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In This Lecture

I How do we solve an MDP online?

⇒ RL Algorithms
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In This Lecture

I Dynamic programming algorithms require an explicit
definition of

I transition probabilities p(·|x , a)
I reward function r(x , a)

I This knowledge is often unavailable (i.e., wind intensity,
human-computer-interaction).

I Can we relax this assumption?
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In This Lecture

I Learning with generative model. A black-box simulator f of
the environment is available. Given (x , a),

f (x , a) = {y , r} with y ∼ p(·|x , a), r = r(x , a).

I Episodic learning. Multiple trajectories can be repeatedly
generated from the same state x and terminating when a
reset condition is achieved:

(x i
0 = x , x i

1, . . . , x i
Ti )

n
i=1.

I Online learning. At each time t the agent is at state xt , it
takes action at , it observes a transition to state xt+1, and it
receives a reward rt . We assume that xt+1 ∼ p(·|xt , at) and
rt = r(xt , at) (i.e., MDP assumption).
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Mathematical Tools

Outline

Mathematical Tools

The Monte-Carlo Algorithm

The TD(1) Algorithm

The TD(0) Algorithm

The TD(λ) Algorithm

The Q-learning Algorithm
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Mathematical Tools

Concentration Inequalities
Let X be a random variable and {Xn}n∈N a sequence of r.v.

I {Xn} converges to X almost surely , Xn
a.s.−→ X , if

P( lim
n→∞

Xn = X ) = 1,

I {Xn} converges to X in probability , Xn
P−→ X , if for any ε > 0,

lim
n→∞

P[|Xn − X | > ε] = 0,

I {Xn} converges to X in law (or in distribution), Xn
D−→ X , if for any

bounded continuous function f

lim
n→∞

E[f (Xn)] = E[f (X )].

Remark: Xn
a.s.−→ X =⇒ Xn

P−→ X =⇒ Xn
D−→ X .
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Mathematical Tools

Concentration Inequalities

Proposition (Markov Inequality)
Let X be a positive random variable. Then for any a > 0,

P(X ≥ a) ≤ EX
a .

Proof.

P(X ≥ a) = E[I{X ≥ a}] = E[I{X/a ≥ 1}] ≤ E[X/a]

�
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Mathematical Tools

Concentration Inequalities

Proposition (Hoeffding Inequality)
Let X be a centered random variable bounded in [a, b]. Then for
any s ∈ R,

E[esX ] ≤ es2(b−a)2/8.
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Mathematical Tools

Concentration Inequalities
Proof.
From convexity of the exponential function, for any a ≤ x ≤ b,

esx ≤ x − a
b − a esb +

b − x
b − a esa.

Let p = −a/(b − a) then (recall that E[X ] = 0)

E[esx ] ≤ b
b − a esa − a

b − a esb

= (1− p + pes(b−a))e−ps(b−a) = eφ(u)

with u = s(b− a) and φ(u) = −pu + log(1− p + peu) whose derivative is

φ′(u) = −p +
p

p + (1− p)e−u ,

and φ(0) = φ′(0) = 0 and φ′′(u) = p(1−p)e−u

(p+(1−p)e−u)2 ≤ 1/4.
Thus from Taylor’s theorem, the exists a θ ∈ [0, u] such that

φ(θ) = φ(0) + θφ′(0) + u2

2 φ
′′(θ) ≤ u2

8 =
s2(b − a)2

8 .
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Mathematical Tools

Concentration Inequalities

Proposition (Chernoff-Hoeffding Inequality)

Let Xi ∈ [ai , bi ] be n independent r.v. with mean µi = EXi . Then

P
[∣∣∣ n∑

i=1

(
Xi − µi

)∣∣∣ ≥ ε] ≤ 2 exp
(
− 2ε2∑n

i=1(bi − ai)2

)
.
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Mathematical Tools

Concentration Inequalities

Proof.

P
( n∑

i=1
Xi − µi ≥ ε

)
= P(es

∑n
i=1 Xi−µi ≥ esε)

≤ e−sεE[es
∑n

i=1 Xi−µi ], Markov inequality

= e−sε
n∏

i=1
E[es(Xi−µi )], independent random variables

≤ e−sε
n∏

i=1
es2(bi−ai )

2/8, Hoeffding inequality

= e−sε+s2 ∑n
i=1(bi−ai )

2/8

If we choose s = 4ε/
∑n

i=1(bi − ai)
2, the result follows.

Similar arguments hold for P
(∑n

i=1 Xi − µi ≤ −ε
)
.
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Mathematical Tools

Monte-Carlo Approximation of a Mean

Definition

Let X be a random variable with mean µ = E[X ] and variance
σ2 = V[X ] and xn ∼ X be n i.i.d. realizations of X. The
Monte-Carlo approximation of the mean (i.e., the empirical mean)
built on n i.i.d. realizations is defined as

µn =
1
n

n∑
i=1

xi .
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Mathematical Tools

Monte-Carlo Approximation of a Mean

I Unbiased estimator : Then E[µn] = µ (and V[µn] =
V[X ]

n )

I Weak law of large numbers: µn
P−→ µ.

I Strong law of large numbers: µn
a.s.−→ µ.

I Central limit theorem (CLT):
√

n(µn − µ)
D−→ N (0,V[X ]).

I Finite sample guarantee:

P

[ ∣∣∣1n
n∑

t=1
Xt − E[X1]

∣∣∣︸ ︷︷ ︸
deviation

> ε︸︷︷︸
accuracy

]
≤ 2 exp

(
− 2nε2

(b − a)2

)
︸ ︷︷ ︸

confidence
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Mathematical Tools

Monte-Carlo Approximation of a Mean

I Unbiased estimator : Then E[µn] = µ (and V[µn] =
V[X ]

n )

I Weak law of large numbers: µn
P−→ µ.

I Strong law of large numbers: µn
a.s.−→ µ.

I Central limit theorem (CLT):
√

n(µn − µ)
D−→ N (0,V[X ]).

I Finite sample guarantee:

P

[∣∣∣1n
n∑

t=1
Xt − E[X1]

∣∣∣ > (b − a)
√

log 2/δ
2n

]
≤ δ
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Mathematical Tools

Monte-Carlo Approximation of a Mean

I Unbiased estimator : Then E[µn] = µ (and V[µn] =
V[X ]

n )

I Weak law of large numbers: µn
P−→ µ.

I Strong law of large numbers: µn
a.s.−→ µ.

I Central limit theorem (CLT):
√

n(µn − µ)
D−→ N (0,V[X ]).

I Finite sample guarantee:

P

[∣∣∣1n
n∑

t=1
Xt − E[X1]

∣∣∣ > ε

]
≤ δ

if n ≥ (b−a)2 log 2/δ
2ε2 .
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Mathematical Tools

Exercise

Simulate n Bernoulli of probability p and verify the correctness and
the accuracy of the C-H bounds.
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Mathematical Tools

Stochastic Approximation of a Mean

Definition

Let X a random variable bounded in [0, 1] with mean µ = E[X ]
and xn ∼ X be n i.i.d. realizations of X. The stochastic
approximation of the mean is,

µn = (1− ηn)µn−1 + ηnxn

with µ1 = x1 and where (ηn) is a sequence of learning steps.

Remark: When ηn = 1
n this is the recursive definition of empirical

mean.
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Mathematical Tools

Stochastic Approximation of a Mean

Proposition (Borel-Cantelli)

Let (En)n≥1 be a sequence of events such that
∑

n≥1 P(En) <∞,
then the probability of the intersection of an infinite subset is 0.
More formally,

P
(

lim sup
n→∞

En
)
= P

( ∞⋂
n=1

∞⋃
k=n

Ek

)
= 0.
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Mathematical Tools

Stochastic Approximation of a Mean

Proposition

If for any n, ηn ≥ 0 and are such that∑
n≥0

ηn =∞;
∑
n≥0

η2
n <∞,

then
µn

a.s.−→ µ,

and we say that µn is a consistent estimator.
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Mathematical Tools

Stochastic Approximation of a Mean

Proof. We focus on the case ηn = n−α.
In order to satisfy the two conditions we need 1/2 < α ≤ 1. In fact, for
instance

α = 2⇒
∑
n≥0

1
n2 =

π2

6 <∞ (see the Basel problem)

α = 1/2⇒
∑
n≥0

( 1√
n

)2
=
∑
n≥0

1
n =∞ (harmonic series).
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Mathematical Tools

Stochastic Approximation of a Mean
Proof (cont’d).
Case α = 1
Let (εk)k a sequence such that εk → 0, almost sure convergence
corresponds to

P
(

lim
n→∞

µn = µ
)
= P(∀k,∃nk ,∀n ≥ nk ,

∣∣µn − µ
∣∣ ≤ εk) = 1.

From Chernoff-Hoeffding inequality for any fixed n

P
(∣∣µn − µ

∣∣ ≥ ε) ≤ 2e−2nε2
. (1)

Let {En} be a sequence of events En = {
∣∣µn − µ

∣∣ ≥ ε}. From C-H∑
n≥1

P(En) <∞,

and from Borel-Cantelli lemma we obtain that with probability 1 there
exist only a finite number of n values such that

∣∣µn − µ
∣∣ ≥ ε.
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Mathematical Tools

Stochastic Approximation of a Mean

Proof (cont’d).
Case α = 1
Then for any εk there exist only a finite number of instants were∣∣µn − µ

∣∣ ≥ εk , which corresponds to have ∃nk such that

P(∀n ≥ nk ,
∣∣µn − µ

∣∣ ≤ εk) = 1

Repeating for all εk in the sequence leads to the statement.

Remark: when α = 1, µn is the Monte-Carlo estimate and this corresponds to
the strong law of large numbers. A more precise and accurate proof is here:
http://terrytao.wordpress.com/2008/06/18/the-strong-law-of-large-numbers/
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Mathematical Tools

Stochastic Approximation of a Mean
Proof (cont’d).
Case 1/2 < α < 1. The stochastic approximation µn is

µ1 = x1

µ2 = (1− η2)µ1 + η2x2 = (1− η2)x1 + η2x2

µ3 = (1− η3)µ2 + η3x3 = (1− η2)(1− η3)x1 + η2(1− η3)x2 + η3x3

. . .

µn =
n∑

i=1
λi xi ,

with λi = ηi
∏n

j=i+1(1− ηj) such that
∑n

i=1 λi = 1.
By C-H inequality

P
(∣∣ n∑

i=1
λi xi −

n∑
i=1

λiE[xi ]
∣∣ ≥ ε) = P

(∣∣µn − µ
∣∣ ≥ ε) ≤ e

− 2ε2∑n
i=1 λ

2
i .

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 23/76



Mathematical Tools

Stochastic Approximation of a Mean
Proof (cont’d).
Case 1/2 < α < 1.
From the definition of λi

log λi = log ηi +
n∑

j=i+1
log(1− ηj) ≤ log ηi −

n∑
j=i+1

ηj

since log(1− x) < −x . Thus λi ≤ ηi e−
∑n

j=i+1 ηj and for any 1 ≤ m ≤ n,

n∑
i=1

λ2
i ≤

n∑
i=1

η2
i e−2

∑n
j=i+1 ηj

(a)
≤

m∑
i=1

e−2
∑n

j=i+1 ηj +
n∑

i=m+1
η2

i

(b)
≤ me−2(n−m)ηn + (n −m)η2

m
(c)
= me−2(n−m)n−α

+ (n −m)m−2α.
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Mathematical Tools

Stochastic Approximation of a Mean

Proof (cont’d).
Case 1/2 < α < 1.
Let m = nβ with β = (1 + α/2)/2 (i.e. 1− 2αβ = 1/2− α):

n∑
i=1

λ2
i ≤ ne−2(1−n−1/4)n1−α

+ n1/2−α ≤ 2n1/2−α

for n big enough, which leads to

P
(∣∣µn − µ

∣∣ ≥ ε) ≤ e−
ε2

n1/2−α .

From this point we follow the same steps as for α = 1 (application of the
Borel-Cantelli lemma) and obtain the convergence result for µn.
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Mathematical Tools

Stochastic Approximation of a Fixed Point

Definition

Let T : RN → RN be a contraction in some norm || · || with fixed
point V . For any function W and state x, a noisy observation
T̂W (x) = TW (x) + b(x) is available.
For any x ∈ X = {1, . . . ,N}, we defined the stochastic
approximation

Vn+1(x) = (1− ηn(x))Vn(x) + ηn(x)(T̂ Vn(x))
= (1− ηn(x))Vn(x) + ηn(x)(T Vn(x) + bn),

where ηn is a sequence of learning steps.
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Mathematical Tools

Stochastic Approximation of a Fixed Point

Proposition

Let Fn = {V0, . . . ,Vn, b0, . . . , bn−1, η0, . . . , ηn} the filtration of the
algorithm and assume that

E[bn(x)|Fn] = 0 and E[b2
n(x)|Fn] ≤ c(1 + ||Vn||2)

for a constant c.
If the learning rates ηn(x) are positive and satisfy the stochastic
approximation conditions∑

n≥0
ηn =∞,

∑
n≥0

η2
n <∞,

then for any x ∈ X
Vn(x)

a.s.−→ V (x).
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Mathematical Tools

Stochastic Approximation of a Zero

Robbins-Monro (1951) algorithm. Given a noisy function f , find x∗
such that f (x∗) = 0.
In each xn, observe yn = f (xn) + bn (with bn a zero-mean
independent noise) and compute

xn+1 = xn − ηnyn.

If f is an increasing function, then under the same assumptions on
the learning step

xn
a.s.−→ x∗
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Mathematical Tools

Stochastic Approximation of a Minimum

Kiefer-Wolfowitz (1952) algorithm. Given a function f and noisy
observations of its gradient, find x∗ = arg min f (x).
In each xn, observe gn = ∇f (xn) + bn (with bn a zero-mean
independent noise) and compute

xn+1 = xn − ηngn.

If the Hessian ∇2f is positive, then under the same assumptions
on the learning step

xn
a.s.−→ x∗

Remark: this is often referred to as the stochastic gradient algorithm.
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The Monte-Carlo Algorithm

Outline

Mathematical Tools

The Monte-Carlo Algorithm

The TD(1) Algorithm

The TD(0) Algorithm

The TD(λ) Algorithm

The Q-learning Algorithm
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The Monte-Carlo Algorithm

Policy Evaluation

We consider the the problem of evaluating the performance of a
policy π in the undiscounted infinite horizon setting.
For any (proper) policy π the value function is

V π(x) = E
[ T−1∑

t=0
rπ(xt) | x0 = x ;π

]
,

where rπ(xt) = r(xt , π(xt)) and T is the random time when the
terminal state is achieved.
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The Monte-Carlo Algorithm

Question

How can we estimate the value function if an episodic interaction
with the environment is possible?

⇒ Monte-Carlo approximation of a mean!
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The Monte-Carlo Algorithm

The Monte-Carlo Algorithm

Algorithm Definition (Monte-Carlo)

Let (x i
0 = x , x i

1, . . . , x i
Ti

= 0)i≤n be a set of n independent
trajectories starting from x and terminating after Ti steps. For any
t < Ti , we denote by

R̂ i(x i
t ) =

[
rπ(x i

t ) + rπ(x i
t+1) + · · ·+ rπ(x i

Ti−1)
]

the return of the i-th trajectory at state x i
t .

Then the Monte-Carlo estimator of V π(x) is

Vn(x) =
1
n

n∑
i=1

[
rπ(x i

0) + rπ(x i
1) + · · ·+ rπ(x i

Ti−1)
]
=

1
n

n∑
i=1

R̂ i(x)
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The Monte-Carlo Algorithm

The Monte-Carlo Algorithm

All the returns are unbiased estimators of V π(x) since

E[R̂ i(x)] = E
[
rπ(x i

t ) + rπ(x i
t+1) + · · ·+ rπ(x i

Ti−1)
]
= V π(x)

then
Vn(x)

a.s.−→ V π(x).
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The Monte-Carlo Algorithm

First-visit and Every-Visit Monte-Carlo

Remark: any trajectory (x0, x1, x2, . . . , xT ) contains also the
sub-trajectory (xt , xt+1, . . . , xT ) whose return
R̂(xt) = rπ(xt) + · · ·+ rπ(xT−1) could be used to build an
estimator of V π(xt).
I First-visit MC. For each state x we only consider the

sub-trajectory when x is first achieved. Unbiased estimator ,
only one sample per trajectory .

I Every-visit MC. Given a trajectory (x0 = x , x1, x2, . . . , xT ), we
list all the m sub-trajectories starting from x up to xT and we
average them all to obtain an estimate. More than one
sample per trajectory , biased estimator .
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The Monte-Carlo Algorithm

Question

More samples or no bias?

⇒ Sometimes a biased estimator is preferable if consistent!
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The Monte-Carlo Algorithm

First-visit vs Every-Visit Monte-Carlo

Example: 2-state Markov Chain

1−p

p

1

1 0

The reward is 1 while in state 1 (while is 0 in the terminal state). All
trajectories are (x0 = 1, x1 = 1, . . . , xT = 0). By Bellman equations

V (1) = 1 + (1− p)V (1) + 0 · p =
1
p ,

since V (0) = 0.
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The Monte-Carlo Algorithm

First-visit vs Every-Visit Monte-Carlo

We measure the mean squared error (MSE) of V̂ w.r.t. V

E
[
(V̂ − V )2] = (E[V̂ ]− V

)2︸ ︷︷ ︸
Bias2

+E
[(

V̂ − E[V̂ ]
)2]︸ ︷︷ ︸

Variance
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The Monte-Carlo Algorithm

First-visit vs Every-Visit Monte-Carlo

First-visit Monte-Carlo. All the trajectories start from state 1, then
the return over one single trajectory is exactly T , i.e., V̂ = T .
The time-to-end T is a geometric r.v. with expectation

E[V̂ ] = E[T ] =
1
p = V π(1)⇒ unbiased estimator.

Thus the MSE of V̂ coincides with the variance of T , which is

E
[(

T − 1
p
)2
]
=

1
p2 −

1
p .
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The Monte-Carlo Algorithm

First-visit vs Every-Visit Monte-Carlo

Every-visit Monte-Carlo. Given one trajectory, we can construct
T − 1 sub-trajectories (number of times state 1 is visited), where
the t-th trajectory has a return T − t.

V̂ =
1
T

T−1∑
t=0

(T − t) = 1
T

T∑
t′=1

t ′ = T + 1
2 .

The corresponding expectation is

E
[T + 1

2

]
=

1 + p
2p 6=V π(1)⇒ biased estimator .
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The Monte-Carlo Algorithm

First-visit vs Every-Visit Monte-Carlo

Let’s consider n independent trajectories, each of length Ti .
Total number of samples

∑n
i=1 Ti and the estimator V̂n is

V̂n =

∑n
i=1
∑Ti−1

t=0 (Ti − t)∑n
i=1 Ti

=

∑n
i=1 Ti(Ti + 1)
2
∑n

i=1 Ti

=
1/n

∑n
i=1 Ti(Ti + 1)

2/n
∑n

i=1 Ti

a.s.−→ E[T 2] + E[T ]

2E[T ]
=

1
p = V π(1)⇒ consistent estimator .

The MSE of the estimator

E
[(T + 1

2 − 1
p
)2
]
=

1
2p2 −

3
4p +

1
4≤

1
p2 −

1
p .
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The Monte-Carlo Algorithm

First-visit vs Every-Visit Monte-Carlo

In general
I Every-visit MC : biased but consistent estimator.
I First-visit MC : unbiased estimator with potentially bigger

MSE .

Remark: when the state space is large the probability of visiting multiple
times the same state is low, then the performance of the two methods
tends to be the same.
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The TD(1) Algorithm

Outline

Mathematical Tools
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The TD(1) Algorithm
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The TD(1) Algorithm

Policy Evaluation

We consider the the problem of evaluating the performance of a
policy π in the undiscounted infinite horizon setting.
For any (proper) policy π the value function is

V π(x) = E
[ T−1∑

t=0
rπ(xt) | x0 = x ;π

]
,

where rπ(xt) = r(xt , π(xt)) and T is the random time when the
terminal state is achieved.
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The TD(1) Algorithm

Question

MC requires all the trajectories to be available at once, can we
update the estimator online?

⇒ TD(1)!
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The TD(1) Algorithm

The TD(1) Algorithm

Algorithm Definition (TD(1))

Let (xn
0 = x , xn

1 , . . . , xn
Tn
) be the n-th trajectory and R̂n be the

corresponding return. For all xt with t ≤ T − 1 observed along the
trajectory, we update the value function estimate as

Vn(xn
t ) = (1− ηn(xn

t ))Vn−1(xn
t ) + ηn(xn

t )R̂n(xn
t ).
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The TD(1) Algorithm

The TD(1) Algorithm

Each sample is an unbiased estimator of the value function

E
[
rπ(xt) + rπ(xt+1) + · · ·+ rπ(xT−1)|xt

]
= V π(xt),

then the convergence result of stochastic approximation of a mean
applies and if all the states are visited in an infinite number of
trajectories and for all x ∈ X∑

n
ηn(x) =∞,

∑
n
ηn(x)2 <∞,

then
Vn(x)

a.s.→ V π(x)
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The TD(0) Algorithm

Policy Evaluation

We consider the the problem of evaluating the performance of a
policy π in the undiscounted infinite horizon setting.
For any (proper) policy π the value function is

V π(x) = r(x , π(x)) +
∑
y∈X

p(y |x , π(x)V π(x) = T πV π(x).

⇒ use stochastic approximation for fixed point.
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The TD(0) Algorithm

The TD(0) Algorithm

I Noisy observation of the operator T π:

T̂ πV (xt) = rπ(xt) + V (xt+1), with xt = x ,

I Unbiased estimator of T πV (x) since

E[T̂ πV (xt)|xt = x ] = E[rπ(xt) + V (xt+1)|xt = x ]

= r(x , π(x)) +
∑

y
p(y |x , π(x))V (y) = T πV (x).

I Bounded noise since

|T̂ πV (x)− T πV (x)| ≤ ||V ||∞.
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The TD(0) Algorithm

The TD(0) Algorithm

Algorithm Definition (TD(0))

Let (xn
0 = x , xn

1 , . . . , xn
Tn
) be the n-th trajectory, and

{T̂ πVn−1(xn
t )}t the noisy observation of the operator T π. For all

xn
t with t ≤ T n − 1, we update the value function estimate as

Vn(xn
t ) = (1− ηn(xn

t ))Vn−1(xn
t ) + ηn(xn

t )T̂ πVn−1(xn
t )

= (1− ηn(xn
t ))Vn−1(xn

t ) + ηn(xn
t )
(
rπ(xt) + Vn−1(xt+1)

)
.
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The TD(0) Algorithm

The TD(0) Algorithm

if all the states are visited in an infinite number of trajectories and
for all x ∈ X ∑

n
ηn(x) =∞,

∑
n
ηn(x)2 <∞,

then
Vn(x)

a.s.→ V π(x)
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The TD(0) Algorithm

The TD(0) Algorithm

Definition

At iteration n, given the estimator Vn−1 and a transition from
state xt to state xt+1 we define the temporal difference

dt =
(
rπ(xt) + Vn−1(xt+1)

)
− Vn−1(xt).

Remark: Recalling the definition of Bellman equation for state value
function, the temporal difference dn

t provides a measure of coherence of
the estimator Vn−1 w.r.t. the transition xt → xt+1.
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The TD(0) Algorithm

The TD(0) Algorithm

Algorithm Definition (TD(0))

Let (xn
0 = x , xn

1 , . . . , xn
Tn
) be the n-th trajectory, and {dn

t }t the
temporal differences. For all xn

t with t ≤ T n − 1, we update the
value function estimate as

Vn(xn
t ) = Vn−1(xn

t ) + ηn(xn
t )dn

t .
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The TD(λ) Algorithm

Comparison between TD(1) and TD(0)

I TD(1)

Vn(xt) = Vn−1(xt) + ηn(xt)[dn
t + dn

t+1 + · · ·+ dn
T−1].

I TD(0)

Vn(xn
t ) = Vn−1(xn

t ) + ηn(xn
t )dn

t .
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The TD(λ) Algorithm

Question

Is it possible to take the best of both?

⇒ TD(λ)!
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The TD(λ) Algorithm

The T πλ Bellman operator

Definition
Given λ < 1, then the Bellman operator T πλ is

T πλ = (1− λ)
∑
m≥0

λm(T π)m+1.

Remark: convex combination of the m-step Bellman operators (T π)m

weighted by a sequences of coefficients defined as a function of a λ.

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 58/76



The TD(λ) Algorithm

The TD(λ) Algorithm

Proposition
If π is a proper policy and T π is a β-contraction in Lµ,∞-norm,
then T πλ is a contraction of factor

(1− λ)β
1− βλ ∈ [0, β].
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The TD(λ) Algorithm

The TD(λ) Algorithm

Proof. Let Pπ be the transition matrix of the Markov chain then

T πλ V = (1− λ)
[∑

m≥0
λm

m∑
i=0

(Pπ)i
]
rπ + (1− λ)

∑
m≥0

λm(Pπ)m+1V

=
[∑

m≥0
λm(Pπ)m

]
rπ + (1− λ)

∑
m≥0

λm(Pπ)m+1V

= (I − λPπ)−1rπ + (1− λ)
∑
m≥0

λm(Pπ)m+1V .

Since T π is a β-contraction then ||(Pπ)mV ||µ ≤ βm||V ||µ. Thus∥∥∥(1−λ)∑
m≥0

λm(Pπ)m+1V
∥∥∥
µ
≤ (1−λ)

∑
m≥0

λm||(Pπ)m+1V ||µ ≤
(1− λ)β
1− βλ ||V ||µ,

which implies that T πλ is a contraction in Lµ,∞ as well.
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The TD(λ) Algorithm

The TD(λ) Algorithm

Algorithm Definition (Sutton, 1988)
Let (xn

0 = x , xn
1 , . . . , xn

Tn
) be the n-th trajectory, and {dn

t }t the
temporal differences. For all xt with t ≤ T − 1, we update the
value function estimate as

Vn(xn
t ) = Vn−1(xn

t ) + ηn(xn
t )

Tn−1∑
s=t

λs−tdn
s .
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The TD(λ) Algorithm

The TD(λ) Algorithm

We need to show that the temporal difference samples are unbiased estimators.
For any s ≥ t

E[ds |xt = x ] = E
[
rπ(xs) + Vn−1(xs+1)− Vn−1(xs)

∣∣xt = x
]

= E
[ s∑

i=t
rπ(xi) + Vn−1(xs+1)

∣∣xt = x
]
− E

[ s−1∑
i=k

rπ(xi) + Vn−1(xs)
∣∣xt = x

]
= (T π)s−t+1Vn−1(x)− (T π)s−tVn−1(x).
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The TD(λ) Algorithm

The TD(λ) Algorithm

E
[ T−1∑

s=t
λs−tds |xt = x

]
=

T−1∑
s=t

λs−t
[
(T π)s−t+1Vn−1(x)− (T π)s−tVn−1(x)

]
=

∑
m≥0

λm
[
(T π)m+1Vn−1(x)− (T π)mVn−1(x)

]
=

∑
m≥0

λm(T π)m+1Vn−1(x)−
[
Vn−1(x) +

∑
m>0

λm(T π)mVn−1(x)
]

=
∑
m≥0

λm(T π)m+1Vn−1(x)−
[
Vn−1(x) + λ

∑
m>0

λm−1(T π)mVn−1(x)
]

=
∑
m≥0

λm(T π)m+1Vn−1(x)−
[
Vn−1(x) + λ

∑
m≥0

λm(T π)m+1Vn−1(x)
]

= (1− λ)
∑
m≥0

λm(T π)m+1Vn−1(x)− Vn−1(x) = T πλ Vn−1(x)− Vn−1(x).

Then
Vn

a.s.−→ V π
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The TD(λ) Algorithm

Sensitivity to λ

Linear chain example
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The TD(λ) Algorithm

Sensitivity to λ

I λ < 1: smaller variance w.r.t. λ = 1 (MC/TD(1)).
I λ > 0: faster propagation of rewards w.r.t. λ = 0.
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The TD(λ) Algorithm

Question

Is it possible to update the V estimate at each step?

⇒ Online implementation!

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 66/76



The TD(λ) Algorithm

Online Implementation of TD algorithm: Eligibility Traces
Remark: since the update occurs at each step, now we drop the
dependency on n.
I Eligibility traces z ∈ RN

I For every transition xt → xt+1
1. Compute the temporal difference

dt = rπ(xt) + V (xt+1)− V (xt)

2. Update the eligibility traces

z(x) =

 λz(x) if x 6= xt
1 + λz(x) if x = xt
0 if xt = 0 (reset the traces)

3. For all state x ∈ X

V (x)← V (x) + ηt(x)z(x)dt .
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The TD(λ) Algorithm

TD(λ) in discounted reward MDPs
The Bellman operator T πλ is defined as

T πλ V (x0) = (1− λ)E
[∑

t≥0
λt( t∑

i=0
γ i rπ(xi) + γt+1V (xt+1)

)]
= E

[
(1− λ)

∑
i≥0

γ i rπ(xi)
∑
t≥i

λt +
∑
t≥0

γt+1V (xt+1)(λ
t − λt+1)

]
= E

[∑
i≥0

λi(γ i rπ(xi) + γ i+1V (xi+1)− γ i V (xi)
)]

+ Vn(x0)

= E
[∑

i≥0
(γλ)i di

]
+ V (x0),

with the temporal difference di = rπ(xi) + γV (xi+1)− V (xi).
The corresponding TD(λ) algorithm becomes

Vn+1(xt) = Vn(xt) + ηn(xt)
∑
s≥t

(γλ)s−tdt .
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The Q-learning Algorithm

Question

How do we compute the optimal policy online?

⇒ Q-learning!
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The Q-learning Algorithm

Q-learning

Remark: if we use TD algorithms to compute Vn ≈ V πk , then we
could compute the greedy policy as

πk+1(x) ∈ arg max
a

[
r(x , a) +

∑
y

p(y |x , a)Vn(y)
]
.

Problem: the transition p is unknown!!
Solution: use Q-functions and compute

πk+1(x) ∈ arg max
a

Qn(x , a)
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The Q-learning Algorithm

Q-learning

Algorithm Definition (Watkins, 1989)
We build a sequence {Qn} in such a way that for every observed
transition (x , a, y , r)

Qn+1(x , a) = (1− ηn(x , a))Qn(x , a) + ηn(x , a)
[
r + max

b∈A
Qn(y , b)

]
.
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The Q-learning Algorithm

Q-learning

Proposition
[Watkins et Dayan, 1992] Let assume that all the policies π are
proper and that all the state-action pairs are visited infinitely often.
If ∑

n≥0
ηn(x , a) =∞,

∑
n≥0

η2
n(x , a) <∞

then for any x ∈ X , a ∈ A,

Qn(x , a)
a.s.−→ Q∗(x , a).
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The Q-learning Algorithm

Q-learning
Proof.
Optimal Bellman operator T

TW (x , a) = r(x , a) +
∑

y
p(y |x , a)max

b∈A
W (y , b),

with unique fixed point Q∗. Since all the policies are proper T is a
contraction in the Lµ,∞-norm.
Q-learning can be written as

Qn+1(x , a) = (1− ηn(x , a))Qn(x , a) + ηn[T Qn(x , a) + bn(x , a)],

where bn(x , a) is a zero-mean random variable such that

E[b2
n(x , a)] ≤ c(1 + max

y ,b
Q2

n(y , b))

The statement follows from convergence of stochastic approximation of
fixed point operators.
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