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Sources of Error

I Approximation error. If X is large or continuous, value
functions V cannot be represented correctly
⇒ use an approximation space F

I Estimation error. If the reward r and dynamics p are
unknown, the Bellman operators T and T π cannot be
computed exactly
⇒ estimate the Bellman operators from samples
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In This Lecture

I Infinite horizon setting with discount γ
I Study the impact of estimation error
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In This Lecture: Warning!!

Problem: are these performance bounds accurate/useful?

Answer: of course not! :)

Reason: upper bounds, non-tight analysis, worst case.
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In This Lecture: Warning!!

Chernoff-Hoeffding inequality

P

[∣∣∣1n

n∑

t=1
Xt − E[X1]

∣∣∣ > (b − a)

√
log 2/δ

2n

]
≤ δ

⇒ worst-case w.r.t. to all the distributions bounded in [a, b], loose
for other distributions.
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In This Lecture: Warning!!

Question: so why should we derive/study these bounds?

Answer:
I General guarantees
I Rates of convergence (not always available in asymptotic

analysis)
I Explicit dependency on the design parameters
I Explicit dependency on the problem parameters
I First guess on how to tune parameters
I Better understanding of the algorithms
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Sample Complexity of LSTD The Algorithm
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Sample Complexity of LSTD The Algorithm

Least-Squares Temporal-Difference Learning (LSTD)
I Linear function space F =

{
f : f (·) =

∑d
j=1 αjϕj(·)

}

I V π is the fixed-point of T π V π = T πV π

I V π may not belong to F V π /∈ F

I Best approximation of V π in F is

ΠV π = arg min
f∈F
||V π − f || (Π is the projection onto F)

F

V π
T π

ΠV π
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Sample Complexity of LSTD The Algorithm

Least-Squares Temporal-Difference Learning (LSTD)

I LSTD searches for the fixed-point of Π?T π instead (Π? is a
projection into F w.r.t. L?-norm)

I Π∞T π is a contraction in L∞-norm

I L∞-projection is numerically expensive when the number of
states is large or infinite

I LSTD searches for the fixed-point of Π2,ρT π

Π2,ρ g = arg min
f ∈F
||g − f ||2,ρ
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Sample Complexity of LSTD The Algorithm

Least-Squares Temporal-Difference Learning (LSTD)

When the fixed-point of ΠρT π exists, we call it the LSTD solution
VTD = ΠρT πVTD

F

V π

T πVTDT π

T π

ΠρV
π VTD = ΠρT πVTD

〈T πVTD − VTD, ϕi〉ρ = 0, i = 1, . . . , d
〈rπ + γPπVTD − VTD, ϕi〉ρ = 0

〈rπ, ϕi〉ρ︸ ︷︷ ︸
bi

−
d∑

i=1
〈ϕj − γPπϕj , ϕi〉ρ︸ ︷︷ ︸

Aij

· α(j)
TD = 0 −→ A αTD = b
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Sample Complexity of LSTD The Algorithm

LSTD Algorithm

I In general, ΠρT π is not a contraction and does not have a
fixed-point.

I If ρ = ρπ, the stationary dist. of π, then ΠρπT π has a unique
fixed-point.

Proposition (LSTD Performance)

||V π − VTD||ρπ ≤
1√

1− γ2
inf

V∈F
||V π − V ||ρπ
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Sample Complexity of LSTD The Algorithm

LSTD Algorithm

Empirical LSTD
I We observe a trajectory (X0,R0,X1,R1, . . . ,XN) where

Xt+1 ∼ P
(
· |Xt , π(Xt)

)
and Rt = r

(
Xt , π(Xt)

)

I We build estimators of the matrix A and vector b

Âij =
1
N

N−1∑

t=0
ϕi (Xt)

[
ϕj(Xt)−γϕj(Xt+1)

]
, b̂i =

1
N

N−1∑

t=0
ϕi (Xt)Rt

I Âα̂TD = b̂ , V̂TD(·) = φ(·)>α̂TD

when n→∞ then Â→ A and b̂ → b, and thus, α̂TD → αTD and
V̂TD → VTD.
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Sample Complexity of LSTD LSTD and LSPI Error Bounds

LSTD Error Bound
When the Markov chain induced by the policy under evaluation π has a
stationary distribution ρπ (Markov chain is ergodic - e.g. β-mixing), then

Theorem (LSTD Error Bound)

Let Ṽ be the truncated LSTD solution computed using n samples along
a trajectory generated by following the policy π. Then with probability
1− δ, we have

||V π − Ṽ ||ρπ ≤
c√

1− γ2
inf

f∈F
||V π − f ||ρπ + O

(√
d log(d/δ)

n ν

)

I n = # of samples , d = dimension of the linear function space F

I ν = the smallest eigenvalue of the Gram matrix (
∫
ϕi ϕj dρπ)i,j

(Assume: eigenvalues of the Gram matrix are strictly positive - existence of the
model-based LSTD solution)

I β-mixing coefficients are hidden in the O(·) notation
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Sample Complexity of LSTD LSTD and LSPI Error Bounds

LSTD Error Bound

LSTD Error Bound

||V π − Ṽ ||ρπ ≤
c√

1− γ2
inf

f∈F
||V π − f ||ρπ

︸ ︷︷ ︸
approximation error

+ O
(√

d log(d/δ)

n ν

)

︸ ︷︷ ︸
estimation error

I Approximation error: it depends on how well the function space F
can approximate the value function V π

I Estimation error: it depends on the number of samples n, the dim of
the function space d , the smallest eigenvalue of the Gram matrix ν, the
mixing properties of the Markov chain (hidden in O)
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Sample Complexity of LSTD LSTD and LSPI Error Bounds

LSPI Error Bound

Theorem (LSPI Error Bound)

Let V−1 ∈ F̃ be an arbitrary initial value function, Ṽ0, . . . , ṼK−1 be the
sequence of truncated value functions generated by LSPI after K iterations,
and πK be the greedy policy w.r.t. ṼK−1. Then with probability 1− δ, we have

||V ∗−VπK ||µ ≤
4γ

(1− γ)2

{√
CCµ,ρ

[
cE0(F) + O

(√
d log(dK/δ)

n νρ

)]
+ γ

K−1
2 Rmax

}
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Sample Complexity of LSTD LSTD and LSPI Error Bounds

LSPI Error Bound

Theorem (LSPI Error Bound)

Let V−1 ∈ F̃ be an arbitrary initial value function, Ṽ0, . . . , ṼK−1 be the
sequence of truncated value functions generated by LSPI after K iterations,
and πK be the greedy policy w.r.t. ṼK−1. Then with probability 1− δ, we have

||V ∗−VπK ||µ ≤
4γ

(1− γ)2

{√
CCµ,ρ

[
cE0(F) + O

(√
d log(dK/δ)

n νρ

)]
+ γ

K−1
2 Rmax

}

I Approximation error: E0(F) = supπ∈G(F̃) inf f∈F ||V π − f ||ρπ
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Sample Complexity of LSTD LSTD and LSPI Error Bounds

LSPI Error Bound

Theorem (LSPI Error Bound)

Let V−1 ∈ F̃ be an arbitrary initial value function, Ṽ0, . . . , ṼK−1 be the
sequence of truncated value functions generated by LSPI after K iterations,
and πK be the greedy policy w.r.t. ṼK−1. Then with probability 1− δ, we have

||V ∗−VπK ||µ ≤
4γ

(1− γ)2

{√
CCµ,ρ

[
cE0(F) + O

(√
d log(dK/δ)

n νρ

)]
+ γ

K−1
2 Rmax

}

I Approximation error: E0(F) = supπ∈G(F̃) inf f∈F ||V π − f ||ρπ

I Estimation error: depends on n, d , νρ,K
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Sample Complexity of LSTD LSTD and LSPI Error Bounds

LSPI Error Bound
Theorem (LSPI Error Bound)

Let V−1 ∈ F̃ be an arbitrary initial value function, Ṽ0, . . . , ṼK−1 be the
sequence of truncated value functions generated by LSPI after K iterations,
and πK be the greedy policy w.r.t. ṼK−1. Then with probability 1− δ, we have

||V ∗−VπK ||µ ≤
4γ

(1− γ)2

{√
CCµ,ρ

[
cE0(F) + O

(√
d log(dK/δ)

n νρ

)]
+ γ

K−1
2 Rmax

}

I Approximation error: E0(F) = supπ∈G(F̃) inf f∈F ||V π − f ||ρπ

I Estimation error: depends on n, d , νρ,K

I Initialization error: error due to the choice of the initial value function or
initial policy |V ∗ − V π0 |
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Sample Complexity of LSTD LSTD and LSPI Error Bounds

LSPI Error Bound

LSPI Error Bound

||V ∗−VπK ||µ ≤
4γ

(1− γ)2

{√
CCµ,ρ

[
cE0(F) + O

(√
d log(dK/δ)

n νρ

)]
+ γ

K−1
2 Rmax

}

Lower-Bounding Distribution
There exists a distribution ρ such that for any policy π ∈ G(F̃), we have
ρ ≤ Cρπ, where C <∞ is a constant and ρπ is the stationary distribution of
π. Furthermore, we can define the concentrability coefficient Cµ,ρ as before.
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Sample Complexity of LSTD LSTD and LSPI Error Bounds

LSPI Error Bound

LSPI Error Bound

||V ∗−VπK ||µ ≤
4γ

(1− γ)2

{√
CCµ,ρ

[
cE0(F) + O

(√
d log(dK/δ)

n νρ

)]
+ γ

K−1
2 Rmax

}

Lower-Bounding Distribution
There exists a distribution ρ such that for any policy π ∈ G(F̃), we have
ρ ≤ Cρπ, where C <∞ is a constant and ρπ is the stationary distribution of
π. Furthermore, we can define the concentrability coefficient Cµ,ρ as before.

I νρ = the smallest eigenvalue of the Gram matrix (
∫
ϕi ϕj dρ)i,j
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Sample Complexity of Fitted Q-iteration
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Sample Complexity of Fitted Q-iteration

Linear Fitted Q-iteration

Input: space F , iterations K , sampling distribution ρ, num of samples n

Initial function Q̃0 ∈ F
For k = 1, . . . ,K

I Draw n samples (xi , ai )
i.i.d∼ ρ

I Sample x ′i ∼ p(·|xi , ai ) and ri = r(xi , ai )

I Compute yi = ri + γmaxa Q̃k−1(x ′i , a)

I Build training set
{(

(xi , ai ), yi
)}n

i=1

I Solve the least squares problem

fα̂k = arg min
fα∈F

1
n

n∑

i=1

(
fα(xi , ai )− yi

)2

I Return Q̃k = Trunc(fα̂k )

Return πK (·) = arg maxa Q̃K (·, a) (greedy policy)
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Sample Complexity of Fitted Q-iteration

Theoretical Objectives

Objective 1: derive a bound on the performance (quadratic) loss
w.r.t. a testing distribution µ

||Q∗ − QπK ||µ ≤ ???
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Sample Complexity of Fitted Q-iteration Error at Each Iteration
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Sample Complexity of Fitted Q-iteration Error at Each Iteration

Linear Fitted Q-iteration

Input: space F , iterations K , sampling distribution ρ

Initial function Q̃0 ∈ F
For k = 1, . . . ,K

I Draw n samples (xi , ai )
i.i.d∼ ρ

I Sample x ′i ∼ p(·|xi , ai ) and ri = r(xi , ai )

I Compute yi = ri + γmaxa Q̃k−1(x ′i , a)

I Build training set
{(

(xi , ai ), yi
)}n

i=1

I Solve the least squares problem

fα̂k = arg min
fα∈F

1
n

n∑

i=1

(
fα(xi , ai )− yi

)2

I Return Q̃k = Trunc(fα̂k )

Return πK (·) = arg maxa Q̃K (·, a) (greedy policy)
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Sample Complexity of Fitted Q-iteration Error at Each Iteration

Linear Fitted Q-iteration

I Draw n samples (xi , ai )
i.i.d∼ ρ

I Sample x ′i ∼ p(·|xi , ai ) and ri = r(xi , ai )

I Compute yi = ri + γmaxa Q̃k−1(x ′i , a)

I Build training set
{(

(xi , ai ), yi
)}n

i=1

I Solve the least squares problem

fα̂k = arg min
fα∈F

1
n

n∑

i=1

(
fα(xi , ai )− yi

)2

I Return Q̃k = Trunc(fα̂k )
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Sample Complexity of Fitted Q-iteration Error at Each Iteration

Theoretical Objectives

Target: at each iteration we want to approximate Qk = T Q̃k−1

Objective 2: derive an intermediate bound on the prediction error
[random design]

||Qk − Q̃k ||ρ ≤ ???
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Sample Complexity of Fitted Q-iteration Error at Each Iteration

Theoretical Objectives

Target: at each iteration we have samples {(xi , ai )}ni=1 (from ρ)

Objective 3: derive an intermediate bound on the prediction error
on the samples [deterministic design]

1
n

n∑

i=1

(
Qk(xi , ai )− Q̃k(xi , ai )

)2
= ||Qk − Q̃k ||2ρ̂ ≤ ???
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Sample Complexity of Fitted Q-iteration Error at Each Iteration

Theoretical Objectives

Obj 3

||Qk − Q̃k ||ρ̂ ≤ ???

⇒ Obj 2

||Qk − Q̃k ||ρ ≤ ???

⇒ Obj 1

||Q∗ − QπK ||µ ≤ ???

A. LAZARIC – Reinforcement Learning Algorithms Dec 3rd, 2013 - 31/82



Sample Complexity of Fitted Q-iteration Error at Each Iteration

Theoretical Objectives

Returned solution

fα̂k = arg min
fα∈F

1
n

n∑

i=1

(
fα(xi , ai )− yi

)2

Best solution

fα∗k = arg inf
fα∈F

||fα − Qk ||ρ
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Sample Complexity of Fitted Q-iteration Error at Each Iteration

Additional Notation

Given the set of inputs {(xi , ai )}ni=1 drawn from ρ.
Vector space

Fn = {z ∈ Rn, zi = fα(xi , ai ); fα ∈ F} ⊂ Rn

Empirical L2-norm

||fα||2ρ̂ =
1
n

n∑

i=1
fα(xi , ai )

2 =
1
n

n∑

i=1
z2

i = ||z ||2n

Empirical orthogonal projection

Π̂y = arg min
z∈Fn
||y − z ||n
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Sample Complexity of Fitted Q-iteration Error at Each Iteration

Additional Notation

I Target vector:

qi = Qk(xi , ai ) = T Q̃k−1(xi , ai )

= r(xi , ai ) + γmax
a

∫

X
Q̃k−1(dx ′, a)p(dx ′|xi , ai )

I Observed target vector:

yi = ri + γmax
a

Q̃k−1(x ′i , a)

I Noise vector (zero–mean and bounded):

ξi = qi − yi

|ξi | ≤ Vmax E[ξi |xi ] = 0

A. LAZARIC – Reinforcement Learning Algorithms Dec 3rd, 2013 - 34/82



Sample Complexity of Fitted Q-iteration Error at Each Iteration

Additional Notation

y

Fn

ξ

q
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Sample Complexity of Fitted Q-iteration Error at Each Iteration

Additional Notation

I Optimal solution in Fn

Π̂q = arg min
z∈Fn
||q − z ||n

I Returned vector

q̂i = fα̂k (xi , ai )

q̂ = Π̂y = arg min
z∈Fn
||y − z ||n
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Sample Complexity of Fitted Q-iteration Error at Each Iteration

Additional Notation

Π̂q

Fn

ξ

q

y

q̂
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Sample Complexity of Fitted Q-iteration Error at Each Iteration

Theoretical Analysis

||Qk − fα̂k ||2ρ̂ = ||q − q̂||2n

Π̂q

Fn

ξ

q

y

q̂ξ̂

||q − q̂||n ≤ ||q − Π̂q||n + ||Π̂q − q̂||n = ||q − Π̂q||n + ||ξ̂||n
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Sample Complexity of Fitted Q-iteration Error at Each Iteration

Theoretical Analysis

||q − q̂||n︸ ︷︷ ︸
prediction err

≤ ||q − Π̂q||n︸ ︷︷ ︸
approx. err

+ ||ξ̂||n︸︷︷︸
estim. err

I Prediction error : distance between learned function and
target function

I Approximation error : distance between the best function in
F and the target function ⇒ depends on F

I Estimation error : distance between the best function in F
and the learned function ⇒ depends on the samples
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Sample Complexity of Fitted Q-iteration Error at Each Iteration

Theoretical Analysis

The noise ξ̂ = Π̂ξ

⇒ ||ξ̂||n = 〈ξ̂, ξ̂〉 = 〈ξ̂, ξ〉

The projected noise belongs to Fn

⇒ ∃fβ ∈ F : fβ(xi , ai ) = ξ̂i , ∀(xi , ai )

By definition of inner product

⇒ ||ξ̂||n =
1
n

n∑

i=1
fβ(xi , ai )ξi
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Sample Complexity of Fitted Q-iteration Error at Each Iteration

Theoretical Analysis

The noise ξ has zero mean and it is bounded in [−Vmax,Vmax]
Thus for any fixed fβ ∈ F (the expectation is conditioned on
(xi , ai ))

⇒ Eξ
[1

n

n∑

i=1
fβ(xi , ai )ξi

]
=

1
n

n∑

i=1
Eξ
[
fβ(xi , ai )ξi

]
= 0

⇒ 1
n

n∑

i=1

(
fβ(xi , ai )ξi

)2 ≤ 4Vmax
2 1
n

n∑

i=1
fβ(xi , ai )

2 = 4Vmax||fβ||2ρ̂

⇒ we can use concentration inequalities
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Sample Complexity of Fitted Q-iteration Error at Each Iteration

Theoretical Analysis

Problem: fβ is a random function
Solution: we need functional concentration inequalities
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Sample Complexity of Fitted Q-iteration Error at Each Iteration

Theoretical Analysis

Define the space of normalized functions

G =
{

g(·) =
fα(·)
||fα||ρ̂

, fα ∈ F
}

[by definition] ⇒ ∀g ∈ G, ||g ||ρ̂ ≤ 1

[F is a linear space] ⇒ V(G) = d + 1
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Sample Complexity of Fitted Q-iteration Error at Each Iteration

Theoretical Analysis

Application of Pollard’s inequality for space G
For any g ∈ G

∣∣∣1n

n∑

i=1
g(xi , ai )ξi

∣∣∣ ≤ 4Vmax

√
2
n log

(
3(9ne2)d+1

δ

)

with probability 1− δ (w.r.t., the realization of the noise ξ).
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Sample Complexity of Fitted Q-iteration Error at Each Iteration

Theoretical Analysis
By definition of g

⇒
∣∣∣1n

n∑

i=1
fα(xi , ai )ξi

∣∣∣ ≤ 4Vmax||fα||ρ̂

√
2
n log

(
3(9ne2)d+1

δ

)

For the specific fβ equivalent to ξ̂

⇒ 〈ξ̂, ξ〉 ≤ 4Vmax||ξ̂||n

√
2
n log

(
3(9ne2)d+1

δ

)

Recalling the objective

⇒ ||ξ̂||2n ≤ 4Vmax||ξ̂||n

√
2
n log

(
3(9ne2)d+1

δ

)

⇒ ||Π̂q − q̂||n ≤ 4Vmax

√
2
n log

(
3(9ne2)d+1

δ

)
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Sample Complexity of Fitted Q-iteration Error at Each Iteration

Theoretical Analysis

Π̂q

Fn

ξ

q

y

q̂ξ̂

Theorem (see e.g. Lazaric et al.,’11)
At each iteration k and given a set of state–action pairs {(xi , ai )},
LinearFQI returns an approximation q̂ such that

||q − q̂||n ≤ ||q − Π̂q||n + ||Π̂q − q̂||n

≤ ||q − Π̂q||n + O
(

Vmax

√
d log n/δ

n

)
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Sample Complexity of Fitted Q-iteration Error at Each Iteration

Theoretical Analysis

Moving back from vectors to functions

||q − q̂||n = ||Qk − fα̂k ||ρ̂
||q − Π̂q||n ≤ ||Qk − fα∗k ||ρ̂

⇒ ||Qk − fα̂k ||ρ̂ ≤ ||Qk − fα∗k ||ρ̂ + O
(

Vmax

√
d log n/δ

n

)
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Sample Complexity of Fitted Q-iteration Error at Each Iteration

Theoretical Analysis

By definition of truncation (Q̃k = Trunc(fα̂k ))

Theorem
At each iteration k and given a set of state–action pairs {(xi , ai )},
LinearFQI returns an approximation Q̂k such that (Objective 3)

||Qk − Q̃k ||ρ̂ ≤ ||Qk − fα̂k ||ρ̂

≤ ||Qk − fα∗k ||ρ̂ + O
(

Vmax

√
d log n/δ

n

)
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Sample Complexity of Fitted Q-iteration Error at Each Iteration

Theoretical Analysis

Remark: in order to move from Obj3 to Obj2 we need to move
from empirical to expected L2-norms

Since Q̃k is truncated, it is bounded in [−Vmax,Vmax]

2||Qk − Q̃k ||ρ̂ ≥ ||Qk − Q̃k ||ρ − O
(

Vmax

√
d log n/δ

n

)

The best solution fα∗k is a fixed function in F

||Qk − fα∗k ||ρ̂ ≤ 2||Qk − fα∗k ||ρ + O
((

Vmax + L||α∗k ||
)
√

log 1/δ
n

)
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Sample Complexity of Fitted Q-iteration Error at Each Iteration

Theoretical Analysis

Theorem

At each iteration k, LinearFQI returns an approximation Q̃k such
that (Objective 2)

||Qk − Q̃k ||ρ ≤ 4||Qk − fα∗k ||ρ

+ O
((

Vmax + L||α∗k ||
)
√

log 1/δ
n

)

+ O
(

Vmax

√
d log n/δ

n

)
,

with probability 1− δ.
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Sample Complexity of Fitted Q-iteration Error at Each Iteration

Theoretical Analysis

||Qk − Q̃k ||ρ ≤ 4||Qk − fα∗k ||ρ

+ O
((

Vmax + L||α∗k ||
)
√

log 1/δ
n

)

+ O
(

Vmax

√
d log n/δ

n

)
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Sample Complexity of Fitted Q-iteration Error at Each Iteration

Theoretical Analysis

||Qk − Q̃k ||ρ ≤ 4||Qk − fα∗k ||ρ

+ O
((

Vmax + L||α∗k ||
)
√

log 1/δ
n

)

+ O
(

Vmax

√
d log n/δ

n

)

Remarks
I No algorithm can do better
I Constant 4
I Depends on the space F
I Changes with the iteration k
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Sample Complexity of Fitted Q-iteration Error at Each Iteration

Theoretical Analysis

||Qk − Q̃k ||ρ ≤ 4||Qk − fα∗k ||ρ

+ O
((

Vmax + L||α∗k ||
)
√

log 1/δ
n

)

+ O
(

Vmax

√
d log n/δ

n

)

Remarks
I Vanishing to zero as O(n−1/2)

I Depends on the features (L) and on the best solution (||α∗k ||)
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Sample Complexity of Fitted Q-iteration Error at Each Iteration

Theoretical Analysis

||Qk − Q̃k ||ρ ≤ 4||Qk − fα∗k ||ρ

+ O
((

Vmax + L||α∗k ||
)
√

log 1/δ
n

)

+ O
(

Vmax

√
d log n/δ

n

)

Remarks
I Vanishing to zero as O(n−1/2)

I Depends on the dimensionality of the space (d) and the
number of samples (n)
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Sample Complexity of Fitted Q-iteration Error Propagation

Outline

Sample Complexity of LSTD
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Sample Complexity of Fitted Q-iteration Error Propagation

Theoretical Analysis

Objective 1

||Q∗ − QπK ||µ

I Problem 1: the test norm µ is different from the sampling
norm ρ

I Problem 2: we have bounds for Q̃k not for the performance
of the corresponding πk

I Problem 3: we have bounds for one single iteration

A. LAZARIC – Reinforcement Learning Algorithms Dec 3rd, 2013 - 56/82



Sample Complexity of Fitted Q-iteration Error Propagation

Propagation of Errors
I Bellman operators

T Q(x , a) = r(x , a) + γ

∫

X
max

a′
Q(dx ′, a′)p(dx ′|x , a)

T πQ(x , a) = r(x , a) + γ

∫

X
Q(dx ′, π(dx ′))p(dx ′|x , a)

I Optimal action–value function

Q∗ = T Q∗
I Greedy policy

π(x) = arg max
a

Q(x , a)

π∗(x) = arg max
a

Q∗(x , a)
I Prediction error

εk = Qk − Q̃k

A. LAZARIC – Reinforcement Learning Algorithms Dec 3rd, 2013 - 57/82



Sample Complexity of Fitted Q-iteration Error Propagation

Propagation of Errors
Step 1: upper-bound on the propagation (problem 3)

By definition T Qk ≥ T π∗Qk

Q∗ − Q̃k+1 = T π∗Q∗︸ ︷︷ ︸
fixed point

−T π∗Q̃k + T π∗Q̃k
︸ ︷︷ ︸

0

−T Q̃k + εk︸ ︷︷ ︸
Q̃k+1

Q∗ − Q̃k+1 = T π∗Q∗ − T π∗Q̃k
︸ ︷︷ ︸

recursion

+ T π∗Q̃k − T Q̃k
︸ ︷︷ ︸

≤0

+ εk︸︷︷︸
error

Q∗ − Q̃k+1 = T π∗Q∗ − T π∗Q̃k + T π∗Q̃k − T Q̃k + εk

≤ γPπ∗(Q∗ − Q̃k) + εk

Q∗ − Q̃K ≤
K−1∑

k=0
γK−k−1(Pπ∗)K−k−1εk + γK (Pπ∗)K (Q∗ − Q̃0)
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Sample Complexity of Fitted Q-iteration Error Propagation

Propagation of Errors
Step 2: lower-bound on the propagation (problem 3)

By definition T Q∗ ≥ T πk Q∗

Q∗ − Q̃k+1 = T Q∗︸︷︷︸
fixed point

−T πk Q∗ + T πk Q∗︸ ︷︷ ︸
0

−T Q̃k + εk︸ ︷︷ ︸
Q̃k+1

Q∗ − Q̃k+1 = T Q∗ − T πk Q∗︸ ︷︷ ︸
≥0

+ T πk Q∗ − T Q̃k
︸ ︷︷ ︸

greedy pol.

+ εk︸︷︷︸
error

Q∗ − Q̃k+1 ≥ T πk Q∗ − T πk Q̃k
︸ ︷︷ ︸

recursion

+ εk︸︷︷︸
error

Q∗ − Q̃k+1 ≥ γPπk (Q∗ − Q̃k) + εk

Q∗ − Q̃K ≥
K−1∑

k=0
γK−k−1(PπK−1PπK−2 . . .Pπk+1)εk

+ γK (PπK−1PπK−2 . . .Pπ0)(Q∗ − Q̃0)
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Sample Complexity of Fitted Q-iteration Error Propagation

Propagation of Errors
Step 3: from Q̃K to πK (problem 2)

By definition T πK Q̃K = T Q̃K ≥ T π∗QK

Q∗ − QπK = T π∗Q∗︸ ︷︷ ︸
fixed point

−T π∗Q̃K + T π∗Q̃K
︸ ︷︷ ︸

0

−T πK Q̃K + T πK Q̃K
︸ ︷︷ ︸

0

−T πK Q̃K
︸ ︷︷ ︸
fixed point

Q∗ − QπK = T π∗Q∗ − T π∗Q̃K
︸ ︷︷ ︸

error

+ T π∗Q̃K − T πK Q̃K
︸ ︷︷ ︸

≤0

+ T πK Q̃K − T πK Q̃K
︸ ︷︷ ︸

function vs policy

Q∗ − QπK ≤ γPπ
∗
(Q∗ − Q̃K ) + γPπK (Q̃K −Q∗ + Q∗︸ ︷︷ ︸

0

−QπK )

Q∗ − QπK ≤ γPπ
∗
(Q∗ − Q̃K
︸ ︷︷ ︸

error

) + γPπK (Q̃K − Q∗︸ ︷︷ ︸
error

+ Q∗ − QπK
︸ ︷︷ ︸

policy performance

)

(I − γPπK )(Q∗ − QπK ) ≤ γ(Pπ
∗ − PπK )(Q∗ − Q̃K )

Q∗ − QπK ≤ γ(I − γPπK )−1(Pπ
∗ − PπK )(Q∗ − Q̃K )
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Sample Complexity of Fitted Q-iteration Error Propagation

Propagation of Errors

Step 3: plugging the error propagation (problem 2)

Q∗ − QπK ≤(I − γPπK )−1
{ K−1∑

k=0
γK−k

[
(Pπ

∗
)K−k − PπK PπK−1 . . .Pπk+1

]
εk

+
[
(Pπ

∗
)K+1 − (PπK PπK−1 . . .Pπ0 )

]
(Q∗ − Q̃0)

}
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Sample Complexity of Fitted Q-iteration Error Propagation

Propagation of Errors

Step 4: rewrite in compact form

Q∗ − QπK ≤2γ(1− γK+1)

(1− γ)2

[ K−1∑

k=0
αkAk |εk |+ αK AK |Q∗ − Q̃0|

]

I αk : weights (
∑

k αk = 1)
I Ak : summarize the Pπi terms
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Sample Complexity of Fitted Q-iteration Error Propagation

Propagation of Errors

Step 5: take the norm w.r.t. to the test distribution µ

||Q∗ − QπK ||2µ =

∫
µ(dx , da)(Q∗(x , a)− QπK (x , a))2

≤
[

2γ(1− γK+1

(1− γ)2

]2 ∫
µ(dx , da)

[ K−1∑
k=0

αkAk |εk |+ αK AK |Q∗ − Q̃0|
]2

(x , a)

≤
[

2γ(1− γK+1

(1− γ)2

]2 ∫
µ(dx , da)

[ K−1∑
k=0

αkAkε
2
k + αK AK (Q∗ − Q̃0)2

]
(x , a)
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Sample Complexity of Fitted Q-iteration Error Propagation

Propagation of Errors

Focusing on one single term

µAk =
1− γ

2
µ(I − γPπK )−1[(Pπ∗ )K−k + PπK PπK−1 . . .Pπk+1

]

=
1− γ

2
∑
m≥0

γmµ(PπK )m[(Pπ∗ )K−k + PπK PπK−1 . . .Pπk+1
]

=
1− γ

2

[∑
m≥0

γmµ(PπK )m(Pπ
∗
)K−k +

∑
m≥0

γmµ(PπK )mPπK PπK−1 . . .Pπk+1
]
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Sample Complexity of Fitted Q-iteration Error Propagation

Propagation of Errors

Assumption: concentrability terms

c(m) = sup
π1...πm

∣∣∣∣∣

∣∣∣∣∣
d(µPπ1 . . .Pπm )

dρ

∣∣∣∣∣

∣∣∣∣∣
∞

Cµ,ρ = (1− γ)2
∑

m≥1
mγm−1c(m) < +∞

Remark: related to top-Lyapunov exponent ⇒ Cµ,ρ <∞ is a weak
stability condition
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Sample Complexity of Fitted Q-iteration Error Propagation

Propagation of Errors

Step 5: take the norm w.r.t. to the test distribution µ

||Q∗ − QπK ||2µ

≤
[

2γ(1− γK+1

(1− γ)2

]2[ K−1∑
k=0

αk(1− γ)
∑
m≥0

γmc(m + K − k)||εk ||2ρ + αK (2Vmax)
2
]
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Sample Complexity of Fitted Q-iteration Error Propagation

Propagation of Errors

Step 5: take the norm w.r.t. to the test distribution µ (problem 1)

||Q∗ − QπK ||2µ ≤
[

2γ
(1− γ)2

]2
Cµ,ρ max

k
||εk ||2ρ + O

(
γK

(1− γ)3 Vmax
2
)
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Sample Complexity of Fitted Q-iteration The Final Bound

Outline
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Sample Complexity of Fitted Q-iteration The Final Bound

Plugging the Per–Iteration Error

||Q∗ − QπK ||2µ ≤
[

2γ
(1− γ)2

]2
Cµ,ρ max

k
||εk ||2ρ + O

(
γK

(1− γ)3 Vmax
2
)

||εk ||ρ = ||Qk − Q̃k ||ρ ≤ 4||Qk − fα∗k ||ρ

+ O
((

Vmax + L||α∗k ||
)
√

log 1/δ
n

)

+ O
(

Vmax

√
d log n/δ

n

)

A. LAZARIC – Reinforcement Learning Algorithms Dec 3rd, 2013 - 69/82



Sample Complexity of Fitted Q-iteration The Final Bound

Plugging the Per–Iteration Error

The inherent Bellman error

||Qk − fα∗k ||ρ = inf
f∈F
||Qk − f ||ρ

= inf
f∈F
||T Q̃k−1 − f ||ρ

≤ inf
f∈F
||T fαk−1 − f ||ρ

≤ sup
g∈F

inf
f∈F
||T g − f ||ρ = d(F , T F)
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Sample Complexity of Fitted Q-iteration The Final Bound

Plugging the Per–Iteration Error

fα∗k is the orthogonal projection of Qk onto F w.r.t. ρ

⇒ ||fα∗k ||ρ ≤ ||Q
k ||ρ = ||T Q̃k−1||ρ ≤ ||Q̃k−1||∞ ≤ Vmax
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Sample Complexity of Fitted Q-iteration The Final Bound

Plugging the Per–Iteration Error

Gram matrix

Gi ,j = E(x ,a)∼ρ[ϕi (x , a)ϕj(x , a)]

Smallest eigenvalue of G is ω

||fα||2ρ = ||φ>α||2ρ = α>Gα ≥ ωα>α = ω||α||2

max
k
||α∗k || ≤ max

k

||fα∗k ||ρ√
ω
≤ Vmax√

ω
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Sample Complexity of Fitted Q-iteration The Final Bound

The Final Bound

Theorem (see e.g., Munos,’03)
LinearFQI with a space F of d features, with n samples at each iteration
returns a policy πK after K iterations such that

||Q∗ − QπK ||µ ≤
2γ

(1− γ)2

√
Cµ,ρ

(
4d(F , T F) + O

(
Vmax

(
1 +

L
√
ω

)√d log n/δ
n

))

+ O
(

γK

(1− γ)3 Vmax
2
)
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Sample Complexity of Fitted Q-iteration The Final Bound

The Final Bound

Theorem
LinearFQI with a space F of d features, with n samples at each iteration returns a
policy πK after K iterations such that

||Q∗ − QπK ||µ ≤
2γ

(1− γ)2

√
Cµ,ρ

(
4d(F , T F) + O

(
Vmax

(
1 +

L
√
ω

)√d log n/δ
n

))

+ O
(

γK

(1− γ)3 Vmax
2
)

The propagation (and different norms) makes the problem more complex
⇒ how do we choose the sampling distribution?
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Sample Complexity of Fitted Q-iteration The Final Bound

The Final Bound

Theorem
LinearFQI with a space F of d features, with n samples at each iteration returns a
policy πK after K iterations such that

||Q∗ − QπK ||µ ≤
2γ

(1− γ)2

√
Cµ,ρ

(
4d(F , T F) + O

(
Vmax

(
1 +

L
√
ω

)√d log n/δ
n

))

+ O
(

γK

(1− γ)3 Vmax
2
)

The approximation error is worse than in regression ⇒ how do adapt to
the Bellman operator?
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Sample Complexity of Fitted Q-iteration The Final Bound

The Final Bound

Theorem
LinearFQI with a space F of d features, with n samples at each iteration returns a
policy πK after K iterations such that

||Q∗ − QπK ||µ ≤
2γ

(1− γ)2

√
Cµ,ρ

(
4d(F , T F) + O

(
Vmax

(
1 +

L
√
ω

)√d log n/δ
n

))

+ O
(

γK

(1− γ)3 Vmax
2
)

The dependency on γ is worse than at each iteration
⇒ is it possible to avoid it?
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Sample Complexity of Fitted Q-iteration The Final Bound

The Final Bound

Theorem
LinearFQI with a space F of d features, with n samples at each iteration returns a
policy πK after K iterations such that

||Q∗ − QπK ||µ ≤
2γ

(1− γ)2

√
Cµ,ρ

(
4d(F , T F) + O

(
Vmax

(
1 +

L
√
ω

)√d log n/δ
n

))

+ O
(

γK

(1− γ)3 Vmax
2
)

The error decreases exponentially in K
⇒ K ≈ ε/(1− γ)
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The Final Bound

Theorem
LinearFQI with a space F of d features, with n samples at each iteration returns a
policy πK after K iterations such that

||Q∗ − QπK ||µ ≤
2γ

(1− γ)2

√
Cµ,ρ

(
4d(F , T F) + O

(
Vmax

(
1 +

L
√
ω

)√d log n/δ
n

))

+ O
(

γK

(1− γ)3 Vmax
2
)

The smallest eigenvalue of the Gram matrix
⇒ design the features so as to be orthogonal w.r.t. ρ
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The Final Bound

Theorem
LinearFQI with a space F of d features, with n samples at each iteration returns a
policy πK after K iterations such that

||Q∗ − QπK ||µ ≤
2γ

(1− γ)2

√
Cµ,ρ

(
4d(F , T F) + O

(
Vmax

(
1 +

L
√
ω

)√d log n/δ
n

))

+ O
(

γK

(1− γ)3 Vmax
2
)

The asymptotic rate O(d/n) is the same as for regression
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Summary

I At each iteration FQI solves a regression problem
⇒ least–squares prediction error bound

I The error is propagated through iterations
⇒ propagation of any error

A. LAZARIC – Reinforcement Learning Algorithms Dec 3rd, 2013 - 80/82



Sample Complexity of Fitted Q-iteration The Final Bound

Bibliography I

A. LAZARIC – Reinforcement Learning Algorithms Dec 3rd, 2013 - 81/82



Sample Complexity of Fitted Q-iteration The Final Bound

Reinforcement Learning

Alessandro Lazaric
alessandro.lazaric@inria.fr

sequel.lille.inria.fr


	Sample Complexity of LSTD
	The Algorithm
	LSTD and LSPI Error Bounds

	Sample Complexity of Fitted Q-iteration
	Error at Each Iteration
	Error Propagation
	The Final Bound


