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Why: Important Problems

» Autonomous robotics
» Elder care

» Exploration of
unknown /dangerous
environments

» Robotics for entertainment
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Why: Important Problems

» Autonomous robotics

» Financial applications

» Trading execution algorithms
» Portfolio management

» Option pricing
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Why: Important Problems

» Autonomous robotics

» Financial applications

» Energy management
> Energy grid integration
» Maintenance scheduling
> Energy market regulation

> Energy production
management
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Why: Important Problems
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Recommender systems

> Web advertising
» Product recommendation

» Date matching
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Why: Important Problems

W
elio

MAIRIE DE PARIS a

» Autonomous robotics

» Financial applications
> Energy management
» Recommender systems
. L > Bike sharing optimization
» Social applications
» Election campaign

> ER service optimization

v

Resource distribution
optimization
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Why: Important Problems

» Autonomous robotics

v

Financial applications

v

Energy management

v

Recommender systems

v

Social applications

v

And many more...
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What: Decision-Making under Uncertainty

Environment

action / state /
actuation perception

Agent

. Crzia—~
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How: Reinforcement Learning

Reinforcement learning is learning what to do — how to
map situations to actions — so as to maximize a numerical
reward signal. The learner is not told which actions to
take, as in most forms of machine learning, but instead
must discover which actions yield the most reward by
trying them (trial-and—error). In the most interesting
and challenging cases, actions may affect not only the
immediate reward but also the next situation and,
through that, all subsequent rewards (delayed reward).

“An introduction to reinforcement learning”,
Sutton and Barto (1998).
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How: the Course

Environment

state /

Formal and rigorous approach to
the RL's way to decision-making under uncertainty
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What: the Highlights of the Course

How do we formalize the agent-environment interaction?

Markov Decision Process and Policy

A Markov decision process (MDP) is represented by the tuple

M = (X, A, r,p) where X is the state space, A is the action space,

r: X x A— [0, B] is the reward function, p is the dynamics.

At time t € N a decision rule ; : X — A is a mapping from states to
actions and a policy (strategy, plan) is a sequence of decision rules

m = (o, M1, T2, - - )-

The Bellman equations
VT (x) = r(x,m(x)) +7 Y plylx, 7(x)) V7 (y),

V*(x) = max [r(x,3) + 7 Y plylx )V (v)].
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What: the Highlights of the Course

How do we solve an MDP?

Dynamic Programming
Value Iteration

Vierr = T Vi
Policy Iteration

» FEvaluate: given 7, compute V7™,

> Improve: given V™ compute mx,1 = greedy( V™)

. Cbreia—
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What: the Highlights of the Course

How do we solve an MDP “online”?

Given a observed transition x, a, x’, r update

Qus1(x,a) = (1 — @) Qu(x, a) + a(r + max Qu(x, d)).

. Crzia—~
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What: the Highlights of the Course

How do we effectively trade-off exploration and exploitation?

Multi-arm Bandit

Given K arms we define the regret over n rounds of a bandit strategy as

n n
Rni= E Xi*,t_ E Xlt,t~
t=1 t=1

For the UCB strategy we can prove

b2
Ra <> K|Og(”)-
itic !
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What: the Highlights of the Course

How do we solve a “huge” MDP?

Approximate Dynamic Programming
Approximate Value lteration
Vikr =T Vi
Approximate Policy lteration
> Evaluate: given 7, compute v

> Improve: given V™ compute f,4q & greedy( V™)

-
brzia—
. A. LAZARIC — Introduction to Reinforcement Learning Sept 27, 2013



What: the Highlights of the Course

How “sample-efficient” are these algorithms?

Sample Complexity of LSPI

. ¢, [log(1/o)
TK _ \/* < B 0[S
V™ = VoIl < I IV = Fllap + 7224 <5
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See you on Tue at 11h in C103!
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Who

Lectures . .
Practical Sessions

Alessandro LAZARIC Emilie KAUFMANN

Sequel Team .
INRIA-Lille Nord Europe Telecom ParisTech
emilie.kaufmann®telecom-paristech.fr

alessandro.lazaric@inria.fr . .
perso.telecom-paristech.fr/~kaufmann/

researchers.lille.inria.fr/~lazaric/
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When /What /Where

] Date \ Topic \ Classroom ‘
01/10 Intro/MDP C103
08/10 Dynamic Programming C103
15/10 RL Algorithms C103
22/10 TP on DP and RL C109
29/10 Multi-arm Bandit (1) C103
05/11 TP on Bandit C109
12/11 Multi-arm Bandit (2) C103
19/11 TP on Bandit C109
26/11 Approximate DP C103
03/12 | Sample Complexity of ADP C103
10/12 TP on ADP C109
17/12 | Guest lectures + Internships | C103 (TBC)
14/01 Evaluation C103 (TBCQ)

Lectures are from 11am to 1pm, TP should be from 11am to 1:15pm.
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Evaluation

v

Papers review + oral presentation

v

Projects

v

Stages
PhD

v
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