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Abstract We propose a formal approach for the definition framework [1] is that models play the roles of abstract synta
and analysis of domain-specific modelling languagesL). trees, and model transformations play the rolsorules.
The approach uses standard model-driven engineering arti- One can reasonably anticipate that this democratisation of
facts for defining a language’s syntax (using metamodel$) anlanguage design will result in numerous languages. Formal
its operational semantics (using model transformationg). approaches can benefit language designers by helping them
give formal meanings to these artifacts by translating thento avoid or to detect errors. But, in order to have a chance of
to the Maude language: metamodels and models are mappéeing accepted, formal approaches have to follow an acdepte
to equational specifications, and model transformatiors ardesign process such as thee-based one mentioned above.
mapped to rewrite rules between such specifications, which  One domain where formal approaches can be beneficial
are also expressible in Maude thanks to Maude'’s reflectivas that of model-based, stepwise-refinement design presess
capabilities. These mappings provide us, on the one handn each step of such a process there areti¢mL £, andL,,
with abstract definitions of theDE concepts used for defin- each endowed with an operational semantics, and a model
ing DsML, which naturally capture their intended meanings; transformationp betweenZ; and £,. Here,£; is a higher-
and, on the other hand, with equivalent executable defirstio level "specification” language;- is a lower-level "imple-
which can be directly used by Maude for formal verification. mentation" one, ane is a refinement between these levels.
We also study a notion of operational semantics-preserA natural requirement for the refinemefto be "correct" is
ving model transformations, which are model transformmtio that for each instance df;, its image byg can perform "no
between twasmL that ensure that each execution of a trans-more" than the original - every execution of the copy must
formed instance is matched by an execution of the original'’correspond" to some execution of the original - because one
instance. We propose a semidecision procedure, implehentedoes not want executions in the implementation that are not
in Maude, for checking the semantics-preservation prgpert accounted for in the specification. When these conditioas ar
We also show how the procedure can be adapted for tracingiet we say that the model transformation/refinengeistse-
finite executions of the transformed instance back to matchmantics preservingAlso, one may wish teomputefor any
ing executions of the original one. The approachisillustta given execution of the copy, the executions of the originat t
on xSPEM, a language describing the execution of activitiesmatch it (resulting in so-called "execution traceabiljty"
constrained by time, precedence, and resource avaijabilit In this paper we propose a formal approach for defining
the syntax and operational semanticsdaML, for defining
and checking the semantical-preservation property of inode
transformations, and for defining and solving the execution
tracing problem stated above. Our approachis based, like ot
1 Introduction ers [2, 3], on the Maude language and verification toolset [4]
The proposed approach extends our work [5], where we
Domain-Specific Modelling LanguageasgML) are languages Cchose to represent metamodels( class diagrams possibly
dedicated to modelling specific application areas. Regentl enriched withocL constraints) and models as Maude equa-
the design obsML has become widely accessible to engi- tional specifications, such that model-to-metamodel cenfo
neers trained in Model-Driven Engineeringife). Designing ~ mance is automatically verifiable by equational reduction.
aDsML amounts to defining metamodefor the language’s
abstract syntax; then, the language’s operational secsdgti  Contributions. The semantics of Maude specifications, based
expressed usinmodel transformationever the metamodel. on algebras [6], provides models and metamodels with a for-
The analogy with the Structured Operational Semansics(  mal semantics. We use it to propose an abstract definition of
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model-to-metamodel conformance, as an “inclusion” of the  Hence, the procedure detects all semantics-preservation
semantics of the model into that of the metamodel. The aderrors. Another interest of our procedure lies in the faat th
vantage of this abstract definition is that it captures the in it encodes semantical preservation as an invariance gyoper
tuition that a model conforms to a metamodel if the modelenabling (in principle) the use of theorem-proving techieis)
"belongs to" the metamodel. The downside of the abstracfor invariants, also available in Maude [10,11], for intera
definition is that it cannot be used for checking conformancetively proving that observational simulation does hold.
that requires an "executable" definition, like the one fr&in [ Finally, we give a version of the procedure that solves
We reconcile the two definitions by proving them equivalent.the "execution traceability” problem: given an executicof
In the same spirit, we propose abstract definitions for mo-an instance of the image by the transformation, it returns an
del transformations (which we use for definingamL’s op-  encoding of all executions of the original that majche
erational semantics, as well as translations betwesmL ) illustrate this on a transformation fronsREMto hierarchical
as computabléunctions, or relations, between the semanticsextended state machinésmilar toumL state machines).
of their metamodelsThis captures the intuition that model
transformations are functions/relations between metatsod Organisation. The rest of the paper is organised as follows.
We prove that equivalent executable definitions for modelln Section 2 we briefly present the Maude language. In Sec-
transformations arequationally defined functions, respectiv- tion 3 we present our Maude encoding of essential notions re-
elly, rewrite relations, over Maude specifications of medel lated tobsmL: metamodel, model, conformance, operational
which are expressible in Maude thanks to its reflective gatur semantics, and model transformations, and illustrate threm
Again, the abstract definition captures the intuition (thata simple example based on automata. In Section 4 we illus-
model transformations are functions/relation betweenamet trate our approach on thesRemlanguage. In Section 5 we
models), whereas the executable definition can be used bgeal with semantics-preserving model transformations and
Maude for formal verification. That is, Maude can explore awith the execution-tracing problem. Section 6 presents re-
language’s executable operational semantics in order temo lated work and future work, and concludes. The Appendix
check temporal properties of instances of the languages.  contains proofs of some technical lemmas. The Maude code
We illustrate the approach by "defining" the language offor the examples in the paper is currently available online a
finite automata, which is our running example; and we demorht t p: //researchers.lille.inria.fr/~rusu/ SoSym
strate its feasability by defining a more involved example
adapted from [7]: sPEM, a language for activities constrained
by time, by resources, and by precedence relations. The ex-
amples suggest a natural and expressive language for expre€ Background

ing operational semantics and model transformations nmgixi e . : , .
graphical rewrite rules andcL [8] text for side-conditions. Maude specifications are written in Membership Equational

We also show to optimise operational-semantics rules witfy°9IC (MEL) Or Rewriting Logic RL), a superset afiEL. We
respect togiveninitial DSML instances. The idea is that all PTiefly present them here, mostly by means of examples. The
reachable instances from a given initial instance can On|})nterested reader can consult [4] and the refereces therein

differ from the initial instance with respect to a certairy-d
namic" part, hence, rules can be "pre-instantiated" onithe (
variant) "structural" part, yielding the same rewrite tela
from the initial instance, but with fewer/simpler matchéng
Next, we turn to semantics-preserving model transforma
tions. We formalise this notion by requiring that the trans-
formation induces awobservational simulatioetween the
observational transition systenfi@] generated by the opera-
tional semantics of the twosmL. The framework of observa-

tional transition systems and simulations is adequatedor-c ;4 sorts. Among the equational axioms, some particularly

paring executions obsML because what actually changes i hqrtant ones (associativity, commutativity, identity,) can

during executionis typically a small part of a model - the-'dy ¢ 5550ciated to some operators, saving to users the tafuble
namic" part, which may consist of a few attributes and “nks-writing an explicit equation. Aermis either a constant or a

Observational transition system allow for "observatioat” - iaple of a given sort, or the application of an operation t

the dynamic part only, and observational simulations atow e 50propriate number of terms of the appropriate sorts. A
compare executions only with respect to the dynamic part.  g5nq termis a term without variable€rder-sortedlogic

We then define a semidecision procedure and its implejs 5 supset of1eL allowing only for equations as axioms (ex-
mentation in Mauc_ie for automaticglly checking whetlher acluding memberships). Rewriting Logic is a supersedst.,
model transformation between two instances of BBML S \yhich also allows for (possibly conditionaBwrite rules
semantics-preserving in the above sense. Semidecisien her
means that if the simulation does not hold, then our proeedurExample 1Two sample order-sorted specifications are shown
will detect this; otherwise, the procedure may not terngnat in Figure 1, using (mostly, self-explanatory) Maude syntax

2.1 Syntax

A MEL specification consists of a set sbrts of a partial
‘order on sorts called theubsortingrelation; of a set obper-
ations which are functions between the sorts, each of which
has ararity, where constants afieary functions; and of a set
of axiomsdefining the operations. Axioms are (possibly con-
ditional) equationsbetween terms, anembershipsf terms



Embedding Domain-Specific Modelling Languages in MaudecBipations 3

fod ELEMENT is
sort Elenent .
ops ab: ->
endf m

El enent .

fnod ELEMENT- SET is
protecting ELEVENT .

sort Set .

subsort Element < Set .

op enpty : -> Set .

op _,_: Set Set -> Set [assoc commid: enpty] .
eq X Elenment, X Elenent = X El enent .

endf m

Figure 1 Specification€€L EMENT andELEMENT- SET.

frod ' ELEMENT- SET is
protecting ' ELEVENT .

sorts ' Set .

subsort 'Elenent < ’Set .

op 'enpty : nil -> Set [none] .

op '_,_: Set Set -> Set [assoc commid(’enpty.Set) ] .
none .

eq '_,_['X Element, 'X Elenent] = 'X El ement [none] .
endf m

Figure 2 Metarepresentation of the specificatiBhEMENT- SET.

even though the initial algebra is the most natural intégpre
tion of aMEL specification it is by no means the only one.
The initial semanticsof a MEL specification consists of

They encode the standard way of defining finite sets in Maudgg initial algebra. We denotéS) the initial semantics of a

Sets are constructed using teapt y constant, or by tak-
ing unions of sets, denoted by the operation in Figure 1,

specificationS. Theloose semanticef a MEL specification
S is the set of all its algebras. We use the initial semantics fo

which is declared to be associative, commutative, and te hav,,- specifications denoting models, and a subset of the loose

enpt y as its identity element. There is a s&ttenent for
elements, which consists of the constam@ndb. This sort
is defined in another specification, callEHEMENT, which
is protectively extendeldy the specificatiofEL EMENT- SET.

semantics foMEL specifications representing metamodels.

The initial semantics of a MaudeL specification is a
transition systemvhose states are equivalence classes of gro-
und terms, and whose transition relation interpretseheite

This means that the definitions in the protected specifioatio (o |ation of the RL specification (two classes], [t] are in
become available in the protecting one, and that their semang|ation if, is obtained front, by exactly one rewrite). We

tics is not altered (more explanations on semantics follow) - ghq)| yse this semantics to define the operational semaftics

Next, the subsorting relatioBl ement <Set says that  pgumi, and, more generally, that of model transformations.
every element is a set. Note that, with this definition, a set

would allow for multiple identical elements. To avoid this,
the equatiorX: El enent , X: El ement =X: El enent pre- 2.3 Reflectiveness
vents elements to occur in a set more than once. However, if

this equation is replaced byrawrite rule written in Maude
syntaxX: El enent , X: El enent =>X: El enent , the in-
tepretation is different: the equation is a part of the défini

of sets; by contrast, the rule can be part of the definitioheft by a functionf mod_i s_sorts_.

We shall use the fact that Maudereflective there exists a
Maude specification thametarepresentall Maude specifica-
tions, including itself. FOMEL specifications this is achieved
__endf mdefined

operational semantiosf a system whose states are multisets. at Maude'smeta-levelwhich takes 7_a?guments (correspond-

2.2 Semantics

The semantics of &EL specification is defined in terms of

algebras Defining an algebra for a specificatichconsists

ing to the number of underscores). For example, the speci-
fication ELEMENT- SET is obtained by applying the above
function to metarepresentations of the following paramsete

a name (hereELEMENT- SET); a set of imported specifi-
cations (hereELEMENT); a set of sorts (her&et ); a sub-
sorting relation (heregl ement < Set ), a set of operation

in interpreting each sort & as a set such that the subsorting declarations (herenpt y and_, ); a set of membership ax-

relation is interpreted by the subset relation. The opanati

ioms (here, there are none); and a set of equations (here, the

are then interpreted as functions between the correspgndirsole equatioiX: El enent , X: El enent =X: El enent).

sets (or by constants in the corresponding sets). It is redui

that the interpretation satisfies the specification’s asioie
shall denote byd | ¢ the satisfaction of a formula of a

specificationS by an algebrad of .S, with the usual meaning

- when interpreted i, the formulap evaluates tarue.

The initial algebra of a MEL specification is intuitively
the “most natural interpretation" of the specification; floe
specification depicted in Figure 1 it consists of setsasf
andbs. Formally, the initial algebra interprets each soats
the set of equivalence classes of ground tetimst can be
proved to be of sort using MEL’s deductive system [6] -

The resultingnetarepresentatioaf the Maude specifica-
tion ELEMENT- SET in Figure 1 is shown in Figure 2. Syn-
tactical differences with the original are minor: for inste,
allidentifiers areuoted and all operations are in prefix form.

More important differences lie in the fact that the metarep-
resentationsS of Maude specification$ areterms hence,
they can be processed just as any term within other Maude
specifications. We shall exploit this fact for defining opera
tional semantics and model transformations, using equatio
ally defined functions and/or rewrite rules over (metarepre
sentations of) Maude specifications denoting models camfor

where two terms are in the same equivalence class iff theyng to a given metamodel. The one formal property of reflec-
can be proved equal using that same deductive system. Theon that we shall use is that itisjective for distinct specifi-
functions interpreting the non-constant operations aem th cationsSs, So, their metarepresentatioss, Se are distinct.

implicitly defined by the specifications’s axioms. Note that
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InitState Automaton We first discuss the already existing alternatives [2,3].

trace:String One the one hand, [2] base their representation on Maude’'s
object oriented extension embodiedHull Maude(an exten-
sion of Maude, written in Maude itself). On the other handi, [3

eevg 1Ll represent metamodels as sorts, which are defined in Maude
State [f_r_'f] [o‘_)_f]l Transition using membership axioms, and specify the constraints that
dest in | Jabel:String the models conforming to a given metamodel must satisfy.
[1.1] [0 Our proposal is to represent both metamodels and models
Transition.alllnstances — forAll(t : Transition|t.label # 7”) as Maudspeciﬁcationsand to take advantage of the a|gebra-

Figure 3 Metamodel for finite automata without silent transitions. Paseéd semantics of Maude specifications to provide them with
formal meanings. By doing so, we avoid the complexity of

p— ~ Automaton e _expressing conformance by means of member_ships, or of hav-
p— e = falsa ing to_ rely on Maude’s object—quented extgnsmn. Thisrela
orid S ., ord dest  live simplicity allows us to z_:lv_o_ld a theoretical problem en-
countered by [2, 3]: their definitions for metamodels argejui
out in out in owned oYl in complex, with the consequence that their encodings of model
tl:Transition t2:Transition t3:Transitio to-metamodel conformance were not shown to be decidable.
Ll label =™ et Hence, we take a different approach - we represent meta-

models and models as order-sorted specifications. Clagses,

heritance, class attributes, and associations, are majgped
Figure 4 A non-conformant model of the metamodel in Fig 3. existing constructions of order-sorted specificationspee-
tively, to sorts, to subsorting relations, and to functitwes
tween sorts. Constructions present in models are also rdappe
to corresponding constructions of order-sorted specifinat
andocL invariants are mapped to equations, such that, over-
In this section we propose abstract definitions to the essery)| the specifications representing object diagramgamend
tial notions involved irosmL: metamodel, model, model-to-  confluent and terminatinfl.2]. This ensures the decidability
metamodel conformance, operational semantics, and modg}f model-to-metamodel conformance, and provides us with a

transformations. For conformance, operational semamtics  correct and reasonably efficient procedure for checking it.
model transformations we show the equivalence of abstract

definitions with executable ones, which can be used by Maude

for verification, and which rely on Maude’s reflectiveness. 3 1 Metamodels
We take the commonly shared view that meta-models are

essentiallyumL class diagrams possibly withcL constraints.

3 RepresentingdbsmL into Maude

A metamodel is a class diagram possibly enriched with
invariants. We consider a minimal notion of class diagrams,
consisting of a set of classes with attributes, of unidioeat
associations between classes, whose roles ftavé mul-
tiplicities, of a partial-order generalisation betweeasses,
and ofocL invariants that are syntactically and semantically
correct in the context of a given class diagram. We here as-
sume that these concepts are known without further defini-
tions. Other features of class diagrams (bidirectionab-ass
ciations, roles with multiplicities other thgf..x], composi-

o ) o tion and aggregation associations. . .) are not considared s
rc_)l_es of associations are labelled Wlth mgltphmﬂes,ﬁ:gn- they do not any expressiveness - they can be equivalently en-
S|t|(_)ns have one origin and one destination state.ddein- coded using the existing constructions anzi_ constraints,
variant below the diagram says that the automaton does not

have "silent transitions”: the labels of transitions areerapty.  pefinition 1 For a metamodeM .M, we denote bYIEL (MM)

Figure 4 shows a model of an automaton as an object dithe (order-sortedMEL specification defined as follows:
agram of the class diagram in Figure 3. It is composed of:

a self-loop labelled &” on the (active and initial) state,; a — standardmEL specifications of basic types (Boolean, ....)
transition from state, to states; labelled ""; and a self-loop occuring in the metamodel afgotectedn MEL (MM);
labelled ‘" on s;. It does not conform to the metamodel in
Figure 3 because it violates the metamodels. invariant.

Example 2ZThe metamodel in Figure 3 represents finite au-
tomata. The unidirectional association from the clastoma-
ton to the classStatedenotes thective state. ThdnitState
subclass ofStaterepresents initial states of automata. The
classAutomatonhas thetrace attribute - a string of char-
acters, obtained by concatenatiadpels of transitionsfired

by the automaton. Transitions are associatedrigin and
desthation states. The opposite roles, from the point of view
of states, are those ofcoming andutgoing transitions. The

1 For example, a bidirectional association between the etass
and cz, which in the association play the roles and 2, respec-
tively, can be encoded using two unidirectional assodiatimne
Model and metamodel representations in Mautlée give  from ¢; to c2, and the other one from, to ¢;, together withocL
semantics to (meta)models by representing them in Maude. invariants saying that the functioms, r» are inverse to each other.
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. . frod AUTOVATA- MM i
—each class: is translated into a sort. A sortSet{c} for [ T0lccting Bool String .

multiset$ of elements of sort, with constructorsmpty, . | beorting for inheri
. H - --- sorts for classes, subsorting for inheritance
and _z__|3 declared InMEL(_MM), _IOQether with two sorts Automaton Transition State Initial State .
declarations: of the subsorting relation< Set{c}, and  subsort InitialState < State .
of a.cons_tant, Ca||ed3..allflnstances, of sortSet{c}; _ --- onitted: definitions for sorts Set{Automaton}, etc
—the inheritance relation is represented by the subsorting

R . . . . --- constants for all instances of a given class
relation: \.Nhenevercl directly inherits fromCQ in MM op Automaton.al |l lnstances : -> Set{Autonaton} .
we have irMEL(MM) a subsort declaratior; < cg; op Transition. alllnstances : -> Set{Transition} .

op State.alllnstances : -> Set{State} .

—each_attributea o_f typet of a classc is translated to @ ; /nitialstate. al | Instances : -> Set{initial State} .
function declaratior: : ¢ — ¢; o
. . --- associations
— each association fromy, to ¢z, wherec, plays the roler, op active : Automaton -> Set{State} .
is translated into a functiony : ¢; — Set{cz2}; op gri g: panS?t? on -> get{g ate} .
. . . . t o t -> t { St at .
— if the metamodel contairscL invariants they are trans-  ob i neom ng - State - > Set | {State} on} .

P
lated to equations, based on the translation defined in [12}p outgoing : State -> Set{Transition} .

We now describe the translation [12] otL to MEL and .7 Ficc DS ton > Stri ng .

explain why it generates confluent and terminating equation op Iabel : Transition -> String .
— basic types (Booleans, integers, strings, . ..) and the oper-- OCL invariant o
. forAll-1: Set{Transition} -> Bool .
ations on them, as well as sets of such types, are alreaofig forAll-1(empty) = true .
defined in Maude, so there is no need to redefine them; eg forAll-1(t: Transition, S:Set{Transition}) =
. . . . . . (label (t) =/="") and-then forAl-1(S: Set{Transition}

— navigation is made available by the function declarations
denoting attributes and links; for navigating from instasic eqd; orAll-1(Transition.alllnstances) = true .
of a classc to attributesa of type ¢ of ¢, the function enarm
a : ¢ — t shall be used, and similarly for the navigation gig,re 5 L specification of the metamodel in Fig. 3.
from instances to other instances via associations/roles;

— quantifiersforall, existg and iteratorsgelect, collegtare
expressed using equationally defined recursive functionsRegarding confluence, it is ensured by the numbering of the
The only difficulty is that Maude functions do not allow select, forall, ...recursive functions, which avoids critical
for functions as arguments, whereasL does allow this.  pairs (and also by the fact that, in the two equations per-func
The solution is then to instantiate the iterators for the ac-ion, one takes the argumesmnpty and the other one, some-
tual (finitely many) expressions over which they iterate. thing nonempty). And termination is ensured by the fact that
For example, an expression of the formselect (z: T|E;), allrecursive calls are made on structurally smaller argusie
whereFE; is a thei,;, OCL expression occuring in thecL
invariants of metamodel (according to an arbitrary order)
is defined by a functiorelect;, using the equations

Example 3For the metamodel shown in Figure 3, the result
of the translation is for the most part shown in Figure 5. ®the
"implicit" ocL invariants (not shown in the figure) encode the
selecty (empty) = empty 1..1 multiplicity constraints of some of the associatioles
) as well as the constraint that the unidirectional assduias
selecti(s, §) = (if Ei(s) then s else empty),select;(55) encoding the bidirectional ones are inverse to each other.

Note the presence of the indéin theselect it indicates ]
the fact that it is meant for iterating over expression For a metamodeM M, we define a subset of the algebras of

This is also useful for ensuring confluence (see below) MEL(MM), which shall constitute by definition the meta-
Similarly, an expression of the form forAli(z : T|E;) model's semantics. The idea is that models conforming to

is translated to a functiofvrall;, using the equations MM shall bijectively match algebras in the given set.

Definition 2 For theMEL specificatiomeL (M.M) of a meta-
model MM, we denote byMEL (M M)] the smallest set of
forAll; (s,8)=(if E;j(s) then true else false) AforAll;(S) algebras oMEL(M.M) containing all algebrasi such that:

Similar equations define the other quantifer and iterators. 1. A interprets the specifications imported WeL (M M)

Finally, a universally-quantified invariant of the form as their respective initial algebras;

2. A interprets each proper sortof MEL(M.M) (meaning
thatc is notimported irMEL (M M) as a finite set(c);

forAll; (empty) = true

c.alllnstances — forAll(xz : T|E;)

is encoded by an equation of the form 3. for any paircy, c; of proper sorts ofMEL(MM) that
are in different connected components with respect to the
forAll;(c.alllnstances) = true subsorting relation oMEL (MM), A(cy) N A(cz) = 0;

4. A interprets all sorts of the fornfet{c} as P;(A(c)),
that is, the set of finite parts of(c);
2 From here on we shall refer to multisets simply as sets. 5. A interprets all the constants. alllnstances as A(c).

and similarly for existentially-quantified invariants.
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f mod AUTOVATON- MODEL i s

Definition 3 (metamodel semanticsThe semantics of a meta- ¢x( engi ng Aut omat a- WM .

modelMM is the set of algebrafveL (MM)].

- constants denoting objects

op a : -> Automaton .

opsO : -> InitialState .
3.2 Models op sl : -> State .

ops t1t2t3 : -> Transition .
A model M is essentially an object diagram of some meta---- equations denoting attribute val ues
model (i.e., class diagrarayt\M. Remember that an object £ };g‘gfgf‘)l) T
diagram isof a given class diagram if all objects have classeseq I abel (t2) = "

| abel (t3) = "c"

that belong to the class diagram; all atributes of an object a ©¢

present in the object’s class, and the value of the attrébute- --

have the same types as (or have subtypes of) the types dgg
clared in the class; and all links between objects instentia eq
an existing association between the two object’s classes |§g

equations denoting |inks
active(a) = s0 .

the class diagram. We assume that these concepts are knowq. ori g(t 3)

Definition 4 For a modelM of a metamodeM M, we de-
note byMEL paq(M) the (order-sortedMEL specification
constructed as follows:

—theMEL translation of the metamodghl M is imported;

— each instance of classc becomes a declaration : — ¢
of a constanb of sortc;

— each attribute: of an objecb having valuey is translated
to an equatioru(o) = v;

—for all classes;, the constant.alllnstances is equated to
the set of all constants of sartleclared iInNMEL yq a4 (M).

A few explanations for this translation: (1) tirstanceof a

class becomeonstantof the sort denoting the class, whose

declaration is imported fromeL (M.M); (2) attributes val-
uesbecomeequationswhich participate in the definition of
thefunction denoting the attributevhose declaration is also
imported fromMEL (MM); (3) each set of links of an associ-
ation translates to an equation that definedtinetion denot-
ing a role, whose declaration is imported fromeL (MM).
Moreover, for technical reasons we let BIEL pq (M)

share a unique identifier. This is to avoid two otherwise iden

tical specifications be differentiated by their identifietyo

Example 4For the modelM from Figure 4 and the meta-
modelM M from Figure 3MEL a1 (M) is depicted in Fig-

ure 6. Note that the specification of the model imports tha

of the metodel inextendingmode éxt endi ng keyword).
Like in the case oprotectingimports, this makes all defini-

tions from the imported specification become available é th
importing one, but now, their semantics may be changed, e.g
by adding constants to sorts and equations between coemstanf.

orig(tl) = sO .
dest(t1) = sO .
orig(t2) = s0 .
dest(t2) = s1 .
=sl.
eq dest(t3) = sl .
eq in(s0) =1t1 .
eq out(s0) =1t1, t2 .
eq in(sl) =1t1, t3.
eq out(sl) =13 .
- equations characrerising all instances

- for the declared cl asses

Aut onat on. al I I nstances = a .
State.alllnstances = s1, s2 .
Initial State.alllnstances = sl .
t2,

eq
eq
€q
eq Transition.alllnstances = t1,
endf m

t3 .

Figure 6 MEL specification representing the model from Figure 4.

capturing the intuition that a moddHl conforms to a meta-
modelM M if the modelM belongs to the metamod#if M:

Definition 6 (conformance, abstract version)A model M
conforms to a metamodél M, denoted byM : MM, if
(MEL Aqpq (M) € [MEL(MM)].

Note that the above definition also implies that has meta-
model MM (otherwise (MEL o (M)) is not defined).
However, the abstract Definition 6 cannot be used for the
automatic machine-checking of conformance, because it is a
semantical definition, whereas computation requires gynta
We now recall our executable definition of conformance

t . .
from [5] and show that it is equivalent to the above abstract

one. For a modeM of metamode/M M, the equational rep-
resentation of the conjunction of aicL invariants ofM M,
which we shall denote bpCLyg (MM), is automatically
valuated iMEL a1 (M). This is done by equational reduc-
ion, thanks to the ground confluence and termination of the

We now define the semantics of a model as the initial al-equations denotingcL invariants [12]. Then, conformance

gebra of its correspondingeL specification:

Definition 5 (model semantics)The semantics of a model
M of metamodeM M is the initial algebralMEL a4 (M))).

3.3 Conformance

holds iff the canonical form of the conjuncti@TLyg (MM)

in MEL paq (M) s true. Since for ground confluent and ter-
minating (order-sortedyEL specifications, the initial algebra

is the algebra of canonical forms of terms reduced by equa-
tions [4], we obtain that our executable definition for canfo
mance from [5] amounts to the following one:

Based on the abstract Definitions 3 and 5 for the semanticBefinition 7 (conformance, executable version) modelM
of metamodels and models, respectively, we obtain the folconforms to a metamodgl M, denoted byM :: MM, if
lowing rather natural and abstract definition for conforegn  (MEL y( (M) E (OCLye (MM) = true).
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. f rod Model s_ AUTOVATA- MW i s
In order to show the equivalence of our abstract and opera:-._" cdefined Maude nodul e for using refl ection

tional definitions of conformance we need the following lem- extendi ng META- LEVEL .
ma, which says that the semantics of a metamodel is equa_l t0. etamodel for automata
the set of semantics of models that executably-conform to it protecting AUTOVATA- MM .

definitions of sorts netarepresenting automata nodel s

Lemma 1 MEL(MM )] ={(MEL ppps (M)) | M :: MM }. sort  Model s AUTOVATA- MM .

The main result about conformance is that our abstract Defiz-- definition of the sort Mdel s_AUTOVATA- MV
--- using a conditional nenbership

nition 6 and the executable Definition 7 from [5] coincide: --- Fvbdule is a predefined sort from Meta- Modul e

- metarepresenting Maude MEL specifications
Proposition 1 M : MM if and only if M :: MM.
var X : FMdule .

o . . cnb X : Mbdel s_AUTOVATA- MM
Proof by Definition 7, M : MM if and only if if conformance-check(X, ' AUTOVATA-M) = true .
- conformance-check is the inplenentation of
- confornmance by equational reduction from][5]

(MEL pa (M) € [MEL(MM)] endf m
Figure 7 MEL specificatiorivbdel s_ AUTOVATA- MM

By Lemma 1,
_ . Hence, in Definition 8, semanticpMeL (MM )]) can be re-
MEL(MM)] = {(MEL M
[[ ( =1 rp(M)| MM} placed with syntax{MEeL p( a1 (M) |IM :: MM}, i.e., with
Hence M : MM if and only if Maude specifications). This is not enough: computations in

Maude are either functions or rewrite rules, and both requir

sortsto be defined upon. Hence, our second lemma constructs
(MELpm (M) E{IMEL paa (M) M 22 MM} a Maude specification that defines a sort that, when intepprete
properly, is inhabited by metarepresentations of Maude-spe

which is equivalentto\f :: MM. = ifications of models that conform to a given metamédel

Lemma 3 For each metamodel1. M, there exists MEL spec-
3.4 Operational Semantics: Three Equivalent Definitions ification denoted bybdel s v ¢, Where a sortModels g
is defined, whose interpretation in the algeljkéodel s )

The operational semantics oftesmL is, intuitively, a func- s in bijection with the sefMEL A1 (M) |M = MM ]}.
tion that maps models in thesML to "next" models. Based

on Definition 3 (semantics of metamodels) we propose theExample 5A specification of the fornvbdel s (¢ is shown
following abstract definition for operational semantics. in Fig. 7 (AUTOVATA- MMis the specification in Figure 5).

Definition 8 (operational semantics, abstract versionYhe ] o ) ] )
operational semantics of asML of metamodeMM is any ~ Our first executable definition considers the sorts defined in

recursive functio” : [MEL(MM)] — Py ([MEL(MM)]). themeL specificatiorMbdel s v 0f Lemma 3 and so-called
"protective extensions" of this specification. Remembat th
Here,P;(S) denotes the set of finite subsets®fThanksto  a protective extension of a specificatiSnby a specification
Definition 6 of conformance, we can identify a metamodel S> does not change the (initial) semantics 8f: it uses the
MM with the st of models\ conforming to it. Hence, Def-  sorts and operations defined$h without altering them.
inition 8 captures the intuition that, during execution, adel
nondeterministically "chooses" a successor from a finibs{p Definition 9 (operational semantics, executable version 1)
sibly empty) set of models; and that this set is computable. The operational semantics oftesmL of metamodeM M is
However, Definition 8 is not executable: one cannot com-any functionf" : Modelspip — Set{Modelsim} €qua-
pute with Maude over algebras (semantics) of Maude specitionally defined in some protective extensioVofiel s v,
fications; such computations require syntax to operate on. and interpreted in the initial semantics of the extension.
The available syntax is that &flaude specificationde-
noting models conforming to a given meta-model. Hence, in
order to obtain executable versions of operational semsnti
we shall define Maude computations over Maude specifica
tions. This is possible in Maude thanks to its reflective ratu
We shall need the two following lemmas. The first one
makes the first step from semantics to syntax: it establishes® Note the analogy with [3], where metamodels are encoded as
a bijection between a metamodel’s semantics and the set @rts and models are encoded as terms of those sorts. The diff

Maude specifications of models conforming to the metamodegnce is that [3] perform their encoding directly in Maudeit "by
hand", whereas, in our case, Maude’s reflection mechanigo: au

Lemma 2 There is a bijection between the §&tEL pq 11 (M)|  matically reflects models as terms/metamodels-as-sarntsfdased

M 2 MM} and the metamodel’s semantfeseL (MM)]. on our encoding of models/metamodels as Maude specifisation

Proposition 2 Definitions 8 and 9 are equivalent.

Proof The bijection between the semantjeseL (M.M)] of
a bsML’s metamodel and the s€MEL (M) | M =
MM} (cf. Lemma 2) ensures that we have the following
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ctive

equivalent definition to Definition 8: the operational seman — v Automaton S—
tics of aDsML of metamodelM M is a recursive function p——

from {MEL p( (M) | M :: MM} t0 P ({MEL A (M) | orig dest
M MM]}). Then, using the bijection from Lemma 3, out -

and a standard encoding of finite sets in Maude such as that W:Transition

shown in Figure 1, we obtain yet another equivalent definitio label = L

to Definition 8, as recursive functions frododelspqaq tO

Set{Modelsr}. Next, a theorem by Bergstra and Tucker :/>

[13] says that recursive functions on a given domain/codoma St v Automaton act St
are exactly those functions that can be equationally defined wace=T + L

on algebraic specifications of the domain and codomain, by orig dest
means of confluent, terminating equations. The equatians ar out -

in general, written in protective extensions of the speific W:Transition

tion Model s ,a¢ and interpreted in their initial algebrasl label = L

This definition is already an executable one, in the senge thd '9ure 8 Executing automata: graphical rule.

Maude can compute results of the equationally-defined semd auTOWTA- EXECUTI ON i s

mantics. However, in order to use Maude’s automatic veri---- protective extension : the initial semantics
. . . . --- of Mddel s_AUTOVATA-MM is not nodified
fication tools (namely, state-space exploration, an examspl ot ecting Mdel s AUTOMATA- MV .

given below) it is better to equivalently represent suchaem _
- rule for executing autonata

tics usingrewrite rulesof Rewriting-Logic specifications. o
(eq 'active[Y:Ternf = X Term[none] .)
it i i i (eq "orig[WTernf = X Term[none] .)
Definition 10 (operational semantics, executable versior) 2 (6q dest[WTern] = Zz Term[none] .)

The operational semantics oftssML of metamodeM M is (eq 'l abel [W Terni
the rewrite relation over the sot/odelsIn MM, of somerL (a4 "tracel¥:Tern
protective extension of theeL specificationvbdel s a4, (eq 'active[Y:Tern] = Z: Term[none] .)
i H o ; i (eq "orig[WTerni X: Term [none] .)
and interpreted in the initial semantics of the extension. (eq ' dest[W Ter n] Z Term [none] )
(eq 'l abel [W Ternj L: Term [none] .)

Proposition 3 Definitions 9 and 10 are equivalent. (eq ’trace[Y: Ternj "+ [L:Term T:Terni [none] )
endm

Proof The equivalence holds thanks to the following obser-

vations. On the one hand, for any sérand equationally de-  Figure 9 Executing automata: Maude rewrite rule.

fined functionF' : S — Set{S}, and any two terms,, ¢, of

sortS, t; € F(tz) reduces tdrue if and only {¢, } rewrites  » 5.t ve[ Y: Terni = X: Termto’ active[Y: Terni

to {to} by using the rewrite rulgz} = {y} if y,z := F(2), = 7: Ter m Operator names from the meta-model specifica-
where variables: andy have sort5, andz has sortSet{S};  tjon are quoted, and variables are of sbet m this is due to
thatis, one can always encode the computation of such equgye fact that we are using Maude’s reflection (allowed by the
tionally defined functions by using rewrite relatién®n the importation of theVETA- LEVEL Maude specification). The
other hand, the transition relation over the sdedels (¢ Of attribute value that changes'i¢ r ace[ Y: Ter ni , whose

a rewriting-logic specification containifgdel sy iS @ pext-state value is the concatenation of the ldbahd trace
computable function fromModels paq to Set{ Modelspam}. T expressed by reflection in Maude by means of the equation
= "trace[Y: Term] ="' _+ [L: Term T:Tern.

Example 6We illustrate below the executable Definition 10 We can use now the Maude specification shown,m F|g-.
ure 9 to execute, e.g., the automaton whose model’s speci-

on our specifications on automata. Figure 8 depicts automatfa

T " . ication in Maude is shown in Figure 6 and to verify some
execution: if an automatol has a transition?” with label simole temporal properties for it. For example. the followi
L whose origin isX and destination i, and the currently P P brop : Ple, oo/

active state isX, then the active state becom&s and the command asks Maude whether an executpnﬂofthe a'\Htomaton
X ; exist such that the trace of the automaton is "aaabb":
label L is concatenated to the automaton'’s trate

The corresponding Maude rewrite rule is shown in Fig-search[ 1] upMdul e(’ AUTOVATON- MODEL =>* X
ure 9. It closely matches the graphical rule: the links andsuch that getTrace(X) = '"aaabb".String.
attribute values.are _denoted by equatlons;_the rule cha_mges Maude instantly responds positively,
the set of equations in order to change the links and at&ibut
values. Here, the link that changes is tietive link, from

L: Term [none] .)
T: Term [none] .)

and provides us upon
request with the shortest path leading to the solution.

4 More precisely, the rewrite ruléz} = {y} if v,z = F() Extensions.The abstract Definition 8 of operational seman-
will rewrite at the top any ternft, } to aterm{t» }, whenever=(t;) ~ticS may be extended to strictly more expresseaursive re-
can bematchecby some set containing. Here, we exploit the so-  lationsR : [MEL(MM)]x [MEL(MM)] — Bool. Such re-
calledmatching conditio4]: if y, z := F (=) of the rewrite rule. lations may lead to non-computable successor functioms (th
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ctive active
X:State Y:Automaton :> Y:Automaton Z:State orig . dest
X:State Z:State
if X;State # Z : State Origx\(iate os
des] orig ;
Figure 10 Graphical rule for arbitrary change of active state. O;TTransmon T,:Translir:ion
label = L label =""
partial functionF' such thatR(z, F(z)) = true for all inputs :>
x whereF' is defined, is in general only recursively enumer-
able). However, it is interesting to consider such semarfiic out [T:Transitior] in
theoretical reasons (can they also be represented in Maude? orig label =L dest
and also for practical reasons: as we shall see, such medatio XiState | |State |
naturally correspond tosmL for modellingopensystems. s |Y:State | des
To represent such transition relations in Maude, we use W g -
the specificatiorMbdel s ¢ from Lemma 3 and the sort TTransition T-Transition
Models paq defined therein. Using the same reasoning as in label = L label ="

the proof of Proposition 2 we obtain that the set of recur-
sive relationsR : [MEL(MM)] x [MEL(MM)] — Bool
are in bijection with the set of equationally defined relasio
R : Models pyaq Models pqpqx — Bool, written in some pro- 3.5 Model Transformations
tective extension of the specificativbdel s (¢, and inter-
preted in the initial semantics of the extension. Now, these  The operational semanticspéML as defined in the previous
lations trivially coincide with the rewrite relations ofweite section is just a particular case of@andogenousodel trans-
rules of the form(f) {z} = {y} if R(z,y) = true, withz  formation, i.e., a transformation where the source ancetarg
andy of sortModels p a1, interpreted in some rewriting-logic - metamodels are the same. We naturally extend the abstract
protective extension of the specificatiddvdel s,1q and  Definition 8 to model transformations between two different
interpreted in the initial semantics of the extension. More metamodelsMM; and MM, as functions with domain
over, the rewrite relations of rules are recursive (i.,egthier  [meL (MM )] and co-domaifP; ([MEL (MM,])). We also
arule can lead from one given term to another given one isxtend the executable Definitions 9, 10 to model transforma-
decidable). Hence, we obtain an equivalent Maude charactetions that rewrite terms of soffodelsprq, to terms of sort
isation of operational semantics that are recursive ilati  Set{ Modelsr(nq, } defined by reflection as in Section 3.4.
over [MEL(MM)], as rewrite relations oveklodels pp,
definable in someL protective extension of the specification Example 8/Me present a simple model transformation that
Model s, @and interpreted in its initial semantics. implements the operation efimination of silent transitions
Finally, note that the rewrite rulg) encoding the relation between the meta-modelstM; and MM, of automata
R has the free variablg in both its right-hand side and con- resp. ofautomata without silent transitionslepicted in Fig-
dition. The practical interest is that the free variapteay be ~ ure 3 (without, respectively with, thecL invariant). This
interpreted asnput from anenvironmentHence, transition ~ also serves as illustration of conditional rules havirega-
relations na[ura”y Correspond twsmL for mode”ing open tive patternsas conditions - patterns that must not match in
systems, which receive inputs from an unknown environment@rder for the rule to apply - and of their encoding in Maude.
However, to "execute” such a rule from a term matched '€ transformation is expressed using two rules, one of
by x, a rewrite engine must "choose" a term fpsuch that which is shown in I_:|gure 11. Thg_ sollq-lme pattern in the
R(x,y) evaluates tdrue. This is not possibly in general as left-hand side consists of a tran3|t|th|th_a label L '_[hat
it would require constraint-solving orver arbitrary domsi &Y Or may not be empty, followed by a silent transitibh

Such rules can be executed usiregrowingin some cases [14]. whose label is the. gmpty string. The origin and dest?nation
states of the transitions are also shown. The dotted-lite pa

tern is anegative patternthe rulecannotbe applied if that

Example 7Assume that in a automata the user can arbitrarpattern maches - essentially, if there is already a tramsiti
ily change the active state to some other state. The rule if" labelled L from the origin of " to the destination of”.
Figure 10 decribes this: the previous active state Wasnd  (Without this negative pattern, the rule could always be ap-
the new active state is chosen to be some statprovided  plied, which leads to the undesired effect of nontermimgtio
X # Z, which is a condition to the rule. In Maude this gives The effect of the rule consists in adding a transition such.as

A second rule, not shown here, erases the silent transi-
crl (eq 'active[Y:Termi = X:Term[none] .) tions fromthe model when the first rule cannot be applied.
=> (eq 'active[Y: Ternj Z:Term[none] .) The Maude rewrite rule shown in Figure 12 quite natu-
if XxTerm=/= Z: Term. rally corresponds to the graphical rule from Figure 11. Note

Figure 11 Bypassing internal actions: graphical rule.
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cri M=>M if «enumeration
E(EQ "out { %_(1 Ffﬂ = T|>-(i $er m { none% . ; «enumeration TimeState
eq 'orig[T: Ter = X: Term [none] . ivi -
(eq "dest[T: Terni = Y:Term[none] .) ActivityState undefined
(eq 'orig[T :Ternl = Y:Term[none] .) notStarted tooEarly
(eq 'dest[T :Terni = Z Term[none] .) inProgress ok
(eq ’in[Z Terni = TL’:Term [none] .) Resource finished tooLate
(eq 'label [T: Tern] = L:Term[none] .) available: Bool
(eq 'label [T :Ternj = '"".String [none] .) B
ES: Equati onSet) := getEqs(M 0- Proce_ss
/\ negativePattern: EquationSet := globalTime:Int
((eq 'label["hatT:Variable] = L:Term][none] .) o 0.% | worksequences
(eq 'orig[’ hatT:Variable] = X Term[none] .) 0..* yactivities - q
(eq 'dest[’hatT:Variable] = Z: Term[none] .)) Activity WorkSequence
/\ noMat ch(negativePattern: Equati onSet, ES: EquationSet) N
/\ hatT: Term:= newTransition(’ hatT: Variable) /\ tmin:int linkToPrececessor
M := setEquations(addDecl (M hatT:Term ’Transition), tmax:int | 9..* startedToStart ——
(eq 'out[X:Termj ='_*, _[hatT: Term TL: Termi [none] .) activityState:ActivityState  « finishedToStart
(eq 'orig[T:Terni = X:Term[none] .) timeState:TimeState * startedToFinish
(eq 'dest[T:Terni = Y:Term[none] .) startTime:Int > finishedToFinish
(eq 'orig[T :Ternl = Y:Term[none] .)
(eq 'dest[T :Ternl = Z:Term[none] .)
(eq 'in[Z:Termi =" _*, [hatT: Term TL' : Tern] [none] .)
(eq 'label [T:Tern] = L:Term[none] .)
(eq 'label [T :Ternj = '"".String [none] .)
(eq 'label[hatT: Tern] = L:Term[none] .)
(eq 'orig[hatT: Tern] = X: Term[none] .)
(eq 'dest[hatT: Tern] = Z: Term[none] .)
ES: Equati onSet) .
op noMatch : EquationSet EquationSet -> Bool R:Resource
available = true
eq noMat ch( ) resources P:Process
((eq 'label ["hatT: Variable] = L:Term|[none] .) -
(eq 'orig['hatT:Variable] = X: Term[none] .) globalTime=0
(eq 'dest[’' hatT:Variable] = Z:Term[none] .)), . activities
((eq 'label [hatT: Tern] = L:Term[none] .) activities
(eq 'orig[hatT: Terni = X Term[none] .) A ~tivi A ~tivi
(eq 'dest[hatT: Terni = Z: Term [none] .) . AActivity bnisHed ToFinish : B:Activity
E: EquationSet) ) = false . tmin=5 tmin=3
eq noMat ch( E1l: Equat i onSet, E2: EquationSet) = true [ow se] . tmax=7 tmax=8
activityState=notStarted activityState=notStarted
timeState=undefined timeState=undefined
Figure 12 Maude Rewrite rule for bypassing transitions. startTime=0 startTime=0
linkToPrececessor workSequengces workSequences
that it is a conditional rule; its condition is stated in the W2:WorkSequencel  W1:WorkSequence
clause, which does most of the work. A modiédenoting inkToPrececessor

Maude specifications at Maude’s metalevel) rewrites to an-
other moduleV if its set of equations does match the positive Figure 13 xspemmetamodel (simplified), and one model.

pattern and does not match the negative pattern in Figure 11.

The latter condition is equationally specified by the fuoiati

noMatch which returndalseif a certain match is found, and inherentdistinction between "structural” and "dynamiaftp
true otherwise (in the equation labelldcbwi se] ). Then,  of metamodels and of their models, hence, it is applicable in
M is a copy ofMwhose declaration and equation sets aregeneral forosMmL. The Optimisation concerns the execution
changed to fit the right-hand side of the rule in Figure 11sThi of operational semantics starting from a given initial mode

is achieved by functionsewTr ansi t i on,addDecl , and

set Equat i ons, which we have omitted from the figure.

In Section 5 we shall study semantics-preserving modeft-1 ThexSPEMIlanguage and its operational semantics
transformations and shall apply a procedure, defined there,
for checking whether the silent-transition eleminaticans-

formation, discussed in this section, is semantics-prirsgr The language describes the executioaddifvitiesconstrained

by time, resources, and precedence relations. We show how
to translate the SPEM metamodel and models into Maude

4 Defining the xsPEM language specifications, and how to encode the language’s operationa
semantics as rewrite rules over such Maude specifications.
In this section we study asmL called xsPEM [15], which In the metamodel of Figure 1&ctivity is the class of en-

is an executable version of tlsEMIanguage standard [16]. tities being executed. Thenin andtmaxattributes of theAc-
This further illustrates the approach presented in Se@ijon tivity class denote the minimum and the maximum duration
and prepares an example of "execution tracing" for Section 5of activities, whose state with respect to execution is igive
We also propose an optimisation based on a partial evatuatioby the value of thectivityStateattribute: thenotStartedin-

of operational-semantics rules, which takes advantageeof t Progressandfinishedvalues in théctivityStateenumeration.
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X:Process
globalTime=T+1

X:Process
globalTime=T

=

Figure 14 Rule for Process incrementing the global time.

The execution of activities is also governed by explicit
ordering constraintsWorkSequencelass), and by the avail-
ability of resourcesResourcelass).

Each activity has &8VorkSequendastance, which in turn
may be linked to four (possiby empty) sets of activities:

— the activities that have to be started to allow for the curren
activity to be able to start (th&tartedToStarlink);

— the activities that have to be finished to allow for the cur-
rent activity to be able to start (tHmishedToStarink);

— the activities that have to be started to allow for the curren
activity to be able to finish (thstarted ToFinisHink);

— the activities that have to be finished to allow for the cur-
rent activity to be able to finish (tretarted ToFinisHink).

For example, in Figure 13, the activitiésand A are linked
by aWorkSequenceia the link finishedToFinishwhich ex-
presses thabB is allowed to finish only whem is finished.
An activity may also have a number Blesourcénstances.
Starting an activity requires that the resourceavailable

and makes the resources not available; when an activity fin-

ishes, it releases the resource by making it available again

Time is measured by a clock, encoded by dh@balTime
attribute of theProces<lass. When an activity starts it records
its starting time in thestartTimeattribute. Hence, its current
execution time is the differenegobal Time — start Time.

When it is finished, an activity can deoEarly, ok, or
tooLate (timeStateattribute), depending on whether its cur-
rent execution time is if0,tmin), [tmin,tmaz) or [tmaz,00)
respectively (all intervals left-closed, right-open).efvalue
of timeStateequalaundefinedvhile an activity is nofinished

Operational SemanticsWe express the operational seman-
tics of xsPEMusing graphical rewrite rules (Figures 14-16).
In the first rule, theprocesdnstance incrementfobalTime
The next rule (Figure 15) deals with starting activitiesYf

is an activity of procesX whoseglobalTimeattribute isT,
andY is linked to its predecessors by a work sequefce
then starting the activity sets itgartTimeattribute to7" and

its activityStateattribute toinProgress However, the activity

can only be started if certain other instances are in certain

states. We add conditions (writtendrcL) to the rules, for

all activities inZ.startedToStarto be in progress;
all activities inZ.finishedTo Starto be finished;
all resources irY.resourceso be available;

all resources irY.resourcedpecome unavailable.

11

- iviti Y:Activit .
X:Process | activitie Yy linkToPrececessor), Z-WorkSequence
globalTime=T fctivityState=notStarte \/ =
- i Y:Activi Z:Work nce
X:Process | activitieg] ct ‘ty linkToPrececess: orkSequenc
globalTime=T lactivityState=inProgre
startTime=T

if Z.finishedToStart — forAll(u : Activity|u.activityState = finished) A
Z .startedToStart — forAll(v :
Y .resources — forAll(r :

Activity |v. activityState = inProgress) A
Resource|r.available = true)A

Y .resources — forAll(r : Resource|r.available@QPost = false)

Figure 15 Rule for starting an Activity.

: ivi Y:Activity Z:WorkSequenck
X:Process | activitieg—— - linkToPrececess . a r
_ acuvnySlate:lnProgreés\/ :>
X:Process | activitie: Y:Activity linkToPrececessas] 2 NOTkSequence
jactivityState=finished
timeState=tooEarly

if Z.startedToFinish — forAll(u : Activity|u.activityState = inProgress) A
Z . finished ToFinish — forAll(v : Activity|v.activityState = finished)A
X.globalTime — Y .startTime < Y .tminA

Y .resources — forAll{r : resource|r.availableQPost = true}

. Y:Activit -
X:Process | activitie; Y linkToPrececessasl 2 VorkSequence
lactivityState=inProgre =
X:Process | activitie: Y:Activity linkToPrececessasl 2 VorkSequence
lactivity inished
timeState=ok

if Z.startedToFinish — forAll(u :
Z . finished ToFinish — forAll(v : Activity|v.activityState = finished) A\
AX.globalTime — Y .startTime > Y .tminA

X .globalTime — Y .startTime < Y .tmazA

Y .resources — forAll{r : resource|r.available@Post = true}

Activity |u. activityState = inProgress) A

Y:Activit E
X:Process | activitie: Yy linkToPrececessosl 2- NorkSequence
fctivityState=inProgre | —>
X:Process | activitie Y:Activity inkToPrececessos) 2 MorkSequenc
fctivityState=finished
i =tooLate

if Z.startedToFinish — forAll(u : Activity|u.activityState = inProgress) A
Z . finishedToFinish — forAll(v : Activity|v.activityState = finished) A
X.globalTime — Y .startTime > Y .tmaxA

Y .resources — forAll{r : resource|r.available@Post = true}

Figure 16 Rules for finishing an Activity.

attribute, depending on how long has the activity been exe-
cuting, i.e., onX .globalTime — Y .startTime:

— if the value in question is greater or equal thatmin but
less tharl.tmax then the attributémeStatas set took;

— if itis less thanY.tminthentimeStatés set totooEarly,

— otherwise, the attributémeStatas set totooLate

4.2 EmbeddingsPEMin Maude

For the fourth constraint we use (cf. Figure 15) the construc We follow the guidelines of Section 3 for representing the

tion @Postto indicate that the constraint is a postcondition. xsPEMmetamodel and sample model in Figure 13, as well as
the operational semantics rules from Figures 14-16.

The last three rules (Figure 16) deal with finishing an activ-

ity and releasing the resources it held while it was exegutin Metamodel and modelThe Maude encoding of theskeEm

The rules differ on the value that they give to tiiraeState metamodel and model from Figure 13 is shown in Figure 17.
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fod ACTI VI TYSTATE i s

sort ActivityState .

ops notStarted i nProgress finished :
endf m

-> ActivityState .

fnod TI MESTATE i s

sort TineState .

ops tooEarly ok toolLate undefined :
endf m

-> TimeState .

f nod xSPEM METAMCDEL i s
protecting ACTI VI TYSTATE .
protecting TlI MESTATE .
protecting INT .
protecting BOCOL .
sorts Process Activity WrkSequence Resource .

- declarations for sets of Process, Activity,

- WorkSequence, and Resource (omtted)
op global Time : Process -> Int .
op activities : Process -> Set{Activity} .
op wor kSequences : Process -> Set{WrkSequence} .
ops tmn tmax startTine : Activity -> Int .
op activityState : Activity -> ActivityState .
op timeState : Activity -> TineState .
op |inkToPredecessor : Activity -> Set{WrkSequence} .
op resources : Activity -> Set{Resource} .

- equations for OCL invariant for cardinality of

- role linkToPredecessor (onmitted)
ops startedToStart fini shedToFinish

startedToFi ni sh finishedToStart :
Wor kSequence -> Set{Activity} .

op available : Resource -> Bool .
endf m

f mod xSPEM MCDEL i s

ext endi ng xSPEM METAMODEL .
op P: -> Process .

ops AB: -> Activity .

ops WL W2 : -> WorkSequence .
op R: -> Resource .

eq global Time(P) =0 .
activities(P) = A B.

wor kSequences(P) = W, W .

eq tmn(A =5.

eq tmax(A) = 7 .

eq startTime(A) =0 .

eq activityState(A) = notStarted .
eq timeState(A) = undefined .

eq |inkToPredecessor(A) = W .

eq resources(A) = R .

eq available(R) = true .

eq tmn(B) =3 .

eq tmax(B) = 8 .

eq startTime(B) = 0 .

eq activityState(B) = notStarted .
eq timeState(B) = undefined .

eq |inkToPredecessor(B) = W .

eq resources(B) = enpty .

eq finishedToFinish(W) = A .

eq startedToFi ni sh(W) = enpty .
eq finishedToStart (W) = enpty .
eq startedToStart (W) = enpty .
eq finishedToFi ni sh(W2) = enpty .
eq startedToFi ni sh(W2) = enpty .
eq finishedToStart(W2) = enpty .
eq startedToStart(W2) = enpty .

endf m

Figure 17 Maude encoding of metamodel and model of Fig. 13.

There are two modules for the enumeration classes. They are

imported (in protecting mode, to preserve their semantics)

the module denoting the metamodel. The module denoting

the metamodel is imported (in extending mode, allowing to
modify its semantics) by the module denoting the model.

Operational semanticsWe show the Maude encoding of the
rule in Figure 14 and of the conditional rule in Figure 15; the
encoding of the remaining graphical rules is similar.

Vlad Rusu

rl
(eq ' gl obal Ti me[ X: Ter ni
(eq ' gl obal Ti me[ X: Ter ni
upTer m(downTer n(’
[none] .) .

T:Term[none] .) =>

+ 1

_[T: Term’s_['0.Zero]], errorNat)

Figure 18 Maude encoding of the rule in Figure 14.

We first write a modulébdel s_x SPEM METAMODEL,
where a sorbvbdel s_xSPEM METAMODEL is defined (by
analogy to Fig. 7), which metarepresents all Maude specifi-
cations denoting SPEM models. The sPEMoperational se-
mantics rules are Maude rewrite rules operating over this so

The Maude encoding of the rule for time-passing in Fig-
ure 14 is shown in Figure 18. It says that whenever an equa-
tion stating thathe global time of some process (metarepre-
sented by the term variab)) equals some value (metarep-
resented by the term variablE) is found, then that equa-
tion is replaced by another one, which states thatglobal
time of the procesX equalsT plus the metarepresentation
of 1, whichis s[’ 0. Zer o] . The resulting meta-level term
", [T: Term’s_[’0.Zero]] isnotdirectly evaluated
because there is no equation to reduce it at the metalevel.
In order to be evaluated, the term is casted from the met-
alevel down to the object level, where addition is performed
by equational reduction. The casting is done by the built-in
functiondownTer m whose second argument is a constant
returned in case the casting fails. Finally, the result efat-
dition is re-raised to the metalevel by the operatigiTer m

We now focus on the rule in Figure 15 for starting an
activity, whose encoding in Maude is shown in Figure 19. The
rule is conditional, and most of its computation is encoaed i
the condition. It says that a moddrewrites to a modd\l if

— the equations oM encode the attribute values and the
links corresponding to those in the left-hand side of the
rule in Figure 15. In the conjundownTer n( Y: Ter m
ErrAct) i ndownTer m(L: Term Err Act) ,the pre-
defined function i n_ evaluates whether an activity meta-
represented by: Ter mis in an activity list metarepresen-
ted byL: Ter m For this evaluation to be performed, the
metarepresentations are casted down to the object level,
the ocL precondition evaluates toue. This condition is
encoded in accordance to the Maude encodingafin-
variants, presented earlier in Section 3. Note the defini-
tions of the functiondor Al | 1,for Al | 2,for Al | 3,
which encode the first three> forAll() iterators in the
graphical rule; to be evaluated on the adequate migdel
the model is passed as an argument to those functions;
finally, the modeM is also computed in the condition,
by setting its equation set such as to encode the right-
hand side of the graphical rule (the second "line" of Fig-
ure 15), and by applying theor Al | 4 function to the
result. The role of the latter is to encode the postcondi-
tion of the graphical rule (last conjunct in the condition
in Figure 15). The function takes a moddland a set

of resources and "assigns" all the resoureesilableat-
tributes tofalse For this, it replaces iMthe equations
that gave whatever "previous" values of the attribute, with
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crl M=>M if
((eq 'global Time[ X: Tern] = T: Term[none] .)
(eq "activities[X Ternl = L:Term[none] .)
(eq 'activityState[Y:Tern] =
"not Started. ActivityState [none] .)
(eq 'startTime[Y: Tern] = '0.Zero [none] .)
(eq '1inkToPredecessor[Y: Tern] = Z: Term[none] .)
ES: Equati onSet) := getEqs(M /\
downTer n(Y: Term ErrAct) in downTern{L: Term ErrAct) /\
forAll 1(M startedToStart (downTern(Z: Term ErrWrkSeq))) /\
forAll 2(M finishedToStart (downTern(Z: Term ErrWorkSeq))) /\
forAll 3(M, resources(downTern(Y: Term ErrAct))) /\
M := forAll 4(set Equations(M
(eq 'global Tine[ X: Ternj = T: Term [none] .)
(eq "activities[X:Tern] = L:Tern{none] .)
(eq 'activityState[Y:Tern] =
"inProgress. ActivityState [none] .)
(eq 'startTine[Y:Tern] = T:Term[none] .)
(eq 'linkToPredecessor[Y: Terni = WTerm [none] .)
ES: Equati onSet), resources(downTern(Y: TermErrAct))) .
---- encoding of the OCL condition

op forAlll : Mdule Set{Activity} -> Bool
eq forAll 1(enpty) = true .
eq forAll 1(M Mdul e, (A Activity, AS: Set{Activity})) =

(if activityState(M Module, A Activity) == inProgress

then true else false fi)

and-then forA | 1(M Mdul e, AS: Set { Activity}) .

op forAll2 : Mdule Set{Activity} -> Bool

eq forAll 2(M Mdul e, enpty) = true .

eq forAll 2(M Mbdul e, (A Activity, AS:Set{Activity})) =
(if activityState(M Modul e, A Activity) == finished
then true else false fi)
and-then forAl | 2(M Mdul e, AS: Set { Activity}) .

op forAll3 : Mdul e Set{Resource} -> Bool

eq forAl I 3(M Mdul e, enpty) = true .

eq forAl I 3(M Mdul e, (R Resource, RS:Set{Resource})) =
(if avail abl e(M Mbdul e, R Resource) == true
then true else false fi)
and-then forAll 3(M Mdul e, RS: Set { Resource}) .

op forAll4 : Mdule Set{Resource} -> Mdule .

eq forAll 4(M Modul e, enpty) = M Modul e .

ceq forAll4(M Mdul e, (P:Resource, PS:Set{Resource})) =
repl aceEq( E: Equati on, for Al | 4(M Modul e, PS: Set { Resour ce}))

if P: Term:= upTern{P: Resource)

/\ PS: Term:= upTern(fal se)

/\ E Equation := (eq 'available[P:Tern] = PS: Tern{none].) .

Figure 19 Maude encoding of the rule in Figure 15.

equations stating that the new valuesfalee The equa-
tion replacement is done by the functioepl acekEq,
which is omitted from Figure 15 for better readability.

Resource Process
available: Bool globalTime:Int

resources| 0..*

0..%/ activities 0.7\ workSequences

Activity i1 WorkSequence
tmin:Int linkToPredecessol]
tmax:Int | 9..* startedToStart —

activityState:ActivityState | § « finishedToStart
timeState: TimeState 3 startedToFinish
startTime:Int * finishedToFinish

Figure 20 xspemmetamodel; the dynamic part is in bold font.

P:Process
lobalTime=T
R:Resource g
available=X
resources
activities activities
A:Activity B:Activity
N finishedToFinish N
tmin=5 tmin=3
tmax=7 tmax=8
activityState=A activityState=B
timeState=TA timeState=TB
startTime=ST startTime=ST
linkToPredecessorworkSequenges workSequences

W2:WorkSequence W1:WorkSequence

linkToPrececessor

Figure 21 Pattern for sPEMmodels reachable from that in Fig. 13.

Optimising the semantics by partial instantiatiowe now
describe how one can take advantage of the inherent distinc-
tion between the structural and dynamic parts of metamodels
of bsML, in order to optimise their operational semantics.

To illustrate this we consider again thepremmetamodel
in Figure 13. Its dynamic part consists of thbalTimeat-
tribute of theProcessclass, of theactivityState, timeState,
startTimeattributes of theActivity class, and of thavailable
attribute of theResourceslass. These attributes are the only
features of an sPEM model that can change during model

The Maude rules shown in Figures 18 and 19, togetheexecution. All the rest is the structural part - including th
with similar Maude encodings of the other graphical rules,instances and the links between them - and does not change.
are executable and be used for verification purposes. For ex- Thijs distinction between structural and dynamic parts is
ample, one can ask whether there exists a path starting frofdherent taoosmL defined using theibe-based approach. The
the xspEMmodel depicted in Figure 13 and leading to a modelconsequence is that once an “initial" model is chosen, all
where both activitie# andB are finished and have completed models reachable from it have the same structural parteln th

their execution in time. Assuming functioa$ | Fi ni shed

case of sPEM, if we start from the model shown in Figure 13,

andal | &k, which check whether all the equations encod- a|| the reachable models have the form shown in Figure 21.

ing the attributesgct i vi t ySt at e andt i meSt at e have
the right-hand sidesf i ni shed. ActivityState and

In particular, this means that all the operational-sencanti
rules will perform their matching on treamestructural part;

' ok. Ti meSt at e, respectively, the answer to our question e can take advantage of this observatiomphstially instan-

is returned by the following Maude search command:

search[1] upModul e(’ xSPEM MODEL, f al se) =>*M

such that all Finished(M and all OK(M.

tiating the operational-semantics rules on the structural part
before executing them. This results in smaller and simpler
rules, with less matching to do. Since matching (partidylar

set and multiset-matching, which we extensively use in our

Maude responds instantly and returns a path to a solution. representation - e.g., we match over sets of equationsgis th
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. . 1
most expensive part of rewriting we can expect substantial e - g1 obal Ti e[ p. Process] = T Term [none] )

time gains when the simplified rules are executed. (eq’ ag ivi t)éStAat e[ A /;tct ivity] =
. . . . . ! t t . tivit t .
The partial evaluation of rules consists in applying the (eq" soart el A At Lo iyl = 6 Zero [none] .)

following four operations to each operational-semantids:r  (eq ’availabl e[’ R Resource] = 'true.Bool [none] .)
=>

1. match the left-hand side (lhs) of the rule with the pattern(ea ' gl obal Ti me[’ P. Process] = T:Term [none] .)
- . (eq "activityState[' A Activity] =
describing the form of reachable models (e.g., Figure 21); ' nprogress. Acti vi tyState [none] .)
this results in a finite number of substitutions; (eq 'startTine[' A Activity] = T:Term [none] .)
. (eq 'availabl e[’ R Resource] = 'fal se.Bool [none] .) .
2. for each such substitution, generate a new rule by apply*
ing the substitution to the rule’s |hs, rhs, and condition;
3. perform all reductions and simplifications possible an th
new "partially instantiated" rule; for example, a conjunct
reduced tatrue in a rule’s condition is removed, and a £; by the transformation does “at least as much" as the origi-
conjunct reduced téalseelimimates the rule; nal, in the sense that to each execution of the copy thersexis
4. make the ruleontext-fregfor this, find a maximal con-  a "matching" execution of the original. This ensures that th
textC' such that the rule obtained after the last step has theefinement process does not add executions unaccounted for.
form Cllhs'] — Clrhs’] if Cond, and replace the rule In this section we formalise the notion of semantics-pre-
with the non-contextuatule lhs’ — rhs’ if Cond, pro- serving model transformation using a notiorobkervational
vided that the latter is indeed a rule and provided the fackimulationbetweerobservational transition system@bser-
that the contextual and the non-contextual rule induce thesational transition systems are adequate for modellingaspe

same matchings with the pattern of reachable models. tional semantics expressed in terms of model transformsitio

These operations are implemented by taking advantage ¢tecause they allow for an emphasis on the "dynamic” part
Maude’s bultin metalevel functions for matching and reduc-Of models, that which changes during execution; and obser-
tion. They do not modify the rewrite relation starting from vational §|mulat|ons compare executions with res_pecteq th
the chosen initial model, since Steps 1-3 are executed whepPServations only. Another advantate of observationalisim
the original operational-semantics rules are applied Steg Iatlon_s is that they allow for one step of the higher-level se
4 explicitly checks that the matchings (hence, the revgigjn mantics to ma.tch several steps of t_he lower-level one, which
before and after the step are the same. What changes is tif§Presses a difference of "granularity” between the levels
number of rules - one original operational-semanticsralep e propose a semidecision procedure to check seman-
sibly generates several simplified rules - but the number ofical preservation. The procedure is complete: it deteltts a
rule applications for performing a given execution stayes th Preservation violations, and may not terminate otherwise.
same; it only involves simpler rules and less matching. ~ Thanks to its encoding of semantical preservation by an
For the original rule shown in Figure 19, applying the four invariance poperty, the procedure also opens the posgibili
steps described above with the pattern shown on Figure 2¥Sing theorem-proving for invariance properties, alsdlava
generates two rules: one for starting the activitand the able in Maude [10,11], for proving that simulation does hold

Figure 22 Simplified rule for starting activity.

other one for starting the activity. We show in Figure 22 the We also give a version of the procedure that computes
first rule (for A), which is indeed much simpler that the orig- " encoding of all the executions of an instanceefthat
inal one; in particular, the simplified rule is unconditiirzal match” a given execution of the instance’s imageibwhich

the conjuncts in its condition were reducedioe, and itis ~ Provides us with "execution traceability”. We give exansple

non-contextual: its Ihs/rhs are sets of equations, not tesdu Pased on our encodings of automata asgsmin Maude.
Just for the sake of the example, we have tried both ver-

sions of the operational semantics on a model obtained fro

the one shown in Figure 13 by multiplying thain andtmax

constants by 10 and then by 20. On gw®ar ch command Observational transition systenag's [9] are transition sys-

EE ag?h13) _th_e (I)ptlmlselg rulej ;erglmateo_l a?z;t M'gi{aséez{egs together with an observation domain and an observation
anthe original ones (18s and 5m3s, against41s an MS%Bhction that maps states to observations in the domain.

n%.l Obervational Transition Systems

Definition 11 (Observational Transition System)An OTs
) . ) is a tuple(A, ag, —, O,w) whereA is a nonempty, possibly

5 Semantics-Preserving Model Transformations infinite set ofstatesag € A is the initial state;> C Ax A is
the transition relationO is a nonempty, possibly infinite set

Given twoDSML £y and L,, each endowed with an oper- of observationsw : A — O is theobservation function

ational semantics, and given a model transformatiome-
tween£; and L,, how to define the fact that the transfor- An executions a finite sequence of states= ay, ...a;...a,
mationpreserveghe operational semantics when translatingsuch that fora; — a;41 fori = 0,1,...,n — 1 (note that
from £, to £5? WhenL, is a higher-level languagé&,; isa  we do not require that executions start in the initial state)
lower-level one, ana is a refinement between levels, seman- We denote théengthn of an execution = ay, ...a;...a, by
tical preservation means that the imag&inof any modelin  len(p); hence, an execution of lengthis a state. For a state
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N e
N e if M',S8" .= step2(M) A
R o S'= {M" € Sust epl(S) | wi(M") = wa(M")}
: Figure 24 Reuwrite rule for checking semantical preservation.
P
ag al ag as ag as

. . ) 5.4 Semantical preservation and a procedure to check it
Figure 23 Matching executions.

We use observational simulations to define semantics4prese
ving model transformation connecting two instances of two

a, we denote byezec(a) the set of executions such that ~ DSML represented asTs as suggested in Section 5.2.

m(0) = a, and byezec(A) the set of executionazec(a;n). Definition 14 (semantics-preserving model transformatioi

Consider twabsML L1, Lo with metamodelg1M; and se-
mantics—;, fori = 1,2. Assume an observation setand
observation functions;, for i = 1,2 having codomairpD.
We say that a model transformatighbetweenM M; and

We naturally identify a.meta-modeﬂ/l/\/l.wnh the set of MM, is semantics-preserving for the instange§ € MM,
models that conform to it, and the operational semantics of And MO, if MO e S(MO) and (MM, MO, —s, O, ws) is
’ 2 1 ’ 29 ) )

DSML of metamodeM M with a relation—C MM x M M. ; . 0

By choosing an "initial modelM° € MM we obtain a tran- observationally simulated ByVIAM, My, =1, 0,n)
sition system{ MM, M° —), which expresses the execu- To check semantical preservation in Maude, we write two
tion of the modeM® according to oupsmL's semantics. An  functionsst ep1 andst ep2, which take a set of models in
observational transition system can obtained, e.g, byidefin - M A, and inM My, respectively, and apply one step of the
anocL query onMM which expresses a "part” of models operational semantics gé1AM; and of MM, respectively.
that "changes" during execution. For example, for the meta-  We then write the conditional rewrite rule in Figure 24:
model in Figure 3, we want to observe, say, titaeeattrioute  Here, any paik.M, S) is rewritten to a paif M’, S’) where

of the Automatorclass, which does change during execution.
Assuming only one automaton per model of the metamodel,
this can be written imcL asAutomaton. alllnstances.trace.

5.2 FrombsML to Observational Transition Systems

— M’ issomel-step successor ¢f1 according to the oper-
ational semantics alM.M. This is done by the matching
equationM’, §”: =st ep2(M) in the rule’s condition;

— S’ isthe subset of the modelsdtust ep1(S) whose ob-

. : X ,
5.3 Matching and Observational Simulation servation according to; equals the observatian (M’).

Our procedure consists in performing the Maude command:
Definition 12 (matching) For oTs= (4, ani, —.4,0,w4) (1) search (M9, MY) =>« (M, 0).
andB = (B, b, —n5,0,wp) and for two executionp €

exec(A) andr € exec(B), we say thap is matchedby  if Proposition 4 (semantical preservation)A model transfor-

mationy is semantics-preserving fovt) and M3 € ¢(M?)

there exists a function : [0, ..., len(p)] — Nwitha(0) =0 . . oy o .
andvi € [0,....len(p) — 1], a(i + 1) € {a(i) + 1, a(i)}, if and only ifw; (M?) = ws(M3) and the commang) fails.
such that for alki € [0..len(p)], wa(p(i)) = wp(m(a(i))). Proposition 4 states the correctness of our procedure. Com-

pleteness follows from the completeness of Maude’s search

) _ ) o command: if a tern{M, ) is reachable then it will be found.
Example 9WVe illustrate matching executions in Figure 23.

States with identical observations are connected withethsh Towards theorem provingOur procedure also suggests an

lines. The functioru : [0,...., 5] — N defined bya(0..3) = 5pproach based on inductive theorem proving to show that a
0 anda(4) = 1, a(5) = 2 ensures that the executipn(0f  gimyjation does hold, i.e., that a model transformation pre
length 5) is matched by the executiorfof length 2). serves operational semantics: inductively prove thatsesfm

the form (M, ()) cannot be reached froa\3, M9) by the
rule in Fig. 24, using, e.g., Maude’s prover [10] and tech-
niques for proving invariants [11]. This is left for futurevk.

Our notion of matching in Def. 12 allows shorter executions
to match longer ones. This is useful for relating executafns
DSML whose semantics have different granularities dfis
a more "concrete" language th#a, it can be expected that Example 10We illustrate the procedure on an example based
one step of, is "implemented" by several steps 0f. on automata. LeL; be the language of automata possibly
with silent transitions, whose metamodei M is shown in
Definition 13 (Observational Simulation)GiVen two obser- F|g 3 (W|thout theocL invariant) and whose Operational se-
vational transition systemsl = (A, aini, —4,0,w4) and  mantics— is given by the rule depicted in Fig. 8. L&t be
B = (B, bini, —5,0,wp), we say thatd is observationally  the automaton model depicted in Fig. 4. The Maude represen-
simulated bys if for all executions € ezec(A) there exists  tations of the metamodel, operational semantics, and model
an executionr € ezec(B) such thatp is matched byr. are shown in Figs. 5 (without thecL invariant), 9, and 6.
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globalTime:=globalTime+1

Let L5 be the language of automata without silent transi- ek
tions, having metamodeW1 M, shown in Fig. 3. Its opera- stop-A-tooEarly
tional semantics-, is also given by the rule in Figure 4. Let  globaimime=0 —O globalTime-A startTimes Ami)
M} be essentially the same automaton model as that depicteneses wmaened
in Figure 4, except that the label &f is "b" rather than ™. . } globalTime: A sartTime = Atmin-1
In order to turn the transition systemi$4M;, M?, —;) A.slanTizlt:t:-globalTime; O — @
(for i = 1,2) into observational transition systems, we con- A Sty Siate:= MPragress
sider the observation domain of Strings, and the observa- glbalTime-A staines Aim
tion functions that to each model associatestthe attribute  Aimesiaeswoisie .
of the Automaton class, which changes during execution.
What is missing in order to illustrate our semantics-pre- gobalTime-A starTimes Atmin | A iiyState:= fnshed
servation checking procedure is a model transformation be- globalTime-A startTimes Afmax | A fimeState:= ok
tweenL; andL,. This shall be the operation of silent tran-
sition elimination, partially illustrated by the graphicale
shown in Fig. 11 and corresponding Maude rule in Fig. 12. Figure 25 HesM encoding one Proceg3with one Activity A.
In order to check whether silent transition elimination

¢ is semantics-preserving for the instancet) € MM;

AtimeState:= tooEarly
A.activityState:= finished

speedNormal-A .
globalTime-A.startTime=A.tmin

globalTime-A.startTime = A.tmax-1
speedUp-A

and M§ = ¢(MY?) € MM, (cf. Definition 14) we use The bottom one encodes the activity’s execution starting
the Maude commarsiear ch (M%2 M) =>+ (M, 0). The  from the initial state.activityState = notStarted.timeState
command does find a solution - meaning thdails to pre- = undefined. The transition labellestart-Aencodes the start-
serve operational semantics according to Definition 14. ing of the activity: the variablstartTimerecords the current

The command also provides us with a path to the soluvalue ofglobalTime andA.activityStatés set toinProgress
tion. By examining the path we realise the error in the model  yp to this point our transformation does only the obvi-
transformation: the automato(d)mg can have the trace "ab” s We now consider the followingfinementf the xsPEM
by firing two transitions, butM cannot: it needs three tran-  model: activities are notasks there is a notion of tasspeed
sitions starting from its initial state, including the oa@eled  5nq our refinement "attempts” to avoid finishing a task too
by ™. The origin of the error lies in the fact that silent tran  early or too late. Hence, one time unit before execution time
sition elimination may generate several initial statesth€  aachesA. t ni n the task isslowed dowpafterA. t mi n is
initial state of its input is the origin of a silent transitio reached the speed of the task becomasnat and one time

This example demonstrates that our procedure finds semgit before the time reachds t max the task issped up
tical-preservation errors in model transformations. Thgtn

section contains another example, and shows that the procgy,
dure can be adapted to solve the "execution tracing" problemoK

Eventually, the task completes its execution, and its vari-
eA.timeStates set to one of among the valueEarly,

or tooLate depending on the time it took to complete.
This is encoded by the three transitions originating in the
macro-state (depicted as a rectangle with a dashed contour)

The general transformation fronsREMto HESMencodes
activities as the machine shown in Figure 25, possibly with
more complex guards and assignments of transitions "start-
ing" and "stopping" the activity, to take into account thetes

5.5 Execution tracing

We consider a model transformation c$peMto hierarchi-
cal extended state machin@sesm, which are quite similar
to the state maf:hlne_ d.|agrams_Lm|f/|L)._ Briefly, a _transmon . of the activities and resources that an activity is linked to
can be fired if its origin state is active and if its guard (if

present) evaluates to true; when a transition is fired, the as,[h Consud:jr nol/y TeASPE'\ngdkelM thaé;ons?ts Onlilgof
signments (if any) of the transition to theesm’s variables € process’, aclivity A, and worksequenaes in Figure 1.

are performed, and the transition’s destination state meso Itgtrt]r?ngfoirgatmdnt KHEE;/' {/svthat represgdntetzhm ]!: |I§|1ur¢ 25
active. A macro-state is a state containingssMm. A transi- Wi r;r_nn _ftﬁn ma>.<—F._ N nzog/v C?\.ni' er d N o_bowmti:]
tion originating in a macro-state is an abbreviation for &a se execution oT thedESM In Figure 25, which we describe only

of transitions with origins in all states of the macro-state via the labels of the transitions that it fires in sequence:

parallel composition oHESM with shared variables consists  gtart-A (tick*4) slowDown-A tick speedNormal-A stop-A-ok
in interleaving the firing of the transitions of the twa&sm.
We wish to trace back this execution to a®PEM execution
that matches in the sense of Definition 12. The answer de-
pends on the observations functions @PEMandHESM.

For the case where the observation functions observe all
the attributes in gPEM and all the (homonymous) variables
in HESM, the answer is obviously the unique execution

The effect of our transformation on a model consisting of a
processP and a single activityd, whose worksequence has
all its links empty, is shown in Figure 25. It consists of two
HESM, among which the top one represents the prodess
incrementing the variablglobalTimestarting from zero. start (tick*5) stop-ok
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crl (k,s) = (k+1,5") / applied before execution/verification, and which consies
ifs, 5t ={M" € {{s}Ustep2({s}) [ w2(s") = wi(p(k+1))}  form of partial evaluation of the rules that preserve theobra
Figure 26 Rewrite rule for tracing executions. of reachable models starting from a given initial model. The

optimisation takes advantage of the inherent distinctien b

. ) . tween structural and dynamic partsisML’'s metamodels.
which we have described via the rules that are executed, Here  \ye 150 propose a definition for the notion of semantics-
we have denoted byck the rule in Figure 14, bgtarttherule  5ro5erying model transformations, which are translatisns
in Figure 15, and bgtop-okthe middle rule in Figure 16. tween DSML that preserve operational semantics. We give

For other observation functions there may be also othet, semigecision procedure, also implemented in Maude, for
matching executions. For example, if we choose not to0 0b¢pecking the semantics-preserving nature of a model trans-
serve in PEMandHESM the globalTimeandstartTimeat-  tormation, and a version of the procedure for solving the "ex
tributes and homonymous variables, then another matchingcion tracing” problem. We illustrate the approach on two
execution inserts sitick actions betweestart andstop-ok examples: a simple one: finite automata, and a more elabo-

For such simple examples it is easy to find the matching ate one: gpEM a timed languages for executing activities

executions, but for more involved ones automation is necesggnstrained by time, precedence, and resource constraints
sary. This is achieved by a variant of our procedure for check

ing semantical preservation discussed earlier in thissect
For a sequence = 7(0)- - (i) - -- 7(n) we denote by Related Works.The closest related works are [2] and [3],

stuttering(r) the set{(x(0))* ---x(i)* --- (1(n))*}, ob- who propose differ_ent gncoding of metampdgls, mode!s, and
tained by replicating each elementofinitely many times. model transformations in Maude. '_I'he main dlﬁgrence s that
we encode metamodels &L specifications, while [2] base
their representation on an object-oriented extension afdéa
Proposition 5 Consider twooTs (MMy, M9, —1,0,w1) and [3] use Maude sorts. This also induces differences in the

and(MMaz, MY, 4,0, ws) suchthatv; (M?) = wy(MY) ~ Way models and model transformations are represented.

and an executiop € ezec(MY). Consider also the rule We believe that our approach exploits better some of the
in Figure 26 and the tree generated by the search comman@gimplest constructions of Maude: order-sorted specitioati
(#) search (p(0), M) =>x (p(len(p)), s) and their semantics based on algebras. We also study seman-

Then, for every path in the tree, its projection on the secondiCs preserving model transformations and executionraci
component belongs to the sgtittering(r), for some execu- Which (to our best knowledge) are new fosmL in Maude.

tion = € exec(M?) that matches the executign Recipro- ~ The optimisation of operational based on partial evalurito
cally, for every executiom € ezec(M?) that matches the also new. On the other hand, [2, 3] are more advanced in prac-
executionp, there exists a path in the tree whose projectiontical terms; their tools are integrated in theLIPSEenviron-

on the second component belongs to thesaetering (). ment, they propose user-friendly languages for users toeefi
operational semantics, including real-time semanticsl&J

The reason why sequencessituttering(w) (notthematch-  and they have performed significant case studies.
ing executionr) occur in Proposition 5 is that may be Among the many related works, graph transformations
shorter thafp - it may "stutter" wherp takes a step. How- are formal modelling languages that have been used for defin-
ever, it is easy to reconstruct an executiofitom a sequence ing semantics obsmL and of model transformations [19,
in stuttering(m), by trying to execute the sequence on the 20,21, 22, 23]. An advantage of Maude with respect to these
transition system for which is supposed to be an execution. approaches is that they abstract away from attribute values
whereas Maude is expressive enough to take into account at-
tribute values as well ascL constraints on them.
6 Conclusion, Related, and Future Work Another line of work based on theorem proving exploits
type theory for formalisingnDE artifacts, including a notion
We propose a formal approach for defining and analysingf correctness for model transformations [24, 25, 26].
Domain-Specific Modelling Languages. The approachis based vyet another, different approach is taken by the Kermeta
on representing metamodels and models as Maude specificgamewort, where methods written in an imperative language
tions, and on representing model transformations (whieh de(also called Kermeta) language aveavedn a metamodel to
fine the operational semanticsméMmL as well as translations  yake its underlying models executable [27]. This approschii
betweenpsML) as rewrite rules between Maude specifica- not grounded in formal methods, but it is much more readily
tions, also expressible in Maude thanks to its reflectivenes zccessible tvDE practitioners who wish to definemsmL.

This provides us, on the one hand, with abstract defini- e present paper builds on our earlier work [5]. In addi-
tions of thembE concepts used for definingsmL, which  tion to the representations of models, metamodels, and con-
naturally capture their intended meaning; and, on the otheformance from [5] we also study here operational semantics
hand, with equivalent executable definitions for those con-4nd model transformations, as well as semantical preserva-

cepts, which can be used by Maude for formal verification. ion and execution tracing for model transformations.
Better execution and verification performances are ob-

tained thanks to an optimisation that we propose, which is ® http://ww. ker neta. org
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The paper [28] is a preliminary version of the present pa-10.

per. The main additions with respect to [28] are the addition
of the xsPEM example, the optimisation of operational se-

mantics rules based on partial evaluation, more adequéte dell-

initions for semantical preservation, and the study of axec
tion tracing, and more detailed proofs.

Execution tracing is also the object of [29]; the difference
between [29] and the present paper is that [29] uses a differ-

ent notion of execution matching - for example, it requires13,

users to explicity define a relation beween states of tiansit
systems, whereas in the present paper the relation is more
conveniently induced by equality of observations on okserv
tional transition systems. From a more practical point efwi
[29] is based on definingsmL in the Kermeta framework;
Kermeta is an imperative language, which makes the imple-
mentation of execution tracing more difficult than in Maude
(for instance, backtracking has to be performed explicitly

whereas in Maude it is done automatically). On the other;s

hand, Kermeta is a well-accepted, user-friendly framework
for bsML definition, whereas our Maude approach needs bet-

ter interfaces in order to become acceptable to practitione 16.

Regarding future work, we are planning to to connect

to the ECLIPSE environment and to design a user-friendly, 17-

graphical-textual language (which was hinted at through se
eral examples in this paper, but is not implemented yet) for
expressing operational semantics and model transforngtio
We also intend to explore the use of theorem-proving tech-
nigues for proving semantical preservation, based on is en
coding into an invariance property shown in this paper.

19.
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2010. Proof using Lemma 1 itis enough to show that there is bijec-
tion between the sets of specificationseL yaq (M) M ::
MM} and the set of their semanti€MEL pq a4 (M) M ::

Appendix: additional proofs MM }. For this, consider the mapping that to each specifi-
cation associates its initial algebra. It is obviously gjesur
Lemma 1 MEL(MM ] ={(MEL v (M)) [M:: MM} tion between our two sets. To prove its injectiveness, we not

that different models\1;, M, conforming toMM have at
Proof For theC inclusion, from any4 € [MEL(MM)] we least two distinct objects, or different values for the sare
shall build a modeM of MM such thafMEL A (M)] = tribute of an object, or different links between objectsnkie
A.Then,A € [MEL(MM)] impliesA = oCLyg (MM) = the specifications1EL a0 (M1), MEL pa (M2) differ ei-
true - because all algebras of a specification satisfy the equather in their constant declarations or in their equation get
tions of the specification. Finally, since= (MEL o (M) both). Since by construction there are no equations in spec-
we obtain|MEL y a1 (M) | OCLye, (MM) = true, which  fifications of the formMEL y(a((M) between the constants
by Definition 7 is just the expected conclusigm :: MAM. denoting objects, the initial algebra ®fEL A0 (M) inter-

To build M from A, for each proper sottof MEL (M M), prets sorts as the constants defined of the respective Borts i
we consider its interpretatiod(c), and let the elements of MEL rqa¢(M), and interprets the functions between sort in-
A(c) be the objects of the classn the modelM. We letthe  terpretations as defined by the equationsvei y( ¢ (M).
attribute values for those objects, as well as the links betw  Hence, for differentmodels1,, M4 of MM, either the sort
the objects, to have values equal according to the algdbra intepretations or the functions intepretations (or boiffed

To conclude theC inclusion we have to show thatf is  hence, we obtaiMEL pa((M1)) # (MEL g (M2)). O

indeed a model oM M and thatf]MEL p 1 (M)] = A.
. . : . . Lemma 3 For each metamode\I M, there is avEL specifi-
— Misamodel ofM M because its objects, their attributes, cation denoted bibdel s 1 r(, where a sortModels i r is

and the links between them are valued accordingto an al-, " . . i
gebraA of MEL(MM) that satisfies Definition 2. Note defined, whose interpretation in the algetifddel s i)

that the requirement that our mod¥ is finite is ensured Is in bijection with the Se{MEL v (M) M :: MM}

by the second item of Definition 2, and the requirement

that its sets if objects of classes from differentinhed&n proof We use the fact thaweL is reflective: there exists a
hierarchies must be disjoint is ensured by the third item; \ieL specification calledVet a- Modul e, where allMEL spec-

— [MELpm(M)] = A because, again, the constants de-jfications (including itself) are reflected garmsof a certain
noting objects ofM, the functions denoting attributes of sort calledvbdul e. We then write in Maude a specification
objects/links between objects are valued according.to  Mbdel sy a4 extendingMet a- Modul e, where we define

a subsortModels pqaq Of Modul e, which is interpreted as
2: consider a modeM such thatM :: MM. To show that  the set{MEL yi(M) | M :: MM} in the initial alge-
(MEL A (M) € [MEL(MM)] we show(MELAm(M))  bra of the specificatiovbdel s vquq - here,MEL vy (M)
satisfies Definition 2. First, by construction, the specif@a s thetermof Model s (¢ that reflectsMEL A r((M). The
MEL A1 (M) imports MEL(MM), hence, it also imports  sort Models 1404 is defined using a conditionaiembership
the specifications for the basic types, and®sL r1r(M))  whose condition checks that our conformance checking pro-
is an initial algebra, its restriction to the basic typesl®a cedure from [5] returns r ue®. Finally, the injectiveness of
initial. Second, the interpretations of sortg{BEL vA(M))  reflection ensures that the SESEL v (M) | M :: MM}
denoting classes 0¥1.M are indeed finite, namely, they con- and{MEL yir((M) | M :: MM} are in bijection. O
sist of the finitely many constants declarediBL aq ¢ (M).
Third, sorts that are in distinct connected components ac- ¢ The condition implicitly checks that is of metamodeMAM;
cording to the subsorting relation are indeed interpreted b these checks are performed by Maude’s parser and typechecke
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Lemma 4 Assume thab (M?) = wy(M3) in the command
(1). Then, for each pair of the forfiM, S) reachable inn
rewriting steps fron{ M3, M?), M is last on some execution
p € exec(MY) of lengthn, and S consists exactly of the
all models that are last on some executionc ezec(M9)
having lengthat mostn, and such thap is matched byt.

Proof By induction onn. The base case = 0 is trivial: the
model M is MY, which is last on the executign= M9 of
length0; and the se8 equals{.M{}, which indeed is the set
of all models that are last on execution®f length< 0 that
matchp - here, there is only one such executian= M.

For the induction step: by induction hypothesid, is last
on some execution of lengghof lengthn, andsS is the set of
models that are last on some executioa ezec(MY) having
length at most: that matches. Assume that the rewrite rule
in Figure 24 is applied fromiM, S) and producesM’, S').

— since M’ is chosen to be a successor in one step.of
(thanks to the matching equatiovt’, S”: =st ep2(M)

in the rule’s condition) then, using the induction hypoth-

Vlad Rusu

can only be matched by shorter ones, there is no execution
matchingp at all, meaning that the observational simulation
of <MM2, M(Q), —2, O, LUQ> by <./\/l./\/l1, ./\/1(1), —1, O7 w1> is
violated, and by Definition 14 thap is not semantics-pre-
serving forM? and M$. A contradiction has been reached:
the commandy) fails, and thg=-) implication is proved.

(<) Assume that; (M9) = w2 (M$) and that the com-
mand(t) fails. Consider an arbitrary executipre exec(M3)
and let M be the last state op. Then, we have a reachable
term of the form{ M, S) with S # (). We can apply Lemma 4
since we are assuming its hypothesigM?) = ws(M9),
and obtain that the nonempty sgtconsists exactly of the
all models that are last on some executiore exec(MY)
having lengthat mostn, and such thap is matched byr. In
particular, this means that there does exist an execuatian
ezec(MY) that does match. By Definition 13 this means
that there is an observational simulation 8 My, MY, —-

, 0, w2> by <./\/l./\/l1, ./\/l?, —1, 0, w1>, and by Definition 14,
this means thap is semantics-preserving fov1{ and M9,
which concludes thé<) implication and the proof. O

esis, we obtain that1’ is indeed the last state of some Proposition 5 Consider twooTs (MM, MY, —1,0,w;)

executiony’ € exec(M$) that has the length + 1;

— to prove the induction step regarding the &t there
are two subcases. Rememeber thathe subset of U
st ep1(S)whose observation accordingie iswa (M’):

and(MMay, M9, —2, 0, ws) such thatu; (M9) = wa(M9)

and an executionp € exec(M9). Consider also the rule

in Figure 26 and the tree generated by the search command
(#) search (p(0), M]) =>* (p(len(p)),s)

— if S = 0, by induction hypothesis there are no execu- Then, for every path in the tree, its projection on the second

tionst of length< n that matchp. Then,§’ = () and
there are no executioms$ of length< n+1 that match
p', which proves the inductive step in this subcase;
— if 8§ # 0 then consider the set of executionse
ezec(MY) of length at most: that matchp; by in-

component belongs to the setittering (), for some execu-
tion 7 € exvec(M)) that matches the executign Recipro-
cally, for every executiom € exec(MY) that matches the
executionp, there exists a path in the tree whose projection
on the second component belongs to thesgetering(r).

duction hypothesiss is the set of all last states of the proof (=) By induction on the length of the path. If the
executions in this set. Then, the set of last states ofength is0 thenM? e stuttering(MY) is in ezec(M?) and

executions of lengtk n + 1 that matchy’ is the sub-
set ofSUst ep1(S) whose observation according to
w1 equalswy(M’), i.e., the setS’, which proves the
inductive step in this case and concludes the proof.

Proposition 4 (semantical preservation)A model transfor-
mationy is semantics-preserving fovt) and M3 € ¢(M?)
if and only ifw; (M?) = w2 (M9) and the commang) fails.

Proof (=) If ¢ is semantics-preserving fov{ and M9 ¢
$(M?) then by Definition 14{ MMz, M9, —2,0,ws) is
observationally simulated byM M, MY, —1,0,w1). By
Definition 13, for the executiop = M3 there exists an ex-
ecutionm € exec(MY?) that matchep. Using the Defini-
tion 12 we obtain in particulaps(p(0)) = wi(m(a(0))) =
w1 (m(0)), hencew;(M?) = ws(M3), which proves the
first part of the(=) implication. For the second part of the

matchegp = MY, since we assumed; (M?) = wo(MY).

For the induction step, assume the statement holds for
paths of lengtl < len(p)—1: (M3, MT)---(p(n), s). This
means that the sequente= M9 - - - s is in stuttering(r),
for somern € exec(MY?) that matchesp. Now, a path of
lengthn + 1 is obtained by applying the rule in Figure 26
to the term{p(n), s), resulting in a termp(n + 1), s’y where
s’ is such thatuy (s’) = wa(p(n + 1)), and eithers’ = s or
s —1 s'. In both casesM! - - - s’ is in stuttering(m) and
matche[0..n + 1], which concludes thé=) implication.

(<) By induction on the length of. The base case where
the length i) is trivial: the corresponding path {g(0), M9Y).

For the induction step, its hypothesis says that there ex-
ists a path(M$, M?) - (p(n), s) such that the sequence
7 = MY --sis in stuttering(r). Consider an execution
7' that matche9[0..n + 1]. Then, using Definition 12, we

implication, we reason by contradiction: assume the comhavew (7’(len(r’))) = wa(p(n + 1)), and eitherr’ = =, or

mand(f) does not fail, hence M, 0) is reachable, thus, us-
ing Lemma 4 there exists an executigne ezec(M$) end-
ing in M with no executionr of length at mosten (p) match-

7' = ws’ such thatr(len(7)) —1 s'. In both cases, the con-
dition of the rule in Figure 26 is satisfied fer= w(len(r)),
and s’ can be chosen to be(len(n)) in the rule’s appli-

ing p. Since in our simulation framework longer executions cation, which generates the ter(p(n + 1), s’). The path

" Note that we can indeed apply Lemma 4 here, as we have ju

proved its hypothesis; (M) = w2 (M3).

(MG, MDY+ (p(n), s)(p(n+1), s') satisfies the conclusion

Sor the induction step. This concludes the:) implication D



