj,1 · qLj,2 · qLj,3 for every j ∈ {1, . . . , k} with cj = Lj,1 ∨
Lj,2 ∨ Lj,3;

2. δV (q0, ci,`) = qxi · q¬xi for 1 ≤ i ≤ n and 1 ≤ ` ≤ 3;

3. δV (qxi , xi) = t and δV (q¬xi ,¬xi) = ε for 1 ≤ i ≤ n such that V (xi) =
true;

4. δV (qxi , xi) = ε and δV (q¬xi ,¬xi) = t for 1 ≤ i ≤ n such that V (xi) =
false;

5. δV (q0, d) = ε.

Mϕ and MV are equivalent because V is the witness of ϕ ∈ SATONE-IN-THREE. Also,
the size of MV is exactly 14n+ 4k + 3.

For the if part, take the stw M = (Σ,∆, QM , initM , δM ) that is equivalent
to Mϕ and whose size is at most 14n + 4k + 2. Let initM = w0 · q0 · w1, and
observe that both w0 and w1 are ε because [[Mϕ]](h) = ε. We observe that M
needs to have at least 1 + 2n states because it is the Myhill-Nerode index of the
domain dom([[Mϕ]]). Consequently, M needs to have at least

1. 1 initial rule of size 1,

2. k transition rules of arity 3 for the symbols cj (j ∈ {1, . . . , k}),
3. 3n transition rules of arity 2 for the symbols ci,` (i ∈ {1, . . . , n} and
` ∈ {1, 2, 3}),

4. n transition rules of arity 0 for the symbols xi (i ∈ {1, . . . , n}),
5. n transition rules of arity 0 for the symbols ¬xi (i ∈ {1, . . . , n}), and

6. 1 transition rules of arity 0 for the symbol d.
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By ignoring the sizes of possible output strings in the rules, the size of all rules
is at least 13n+ 4k + 3. Thus, there are at most n tokens (with symbol) t to
be distributed among the rules. We claim that the tokens are pushed down to
states that handle the variables and the way the tokens are assigned to particular
states yields a satisfying valuation.

We first show that indeed exactly n tokens must be distributed among the
rules. For i ∈ {1, . . . , n} and ` ∈ {1, 2, 3} we define qxi,` = δM (q0, ci,` · 1) and
q¬xi,` = δM (q0, ci,` · 2). Also, for every i ∈ {1, . . . , n} let Ri be the set of rules
δM (q0, ci,`), δM (qxi,`, xi), and δM (q¬xi,`,¬xi) over ` ∈ {1, 2, 3}. We observe
that for every i ∈ {1, . . . , n} the rules in Ri use at least one t. Furthermore,
for any `1, `2 ∈ {1, 2, 3} and any i1, i2 ∈ {1, . . . , n} such that i1 6= i2 we have
q`1,i1 6= q`2,i2 or otherwise the domain of M would be different from the domain
of τϕ. Therefore, for two different i1 6= i2 the sets of rules Ri1 and Ri2 are
disjoint, and consequently, at least n separate tokens t are used among the rules.

Since at least n tokens are used, the transducer M has exactly 2n+ 1 states
including the initial state q0, and in particular, qxi,`1 = qxi,`2 and q¬xi,`1 = q¬xi,`2
for any i ∈ {1, . . . , n} and ` ∈ {1, 2, 3} (or, again, the domain of M and τϕ would
be different). Consequently, from now on we drop ` from the subscript and we
write simply qxi and q¬xi . Similarly, we show that δM (q0, cj · `) = Li,` for every
j ∈ {1, . . . , k} and every ` ∈ {1, 2, 3} with cj = Lj,1 ∨ Lj,2 ∨ Lj,3.

We now show that the t tokens are attributed among the rules δM (qxi , xi)
and δM (q¬xi ,¬xi) only, and furthermore, we claim that for every 1 ≤ i ≤ n
exactly one t token is attributed to either δM (qxi , xi) or δM (q¬xi ,¬xi). To prove
this claim we capture the set of those i ∈ {1, . . . , n} such that neither δM (qxi , xi)
nor δM (q¬xi ,¬xi) use t:

R = {i | 1 ≤ i ≤ n, δM (qxi , xi) = ε, δM (q¬xi ,¬xi) = ε}.

We note that for any i 6∈ R because τϕ(ci,1(xi,¬xi)) = t, exactly one of the
rules for δM (qxi , xi) and δM (q¬xi ,¬xi) has one occurrence of t. That consumes
n − |R| tokens. On the other hand, for every i ∈ R and every ` ∈ {1, 2, 3}
because τϕ(ci,`(xi,¬xi)) = t, every rule δM (q0, ci,`) uses one t token. Together,
this totals to (n − |R|) + 3|R| = n + 2|R| tokens used. Therefore, R must be
empty or too many tokens would be used. This allows us to properly define the
following valuation VM :

VM (xi) =

{
true if δ(qxi , xi) = t,

false if δ(q¬xi ,¬xi) = t.

Naturally, VM satisfies ϕ because M is equivalent to Mϕ.
The membership of MINIMIZEstw to NP follows from the fact that testing the

equivalence of stws is known to be in PTIME [31]. Hence, a nondeterministic
Turing machine needs to guess an stw M ′ whose size is lower than min{|M |,K}
and then test the equivalence of M and M ′. �

E. Learning STWs

We give here the proof of Theorem 6.1, recalled below
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Theorem 6.1 Checking if there exists an stw consistent with a given sample is
NP-complete.

We prove this theorem in two phases: First, we show that the consistency
problem is in NP, and then, we show that it is in fact NP-hard.

Lemma E.1 CONSstw is in NP.

Proof To show the membership of CONSstw to NP we introduce the notion of
alignment trees. An alignment tree is a finite tree over the ranked alphabet
Γ =

⋃N
i=0 Γ(i), where Γ(i) = Σ(i) × (∆∗)i+1 and N is the maximum arity

of a symbol in Σ. An alignment tree α yields the corresponding example
Ex (α) = (In(α),Out(α)) with In and Out being defined as follows:

In(〈f, u0, . . . , u1〉(α1, . . . , αk)) = f(In(α1), . . . , In(αk))

Out(〈f, u0, . . . , u1〉(α1, . . . , αk)) = u0·Out(α1)·u1·Out(α2)·u2·. . .·uk−1·Out(αk)·uk.

Note that for a pair (t, w) there might exists an large number of alignment
trees that yield the given pair. The size of all such alignment tree is, however,
proportional to the sum of sizes of t and w.

Intuitively, an alignment tree is a trace of a run of an stw on the input
tree, and not surprising, we shall view an stw as a dta over Γ. A sufficient
condition for translating successfully an arbitrary dta A = (Γ, Q, q0, δ) over
Γ to an stw follows: (?) for every f ∈ Σ(k) and every q ∈ Q, δ is defined on
(q, 〈f, u0, . . . , uk〉) for at most one tuple (u0, . . . , uk). This condition allows a
relatively straightforward translation.

It is trivial to show that a sample S is consistent if and only if there exists an
dta A that satisfies (?) and such that for every pair (t, w) ∈ S the automaton A
recognizes at least one alignment tree yielding (t, w). Also, it is a folklore result
that for a set of trees T there exists a dta B capturing T i.e., T ⊆ [[B]], if and
only if there exist a dta B′ capturing T whose size is polynomial in sum of sizes
of trees of T .

Hence, we construct a nondeterministic Turing machine for testing CONSstw
that works as follows: (1) for every example in S it guesses an alignment tree
yielding the example, (2) guesses the definition of an dta over Γ, and (3) verifies
that the dta accepts all alignment trees constructed in step (1). �

Lemma E.2 CONSstws is NP-hard.

Proof To show NP-hardness we reduce the variant SATONE-IN-THREE of satisfiabily
known to be NP-complete [29]. Recall from the proof of Theorem 4 [19] that a
3CNF formula ϕ belongs to SATONE-IN-THREE if there exists a valuation that satisfies
exactly one literal in every clause of ϕ.

Now, we fix a 3CNF formula ϕ over the set of Boolean variables x1, . . . , xn,
where every clause cj = Lj,1 ∨ Lj,2 ∨ Lj,3 is a disjunction of exactly 3 literals
(j ∈ {1, . . . , k}). The constructed sample consists of examples of a transformation
that takes a clause of ϕ and returns a single character t.
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To make the representation of the clauses clear we shall use input symbols that
are similar to the notations above: we use an n-ary symbol c to represent a clause,
binary symbols x1, . . . , xn for variables, and two constants • and ◦. Furthermore,
xi(•, ◦) corresponds to the positive literal xi and xi(◦, •) corresponds to the
negative literal ¬xi while xi(◦, ◦) means that the variable xi is not used and
xi(•, •) corresponds to both the positive and the negative literals being used.
For instance, for the formula ϕ0 = (x1 ∨¬x2 ∨x3)∧ (x2 ∨x4 ∨¬x3) we construct
the sample Sϕ0 containing the following examples:

(c(x1(•, ◦), x2(◦, •), x3(•, ◦), x4(◦, ◦)), t), (c(x1(◦, ◦), x2(•, ◦), x3(◦, •), x4(•, ◦)), t),

(c(x1(•, •), x2(◦, ◦), x3(◦, ◦), x4(◦, ◦)), t), (c(x1(◦, ◦), x2(•, •), x3(◦, ◦), x4(◦, ◦)), t),

(c(x1(◦, ◦), x2(◦, ◦), x3(•, •), x4(◦, ◦)), t), (c(x1(◦, ◦), x2(◦, ◦), x3(◦, ◦), x4(•, •)), t),

(c(x1(◦, ◦), x2(◦, ◦), x3(◦, ◦), x4(◦, ◦)), ε).

Essentially, the first two examples encode the two clauses of ϕ0. The next four
examples encode the trivial clauses xi ∨ ¬xi, which ensure that every variable
has a proper valuation. The last example encode the empty false clause, which
ensures that the output t can originate from used literals only.

Formally, the input alphabet is Σ = {c(3), x
(2)
1 , . . . , x

(2)
n , •(0), ◦(0)} and the

output alphabet is ∆ = {t}. The sample Sϕ contains the following examples:

(1) (c(x1(◦, ◦), . . . , xn(◦, ◦)), ε)
(2) (c(x1(◦, ◦), . . . xi−1(◦, ◦), xi(•, •), xi+1(◦, ◦), . . . , xn(◦, ◦)), t) for i ∈ {1, . . . , n},
(3) (c(x1(`+j,1, `

−
j,1), . . . , xn(`+j,n, `

−
j,n)), t) for j ∈ {1, . . . ,m}, where `+j,i is • if

the clause cj uses xi and ◦ otherwise, and analogously, `−j,i is • if the clause
cj uses ¬xi and ◦ otherwise (with i ∈ {1, . . . , n}).

The main claim is

Sϕ ∈ CONSstw ⇐⇒ ϕ ∈ SATONE-IN-THREE.

For the only if part we take a valuation V : {x1, . . . , xn} → {true, false} that
witnesses ϕ ∈ SATONE-IN-THREE. We define a stw MV = (Σ,∆, Q, init , δ) with the
states Q = {qi, q〈i,+〉, q〈i,−〉 | i ∈ {1, . . . , n}} ∪ {q0}, the initial rule init = q0 and
the following transitions (with i ∈ {1, . . . , n}):

δ(q0, c) = q1 · · · · · qn, δ(qi, xi) = q〈i,+〉 · q〈i,−〉,
δ(q〈i,+〉, ◦) = ε, δ(q〈i,−〉, ◦) = ε,

δ(q〈i,+〉, •) =

{
t if V (xi) = true,

ε if V (xi) = false,
δ(q〈i,−〉, •) =

{
ε if V (xi) = true,

t if V (xi) = false.

It is easy to verify that MV is consistent with Sϕ: consistency with examples
(1) and (2) follows from the definition of MV and consistency with examples (3)
follows from V witnessing ϕ ∈ SATONE-IN-THREE.
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For the if part, we take an stwM consistent with Sϕ and define the following
collection of trees (with i ∈ {1, . . . , n}):

t+i = c(x1(◦, ◦), . . . , xi−1(◦, ◦), xi(•, ◦), xi+1(◦, ◦), . . . , xn(◦, ◦)),
t−i = c(x1(◦, ◦), . . . , xi−1(◦, ◦), xi(◦, •), xi+1(◦, ◦), . . . , xn(◦, ◦)).

Essentially, t+i corresponds to the clause xi and t−i corresponds to the clause
¬xi only. Since the domain of M is path-closed and contains the trees from
Sϕ, M also accepts the trees t+i and t−i . Because of the examples (1) and (2)
for every i ∈ {1, . . . , n} we have that either [[M ]](t+i ) = t and [[M ]](t−i ) = ε or
[[M ]](t+i ) = ε and [[M ]](t−i ) = t. Therefore, the following function is a properly
defined valuation of the variables:

VM (xi) =

{
true if [[M ]](t+i ) = t,

false if [[M ]](t−i ) = t.

Now, VM witnesses ϕ ∈ SATONE-IN-THREE because of the examples (3). �
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