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In This Lecture

Question: which route should we take?

Problem: each day we obtain a limited feedback: traveling time
of the chosen route

Results: if we do not repeatedly try different options we cannot
learn.
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In This Lecture

Question: which route should we take?

Problem: each day we obtain a limited feedback: traveling time
of the chosen route

Results: if we do not repeatedly try different options we cannot
learn.

Solution: trade off between optimization and learning.

. Cbreia—

A. LAZARIC — Reinforcement Learning Algorithms Oct 28th, 2014



Mathematical Tools
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The Stochastic Multi-arm Bandit Problem

The Non-Stochastic Multi-arm Bandit Problem
Connections to Game Theory

Other Stochastic Multi-arm Bandit Problems
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Mathematical Tools

Concentration Inequalities

Proposition (Chernoff-Hoeffding Inequality)

Let X; € [a;, b;| be n independent r.v. with mean p; = EX;. Then

PHEH}(X"—“")( > 32“‘[’(‘%)-
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Mathematical Tools

Concentration Inequalities

Proof.

n
P(YoXi—mize) = BEXhXm>e)
i=1
< e SE[e* X XimH] Markov inequality

n
= e * HE[eS(X’*’“)], independent random variables
i=1

n

< et H esz(b’_a’)z/s, Hoeffding inequality
i=1

L emsest X, (b-a)/8

If we choose s =4¢/ Y7 (b; — a;)?, the result follows.

Similar arguments hold for IP’( S X — i < fe).
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Mathematical Tools

Concentration Inequalities

Finite sample guarantee:

1y 2ne?
- - < -
P ‘nZXt E[XI]‘> € _2exp( (b—a)2>
t=1 accuracy -
dev?artion confidence
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Mathematical Tools

Concentration Inequalities

Finite sample guarantee:

P[‘})ilXt—E[Xl]‘ > (b a) '°g2i/5] <4
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Mathematical Tools

Concentration Inequalities

Finite sample guarantee:

P["l?i:xt—E[Xl]‘ > e] <
t=1

. (b—a)?log2/6
if n > =525
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The General Multi-arm Bandit Problem

Outline

Mathematical Tools

The General Multi-arm Bandit Problem

The Stochastic Multi-arm Bandit Problem

The Non-Stochastic Multi-arm Bandit Problem
Connections to Game Theory

Other Stochastic Multi-arm Bandit Problems
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The General Multi-arm Bandit Problem

The Multi—armed Bandit Game

The learner has i = 1,..., N arms (options, experts, ...)

Ateachround t=1,...,n
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The General Multi-arm Bandit Problem

The Multi—armed Bandit Game

The learner has i = 1,..., N arms (options, experts, ...)

Ateachround t=1,...,n
» At the same time

» The environment chooses a vector of rewards {X; ;}V
» The learner chooses an arm /;

» The learner receives a reward X, ;
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The General Multi-arm Bandit Problem

The Multi—armed Bandit Game

The learner has i = 1,..., N arms (options, experts, ...)

Ateachround t=1,...,n
» At the same time

» The environment chooses a vector of rewards {X; ;}V
» The learner chooses an arm /;

» The learner receives a reward X, ;

» The environment does not reveal the rewards of the other
arms
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The General Multi-arm Bandit Problem

The Multi-armed Bandit Game (cont'd)

The regret
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The General Multi-arm Bandit Problem

The Multi-armed Bandit Game (cont'd)

The regret

Rn(A) = _max E[ZX, t} - E[Zn:xlt,t]
t=1

The expectation summarizes any possible source of randomness (either in
X or in the algorithm)
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The General Multi-arm Bandit Problem

The Exploration—Exploitation Lemma

Problem 1: The environment does not reveal the rewards of the
arms not pulled by the learner
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The General Multi-arm Bandit Problem

The Exploration—Exploitation Lemma

Problem 1: The environment does not reveal the rewards of the
arms not pulled by the learner

= the learner should gain information by repeatedly pulling all the
arms
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The General Multi-arm Bandit Problem

The Exploration—Exploitation Lemma

Problem 1: The environment does not reveal the rewards of the
arms not pulled by the learner

= the learner should gain information by repeatedly pulling all the
arms

Problem 2: Whenever the learner pulls a bad arm, it suffers some
regret
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The General Multi-arm Bandit Problem

The Exploration—Exploitation Lemma

Problem 1: The environment does not reveal the rewards of the
arms not pulled by the learner

= the learner should gain information by repeatedly pulling all the
arms

Problem 2: Whenever the learner pulls a bad arm, it suffers some
regret

= the learner should reduce the regret by repeatedly pulling the
best arm
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The General Multi-arm Bandit Problem

The Exploration—Exploitation Lemma

Problem 1: The environment does not reveal the rewards of the
arms not pulled by the learner

= the learner should gain information by repeatedly pulling all the
arms

Problem 2: Whenever the learner pulls a bad arm, it suffers some
regret

= the learner should reduce the regret by repeatedly pulling the
best arm

Challenge: The learner should solve two opposite problems!
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The General Multi-arm Bandit Problem

The Exploration—Exploitation Lemma

Problem 1: The environment does not reveal the rewards of the
arms not pulled by the learner

= the learner should gain information by repeatedly pulling all the
arms = exploration

Problem 2: Whenever the learner pulls a bad arm, it suffers some
regret

= the learner should reduce the regret by repeatedly pulling the
best arm

Challenge: The learner should solve two opposite problems!
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The General Multi-arm Bandit Problem

The Exploration—Exploitation Lemma

Problem 1: The environment does not reveal the rewards of the
arms not pulled by the learner

= the learner should gain information by repeatedly pulling all the
arms = exploration

Problem 2: Whenever the learner pulls a bad arm, it suffers some
regret

= the learner should reduce the regret by repeatedly pulling the
best arm = exploitation

Challenge: The learner should solve two opposite problems!
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The General Multi-arm Bandit Problem

The Exploration—Exploitation Lemma

Problem 1: The environment does not reveal the rewards of the
arms not pulled by the learner

= the learner should gain information by repeatedly pulling all the
arms = exploration

Problem 2: Whenever the learner pulls a bad arm, it suffers some
regret

= the learner should reduce the regret by repeatedly pulling the
best arm = exploitation

Challenge: The learner should solve the exploration-exploitation
dilemmal
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The General Multi-arm Bandit Problem

The Multi-armed Bandit Game (cont'd)

Examples
» Packet routing

Clinical trials

v

v

Web advertising

v

Computer games

v

Resource mining
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The Stochastic Multi-arm Bandit Problem

Outline

Mathematical Tools

The General Multi-arm Bandit Problem

The Stochastic Multi-arm Bandit Problem

The Non-Stochastic Multi-arm Bandit Problem
Connections to Game Theory

Other Stochastic Multi-arm Bandit Problems
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The Stochastic Multi-arm Bandit Problem

The Stochastic Multi—-armed Bandit Problem

The environment is stochastic

» Each arm has a distribution v; bounded in [0, 1] and
characterized by an expected value pi;

> The rewards are i.i.d. Xj; ~ v;
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The Stochastic Multi-arm Bandit Problem

The Stochastic Multi-armed Bandit Problem (cont'd)

Notation
» Number of times arm i has been pulled after n rounds

n

Tin=> Il =i}

t=1

. brezia~
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The Stochastic Multi-arm Bandit Problem

The Stochastic Multi-armed Bandit Problem (cont'd)

Notation

» Number of times arm i has been pulled after n rounds

ln = ZH{/t = ’}
t=1

> Regret

. brezia~
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The Stochastic Multi-arm Bandit Problem

The Stochastic Multi-armed Bandit Problem (cont'd)

Notation

» Number of times arm i has been pulled after n rounds

Tin= Z]I{lt =i}
t=1

> Regret
R.(A) = _max (npi) E[ZX&, }
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The Stochastic Multi-arm Bandit Problem

The Stochastic Multi-armed Bandit Problem (cont'd)

Notation

» Number of times arm i has been pulled after n rounds

Tin=> Il=i}
t=1

> Regret

Rn(A) = _max Z E[T; n)pi
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The Stochastic Multi-arm Bandit Problem

The Stochastic Multi-armed Bandit Problem (cont'd)

Notation

» Number of times arm i has been pulled after n rounds

Tin=> Il=i}
t=1

> Regret

N
Rn(A) = Npj= — ZE[Ti,n]Mi
i=1
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The Stochastic Multi-arm Bandit Problem

The Stochastic Multi-armed Bandit Problem (cont'd)

Notation

» Number of times arm i has been pulled after n rounds

Ton= "Ik = 1}
t=1

> Regret

= E[Tinl (i — 1)

i

. brezia~
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The Stochastic Multi-arm Bandit Problem

The Stochastic Multi-armed Bandit Problem (cont'd)

Notation

» Number of times arm i has been pulled after n rounds

Ton= "Ik = 1}
t=1

> Regret
Ra(A) =D E[T;A]A
i#i*

. brezia~
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The Stochastic Multi-arm Bandit Problem

The Stochastic Multi-armed Bandit Problem (cont'd)

Notation

» Number of times arm i has been pulled after n rounds

ln = Zﬂ{lt = ’}
t=1

> Regret
Ra(A) =D E[T;A]A
i#i*
> Gap A = pjx — pi

. brezia~
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The Stochastic Multi-arm Bandit Problem

The Stochastic Multi-armed Bandit Problem (cont'd)

Ra(A) = E[TnlA
i#i*
=- we only need to study the expected number of pulls of the
suboptimal arms

. brezia~
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The Stochastic Multi-arm Bandit Problem

The Stochastic Multi-armed Bandit Problem (cont'd)

Optimism in Face of Uncertainty Learning (OFUL)

Whenever we are uncertain about the outcome of an arm, we
consider the best possible world and choose the best arm.

. brezia~
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The Stochastic Multi-arm Bandit Problem

The Stochastic Multi-armed Bandit Problem (cont'd)

Optimism in Face of Uncertainty Learning (OFUL)

Whenever we are uncertain about the outcome of an arm, we
consider the best possible world and choose the best arm.

Why it works:
> If the best possible world is correct = no regret
> If the best possible world is wrong = the reduction in the
uncertainty is maximized

-
lrzia—
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The Stochastic Multi-arm Bandit Problem

The Stochastic Multi-armed Bandit Problem (cont'd)

. &’7»01’4/-

0 2
Rewards

pulls = 100

0 2
Rewards

pulls = 50

A. LAZARIC — Reinforcement Learni

-4 -2 0 2 4 6
Rewards
pulls = 200
2.5]
2]
1.5]
1
0.5]
% 2 0 2 4 6
Rewards
pulls = 20
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The Stochastic Multi-arm Bandit Problem

The Stochastic Multi-armed Bandit Problem (cont'd)

Optimism in face of uncertainty

0 2
Rewards

2 0
Rewards Rewards

. &’7»01’4/-

orcement Learni



The Stochastic Multi-arm Bandit Problem

The Upper—Confidence Bound (UCB) Algorithm
The idea

Reward

1 (‘1 0) 2 (‘73) 3 &3) 4 (éS)
Arms

. brezia~
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The Stochastic Multi-arm Bandit Problem

The Upper—Confidence Bound (UCB) Algorithm

Show time!

. brezia~
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The Stochastic Multi-arm Bandit Problem

The Upper—Confidence Bound (UCB) Algorithm (cont'd)

Ateachround t=1,...,n

» Compute the score of each arm i
B; = (optimistic score of arm i)

» Pull arm
It =arg max Bjs:

i=1,...,

» Update the number of pulls T}, s = T}, t—1 + 1

. brezia~
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The Stochastic Multi-arm Bandit Problem

The Upper—Confidence Bound (UCB) Algorithm (cont'd)

The score (with parameters p and ¢)

B; = (optimistic score of arm i)

. brezia~
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The Stochastic Multi-arm Bandit Problem

The Upper—Confidence Bound (UCB) Algorithm (cont'd)

The score (with parameters p and ¢)

Bi s.+ = (optimistic score of arm i if pulled s times up to round t)

. brezia~
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The Stochastic Multi-arm Bandit Problem

The Upper—Confidence Bound (UCB) Algorithm (cont'd)

The score (with parameters p and ¢)

Bi s+ = (optimistic score of arm i if pulled s times up to round t)

Optimism in face of uncertainty:
Current knowledge: average rewards fi; s
Current uncertainty: number of pulls s

. Cbreia—
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The Stochastic Multi-arm Bandit Problem

The Upper—Confidence Bound (UCB) Algorithm (cont'd)

The score (with parameters p and ¢)

Bis: = knowledge + uncertainty

optimism
Optimism in face of uncertainty:

Current knowledge: average rewards fi; s
Current uncertainty: number of pulls s

. Cbreia—
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The Stochastic Multi-arm Bandit Problem

The Upper—Confidence Bound (UCB) Algorithm (cont'd)

The score (with parameters p and ¢)

log1/6
2s

Bi,s,t = ,ai,s +p
Optimism in face of uncertainty:

Current knowledge: average rewards [i; s
Current uncertainty: number of pulls s

. Cbreia—
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The Stochastic Multi-arm Bandit Problem

The Upper—Confidence Bound (UCB) Algorithm (cont'd)

Do you remember Chernoff-Hoeffding?

Theorem

Let Xi1,...,X, be i.i.d. samples from a distribution bounded in
[a, b], then for any 6 € (0,1)

P[‘%ixt —E[Xl]‘ > (b a) 'ngi/(sl <
t=1

A. LAZARIC — Reinforcement Learning Algorithms Oct 28th, 2014 - 26/102



The Stochastic Multi-arm Bandit Problem

The Upper—Confidence Bound (UCB) Algorithm (cont'd)

After s pulls, arm i

P
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The Stochastic Multi-arm Bandit Problem

The Upper—Confidence Bound (UCB) Algorithm (cont'd)

After s pulls, arm

P >1-9

wi < flis +

log1/6
2s
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The Stochastic Multi-arm Bandit Problem

The Upper—Confidence Bound (UCB) Algorithm (cont'd)

After s pulls, arm f

P >1-96

i < ,ai,s + 7

Iogl/é]

= UCB uses an upper confidence bound on the expectation
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The Stochastic Multi-arm Bandit Problem

The Upper—Confidence Bound (UCB) Algorithm (cont'd)

For any set of N arms with distributions bounded in [0, b], if
d =1/t, then UCB(p) with p > 1, achieves a regret

2
Ra(A) <> %plog(n) +4, (; + ﬁ)]

i£i*
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The Stochastic Multi-arm Bandit Problem

The Upper—Confidence Bound (UCB) Algorithm (cont'd)

Let N =2 with i* =1

RolA) < o(iplog(ro)

Remark 1: the cumulative regret slowly increases as log(n)
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The Stochastic Multi-arm Bandit Problem

The Upper—Confidence Bound (UCB) Algorithm (cont'd)

Let N =2 with i* =1

RolA) < o(iplog(ro)

Remark 1: the cumulative regret slowly increases as log(n)
Remark 2: the smaller the gap the bigger the regret... why?
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The Stochastic Multi-arm Bandit Problem

The Upper—Confidence Bound (UCB) Algorithm (cont'd)

Show time (again)!
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The Stochastic Multi-arm Bandit Problem

The Worst—case Performance

Remark: the regret bound is distribution—dependent

Ra(A;A) <O (ip Iog(n))

. brezia~
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The Stochastic Multi-arm Bandit Problem

The Worst—case Performance

Remark: the regret bound is distribution—dependent

Rn(A; A) <O (ip Iog(n))

Meaning: the algorithm is able to adapt to the specific problem at
hand!

. Cbreia—
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The Stochastic Multi-arm Bandit Problem

The Worst—case Performance

Remark: the regret bound is distribution—dependent

Rn(A; A) <O (ip Iog(n))

Meaning: the algorithm is able to adapt to the specific problem at
hand!

Worst—case performance: what is the distribution which leads to
the worst possible performance of UCB? what is the
distribution—free performance of UCB?

Ra(A) = szp Rn(A; A)

-
bezia—
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The Stochastic Multi-arm Bandit Problem

The Worst—case Performance

Problem: it seems like if A — 0 then the regret tends to infinity...

. brezia~
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The Stochastic Multi-arm Bandit Problem

The Worst—case Performance

Problem: it seems like if A — 0 then the regret tends to infinity...
. nosense because the regret is defined as

R(A; A) = E[To,]A
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The Stochastic Multi-arm Bandit Problem

The Worst—case Performance

Problem: it seems like if A — 0 then the regret tends to infinity...
. nosense because the regret is defined as

R(A; A) = E[To,]A

then if A; is small, the regret is also small...
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The Stochastic Multi-arm Bandit Problem

The Worst—case Performance

Problem: it seems like if A — 0 then the regret tends to infinity...
. nosense because the regret is defined as

R(A; A) = E[To,]A

then if A; is small, the regret is also small...
In fact

Rn(A; A) = min {O(iplog(n)) ,E[T;,,]A}

. Cbreia—
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The Stochastic Multi-arm Bandit Problem

The Worst—case Performance

Then
Rn(A) = sup Rp(A; A) = sup min {O(lplog(n)) , nA} ~+/n
A A A

for A =+/1/n

. brezia~
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The Stochastic Multi-arm Bandit Problem

Tuning the confidence § of UCB

Remark: UCB is an anytime algorithm (6 = 1/t)

R log t
Bi,s,t = ljs+p 2gs

. bezia~
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The Stochastic Multi-arm Bandit Problem

Tuning the confidence § of UCB

Remark: UCB is an anytime algorithm (6 = 1/t)

log t
Bi,s,t = ljs+p 25
Remark: If the time horizon n is known then the optimal choice is
d=1/n
log n
Bi,s,t = jlist+p 2%
. &27 A. LAZARIC — Reinforcement Learning Algorithms Oct 28th, 2014 - 34/102




The Stochastic Multi-arm Bandit Problem

Tuning the confidence § of UCB (cont'd)

Intuition: UCB should pull the suboptimal arms
> Enough: so as to understand which arm is the best

» Not too much: so as to keep the regret as small as possible

. Cbreia—

A. LAZARIC — Reinforcement Learning Algorithms Oct 28th, 2014 -



The Stochastic Multi-arm Bandit Problem

Tuning the confidence § of UCB (cont'd)

Intuition: UCB should pull the suboptimal arms

> Enough: so as to understand which arm is the best

» Not too much: so as to keep the regret as small as possible
The confidence 1 — § has the following impact (similar for p)

> Big 1 —§: high level of exploration

» Small 1 — 0: high level of exploitation

. Crzia—~
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The Stochastic Multi-arm Bandit Problem

Tuning the confidence § of UCB (cont'd)

Intuition: UCB should pull the suboptimal arms

> Enough: so as to understand which arm is the best

» Not too much: so as to keep the regret as small as possible
The confidence 1 — § has the following impact (similar for p)

> Big 1 —§: high level of exploration

» Small 1 — 0: high level of exploitation

Solution: depending on the time horizon, we can tune how to
trade-off between exploration and exploitation

. Cbreia—
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The Stochastic Multi-arm Bandit Problem

Tuning the confidence § of UCB (cont'd)

Let's dig into the (1 page and half!!) proof.

Define the (high-probability) event [statistics]

g_{v,-vs S,/'OgW}
2s

By Chernoff-Hoeffding P[£] > 1 — nNJ.

ﬁi,s — M
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The Stochastic Multi-arm Bandit Problem

Tuning the confidence § of UCB (cont'd)

Let's dig into the (1 page and half!!) proof.

Define the (high-probability) event [statistics]

5:{\,,-,5 S,/'Oglﬁ}
2s

By Chernoff-Hoeffding P[€] > 1 — nNé.
At time t we pull arm i [algorithm]

ﬂi,s — K

B’.aTi,t—l > Bi*7Ti*,t—1

. brezia~
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The Stochastic Multi-arm Bandit Problem

Tuning the confidence § of UCB (cont'd)

Let's dig into the (1 page and half!!) proof.

Define the (high-probability) event [statistics]

g_{ws . /|og1/5}
2s

By Chernoff-Hoeffding P[€] > 1 — nNJ.
At time t we pull arm i [algorithm]

ﬁi,s — M

N logl/6 _ . log1/6
:u’l,Ti,t—l + 27—i,t—1 - lu"*ny*,t—l + 27—/*,1‘—1

. Cbreia—
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The Stochastic Multi-arm Bandit Problem

Tuning the confidence § of UCB (cont'd)

Let's dig into the (1 page and half!l) proof.

Define the (high-probability) event [statistics]

. log1/6
E=4V flis — pi| <
{ 1,5 |His — 1 2s }
By Chernoff-Hoeffding P[€] > 1 — nNé.
At time t we pull arm i [algorithm]
logl/6 _ . log1/§

fui, 70 2 fhie T oy F
* 2T; 1 ot 2T 1

On the event £ we have [math]
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The Stochastic Multi-arm Bandit Problem

Tuning the confidence § of UCB (cont'd)

Assume t is the last time i is pulled, then T; , = T;:_1 + 1, thus

log1/6

Hit o7, —n =

. brezia~
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The Stochastic Multi-arm Bandit Problem

Tuning the confidence § of UCB (cont'd)

Assume t is the last time i is pulled, then T; , = T; ;1 + 1, thus
log1/6
ST TE A

Reordering [math]

log1/6
202

under event £ and thus with probability 1 — n/N§.

+1

Tin <

. brezia~
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The Stochastic Multi-arm Bandit Problem

Tuning the confidence § of UCB (cont'd)

Assume t is the last time i is pulled, then T; , = T; ;1 + 1, thus
log1/6
ST TE A

Reordering [math]

log1/6

202
under event £ and thus with probability 1 — n/N§.
Moving to the expectation [statistics|

+1

Tin <

E[T;,] = E[T; ,I€] + E[T; ,IE€]

. Cbreia—
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The Stochastic Multi-arm Bandit Problem

Tuning the confidence § of UCB (cont'd)

Assume t is the last time i is pulled, then T; , = T; ;1 + 1, thus
log1/6
ST TE A

Reordering [math]

log1/6

202
under event £ and thus with probability 1 — n/N§.
Moving to the expectation [statistics|

+1

Tin <

log1/¢
2A?2

E[T; ] < + 1+ n(nNo)

. Cbreia—
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The Stochastic Multi-arm Bandit Problem

Tuning the confidence § of UCB (cont'd)

Assume t is the last time i is pulled, then T; , = T; ;1 + 1, thus
log1/6
ST TE A

Reordering [math]

log1/6

202
under event £ and thus with probability 1 — n/N§.
Moving to the expectation [statistics|

+1

Tin <

log1/¢
2N?
Trading-off the two terms § = 1/n?, we obtain

E[T; ] < + 1+ n(nNo)

. n 2logn
IU”aTi,t—l 27-’_71._1

. Crzia—~
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The Stochastic Multi-arm Bandit Problem

Tuning the confidence § of UCB (cont'd)

Trading-off the two terms § = 1/n?, we obtain

N n 2logn
lu”vTi,r—l 27-’_71._1

and

log n
E[Tin] < Agg +1+N

1

. brezia~
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The Stochastic Multi-arm Bandit Problem

Tuning the confidence § of UCB (cont'd)

Multi—-armed Bandit: the same for § =1/t and § =1/n...

. brezia~
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The Stochastic Multi-arm Bandit Problem

Tuning the confidence § of UCB (cont'd)

Multi—-armed Bandit: the same for § =1/t and § =1/n...
. almost (i.e., in expectation)

. brezia~
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The Stochastic Multi-arm Bandit Problem

Tuning the confidence § of UCB (cont'd)

The value—at—risk of the regret for UCB-anytime

4000

3000
1

Frequency
2000

1000
1

r T T T 1
0 1000 2000 3000 4000

Regret
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The Stochastic Multi-arm Bandit Problem

Tuning the p of UCB (cont'd)

UCB values (for the 6 = 1/n algorithm)

logn
2s

Bi,s = /’li,s +p
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The Stochastic Multi-arm Bandit Problem

Tuning the p of UCB (cont'd)

UCB values (for the 6 = 1/n algorithm)

logn
2s

Bis = flis+p
Theory
> p < 0.5, polynomial regret w.r.t. n
> p > 0.5, logarithmic regret w.r.t. n
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The Stochastic Multi-arm Bandit Problem

Tuning the p of UCB (cont'd)

UCB values (for the 6 = 1/n algorithm)

logn
2s

Bi,s = /’li,s +p

Theory
> p < 0.5, polynomial regret w.r.t. n

> p > 0.5, logarithmic regret w.r.t. n

Practice: p = 0.2 is often the best choice
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The Stochastic Multi-arm Bandit Problem

Tuning the p of UCB (cont'd)

UCB values (for the 6 = 1/n algorithm)

logn
Bis = flis+p
2s
Theory
> p < 0.5, polynomial regret w.r.t. n
> p > 0.5, logarithmic regret w.r.t. n
Practice: p = 0.2 is often the best choice
Regret of UCB1(p) for n = 1000 and K = 3 arms: Regret of UCB1(p) for n = 1000 and K = 5 arms:
" Ber(0.6), Ber(0.5) and Ber(0.5) Ber(0.7), Ber(0.6), Ber(0.5), Ber(0.4) and Ber(0.3)
45 : e 8
| [
0f e U
| —
B 36H T B
E”:ﬁn ‘J S",
s - s a0
£ 2w
g2 2.
£ &
10 2@
5 10
0.0 02 04 06 08 10 12 14 16 18 20 80 02 04 06 08 L0 12 14 16 18 20
Exploration parameter p Exploration parameter p
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The Stochastic Multi-arm Bandit Problem

Improvements over UCB: UCB-V

Idea: use Bernstein bounds with empirical variance
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The Stochastic Multi-arm Bandit Problem

Improvements over UCB: UCB-V

Idea: use Bernstein bounds with empirical variance

Algorithm:
log t ~D
Bist = flis +1\/ —— Vv N [267 logt 8logt
1,s,t s 25 Bi757t — Ni,s+ 1 ss + >
2
R, < O(— log n) Rn < O(— log n)

. Crzia—~
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The Stochastic Multi-arm Bandit Problem

Improvements over UCB: KL-UCB

Idea: use Kullback—Leibler bounds which are tighter than other
bounds

. brezia~
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The Stochastic Multi-arm Bandit Problem

Improvements over UCB: KL-UCB

Idea: use Kullback—Leibler bounds which are tighter than other

bounds
Algorithm: the algorithm is still index—based but a bit more
complicated
R<Oll R<O<#Ion>
n < 0(4 logn) "= KL, i)

. Crzia—~
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The Stochastic Multi-arm Bandit Problem

Improvements over UCB: Thompson strategy

Idea: Keep a distribution over the possible values of p;

. brezia~
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The Stochastic Multi-arm Bandit Problem

Improvements over UCB: Thompson strategy

Idea: Keep a distribution over the possible values of p;
Algorithm: Bayesian approach. Compute the posterior
distributions given the samples.

K=10, e=0.02
4000

—— Thompson
3500(| ——UCB
— Asymptotic lower bound

3000

2500

2000

Regret

1500

1000

500
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The Stochastic Multi-arm Bandit Problem

Back to UCB: the Lower Bound

For any stochastic bandit {v;}, any algorithm A has a regret

. Ry A
lim > -
n—oo logn — inf, KL(vj, V)

. Crzia—~
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The Stochastic Multi-arm Bandit Problem

Back to UCB: the Lower Bound

For any stochastic bandit {v;}, any algorithm A has a regret

. Ry A
lim > -
n—oo logn — inf, KL(vj, )

Problem: this is just asymptotic

. Crzia—~
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The Stochastic Multi-arm Bandit Problem

Back to UCB: the Lower Bound

Theorem

For any stochastic bandit {v;}, any algorithm A has a regret

. Ry A
lim > -
n—oo logn — inf, KL(vj, V)

Problem: this is just asymptotic
Open Question: what is the finite-time lower bound?

. Cbreia—
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The Non-Stochastic Multi-arm Bandit Problem

Outline

Mathematical Tools

The General Multi-arm Bandit Problem

The Stochastic Multi-arm Bandit Problem

The Non-Stochastic Multi-arm Bandit Problem
Connections to Game Theory

Other Stochastic Multi-arm Bandit Problems
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The Non-Stochastic Multi-arm Bandit Problem

The Non-Stochastic Multi—armed Bandit Problem

The environment is adversarial

» Arms have no fixed distribution

» The rewards X; ; are arbitrarily chosen by the environment

. Cbreia—
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The Non-Stochastic Multi-arm Bandit Problem

The Non—Stochastic Multi—-armed Bandit Problem (cont’d)

The (non-stochastic bandit) regret

R,(A) = i_TaxNIE[zn:X,-J} — E[zn:Xlt,t]
=1 t=1

. brezia~

A. LAZARIC — Reinforcement Learning Algorithms Oct 28th, 2014 - 48/102



The Non-Stochastic Multi-arm Bandit Problem

The Non—Stochastic Multi—-armed Bandit Problem (cont’d)

The (non—stochastic bandit) regret
n

R,(A) = max Xit— E[zn: Xlt,t}
t=1

i=1,..,N
t=1

. brezia~
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The Non-Stochastic Multi-arm Bandit Problem

The Exponentially Weighted Average Forecaster

Initialize the weights w;o =1

> Compute (W;_; = vazl Wit—1)

Pis = Wi t—1
je= it
’ W1
» Choose the arm at random

Iy ~ 6t
> Observe the rewards {X; ;}
> Receive a reward X, ¢
> Update

Wit = Wjt—1€xp ( + 77Xit.t)

. Cbreia—
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The Non-Stochastic Multi-arm Bandit Problem

The Non—Stochastic Multi—-armed Bandit Problem (cont’d)

Problem: we only observe the reward of the specific arm chosen at
time t!! (i.e., only X}, ; is observed)

. brezia~
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The Non-Stochastic Multi-arm Bandit Problem

The Exponentially Weighted Average Forecaster

Initialize the weights w;o =1

» Compute (W;_1 = vazl Wit-1)

B Wi t—1
it —
W;i_1
» Choose the arm at random
/t ~ f’t

> Observe-therewards{X++

Receive a reward Xj, ;

v

v

Update

wi,e = wic—1exp (nX, ) = this update is not possible

. brezia~
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The Non-Stochastic Multi-arm Bandit Problem

The Non—Stochastic Multi—-armed Bandit Problem (cont’d)

We use the importance weight trick

. Xie if = |,
Xit = g"t

otherwise
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The Non-Stochastic Multi-arm Bandit Problem

The Non—Stochastic Multi—-armed Bandit Problem (cont’d)

We use the importance weight trick

. Xie if = |,
Xit = g"t

otherwise

Why it is a good idea:

¢ Xit o N
E[Xi,t] = ’tPi,t +0(1 — pit) = X

Pit

A

Xi.¢+ is an unbiased estimator of X; ;

. brezia~
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The Non-Stochastic Multi-arm Bandit Problem

The Exp3 Algorithm

Exp3: Exponential-weight algorithm for Exploration and Exploitation

Initialize the weights wjo =1

» Compute (W, =SV 1 W

i=

Pii = Wi t—1
It —
Wi
» Choose the arm at random
It ~ l'it

> Receive a reward X, ¢

» Update

A

Wit = Wi t—1€Xp (77Xiut)

. Cbreia—
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The Non-Stochastic Multi-arm Bandit Problem

The Exp3 Algorithm

Question: is this enough? is this algorithm actually exploring
enough?
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The Non-Stochastic Multi-arm Bandit Problem

The Exp3 Algorithm

Question: is this enough? is this algorithm actually exploring
enough?
Answer: more or less...

» Exp3 has a small regret in expectation

» Exp3 might have large deviations with high probability (ie,
from time to time it may concentrate p: on the wrong arm for
too long and then incur a large regret)

-
brzia—
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The Non-Stochastic Multi-arm Bandit Problem

The Exp3 Algorithm

Fix: add some extra uniform exploration

Initialize the weights wjo =1

» Compute (W;_; = vazl Wit—1)

~ Wi t—1 7
P—— 1 A = —_
p’,t ( /) Wt—l + K
» Choose the arm at random
It ~ l'it

> Receive a reward X, ¢

» Update

A

Wit = Wi t—1€Xp (77Xiut)
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The Non-Stochastic Multi-arm Bandit Problem

The Exp3 Algorithm

Theorem

If Exp3 is run with v =1, then it achieves a regret
Nlog N
Rn(A) = max ZX, = [ZX,t, } (e—1)yGmax + ,),g

. n
with Gmax = maxj=1,..N 11 Xit-

. Cbreia—
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The Non-Stochastic Multi-arm Bandit Problem

The Exp3 Algorithm

Theorem

If Exp3 is run with

[ NloghN
V== (e—1)n

then it achieves a regret

Rn(A) < O(+/nNlog N)

. brezia~

A. LAZARIC — Reinforcement Learning Algorithms Oct 28th, 2014 - 57/102



The Non-Stochastic Multi-arm Bandit Problem

The Exp3 Algorithm

Comparison with online learning

Rn(Exp3) < O(+/nNlog N)
R,(EWA) < O(y/nlog N)

. brezia~
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The Non-Stochastic Multi-arm Bandit Problem

The Exp3 Algorithm

Comparison with online learning

Rn(Exp3) < O(+/nNlog N)
R,(EWA) < O(y/nlog N)

Intuition: in online learning at each round we obtain N feedbacks,
while in bandits we receive 1 feedback.

. Cbreia—
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The Non-Stochastic Multi-arm Bandit Problem

The Improved-Exp3 Algorithm

Initialize the weights w;o =1

> Compute (W;—1 = Efvzl Wit-1)

~ Wi t—1 v
i+ = 17,-\/ -
Pre=(=)g ="+ g

» Choose the arm at random
It ~ ﬁt

> Receive a reward X, ;
» Compute

> I6]

Xiit - X

’ pl t

» Update

Wit = Wi t—1€Xp (U;(int)
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The Non-Stochastic Multi-arm Bandit Problem

The Improved-Exp3 Algorithm

If Improved-Exp3 is run with parameters in the ranges

vy 1 N
L 0<n< L 4 lgt<p<t
o 0snsam (oyleg =A<

then it achieves a regret

N

S

RYF(A) < n(y +n(1 + B)N) +

with probability at least 1 — .

. brezia~
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The Non-Stochastic Multi-arm Bandit Problem

The Improved-Exp3 Algorithm

If Improved-Exp3 is run with parameters in the ranges

g g, AN o
VANt T35 TT N

then it achieves a regret

RHP(A) < % nN1og(N/5) + IoiN

with probability at least 1 — .

. brezia~
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Connections to Game Theory

Outline

Mathematical Tools

The General Multi-arm Bandit Problem

The Stochastic Multi-arm Bandit Problem

The Non-Stochastic Multi-arm Bandit Problem
Connections to Game Theory

Other Stochastic Multi-arm Bandit Problems
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Connections to Game Theory

Repeated Two—Player Zero-Sum Games

A two—player zero—sum game

A B C
1] 30,6 -30 | -10, 10 | 20, -20
2| 10,-10 | -20, 20 | -20, 20

. brezia~
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Connections to Game Theory

Repeated Two—Player Zero-Sum Games

A two—player zero—sum game

A B C
1130, -30 | -10, 10 | 20, -20
10, -10 | -20, 20 | -20, 20

Nash equilibrium:
A set of strategies is a Nash equilibrium if no player can do better by
unilaterally changing his strategy.

. Cbreia—
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Connections to Game Theory

Repeated Two—Player Zero-Sum Games

A two—player zero—sum game

A B C
1] 30,-30 | -10, 10 | 20, -20
10, -10 | -20, 20 | -20, 20

Nash equilibrium:

Red: take action I with prob. 4/7 and action 2 with prob. 3/7

Blue: take action A with prob. 0, action B with prob. 4/7, and action C
with prob. 3/7

. lrezia~
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Connections to Game Theory

Repeated Two—Player Zero-Sum Games

A two—player zero—sum game

A B C
1130, -30 | -10, 10 | 20, -20
2| 10,-10 | -20, 20 | -20, 20

Nash equilibrium:
Value of the game: V = 20/7 (reward of Red at the equilibrium)
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Connections to Game Theory

Repeated Two—Player Zero-Sum Games

At each round t
> Row player computes a mixed strategy p: = (P1,e,---, Pn,t)

> Column player computes a mixed strategy q; = (G1,¢,- .-, dm.t)

. brezia~
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Connections to Game Theory

Repeated Two—Player Zero-Sum Games

At each round t

> Row player computes a mixed strategy p: = (P1,e,---, Pn,t)

> Column player computes a mixed strategy q; = (G1,¢,- .-, dm.t)
> Row player selects action I, € {1,..., N}

> Column player selects action J; € {1,..., M}

. Cbreia—
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Connections to Game Theory

Repeated Two—Player Zero-Sum Games

At each round t

> Row player computes a mixed strategy p: = (P1,e,---, Pn,t)

> Column player computes a mixed strategy q; = (G1,¢,- .-, dm.t)
> Row player selects action I, € {1,..., N}

> Column player selects action J; € {1,..., M}

> Row player suffers ¢(1;, J;)
> Column player suffers —¢(1;, J;)

. Crzia—~
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Connections to Game Theory

Repeated Two—Player Zero-Sum Games

At each round t

> Row player computes a mixed strategy p: = (P1,e,---, Pn,t)

> Column player computes a mixed strategy q; = (G1,¢,- .-, dm.t)
> Row player selects action I, € {1,..., N}

> Column player selects action J; € {1,..., M}

> Row player suffers ¢(1;, J;)
> Column player suffers —¢(1;, J;)

Value of the game

V = maxmin{(p,q)

a P
with N M
Up,a) = pigit(iJ)

i=1 j=1

. Cbreia—
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Connections to Game Theory

Repeated Two—Player Zero-Sum Games

Question: what if the two players are both bandit algorithms
(e.g., Exp3)?

. brezia~
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Connections to Game Theory

Repeated Two—Player Zero-Sum Games

Question: what if the two players are both bandit algorithms

(e.g., Exp3)?
Row player: a bandit algorithm is able to minimize

n
(row) E 17 min E 4
et T i=1,...,N — iJt

. Crzia—~
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Connections to Game Theory

Repeated Two—Player Zero-Sum Games

Question: what if the two players are both bandit algorithms
(e.g., Exp3)?
Row player: a bandit algorithm is able to minimize

n
(row) E 17 min E 4
et T i=1,...,N — iJt

Col player: a bandit algorithm is able to minimize

n
CO| E f[t Ji — jm ,.I.Ij],M E K’t,j
t=1

. Cbreia—
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Connections to Game Theory

Repeated Two—Player Zero-Sum Games

If both the row and column players play according to an
Hannan-consistent strategy, then

. Cbreia—

A. LAZARIC — Reinforcement Learning Algorithms Oct 28th, 2014 - 66,/102



Connections to Game Theory

Repeated Two—Player Zero-Sum Games

Theorem

The empirical distribution of plays

RS I .
pi,n:;ZH{lt:’} Qj,n:EZ]I{Jt:J}
t=1 t=1

induces a product distribution p, X §, which converges to the set
of Nash equilibria p % q.

. Cbreia—
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Connections to Game Theory

Repeated Two—Player Zero-Sum Games
Proof idea.

Since £(p, J;) is linear, over the simplex, the minimum is at one of the
corners [math]

1. i
min N ;Z(th) = min — ;E(p,Jt)

. brezia~
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Connections to Game Theory

Repeated Two—Player Zero-Sum Games
Proof idea.

Since £(p, J;) is linear, over the simplex, the minimum is at one of the
corners [math]

1. i
min N ;é(th) = min — ;E(p,Jt)

We consider the empirical probability of the row player [def]

1 n
aj,n:E;M:j

. Cbreia—
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Connections to Game Theory

Repeated Two—Player Zero-Sum Games
Proof idea.

Since £(p, J;) is linear, over the simplex, the minimum is at one of the
corners [math]

1. i
min N ;é(th) = min — ;E(p,Jt)

We consider the empirical probability of the row player [def]

1 n
aj,n:E;M:j

Elaborating on it [math]

n M
1 = . S
min — > Hp, Jt) = min > 8i.nl(p.J)
t=1 Jj=1
= min/(p, §,)
p

< maxmin{(p,q) =V
5 a p
.&zu&»
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Connections to Game Theory

Repeated Two—Player Zero-Sum Games

Proof idea.
By definition of Hannan's consistent strategy [def]

lim sup 725 Iy, Je) = mln ZE ,Jt)

n— o0
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Connections to Game Theory

Repeated Two—Player Zero-Sum Games

Proof idea.
By definition of Hannan's consistent strategy [def]

lim sup 725 Iy, Je) = mln ZE ,Jt)

n— o0

Then
lim sup 725 Iy, Jy) <

n— 00
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Connections to Game Theory

Repeated Two—Player Zero-Sum Games

Proof idea.
By definition of Hannan's consistent strategy [def]

lim sup 725 Iy, Je) = mln ZE ,Jt)

n— o0

Then
lim sup 725 Iy, Jy) <

n— 00

If we do the same for the other player [zero—sum game]

lim sup 725 Iy, Je) >

n— 00 =1
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Connections to Game Theory

Repeated Two—Player Zero-Sum Games

Question: how fast do they converge to the Nash equilibrium?
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Connections to Game Theory

Repeated Two—Player Zero-Sum Games

Question: how fast do they converge to the Nash equilibrium?
Answer: it depends on the specific algorithm. For EWA(7), we
now that

. . . logN n 1
;g(ltn}t) - i:T.I.r.]NZK(I’Jt) < 7 + 8 V3 log <
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Connections to Game Theory

Repeated Two—Player Zero-Sum Games

Generality of the results

» Players do not know the payoff matrix
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Connections to Game Theory

Repeated Two—Player Zero-Sum Games

Generality of the results
» Players do not know the payoff matrix

» Players do not observe the loss of the other player
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Connections to Game Theory

Repeated Two—Player Zero-Sum Games

Generality of the results
» Players do not know the payoff matrix
» Players do not observe the loss of the other player

> Players do not even observe the action of the other player
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Connections to Game Theory

Internal Regret and Correlated Equilibria

External (expected) regret

Rn = Zz(ﬁty}/t) - inNZE("»Yt)
t=1 T =1

n N
= max Z Z f’j,t(f(jvyt) - E("’yt))

P |
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Connections to Game Theory

Internal Regret and Correlated Equilibria

External (expected) regret

Rn = Zz(ﬁtv}/t) i m|n ZE i yt)
=  Mmax Zzpjt g(f yt (”)/t))

=1 N S

Internal (expected) regret

= max ij, IYt)—E(Lyt))

ij=1,...N
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Connections to Game Theory

Internal Regret and Correlated Equilibria

Internal (expected) regret
R = m — 4
i laX E pj, t (i ye) (]7)/1'))

Intuition: an algorithm has small internal regret if, for each pair of
experts (i, ), the learner does not regret of not having followed
expert j each time it followed expert i.
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Connections to Game Theory

Internal Regret and Correlated Equilibria

Theorem

Given a K—person game with a set of correlated equilibria C. If all
the players are internal-regret minimizers, then the distance
between the empirical distribution of plays and the set of
correlated equilibria C converges to 0.
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Connections to Game Theory

Nash Equilibria in Extensive Form Games

A powerful model for sequential games
Checkers / Chess / Go
Poker

» Bargaining

v

v

v

Monitoring

v

Patrolling
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Connections to Game Theory

Nash Equilibria in Extensive Form Games

. Crzia—~

A. LAZARIC — Reinforcement Learning Algorithms Oct 28th, 2014 -



Connections to Game Theory

Nash Equilibria in Extensive Form Games
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Connections to Game Theory

Nash Equilibria in Extensive Form Games

No details about the algorithm... but...
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Connections to Game Theory

Nash Equilibria in Extensive Form Games

No details about the algorithm... but...

If player k selects actions according to the counterfactual regret
minimization algorithm, then it achieves a regret

| #£ actions
RkJ' < # states #T

. Cbreia—

A. LAZARIC — Reinforcement Learning Algorithms Oct 28th, 2014 -



Connections to Game Theory

Nash Equilibria in Extensive Form Games

No details about the algorithm... but...

If player k selects actions according to the counterfactual regret
minimization algorithm, then it achieves a regret

| #£ actions
kar < # states #T

In a two—player zero—sum extensive form game, counterfactual
regret minimization algorithms achieves an 2e-Nash equilibrium,

with
actions
€ < # states\/ #T

Theorem
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Other Stochastic Multi-arm Bandit Problems

Outline

Mathematical Tools

The General Multi-arm Bandit Problem

The Stochastic Multi-arm Bandit Problem

The Non-Stochastic Multi-arm Bandit Problem
Connections to Game Theory

Other Stochastic Multi-arm Bandit Problems
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Other Stochastic Multi-arm Bandit Problems

The Best Arm Identification Problem

Motivating Examples

v

Find the best shortest path in a limited number of days

» Maximize the confidence about the best treatment after a
finite number of patients

Discover the best advertisements after a training phase

v
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Other Stochastic Multi-arm Bandit Problems

The Best Arm Identification Problem

Objective: given a fixed budget n, return the best arm
i* = arg max; u; at the end of the experiment
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Other Stochastic Multi-arm Bandit Problems

The Best Arm Identification Problem

Objective: given a fixed budget n, return the best arm
i* = argmax; p; at the end of the experiment
Measure of performance: the probability of error

N
P[J, # i*] < Zexp ( — T;,nA,?)

i=1
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Other Stochastic Multi-arm Bandit Problems

The Best Arm Identification Problem

Objective: given a fixed budget n, return the best arm
i* = arg max; u; at the end of the experiment
Measure of performance: the probability of error

N
Pln # "] <D _exp (= Tinl})
i=1

Algorithm idea: mimic the behavior of the optimal strategy
12
A?
Ti n = :

) N 1
RS

n
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Other Stochastic Multi-arm Bandit Problems

The Best Arm Identification Problem
The Successive Reject Algorithm
> Divide the budget in N — 1 phases. Define
(log(N) =05+ 31, 1/i)
1 n—N
KT TogK N+1—k

n

A. LAZARIC — Reinforcement Learning Algorithms

Oct 28th, 2014 - 82/102



Other Stochastic Multi-arm Bandit Problems

The Best Arm Identification Problem

The Successive Reject Algorithm

> Divide the budget in N — 1 phases. Define
(log(N) =05+ 31, 1/i)

1 n—N
KT TogK N+1—k

n

> Set of active arms Ay at phase k (A1 ={1,...,N})
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Other Stochastic Multi-arm Bandit Problems

The Best Arm Identification Problem
The Successive Reject Algorithm
> Divide the budget in N — 1 phases. Define
(log(N) =05+ 31, 1/i)
1 n—N
KT TogK N+1—k

n

> Set of active arms Ay at phase k (A1 ={1,...,N})
» For each phase k=1,...,N —1

» For each arm j € A, pull arm i for nx — nx_1 rounds
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Other Stochastic Multi-arm Bandit Problems

The Best Arm Identification Problem
The Successive Reject Algorithm
> Divide the budget in N — 1 phases. Define
(log(N) =05+ 31, 1/i)

1 n—N
KT TogK N+1—k

n

> Set of active arms Ay at phase k (A1 ={1,...,N})
» For each phase k=1,...,N —1

» For each arm j € A, pull arm i for nx — nx_1 rounds
» Remove the worst arm

Aks1 = Ai\ arg min fij n,
€A

-
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Other Stochastic Multi-arm Bandit Problems

The Best Arm Identification Problem
The Successive Reject Algorithm
> Divide the budget in N — 1 phases. Define
(log(N) =05+ 31, 1/i)

1 n—N
KT TogK N+1—k

n

> Set of active arms Ay at phase k (A1 ={1,...,N})
» For each phase k=1,...,N —1

» For each arm j € A, pull arm i for nx — nx_1 rounds
» Remove the worst arm

Aks1 = Ai\ arg min fij n,
€A

> Return the only remaining arm J, = Ap
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Other Stochastic Multi-arm Bandit Problems

The Best Arm Identification Problem

The Successive Reject Algorithm

Theorem

The successive reject algorithm have a probability of doing a
mistake of

w o K(K-1) n—N
P[J"#I]STeXp(_@NH)

with Hy = max;—1 . n iAa)z.
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Other Stochastic Multi-arm Bandit Problems

The Best Arm Identification Problem

The UCB-E Algorithm

» Define an exploration parameter a

. a
Bi,s = ljs+ \/:

» Compute
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Other Stochastic Multi-arm Bandit Problems

The Best Arm Identification Problem

The UCB-E Algorithm

» Define an exploration parameter a

. a
Bi,s = ljs+ \/:

» Compute

» Select

It = arg max

i,s

-
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Other Stochastic Multi-arm Bandit Problems

The Best Arm Identification Problem

The UCB-E Algorithm

» Define an exploration parameter a
N a
Bi,s = ljs+ \/:

It = arg max

i,s

» Compute

» Select

» At the end return

Jn = argmax fi; T, ,
1

-
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Other Stochastic Multi-arm Bandit Problems

The Best Arm Identification Problem

The UCB-E Algorithm

Theorem

The UCB-E algorithm with a = % ”ﬁlN has a probability of doing a
mistake of

P[Jn # i*] < 2nN exp ( - ;—Z)

with Hy = SN L 1/A2.
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Other Stochastic Multi-arm Bandit Problems

The Best Arm Identification Problem

Experiment 1, n=2000 Experiment 7, n=12000
05 T 0.35
1: Unif
0.45 2-4:HR
5:SR 03 - 5:SR
04 6-9:UCB-E 6-9: UCB-E
10-14 : Ad UCB-E ” 10-14 : Ad UCB-E|
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Other Stochastic Multi-arm Bandit Problems

The Active Bandit Problem

Motivating Examples

» N production lines
» The test of the performance of a line is expensive
» We want an accurate estimation of the performance of each

production line

Oct 28th, 2014
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Other Stochastic Multi-arm Bandit Problems

The Active Bandit Problem

Objective: given a fixed budget n, return the an estimate of the
means fi;  which is as accurate as possible for all the arms
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Other Stochastic Multi-arm Bandit Problems

The Active Bandit Problem

Objective: given a fixed budget n, return the an estimate of the
means fi;  which is as accurate as possible for all the arms

Notice: Given an arm has a mean y; and a variance a,-2, if it is
pulled T; , times, then

Lin=E[(fi1,, — mi)*] = =
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Other Stochastic Multi-arm Bandit Problems

The Active Bandit Problem

Objective: given a fixed budget n, return the an estimate of the
means fi;  which is as accurate as possible for all the arms

Notice: Given an arm has a mean y; and a variance a,-2, if it is
pulled T; , times, then

Lin=E[(fi1,, — mi)*] = =

L, = maxL;,
1
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Other Stochastic Multi-arm Bandit Problems

The Active Bandit Problem

Problem: what are the number of pulls (71 ,..., Tn,n) (such
that Y T; , = n) which minimizes the loss?

(T{ Tyn)=arg  min L
Ly I N, n
" (T1,n5- Th,n)
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Other Stochastic Multi-arm Bandit Problems

The Active Bandit Problem

Problem: what are the number of pulls (71 ,..., Tn,n) (such
that Y T; , = n) which minimizes the loss?

(T{ Tyn)=arg  min L
Ly I N, n
" (T1,n5- Th,n)

Answer
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Other Stochastic Multi-arm Bandit Problems

The Active Bandit Problem

Problem: what are the number of pulls (71 ,..., Tn,n) (such
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Other Stochastic Multi-arm Bandit Problems

The Active Bandit Problem

Objective: given a fixed budget n, return the an estimate of the
means [i;  which is as accurate as possible for all the arms
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Other Stochastic Multi-arm Bandit Problems

The Active Bandit Problem

Objective: given a fixed budget n, return the an estimate of the
means [i;  which is as accurate as possible for all the arms
Measure of performance: the regret on the quadratic error

N o2
Ro(A) = max Ly(A) — 2=i=L1

n
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Other Stochastic Multi-arm Bandit Problems

The Active Bandit Problem

Objective: given a fixed budget n, return the an estimate of the
means [i;  which is as accurate as possible for all the arms
Measure of performance: the regret on the quadratic error

N o2
Ro(A) = max Ly(A) — 2=i=L1

n
Algorithm idea: mimic the behavior of the optimal strategy

2

o;
Ti,n = 7,\, 2 n= )\,-n
j=19j
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Other Stochastic Multi-arm Bandit Problems

The Active Bandit Problem

An UCB-based strategy
At each timestept=1,...,n

» Estimate
1 Tit—1
A2 _ 2 ~2
OiTie1 — Tit1 Z XSJ LT
I,t— s—1
» Compute
1
B, t — ((/7\'2
) I,T‘ —
Tit—1 et
» Pull arm

l; = argmax B; +

. Cbreia—
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Other Stochastic Multi-arm Bandit Problems

The Active Bandit Problem

The UCB-based algorithm achieves a regret

Ro(4) < S22E0) 1 o 57

= 13/2)5/2 n?
n / )‘min
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Other Stochastic Multi-arm Bandit Problems

The Active Bandit Problem

The UCB-based algorithm achieves a regret

Ro(A) < Blogln) O<|ogn>

3/25/2 n?
n / )\min

. Crzia—~
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Other Stochastic Multi-arm Bandit Problems

The Contextual Linear Bandit Problem

Motivating Examples

» Different users may have different preferences
» The set of available news may change over time
» We want to minimise the regret w.r.t. the best news for each

user

-
breia—
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Other Stochastic Multi-arm Bandit Problems

The Contextual Linear Bandit Problem

The problem: at each timet=1,...,n

» User u; arrives and a set of news A; is provided

» The user u; together with a news a € A; are described by a
feature vector x; ,

» The learner chooses a news a; and receives a reward r; ,,

The optimal news: at each time t = 1,..., n, the optimal news is
*
a; = argmaxE|[r
t gaeAt [r2,a]

The regret:

Ro— B[ reot| [ 3 rea]
t=1

. brezia~
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Other Stochastic Multi-arm Bandit Problems

The Contextual Linear Bandit Problem

The linear assumption: the reward is a linear combination
between the context and an unknown parameter vector

Elre.alxe,a] = X; 10
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Other Stochastic Multi-arm Bandit Problems

The Contextual Linear Bandit Problem

The linear regression estimate:
> To={t:a=a}
» Construct the design matrix of all the contexts observed when
action a has been taken D, € RI7alxd

» Construct the reward vector of all the rewards observed when
action a has been taken ¢, € RI7|

» Estimate 6, as

0,=(DID,+ND]c,
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Other Stochastic Multi-arm Bandit Problems

The Contextual Linear Bandit Problem

Optimism in face of uncertainty: the LinUCB algorithm

» Chernoff-Hoeffding in this case becomes

‘Xt—[—aé\a - E[rt7a|xt’a” S Oé\/X;,ra(DaTDa + I)ilxt,a

> and the UCB strategy is

a; = arg max Xe a0a + /) x! (DT Dy + 1) 1x;
ae t I )

. Cbreia—
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Other Stochastic Multi-arm Bandit Problems

The Contextual Linear Bandit Problem

The evaluation problem
» Online evaluation: too expensive

» Offline evaluation: how to use the logged data?

. Cbreia—
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Other Stochastic Multi-arm Bandit Problems

The Contextual Linear Bandit Problem

Evaluation from logged data

» Assumption 1: contexts and rewards are i.i.d. from a
stationary distribution

(X1, s XKy M1y 1) ~ D

> Assumption 2: the logging strategy is random

. Crzia—~
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Other Stochastic Multi-arm Bandit Problems

The Contextual Linear Bandit Problem

Evaluation from logged data: given a bandit strategy =, a
desired number of samples T, and a (infinite) stream of data

Algorithm 3 Policy_Evaluator.

—_

SRR IN RO

: Inputs: T' > 0; policy ; stream of events
ho < (0 {An initially empty history}
Ro <+ 0 {An initially zero total payoff}
fort=1,2,3,...,Tdo
repeat
Get next event (X1, ..., Xk, G, Tq)
until 7 (he—1, (x1,...,XK)) = a
ht < CONCATENATE(h¢—1, (X1, ..., XK,y Tq))
Ri < Ri—1+7a
end for
Output: Rt /T

§\
§~
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Other Stochastic Multi-arm Bandit Problems
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