
MVA-RL Course

Reinforcement Learning Algorithms

A. LAZARIC (SequeL Team @INRIA-Lille)
ENS Cachan - Master 2 MVA

SequeL – INRIA Lille

In This Lecture

I How do we solve an MDP online?

⇒ RL Algorithms

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 2/76

In This Lecture

I Dynamic programming algorithms require an explicit
definition of

I transition probabilities p(·|x , a)
I reward function r(x , a)

I This knowledge is often unavailable (i.e., wind intensity,
human-computer-interaction).

I Can we relax this assumption?

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 3/76

In This Lecture

I Learning with generative model. A black-box simulator f of
the environment is available. Given (x , a),

f (x , a) = {y , r} with y ∼ p(·|x , a), r = r(x , a).

I Episodic learning. Multiple trajectories can be repeatedly
generated from the same state x and terminating when a
reset condition is achieved:

(x i
0 = x , x i

1, . . . , x i
Ti)

n
i=1.

I Online learning. At each time t the agent is at state xt , it
takes action at , it observes a transition to state xt+1, and it
receives a reward rt . We assume that xt+1 ∼ p(·|xt , at) and
rt = r(xt , at) (i.e., MDP assumption).

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 4/76

Mathematical Tools

Outline

Mathematical Tools

The Monte-Carlo Algorithm

The TD(1) Algorithm

The TD(0) Algorithm

The TD(λ) Algorithm

The Q-learning Algorithm

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 5/76

Mathematical Tools

Concentration Inequalities
Let X be a random variable and {Xn}n∈N a sequence of r.v.

I {Xn} converges to X almost surely , Xn
a.s.−→ X , if

P(lim
n→∞

Xn = X) = 1,

I {Xn} converges to X in probability , Xn
P−→ X , if for any ε > 0,

lim
n→∞

P[|Xn − X | > ε] = 0,

I {Xn} converges to X in law (or in distribution), Xn
D−→ X , if for any

bounded continuous function f

lim
n→∞

E[f (Xn)] = E[f (X)].

Remark: Xn
a.s.−→ X =⇒ Xn

P−→ X =⇒ Xn
D−→ X .

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 6/76

Mathematical Tools

Concentration Inequalities

Proposition (Markov Inequality)
Let X be a positive random variable. Then for any a > 0,

P(X ≥ a) ≤ EX
a .

Proof.

P(X ≥ a) = E[I{X ≥ a}] = E[I{X/a ≥ 1}] ≤ E[X/a]

�

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 7/76

Mathematical Tools

Concentration Inequalities

Proposition (Hoeffding Inequality)
Let X be a centered random variable bounded in [a, b]. Then for
any s ∈ R,

E[esX] ≤ es2(b−a)2/8.

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 8/76

Mathematical Tools

Concentration Inequalities
Proof.
From convexity of the exponential function, for any a ≤ x ≤ b,

esx ≤ x − a
b − a esb +

b − x
b − a esa.

Let p = −a/(b − a) then (recall that E[X] = 0)

E[esx] ≤ b
b − a esa − a

b − a esb

= (1− p + pes(b−a))e−ps(b−a) = eφ(u)

with u = s(b− a) and φ(u) = −pu + log(1− p + peu) whose derivative is

φ′(u) = −p +
p

p + (1− p)e−u ,

and φ(0) = φ′(0) = 0 and φ′′(u) = p(1−p)e−u

(p+(1−p)e−u)2 ≤ 1/4.
Thus from Taylor’s theorem, the exists a θ ∈ [0, u] such that

φ(θ) = φ(0) + θφ′(0) + u2

2 φ
′′(θ) ≤ u2

8 =
s2(b − a)2

8 .

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 9/76

Mathematical Tools

Concentration Inequalities

Proposition (Chernoff-Hoeffding Inequality)

Let Xi ∈ [ai , bi] be n independent r.v. with mean µi = EXi . Then

P
[∣∣∣ n∑

i=1

(
Xi − µi

)∣∣∣ ≥ ε] ≤ 2 exp
(
− 2ε2∑n

i=1(bi − ai)2

)
.

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 10/76

Mathematical Tools

Concentration Inequalities

Proof.

P
(n∑

i=1
Xi − µi ≥ ε

)
= P(es

∑n
i=1 Xi−µi ≥ esε)

≤ e−sεE[es
∑n

i=1 Xi−µi], Markov inequality

= e−sε
n∏

i=1
E[es(Xi−µi)], independent random variables

≤ e−sε
n∏

i=1
es2(bi−ai)

2/8, Hoeffding inequality

= e−sε+s2 ∑n
i=1(bi−ai)

2/8

If we choose s = 4ε/
∑n

i=1(bi − ai)
2, the result follows.

Similar arguments hold for P
(∑n

i=1 Xi − µi ≤ −ε
)
.

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 11/76

Mathematical Tools

Monte-Carlo Approximation of a Mean

Definition

Let X be a random variable with mean µ = E[X] and variance
σ2 = V[X] and xn ∼ X be n i.i.d. realizations of X. The
Monte-Carlo approximation of the mean (i.e., the empirical mean)
built on n i.i.d. realizations is defined as

µn =
1
n

n∑
i=1

xi .

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 12/76

Mathematical Tools

Monte-Carlo Approximation of a Mean

I Unbiased estimator : Then E[µn] = µ (and V[µn] =
V[X]

n)

I Weak law of large numbers: µn
P−→ µ.

I Strong law of large numbers: µn
a.s.−→ µ.

I Central limit theorem (CLT):
√

n(µn − µ)
D−→ N (0,V[X]).

I Finite sample guarantee:

P

[∣∣∣1n
n∑

t=1
Xt − E[X1]

∣∣∣︸ ︷︷ ︸
deviation

> ε︸︷︷︸
accuracy

]
≤ 2 exp

(
− 2nε2

(b − a)2

)
︸ ︷︷ ︸

confidence

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 13/76

Mathematical Tools

Monte-Carlo Approximation of a Mean

I Unbiased estimator : Then E[µn] = µ (and V[µn] =
V[X]

n)

I Weak law of large numbers: µn
P−→ µ.

I Strong law of large numbers: µn
a.s.−→ µ.

I Central limit theorem (CLT):
√

n(µn − µ)
D−→ N (0,V[X]).

I Finite sample guarantee:

P

[∣∣∣1n
n∑

t=1
Xt − E[X1]

∣∣∣ > (b − a)
√

log 2/δ
2n

]
≤ δ

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 14/76

Mathematical Tools

Monte-Carlo Approximation of a Mean

I Unbiased estimator : Then E[µn] = µ (and V[µn] =
V[X]

n)

I Weak law of large numbers: µn
P−→ µ.

I Strong law of large numbers: µn
a.s.−→ µ.

I Central limit theorem (CLT):
√

n(µn − µ)
D−→ N (0,V[X]).

I Finite sample guarantee:

P

[∣∣∣1n
n∑

t=1
Xt − E[X1]

∣∣∣ > ε

]
≤ δ

if n ≥ (b−a)2 log 2/δ
2ε2 .

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 15/76

Mathematical Tools

Exercise

Simulate n Bernoulli of probability p and verify the correctness and
the accuracy of the C-H bounds.

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 16/76

Mathematical Tools

Stochastic Approximation of a Mean

Definition

Let X a random variable bounded in [0, 1] with mean µ = E[X]
and xn ∼ X be n i.i.d. realizations of X. The stochastic
approximation of the mean is,

µn = (1− ηn)µn−1 + ηnxn

with µ1 = x1 and where (ηn) is a sequence of learning steps.

Remark: When ηn = 1
n this is the recursive definition of empirical

mean.

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 17/76

Mathematical Tools

Stochastic Approximation of a Mean

Proposition (Borel-Cantelli)

Let (En)n≥1 be a sequence of events such that
∑

n≥1 P(En) <∞,
then the probability of the intersection of an infinite subset is 0.
More formally,

P
(

lim sup
n→∞

En
)
= P

(∞⋂
n=1

∞⋃
k=n

Ek

)
= 0.

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 18/76

Mathematical Tools

Stochastic Approximation of a Mean

Proposition

If for any n, ηn ≥ 0 and are such that∑
n≥0

ηn =∞;
∑
n≥0

η2
n <∞,

then
µn

a.s.−→ µ,

and we say that µn is a consistent estimator.

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 19/76

Mathematical Tools

Stochastic Approximation of a Mean

Proof. We focus on the case ηn = n−α.
In order to satisfy the two conditions we need 1/2 < α ≤ 1. In fact, for
instance

α = 2⇒
∑
n≥0

1
n2 =

π2

6 <∞ (see the Basel problem)

α = 1/2⇒
∑
n≥0

(1√
n

)2
=
∑
n≥0

1
n =∞ (harmonic series).

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 20/76

Mathematical Tools

Stochastic Approximation of a Mean
Proof (cont’d).
Case α = 1
Let (εk)k a sequence such that εk → 0, almost sure convergence
corresponds to

P
(

lim
n→∞

µn = µ
)
= P(∀k,∃nk ,∀n ≥ nk ,

∣∣µn − µ
∣∣ ≤ εk) = 1.

From Chernoff-Hoeffding inequality for any fixed n

P
(∣∣µn − µ

∣∣ ≥ ε) ≤ 2e−2nε2
. (1)

Let {En} be a sequence of events En = {
∣∣µn − µ

∣∣ ≥ ε}. From C-H∑
n≥1

P(En) <∞,

and from Borel-Cantelli lemma we obtain that with probability 1 there
exist only a finite number of n values such that

∣∣µn − µ
∣∣ ≥ ε.

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 21/76

Mathematical Tools

Stochastic Approximation of a Mean

Proof (cont’d).
Case α = 1
Then for any εk there exist only a finite number of instants were∣∣µn − µ

∣∣ ≥ εk , which corresponds to have ∃nk such that

P(∀n ≥ nk ,
∣∣µn − µ

∣∣ ≤ εk) = 1

Repeating for all εk in the sequence leads to the statement.

Remark: when α = 1, µn is the Monte-Carlo estimate and this corresponds to
the strong law of large numbers. A more precise and accurate proof is here:
http://terrytao.wordpress.com/2008/06/18/the-strong-law-of-large-numbers/

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 22/76

Mathematical Tools

Stochastic Approximation of a Mean
Proof (cont’d).
Case 1/2 < α < 1. The stochastic approximation µn is

µ1 = x1

µ2 = (1− η2)µ1 + η2x2 = (1− η2)x1 + η2x2

µ3 = (1− η3)µ2 + η3x3 = (1− η2)(1− η3)x1 + η2(1− η3)x2 + η3x3

. . .

µn =
n∑

i=1
λi xi ,

with λi = ηi
∏n

j=i+1(1− ηj) such that
∑n

i=1 λi = 1.
By C-H inequality

P
(∣∣ n∑

i=1
λi xi −

n∑
i=1

λiE[xi]
∣∣ ≥ ε) = P

(∣∣µn − µ
∣∣ ≥ ε) ≤ e

− 2ε2∑n
i=1 λ

2
i .

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 23/76

Mathematical Tools

Stochastic Approximation of a Mean
Proof (cont’d).
Case 1/2 < α < 1.
From the definition of λi

log λi = log ηi +
n∑

j=i+1
log(1− ηj) ≤ log ηi −

n∑
j=i+1

ηj

since log(1− x) < −x . Thus λi ≤ ηi e−
∑n

j=i+1 ηj and for any 1 ≤ m ≤ n,

n∑
i=1

λ2
i ≤

n∑
i=1

η2
i e−2

∑n
j=i+1 ηj

(a)
≤

m∑
i=1

e−2
∑n

j=i+1 ηj +
n∑

i=m+1
η2

i

(b)
≤ me−2(n−m)ηn + (n −m)η2

m
(c)
= me−2(n−m)n−α

+ (n −m)m−2α.

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 24/76

Mathematical Tools

Stochastic Approximation of a Mean

Proof (cont’d).
Case 1/2 < α < 1.
Let m = nβ with β = (1 + α/2)/2 (i.e. 1− 2αβ = 1/2− α):

n∑
i=1

λ2
i ≤ ne−2(1−n−1/4)n1−α

+ n1/2−α ≤ 2n1/2−α

for n big enough, which leads to

P
(∣∣µn − µ

∣∣ ≥ ε) ≤ e−
ε2

n1/2−α .

From this point we follow the same steps as for α = 1 (application of the
Borel-Cantelli lemma) and obtain the convergence result for µn.

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 25/76

Mathematical Tools

Stochastic Approximation of a Fixed Point

Definition

Let T : RN → RN be a contraction in some norm || · || with fixed
point V . For any function W and state x, a noisy observation
T̂W (x) = TW (x) + b(x) is available.
For any x ∈ X = {1, . . . ,N}, we defined the stochastic
approximation

Vn+1(x) = (1− ηn(x))Vn(x) + ηn(x)(T̂ Vn(x))
= (1− ηn(x))Vn(x) + ηn(x)(T Vn(x) + bn),

where ηn is a sequence of learning steps.

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 26/76

Mathematical Tools

Stochastic Approximation of a Fixed Point

Proposition

Let Fn = {V0, . . . ,Vn, b0, . . . , bn−1, η0, . . . , ηn} the filtration of the
algorithm and assume that

E[bn(x)|Fn] = 0 and E[b2
n(x)|Fn] ≤ c(1 + ||Vn||2)

for a constant c.
If the learning rates ηn(x) are positive and satisfy the stochastic
approximation conditions∑

n≥0
ηn =∞,

∑
n≥0

η2
n <∞,

then for any x ∈ X
Vn(x)

a.s.−→ V (x).

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 27/76

Mathematical Tools

Stochastic Approximation of a Zero

Robbins-Monro (1951) algorithm. Given a noisy function f , find x∗
such that f (x∗) = 0.
In each xn, observe yn = f (xn) + bn (with bn a zero-mean
independent noise) and compute

xn+1 = xn − ηnyn.

If f is an increasing function, then under the same assumptions on
the learning step

xn
a.s.−→ x∗

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 28/76

Mathematical Tools

Stochastic Approximation of a Minimum

Kiefer-Wolfowitz (1952) algorithm. Given a function f and noisy
observations of its gradient, find x∗ = arg min f (x).
In each xn, observe gn = ∇f (xn) + bn (with bn a zero-mean
independent noise) and compute

xn+1 = xn − ηngn.

If the Hessian ∇2f is positive, then under the same assumptions
on the learning step

xn
a.s.−→ x∗

Remark: this is often referred to as the stochastic gradient algorithm.

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 29/76

The Monte-Carlo Algorithm

Outline

Mathematical Tools

The Monte-Carlo Algorithm

The TD(1) Algorithm

The TD(0) Algorithm

The TD(λ) Algorithm

The Q-learning Algorithm

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 30/76

The Monte-Carlo Algorithm

Policy Evaluation

We consider the the problem of evaluating the performance of a
policy π in the undiscounted infinite horizon setting.
For any (proper) policy π the value function is

V π(x) = E
[T−1∑

t=0
rπ(xt) | x0 = x ;π

]
,

where rπ(xt) = r(xt , π(xt)) and T is the random time when the
terminal state is achieved.

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 31/76

The Monte-Carlo Algorithm

Question

How can we estimate the value function if an episodic interaction
with the environment is possible?

⇒ Monte-Carlo approximation of a mean!

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 32/76

The Monte-Carlo Algorithm

The Monte-Carlo Algorithm

Algorithm Definition (Monte-Carlo)

Let (x i
0 = x , x i

1, . . . , x i
Ti

= 0)i≤n be a set of n independent
trajectories starting from x and terminating after Ti steps. For any
t < Ti , we denote by

R̂ i(x i
t) =

[
rπ(x i

t) + rπ(x i
t+1) + · · ·+ rπ(x i

Ti−1)
]

the return of the i-th trajectory at state x i
t .

Then the Monte-Carlo estimator of V π(x) is

Vn(x) =
1
n

n∑
i=1

[
rπ(x i

0) + rπ(x i
1) + · · ·+ rπ(x i

Ti−1)
]
=

1
n

n∑
i=1

R̂ i(x)

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 33/76

The Monte-Carlo Algorithm

The Monte-Carlo Algorithm

All the returns are unbiased estimators of V π(x) since

E[R̂ i(x)] = E
[
rπ(x i

t) + rπ(x i
t+1) + · · ·+ rπ(x i

Ti−1)
]
= V π(x)

then
Vn(x)

a.s.−→ V π(x).

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 34/76

The Monte-Carlo Algorithm

First-visit and Every-Visit Monte-Carlo

Remark: any trajectory (x0, x1, x2, . . . , xT) contains also the
sub-trajectory (xt , xt+1, . . . , xT) whose return
R̂(xt) = rπ(xt) + · · ·+ rπ(xT−1) could be used to build an
estimator of V π(xt).
I First-visit MC. For each state x we only consider the

sub-trajectory when x is first achieved. Unbiased estimator ,
only one sample per trajectory .

I Every-visit MC. Given a trajectory (x0 = x , x1, x2, . . . , xT), we
list all the m sub-trajectories starting from x up to xT and we
average them all to obtain an estimate. More than one
sample per trajectory , biased estimator .

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 35/76

The Monte-Carlo Algorithm

Question

More samples or no bias?

⇒ Sometimes a biased estimator is preferable if consistent!

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 36/76

The Monte-Carlo Algorithm

First-visit vs Every-Visit Monte-Carlo

Example: 2-state Markov Chain

1−p

p

1

1 0

The reward is 1 while in state 1 (while is 0 in the terminal state). All
trajectories are (x0 = 1, x1 = 1, . . . , xT = 0). By Bellman equations

V (1) = 1 + (1− p)V (1) + 0 · p =
1
p ,

since V (0) = 0.

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 37/76

The Monte-Carlo Algorithm

First-visit vs Every-Visit Monte-Carlo

We measure the mean squared error (MSE) of V̂ w.r.t. V

E
[
(V̂ − V)2] = (E[V̂]− V

)2︸ ︷︷ ︸
Bias2

+E
[(

V̂ − E[V̂]
)2]︸ ︷︷ ︸

Variance

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 38/76

The Monte-Carlo Algorithm

First-visit vs Every-Visit Monte-Carlo

First-visit Monte-Carlo. All the trajectories start from state 1, then
the return over one single trajectory is exactly T , i.e., V̂ = T .
The time-to-end T is a geometric r.v. with expectation

E[V̂] = E[T] =
1
p = V π(1)⇒ unbiased estimator.

Thus the MSE of V̂ coincides with the variance of T , which is

E
[(

T − 1
p
)2
]
=

1
p2 −

1
p .

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 39/76

The Monte-Carlo Algorithm

First-visit vs Every-Visit Monte-Carlo

Every-visit Monte-Carlo. Given one trajectory, we can construct
T − 1 sub-trajectories (number of times state 1 is visited), where
the t-th trajectory has a return T − t.

V̂ =
1
T

T−1∑
t=0

(T − t) = 1
T

T∑
t′=1

t ′ = T + 1
2 .

The corresponding expectation is

E
[T + 1

2

]
=

1 + p
2p 6=V π(1)⇒ biased estimator .

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 40/76

The Monte-Carlo Algorithm

First-visit vs Every-Visit Monte-Carlo

Let’s consider n independent trajectories, each of length Ti .
Total number of samples

∑n
i=1 Ti and the estimator V̂n is

V̂n =

∑n
i=1
∑Ti−1

t=0 (Ti − t)∑n
i=1 Ti

=

∑n
i=1 Ti(Ti + 1)
2
∑n

i=1 Ti

=
1/n

∑n
i=1 Ti(Ti + 1)

2/n
∑n

i=1 Ti

a.s.−→ E[T 2] + E[T]

2E[T]
=

1
p = V π(1)⇒ consistent estimator .

The MSE of the estimator

E
[(T + 1

2 − 1
p
)2
]
=

1
2p2 −

3
4p +

1
4≤

1
p2 −

1
p .

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 41/76

The Monte-Carlo Algorithm

First-visit vs Every-Visit Monte-Carlo

In general
I Every-visit MC : biased but consistent estimator.
I First-visit MC : unbiased estimator with potentially bigger

MSE .

Remark: when the state space is large the probability of visiting multiple
times the same state is low, then the performance of the two methods
tends to be the same.

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 42/76

The TD(1) Algorithm

Outline

Mathematical Tools

The Monte-Carlo Algorithm

The TD(1) Algorithm

The TD(0) Algorithm

The TD(λ) Algorithm

The Q-learning Algorithm

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 43/76

The TD(1) Algorithm

Policy Evaluation

We consider the the problem of evaluating the performance of a
policy π in the undiscounted infinite horizon setting.
For any (proper) policy π the value function is

V π(x) = E
[T−1∑

t=0
rπ(xt) | x0 = x ;π

]
,

where rπ(xt) = r(xt , π(xt)) and T is the random time when the
terminal state is achieved.

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 44/76

The TD(1) Algorithm

Question

MC requires all the trajectories to be available at once, can we
update the estimator online?

⇒ TD(1)!

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 45/76

The TD(1) Algorithm

The TD(1) Algorithm

Algorithm Definition (TD(1))

Let (xn
0 = x , xn

1 , . . . , xn
Tn
) be the n-th trajectory and R̂n be the

corresponding return. For all xt with t ≤ T − 1 observed along the
trajectory, we update the value function estimate as

Vn(xn
t) = (1− ηn(xn

t))Vn−1(xn
t) + ηn(xn

t)R̂n(xn
t).

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 46/76

The TD(1) Algorithm

The TD(1) Algorithm

Each sample is an unbiased estimator of the value function

E
[
rπ(xt) + rπ(xt+1) + · · ·+ rπ(xT−1)|xt

]
= V π(xt),

then the convergence result of stochastic approximation of a mean
applies and if all the states are visited in an infinite number of
trajectories and for all x ∈ X∑

n
ηn(x) =∞,

∑
n
ηn(x)2 <∞,

then
Vn(x)

a.s.→ V π(x)

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 47/76

The TD(0) Algorithm

Outline

Mathematical Tools

The Monte-Carlo Algorithm

The TD(1) Algorithm

The TD(0) Algorithm

The TD(λ) Algorithm

The Q-learning Algorithm

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 48/76

The TD(0) Algorithm

Policy Evaluation

We consider the the problem of evaluating the performance of a
policy π in the undiscounted infinite horizon setting.
For any (proper) policy π the value function is

V π(x) = r(x , π(x)) +
∑
y∈X

p(y |x , π(x)V π(x) = T πV π(x).

⇒ use stochastic approximation for fixed point.

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 49/76

The TD(0) Algorithm

The TD(0) Algorithm

I Noisy observation of the operator T π:

T̂ πV (xt) = rπ(xt) + V (xt+1), with xt = x ,

I Unbiased estimator of T πV (x) since

E[T̂ πV (xt)|xt = x] = E[rπ(xt) + V (xt+1)|xt = x]

= r(x , π(x)) +
∑

y
p(y |x , π(x))V (y) = T πV (x).

I Bounded noise since

|T̂ πV (x)− T πV (x)| ≤ ||V ||∞.

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 50/76

The TD(0) Algorithm

The TD(0) Algorithm

Algorithm Definition (TD(0))

Let (xn
0 = x , xn

1 , . . . , xn
Tn
) be the n-th trajectory, and

{T̂ πVn−1(xn
t)}t the noisy observation of the operator T π. For all

xn
t with t ≤ T n − 1, we update the value function estimate as

Vn(xn
t) = (1− ηn(xn

t))Vn−1(xn
t) + ηn(xn

t)T̂ πVn−1(xn
t)

= (1− ηn(xn
t))Vn−1(xn

t) + ηn(xn
t)
(
rπ(xt) + Vn−1(xt+1)

)
.

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 51/76

The TD(0) Algorithm

The TD(0) Algorithm

if all the states are visited in an infinite number of trajectories and
for all x ∈ X ∑

n
ηn(x) =∞,

∑
n
ηn(x)2 <∞,

then
Vn(x)

a.s.→ V π(x)

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 52/76

The TD(0) Algorithm

The TD(0) Algorithm

Definition

At iteration n, given the estimator Vn−1 and a transition from
state xt to state xt+1 we define the temporal difference

dt =
(
rπ(xt) + Vn−1(xt+1)

)
− Vn−1(xt).

Remark: Recalling the definition of Bellman equation for state value
function, the temporal difference dn

t provides a measure of coherence of
the estimator Vn−1 w.r.t. the transition xt → xt+1.

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 53/76

The TD(0) Algorithm

The TD(0) Algorithm

Algorithm Definition (TD(0))

Let (xn
0 = x , xn

1 , . . . , xn
Tn
) be the n-th trajectory, and {dn

t }t the
temporal differences. For all xn

t with t ≤ T n − 1, we update the
value function estimate as

Vn(xn
t) = Vn−1(xn

t) + ηn(xn
t)dn

t .

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 54/76

The TD(λ) Algorithm

Outline

Mathematical Tools

The Monte-Carlo Algorithm

The TD(1) Algorithm

The TD(0) Algorithm

The TD(λ) Algorithm

The Q-learning Algorithm

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 55/76

The TD(λ) Algorithm

Comparison between TD(1) and TD(0)

I TD(1)

Vn(xt) = Vn−1(xt) + ηn(xt)[dn
t + dn

t+1 + · · ·+ dn
T−1].

I TD(0)

Vn(xn
t) = Vn−1(xn

t) + ηn(xn
t)dn

t .

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 56/76

The TD(λ) Algorithm

Question

Is it possible to take the best of both?

⇒ TD(λ)!

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 57/76

The TD(λ) Algorithm

The T πλ Bellman operator

Definition
Given λ < 1, then the Bellman operator T πλ is

T πλ = (1− λ)
∑
m≥0

λm(T π)m+1.

Remark: convex combination of the m-step Bellman operators (T π)m

weighted by a sequences of coefficients defined as a function of a λ.

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 58/76

The TD(λ) Algorithm

The TD(λ) Algorithm

Proposition
If π is a proper policy and T π is a β-contraction in Lµ,∞-norm,
then T πλ is a contraction of factor

(1− λ)β
1− βλ ∈ [0, β].

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 59/76

The TD(λ) Algorithm

The TD(λ) Algorithm

Proof. Let Pπ be the transition matrix of the Markov chain then

T πλ V = (1− λ)
[∑

m≥0
λm

m∑
i=0

(Pπ)i
]
rπ + (1− λ)

∑
m≥0

λm(Pπ)m+1V

=
[∑

m≥0
λm(Pπ)m

]
rπ + (1− λ)

∑
m≥0

λm(Pπ)m+1V

= (I − λPπ)−1rπ + (1− λ)
∑
m≥0

λm(Pπ)m+1V .

Since T π is a β-contraction then ||(Pπ)mV ||µ ≤ βm||V ||µ. Thus∥∥∥(1−λ)∑
m≥0

λm(Pπ)m+1V
∥∥∥
µ
≤ (1−λ)

∑
m≥0

λm||(Pπ)m+1V ||µ ≤
(1− λ)β
1− βλ ||V ||µ,

which implies that T πλ is a contraction in Lµ,∞ as well.

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 60/76

The TD(λ) Algorithm

The TD(λ) Algorithm

Algorithm Definition (Sutton, 1988)
Let (xn

0 = x , xn
1 , . . . , xn

Tn
) be the n-th trajectory, and {dn

t }t the
temporal differences. For all xt with t ≤ T − 1, we update the
value function estimate as

Vn(xn
t) = Vn−1(xn

t) + ηn(xn
t)

Tn−1∑
s=t

λs−tdn
s .

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 61/76

The TD(λ) Algorithm

The TD(λ) Algorithm

We need to show that the temporal difference samples are unbiased estimators.
For any s ≥ t

E[ds |xt = x] = E
[
rπ(xs) + Vn−1(xs+1)− Vn−1(xs)

∣∣xt = x
]

= E
[s∑

i=t
rπ(xi) + Vn−1(xs+1)

∣∣xt = x
]
− E

[s−1∑
i=k

rπ(xi) + Vn−1(xs)
∣∣xt = x

]
= (T π)s−t+1Vn−1(x)− (T π)s−tVn−1(x).

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 62/76

The TD(λ) Algorithm

The TD(λ) Algorithm

E
[T−1∑

s=t
λs−tds |xt = x

]
=

T−1∑
s=t

λs−t
[
(T π)s−t+1Vn−1(x)− (T π)s−tVn−1(x)

]
=

∑
m≥0

λm
[
(T π)m+1Vn−1(x)− (T π)mVn−1(x)

]
=

∑
m≥0

λm(T π)m+1Vn−1(x)−
[
Vn−1(x) +

∑
m>0

λm(T π)mVn−1(x)
]

=
∑
m≥0

λm(T π)m+1Vn−1(x)−
[
Vn−1(x) + λ

∑
m>0

λm−1(T π)mVn−1(x)
]

=
∑
m≥0

λm(T π)m+1Vn−1(x)−
[
Vn−1(x) + λ

∑
m≥0

λm(T π)m+1Vn−1(x)
]

= (1− λ)
∑
m≥0

λm(T π)m+1Vn−1(x)− Vn−1(x) = T πλ Vn−1(x)− Vn−1(x).

Then
Vn

a.s.−→ V π

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 63/76

The TD(λ) Algorithm

Sensitivity to λ

Linear chain example

0 1 3 4

−1

2

0 0 0

05

1

The MSE of Vn w.r.t. V π after n = 100 trajectories:

��

��

��
��

��

��

��

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�� �� �� �� ��
0.2 0.4 0.6 0.8 1 λ0

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 64/76

The TD(λ) Algorithm

Sensitivity to λ

I λ < 1: smaller variance w.r.t. λ = 1 (MC/TD(1)).
I λ > 0: faster propagation of rewards w.r.t. λ = 0.

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 65/76

The TD(λ) Algorithm

Question

Is it possible to update the V estimate at each step?

⇒ Online implementation!

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 66/76

The TD(λ) Algorithm

Online Implementation of TD algorithm: Eligibility Traces
Remark: since the update occurs at each step, now we drop the
dependency on n.
I Eligibility traces z ∈ RN

I For every transition xt → xt+1
1. Compute the temporal difference

dt = rπ(xt) + V (xt+1)− V (xt)

2. Update the eligibility traces

z(x) =

 λz(x) if x 6= xt
1 + λz(x) if x = xt
0 if xt = 0 (reset the traces)

3. For all state x ∈ X

V (x)← V (x) + ηt(x)z(x)dt .

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 67/76

The TD(λ) Algorithm

TD(λ) in discounted reward MDPs
The Bellman operator T πλ is defined as

T πλ V (x0) = (1− λ)E
[∑

t≥0
λt(t∑

i=0
γ i rπ(xi) + γt+1V (xt+1)

)]
= E

[
(1− λ)

∑
i≥0

γ i rπ(xi)
∑
t≥i

λt +
∑
t≥0

γt+1V (xt+1)(λ
t − λt+1)

]
= E

[∑
i≥0

λi(γ i rπ(xi) + γ i+1V (xi+1)− γ i V (xi)
)]

+ Vn(x0)

= E
[∑

i≥0
(γλ)i di

]
+ V (x0),

with the temporal difference di = rπ(xi) + γV (xi+1)− V (xi).
The corresponding TD(λ) algorithm becomes

Vn+1(xt) = Vn(xt) + ηn(xt)
∑
s≥t

(γλ)s−tdt .

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 68/76

The Q-learning Algorithm

Outline

Mathematical Tools

The Monte-Carlo Algorithm

The TD(1) Algorithm

The TD(0) Algorithm

The TD(λ) Algorithm

The Q-learning Algorithm

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 69/76

The Q-learning Algorithm

Question

How do we compute the optimal policy online?

⇒ Q-learning!

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 70/76

The Q-learning Algorithm

Q-learning

Remark: if we use TD algorithms to compute Vn ≈ V πk , then we
could compute the greedy policy as

πk+1(x) ∈ arg max
a

[
r(x , a) +

∑
y

p(y |x , a)Vn(y)
]
.

Problem: the transition p is unknown!!
Solution: use Q-functions and compute

πk+1(x) ∈ arg max
a

Qn(x , a)

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 71/76

The Q-learning Algorithm

Q-learning

Algorithm Definition (Watkins, 1989)
We build a sequence {Qn} in such a way that for every observed
transition (x , a, y , r)

Qn+1(x , a) = (1− ηn(x , a))Qn(x , a) + ηn(x , a)
[
r + max

b∈A
Qn(y , b)

]
.

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 72/76

The Q-learning Algorithm

Q-learning

Proposition
[Watkins et Dayan, 1992] Let assume that all the policies π are
proper and that all the state-action pairs are visited infinitely often.
If ∑

n≥0
ηn(x , a) =∞,

∑
n≥0

η2
n(x , a) <∞

then for any x ∈ X , a ∈ A,

Qn(x , a)
a.s.−→ Q∗(x , a).

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 73/76

The Q-learning Algorithm

Q-learning
Proof.
Optimal Bellman operator T

TW (x , a) = r(x , a) +
∑

y
p(y |x , a)max

b∈A
W (y , b),

with unique fixed point Q∗. Since all the policies are proper T is a
contraction in the Lµ,∞-norm.
Q-learning can be written as

Qn+1(x , a) = (1− ηn(x , a))Qn(x , a) + ηn[T Qn(x , a) + bn(x , a)],

where bn(x , a) is a zero-mean random variable such that

E[b2
n(x , a)] ≤ c(1 + max

y ,b
Q2

n(y , b))

The statement follows from convergence of stochastic approximation of
fixed point operators.

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 74/76

The Q-learning Algorithm

Bibliography I

A. LAZARIC – Reinforcement Learning Algorithms Oct 15th, 2013 - 75/76

The Q-learning Algorithm

Reinforcement Learning

Alessandro Lazaric
alessandro.lazaric@inria.fr

sequel.lille.inria.fr

	Mathematical Tools
	The Monte-Carlo Algorithm
	The TD(1) Algorithm
	The TD(0) Algorithm
	The TD() Algorithm
	The Q-learning Algorithm

