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In This Lecture

» How do we solve an MDP online?

= RL Algorithms
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In This Lecture

» Dynamic programming algorithms require an explicit
definition of
> transition probabilities p(|x, a)
» reward function r(x, a)

» This knowledge is often unavailable (i.e., wind intensity,
human-computer-interaction).

» Can we relax this assumption?
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In This Lecture

> Learning with generative model. A black-box simulator f of
the environment is available. Given (x, a),

f(x,a) ={y, r} with y ~ p(:|x,a),r = r(x, a).

» Episodic learning. Multiple trajectories can be repeatedly
generated from the same state x and terminating when a
reset condition is achieved:

(xb=x,xi,... ,X%—i)?zl.

» Online learning. At each time t the agent is at state x;, it
takes action a;, it observes a transition to state x;11, and it
receives a reward r;. We assume that x¢+1 ~ p(-|x, a;) and
re = r(xt, at) (i.e., MDP assumption).
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Mathematical Tools

Outline

Mathematical Tools

The Monte-Carlo Algorithm
The TD(1) Algorithm

The TD(0) Algorithm

The TD(A) Algorithm

The Q-learning Algorithm
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Mathematical Tools

Concentration Inequalities

Let X be a random variable and {X,},cn a sequence of r.v.
> {X,} converges to X almost surely, X, 25 X, if

P( lim X, = X) = 1,

n—o00

» {X,} converges to X in probability, X, N X, if for any € > 0,
lim P[| X, — X| > €] =0,
n—o00

> {X,} converges to X in law (or in distribution), X, 2y X, if for any

bounded continuous function f
lim E[f(X,)] = E[f(X)]
n—oo
Remark: X, 25 X — X, 25X — X, -2 X.
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Mathematical Tools

Concentration Inequalities

Proposition (Markov Inequality)

Let X be a positive random variable. Then for any a > 0,

P(X > a) < %.
Proof.
P(X > a) = E[I{X > a}] = E[I{X/a > 1}] < E[X/3]
[ |
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Mathematical Tools

Concentration Inequalities

Proposition (Hoeffding Inequality)

Let X be a centered random variable bounded in [a, b]. Then for

any s € R,
E[esX] < esz(b—a)2/8‘

. Cbreia—
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Mathematical Tools

Concentration Inequalities

Proof.
From convexity of the exponential function, for any a < x < b,
% X —a g b—x sa
<
€= b— ae + b—a
Let p = —a/(b — a) then (recall that E[X] = 0)
b a
E[e® < e _ esb
] =< b—a b—a

= (1—p+ pesb=)ers(b=2a) — o)
with u = s(b— a) and ¢(u) = —pu+ log(1 — p + pe") whose derivative is

v p
¢'u) = P A —pe

and ¢(0) = ¢/(0) = 0 and ¢"(u) = 22—y < 1/4,
Thus from Taylor’s theorem, the exists a 6 € [0, u] such that
u? uv?>  s%(b—a)?
5(0) = 6(0) +60/(0) + 2 (0) < & = T

. Cbreia—
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Mathematical Tools

Concentration Inequalities

Proposition (Chernoff-Hoeffding Inequality)

Let X; € [a;, b;| be n independent r.v. with mean p; = EX;. Then

PHEH}(X"—M)( > 32“"(‘%)-

. Crzia—~
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Mathematical Tools

Concentration Inequalities

Proof.

n
P Xi—mize) = BeXhXmzen)
i=1
< e *E[eS - X1, Markov inequality

n
= e *° HE[eS(X’*’“)], independent random variables
i=1

< et H esz(b’_a’)z/s, Hoeffding inequality
i=1

L st X (b-a)/8

If we choose s = 4¢/ Y7 (b; — a;)?, the result follows.

Similar arguments hold for IP’( S X — i < fe).

. Crzia—~
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Mathematical Tools

Monte-Carlo Approximation of a Mean

Definition

Let X be a random variable with mean ;. = E[X] and variance

02 = V[X] and x, ~ X be n i.i.d. realizations of X. The
Monte-Carlo approximation of the mean (i.e., the empirical mean)
built on n i.i.d. realizations is defined as

1 n
Hn = ;lei-
=

. brezia~
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Mathematical Tools

Monte-Carlo Approximation of a Mean

Unbiased estimator: Then E[u,] = 1 (and V[u,] = @)

| 4
> Weak law of large numbers: pn N I
a.s.
» Strong law of large numbers: i, = p.
» Central limit theorem (CLT): \/n(un — p) N N(0,V[X]).
» Finite sample guarantee:
2ne?
accuracy ~—
dev?artlon confidence
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Mathematical Tools

Monte-Carlo Approximation of a Mean

Unbiased estimator: Then E[u,] = p (and V[, = @)

v

v

Weak law of large numbers: (i, N L.
Strong law of large numbers: i, <=5 .
Central limit theorem (CLT): \/n(fin — p) 2, N (0, V[X]).

Finite sample guarantee:

v

v

v

P

& | 5
‘i;xt—E[Xl]‘>(b—a) °g2i/ ] <5
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Mathematical Tools

Monte-Carlo Approximation of a Mean

Unbiased estimator: Then E[u,] = p (and V[u,] = @)

v

Weak law of large numbers: i, LN -

v

Strong law of large numbers: i, == p.
Central limit theorem (CLT): \/n(pn — ) — N'(0, V[X]).

» Finite sample guarantee:

P[‘iixt—la[xl]) > e] <
t=1

- (b—a)?log2/§
if n > —55="

v

v

. brezia~
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Mathematical Tools

Exercise

Simulate n Bernoulli of probability p and verify the correctness and
the accuracy of the C-H bounds.
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Mathematical Tools

Stochastic Approximation of a Mean

Definition

Let X a random variable bounded in [0, 1] with mean ;. = E[X]
and x, ~ X be n i.i.d. realizations of X. The stochastic
approximation of the mean is,

pn = (1 = Nn)pn—1 + NnXn
with 1 = x1 and where (1),) is a sequence of learning steps.

Remark: When n, = % this is the recursive definition of empirical
mean.

. brezia~
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Mathematical Tools

Stochastic Approximation of a Mean

Proposition (Borel-Cantelli)

Let (En)n>1 be a sequence of events such that > -, P(E,) < oo,
then the probability of the intersection of an infinite subset is 0.
More formally,

]P’(IimsupEn) = IP’( ﬁ G Ek> — 0.

n=00 n=1 k=n

. brezia~
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Mathematical Tools

Stochastic Approximation of a Mean

Proposition

If for any n, n, > 0 and are such that
D mm=o0ci ) 1, <o,
n>0 n>0

then
=S,
Hn — [,

and we say that u, is a consistent estimator.

II(QZWQLA
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Mathematical Tools

Stochastic Approximation of a Mean

Proof. We focus on the case 1, = n=“.

In order to satisfy the two conditions we need 1/2 < o < 1. In fact, for
instance

1 2
a=2= Z = % < 00 (see the Basel problem)
n>0

a=1/2= Z (\}5)2 = ;rl, =00 (harmonic series).

n>0

. Cbreia—
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Mathematical Tools

Stochastic Approximation of a Mean

Proof (cont'd).

Case o =1

Let (ex)x a sequence such that ¢, — 0, almost sure convergence
corresponds to

]P’( lim p, = ,u) = P(Vk,3ng,Vn > ng, ‘,u,, — u‘ <e)=1
n—o0
From Chernoff-Hoeffding inequality for any fixed n
P(},un — u} >e€) < 262 (1)

Let {E,} be a sequence of events E, = {|, — p1| > €}. From C-H

> P(E,) < o,

n>1
and from Borel-Cantelli lemma we obtain that with probability 1 there
exist only a finite number of n values such that }u,, — u‘ > e

. Cbreia—
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Mathematical Tools

Stochastic Approximation of a Mean

Proof (cont'd).

Case o =1

Then for any €, there exist only a finite number of instants were
|1n — 11| > €, which corresponds to have Jny such that

P(Vn > ng, |,u,, f,u| <e)=1

Repeating for all ¢, in the sequence leads to the statement.

Remark: when @ =1, u, is the Monte-Carlo estimate and this corresponds to
the strong law of large numbers. A more precise and accurate proof is here:

http://terrytao.wordpress.com/2008/06/18/the-strong-law-of-large-numbers/

. Cbreia—
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Mathematical Tools

Stochastic Approximation of a Mean

Proof (cont'd).
Case 1/2 < o < 1. The stochastic approximation p, is

H1 = X1
po = (1L —m)u1 +mx2 = (1 — m2)x1 + m2x0
p3 = (1 —=mz)p2 +n3xz = (L —n2)(1 — m3)x1 + m2(1 — m3)x2 + 1333

Hn = Z /\in'a
i=1
with )\,’ =i H;:i+1(1 — 771) such that 27:1 )\,’ =1.
By C-H inequality

2¢2
2

P()> Aixi— > AE[x]| > €) =P(|un— | > €) < e T
i=1 i=1

. Cbreia—
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Mathematical Tools

Stochastic Approximation of a Mean

Proof (cont'd).
Case 1/2 < a< 1.
From the definition of \;

log \; = log7; + Z log(1 — n;) < logn; — Z )
Jj=i+1 Jj=i+1

since log(1 — x) < —x. Thus \; < n;e” 21 and for any 1 < m<n,

n n
Yo < 3o spe
i=1 i

—
L
—

B
i=m+1

(b)

< me 2n—mmn 4 (n— m)77,2n

—
0
~—

Il
3
o

—2(n—m)n~ < + (n . m)mf2o¢.
. Creia—
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Mathematical Tools

Stochastic Approximation of a Mean

Proof (cont'd).
Case 1/2 < a < 1.
Let m = n® with 8= (14 «/2)/2 (i.e. 1 —2a8=1/2—q):

n
ZA'? < ne—2(1—n*1/4)n1*‘* 4 plf2=a < gpt/2—a
i=1

for n big enough, which leads to

P((n— | > €) < &

From this point we follow the same steps as for « = 1 (application of the
Borel-Cantelli lemma) and obtain the convergence result for .

. Cbreia—
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Mathematical Tools

Stochastic Approximation of a Fixed Point

Let T : RN — RN be a contraction in some norm || - || with fixed
point V. For any function W and state x, a noisy observation
TW(x) = TW(x) + b(x) is available.

For any x € X = {1,..., N}, we defined the stochastic
approximation

A

Vn+1(X) = (]- - nn(X))Vn(X) + nn(X)(TVn(X))
= (1 = nn(x)) Va(x) + 12 (x)(T Va(x) + bn),

where 1, is a sequence of learning steps.

. brezia~
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Mathematical Tools

Stochastic Approximation of a Fixed Point

Let 7, ={Vo,..., Vi, bo, ..., bn—1,70,.-.,Mn} the filtration of the
algorithm and assume that

E[bn(x)|Fa] =0 and  E[by(x)|Fa] < c(1+|Vall?)

for a constant c.
If the learning rates n,(x) are positive and satisfy the stochastic
approximation conditions

Znn:oov ZT],2,<OO,

n>0 n>0

then for any x € X
Vi(x) 25 V(x).

. lreia—
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Mathematical Tools

Stochastic Approximation of a Zero

Robbins-Monro (1951) algorithm. Given a noisy function f, find x*
such that f(x*) = 0.

In each x,, observe y, = f(x,) + b, (with b, a zero-mean
independent noise) and compute

Xn+1 = Xn — NnYn-

If f is an increasing function, then under the same assumptions on
the learning step

a.s. «x
Xp — X

. Crzia—~
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Mathematical Tools

Stochastic Approximation of a Minimum

Kiefer-Wolfowitz (1952) algorithm. Given a function f and noisy
observations of its gradient, find x* = arg min f(x).

In each x,, observe g, = Vf(x,) + b, (with b, a zero-mean
independent noise) and compute

Xn+1 = Xn — Nn&n-

If the Hessian V2f is positive, then under the same assumptions
on the learning step
X, a.s. X

Remark: this is often referred to as the stochastic gradient algorithm.

. Cbreia—
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The Monte-Carlo Algorithm

Outline

Mathematical Tools

The Monte-Carlo Algorithm
The TD(1) Algorithm

The TD(0) Algorithm

The TD(A) Algorithm

The Q-learning Algorithm
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The Monte-Carlo Algorithm

Policy Evaluation

We consider the the problem of evaluating the performance of a
policy 7 in the undiscounted infinite horizon setting.
For any (proper) policy 7 the value function is

VT (x) = E[ r"(xe) | xo = x; w},

where r"(x¢) = r(x¢, m(x¢)) and T is the random time when the
terminal state is achieved.

. Crzia—~
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The Monte-Carlo Algorithm

Question

How can we estimate the value function if an episodic interaction
with the environment is possible?

= Monte-Carlo approximation of a mean!
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The Monte-Carlo Algorithm

The Monte-Carlo Algorithm

Algorithm Definition (Monte-Carlo)

Let (x§ = x,X{,...,xJ = 0)i<n be a set of n independent
trajectories starting from x and terminating after T; steps. For any
t < T;, we denote by

Ri(xd) = [r™(xd) + r"(xisa) + -+ (x5 )]

the return of the i-th trajectory at state x;.
Then the Monte-Carlo estimator of V™(x) is

n

Vo) = %Z () + (o) + -+ T (x )] = %Zﬁi(x)
=1 i=1
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The Monte-Carlo Algorithm

The Monte-Carlo Algorithm

All the returns are unbiased estimators of V™ (x) since
E[R'(x)] = E[r"(x{) + r"(x;y1) + -+ r" (x5 _1)] = V™ (x)

then
Va(x) 25 V().
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The Monte-Carlo Algorithm

First-visit and Every-Visit Monte-Carlo

Remark: any trajectory (xg, x1, X2, ..., x7) contains also the
sub-trajectory (x¢, X¢+1, - - -, XT) Whose return

R(xt) = r™(x¢) + - - - + r™(x7_1) could be used to build an
estimator of V7 (x;).

» First-visit MC. For each state x we only consider the
sub-trajectory when x is first achieved. Unbiased estimator,
only one sample per trajectory.

» Every-visit MC. Given a trajectory (xo = X, X1, X2,...,XT), We
list all the m sub-trajectories starting from x up to xr and we
average them all to obtain an estimate. More than one
sample per trajectory, biased estimator.

. Cbreia—
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The Monte-Carlo Algorithm

Question

More samples or no bias?

= Sometimes a biased estimator is preferable if consistent!
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The Monte-Carlo Algorithm

First-visit vs Every-Visit Monte-Carlo

Example: 2-state Markov Chain

The reward is 1 while in state 1 (while is 0 in the terminal state). All
trajectories are (xp = 1,x; = 1,...,x7 = 0). By Bellman equations

V(1):1+(1—p)V(1)+0-p:%,

since V(0) = 0.

. Cbreia—
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The Monte-Carlo Algorithm

First-visit vs Every-Visit Monte-Carlo

We measure the mean squared error (MSE) of Vwrt V

E[(V - V)] = (E[V] - V)>+E[(V - E[V])?]

Bias? Variance
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The Monte-Carlo Algorithm

First-visit vs Every-Visit Monte-Carlo

First-visit Monte-Carlo. All the trajectories start from state 1, then
the return over one single trajectory is exactly T, i.e., V =T.
The time-to-end T is a geometric r.v. with expectation

~ 1
E[V] =E[T] = ; = V™(1) = unbiased estimator.

Thus the MSE of V coincides with the variance of T, which is

B[(T-2) = =

. Cbreia—
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The Monte-Carlo Algorithm

First-visit vs Every-Visit Monte-Carlo

Every-visit Monte-Carlo. Given one trajectory, we can construct
T — 1 sub-trajectories (number of times state 1 is visited), where
the t-th trajectory has a return T — t.

T-1 T

~ 1 1 T+1

V=_ T—t)==> t'=——.

P2 (T-t=3> t=—;
t=0 t'=1
The corresponding expectation is
T+1 1
IE[ ;— } +p7éV7r( 1) = biased estimator.

. Crzia—~
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The Monte-Carlo Algorithm

First-visit vs Every-Visit Monte-Carlo

Let’s consider n independent trajectories, each of IengAth T;.
Total number of samples Z;’zl T; and the estimator V,, is

v T (Timt) S, TiTit )
! 27:1 T 227:1 Ti
_Yn¥L THTi+1)
B 2/”27:1 Ti

2s. E[T?]+E[T 1
= [ZI]E—[FT][] =5 V™(1) = consistent estimator.

The MSE of the estimator

T+1 1,2 1 3 1 1 1
S el e A

. Crzia—~
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The Monte-Carlo Algorithm

First-visit vs Every-Visit Monte-Carlo

In general
» Every-visit MC: biased but consistent estimator.

> First-visit MC: unbiased estimator with potentially bigger
MSE.

Remark: when the state space is large the probability of visiting multiple
times the same state is low, then the performance of the two methods
tends to be the same.

. Crzia—~
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The TD(1) Algorithm

Outline

Mathematical Tools

The Monte-Carlo Algorithm
The TD(1) Algorithm

The TD(0) Algorithm

The TD(A) Algorithm

The Q-learning Algorithm
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The TD(1) Algorithm

Policy Evaluation

We consider the the problem of evaluating the performance of a
policy 7 in the undiscounted infinite horizon setting.
For any (proper) policy 7 the value function is

VT (x) = E[ r"(xe) | xo = x; w},

where r"(x¢) = r(x¢, m(x¢)) and T is the random time when the
terminal state is achieved.

. Crzia—~
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The TD(1) Algorithm

Question

MC requires all the trajectories to be available at once, can we
update the estimator online?

= TD(1)!

ZARIC — Reinforcement Learning Algorithms



The TD(1) Algorithm

The TD(1) Algorithm

Algorithm Definition (TD(1))

Let (xg = x,x{,...,xF ) be the n-th trajectory and R" be the
corresponding return. For all x; with t < T — 1 observed along the
trajectory, we update the value function estimate as

Va(x) = (1 = 7n(x)) Va-1(x7) + 1a(x7)R"(x{).

. Cbreia—
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The TD(1) Algorithm

The TD(1) Algorithm

Each sample is an unbiased estimator of the value function
E[r(xe) + rM(xes1) + -+ rm(x7-1)|[xe] = V™ (xe),
then the convergence result of stochastic approximation of a mean

applies and if all the states are visited in an infinite number of
trajectories and for all x € X

Znn(x) = 00, Znn(x)Z < 00,

then
Va(x) 23 V7™ (x)

. Cbreia—
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The TD(0) Algorithm

Outline

Mathematical Tools

The Monte-Carlo Algorithm
The TD(1) Algorithm

The TD(0) Algorithm

The TD(A) Algorithm

The Q-learning Algorithm
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The TD(0) Algorithm

Policy Evaluation

We consider the the problem of evaluating the performance of a
policy 7 in the undiscounted infinite horizon setting.
For any (proper) policy 7 the value function is

VT (x) = r(x, m(x)) + > p(ylx, m(x) VT (x) = T"V™(x).

yeX

= use stochastic approximation for fixed point.

. Crzia—~
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The TD(0) Algorithm

The TD(0) Algorithm

> Noisy observation of the operator 7™:
TTV(xt) = r"(xe) + V(xes1), with x¢ = x,
» Unbiased estimator of 7™ V/(x) since

E[T™V(xe)|x = x] = E[r"(x) + V(xt+1)\xt = x]
= r(x, m(x +Zp (y|x,m(x))V(y) = T"V(x).

» Bounded noise since

TV () = T V)] < Voo

. Crzia—~
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The TD(0) Algorithm

The TD(0) Algorithm

Algorithm Definition (TD(0))

Let (xg = x,X{,...,x7 ) be the n-th trajectory, and

{T™V,_1(x")}+ the noisy observation of the operator 7. For all
x{ with t < T" — 1, we update the value function estimate as

Va(xf) = (1 = 0 (7)) Va1 () + 0 () T" Va1 (x{)
= (1 = 0n(x)) Va1 (x7) + 0 (x7) (™ (xe) + Va1(xe41)).-

. brezia~
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The TD(0) Algorithm

The TD(0) Algorithm

if all the states are visited in an infinite number of trajectories and
forall x € X

Znn(x) = 00, Znn(x)z < 00,

then
Vin(x) % V7 (x)

. brezia~
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The TD(0) Algorithm

The TD(0) Algorithm

Definition

At iteration n, given the estimator V,_1 and a transition from
state x; to state x;y1 we define the temporal difference

de = (r"(xe) + V1 (xe41)) — Va1(xe)-

Remark: Recalling the definition of Bellman equation for state value
function, the temporal difference d;’ provides a measure of coherence of
the estimator V,,_; w.r.t. the transition x; — X;y1.

. brezia~
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The TD(0) Algorithm

The TD(0) Algorithm

Algorithm Definition (TD(0))

Let (xg = x,x{,...,x} ) be the n-th trajectory, and {d{'} the
temporal differences. For all x{" with t < T" — 1, we update the
value function estimate as

Va(xt') = Va—1(x{) + nn(x{) dy

. Cbreia—
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The TD(X) Algorithm

Outline

Mathematical Tools

The Monte-Carlo Algorithm
The TD(1) Algorithm

The TD(0) Algorithm

The TD(A) Algorithm

The Q-learning Algorithm
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The TD(X) Algorithm

Comparison between TD(1) and TD(0)

» TD(1)
Va(xt) = Vao1(xe) +na(x)ld] +dfy g 4+ d7_q].
> TD(0)

Vo) = Vo1(4') + ma(x7) -
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The TD(X) Algorithm

Question

Is it possible to take the best of both?

= TD(\)!
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The TD(X) Algorithm

The 7,7 Bellman operator

Definition

Given \ < 1, then the Bellman operator 7" is

TI = (1) 3 AT,

m>0

Remark: convex combination of the m-step Bellman operators (77)™
weighted by a sequences of coefficients defined as a function of a A.

. Clreia—
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The TD(X) Algorithm

The TD(A) Algorithm

If 7 is a proper policy and T™ is a -contraction in L, o-norm,
then 7" is a contraction of factor

(1-X)5

1B € [0, 8].

. Crzia—~
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The TD(X) Algorithm

The TD(A) Algorithm

Proof. Let P™ be the transition matrix of the Markov chain then

TV = (1-A [ZA’"Z Y] e (=2 D APty
= [Z A'"(P’T)'"} T (L= A) Y APV
m>0 m>0
= (I=APT) T (1= X)) Am(PT)™HY.

Since T™ is a B-contraction then [[(P™)" V||, < 8™||V||.. Thus
1—

H(l A) Z)\’" (P™) '"+1VH (1-2) S AT(PT)™V|, < (77

m>0

which implies that 77" is a contraction in L, o, as well.

lrzia—
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The TD(X) Algorithm

The TD(A) Algorithm

Algorithm Definition (Sutton, 1988)

Let (xg = x,x{,...,x7 ) be the n-th trajectory, and {d[}; the
temporal differences. For all x; with t < T — 1, we update the
value function estimate as

Th—1
Vi(x¢') = Vi-1(x) + nn(x¢) Z AL

s=t

. brezia~
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The TD(X) Algorithm

The TD(A) Algorithm

We need to show that the temporal difference samples are unbiased estimators.
Forany s >t

E[dy|x; = x] = E [ﬂf(xs) + Vo1 (x61) = Vi1 (x6)|xe = x}

= ]E{Z r(x;) + Vn_l(xs+1)|xt = x} — [SZ_E r(x;) + Vio—1(xs |Xt = x}
i=k

i=t

= (T7) ™ WVoa(x) = (T Var (%)

. Crzia—~
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The TD(X) Algorithm

The TD(A) Algorithm

E[Tz_:l,\s—tdsbq = X] = Tz_:l A5t |:(7-7r)s—t+1 Vi (x) — (rr)s—tvn_l(x)]

= A7) V() — (T7) Vs ()]

!
- ZO AT Vo (x) = [Vama(x) + mzwxm(ﬂ)mvn_l(x)]
- ;xm(ﬂ)mﬂvn_l(x) [Vt + A;)Am*l(r")mvn_l(x)]
- ZO AT Vo (x) = [Vama(x) + A Z>O AT Vo (x))
= (; —)) mz;; AT M Vo1 (x) — vn_l(x)iz T Vi1 (x) = Vao1(x).
Then _ .
V, 25 v
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The TD(A) Algorithm
Sensitivity to A

Linear chain example

The MSE of V,, w.r.t. V™ after n = 100 trajectories:

. Cbreia—

A. LAZARIC — Reinforcement Learning Algorithms Oct 15th, 2013 - 64/76



The TD(X) Algorithm

Sensitivity to A

» X\ < 1: smaller variance w.r.t. A =1 (MC/TD(1)).
> \ > 0: faster propagation of rewards w.r.t. A = 0.

. brezia~
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The TD(X) Algorithm

Question

Is it possible to update the V' estimate at each step?

= Online implementation!
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The TD(X) Algorithm

Online Implementation of TD algorithm: Eligibility Traces

Remark: since the update occurs at each step, now we drop the
dependency on n.

» Eligibility traces z € RN
> For every transition x; — x¢41
1. Compute the temporal difference

di = r"(x) + V(xe41) — V(x)

2. Update the eligibility traces

Az(x) if x # x;
z(x)=<¢ 1+ Az(x) ifx=x
0 if xx = 0 (reset the traces)

3. For all state x € X

V(x) < V(x) + ne(x)z(x)de.
. lrzia—
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The TD(X) Algorithm

TD(\) in discounted reward MDPs

The Bellman operator 7" is defined as

T V(xo JE[D A Zv + 7V (xeq1))]

t>0 i=0
=)D A0 YA D ATV ) (AT - A
i>0 t>i t>0
=E[Y_ N (7" (x) +7" 1V (xi1) = 7'V(0)] + Valxo)
i>0
= E[Z(’Y)\)idi] + V(x0),
i>0

with the temporal difference d; = r™(x;) + vV(xi+1) — V(x).
The corresponding TD(\) algorithm becomes

Vitr1(xe) = Vi(xe) + nn(xe) Z(W\)S—tdt-

s>t

. brezia~

A. LAZARIC — Reinforcement Learning Algorithms Oct 15th, 2013 - 68/76



The Q-learning Algorithm

Outline

Mathematical Tools

The Monte-Carlo Algorithm
The TD(1) Algorithm

The TD(0) Algorithm

The TD(A) Algorithm

The Q-learning Algorithm
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The Q-learning Algorithm

Question

How do we compute the optimal policy online?

= Q-learning!
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The Q-learning Algorithm

Q-learning

Remark: if we use TD algorithms to compute V,, &~ V7, then we
could compute the greedy policy as

7Tk+1(X) carg maax [r(x, a) + Zp(y’X7 a) Vn(y)] :

Problem: the transition p is unknown!!
Solution: use Q-functions and compute

Tk+1(Xx) € arg max Qn(x, a)
a

. Crzia—~
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The Q-learning Algorithm

Q-learning

Algorithm Definition (Watkins, 1989)

We build a sequence {@,} in such a way that for every observed
transition (x,a,y,r)

Qni1(x;a) = (1 = na(x, ) Qn(x; @) + na(x, a) [r + max Qn(y, b)].

. Crzia—~
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The Q-learning Algorithm

Q-learning

Proposition

[Watkins et Dayan, 1992] Let assume that all the policies 7 are
proper and that all the state-action pairs are visited infinitely often.

If
Znn(x, a) = oo, Zn%(x, a) < oo

n>0 n>0

then for any x € X, a € A,

Qn(x, a) 25 Q*(x, a).
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The Q-learning Algorithm

Q-learning

Proof.
Optimal Bellman operator T

TW(Xv a) = r(Xv a) + zy:p(”Xv a) Teaz( W(Y? b)v

with unique fixed point Q*. Since all the policies are proper T is a
contraction in the L, o-norm.
Q-learning can be written as

Qui1(x,2) = (1= 1n(x, 3)) Qu(x: @) + 1a[T Qulx, ) + bn(x, )],
where b,(x, a) is a zero-mean random variable such that
E[b2(x, a)] < c(1 + max Q:(y, b))
¥

The statement follows from convergence of stochastic approximation of
fixed point operators.

. brezia~
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The Q-learning Algorithm
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