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Sources of Error

» Approximation error. If X is large or continuous, value
functions V' cannot be represented correctly
= use an approximation space F

» Estimation error. If the reward r and dynamics p are
unknown, the Bellman operators 7 and 7™ cannot be
computed exactly
= estimate the Bellman operators from samples
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In This Lecture

> Infinite horizon setting with discount ~y

» Study the impact of estimation error
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In This Lecture: Warning!!

Problem: are these performance bounds accurate/useful?
Answer: of course not! :)

Reason: upper bounds, non-tight analysis, worst case.

. Crzia—~
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In This Lecture: Warning!!

Chernoff-Hoeffding inequality

P[‘iixt —E[Xl]‘ > (b—a)y/ 'Og;]/&] <5
t=1

= worst-case w.r.t. to all the distributions bounded in [a, b], loose
for other distributions.
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In This Lecture: Warning!!

Question: so why should we derive/study these bounds?

Answer:
» General guarantees
» Rates of convergence (not always available in asymptotic
analysis)
» Explicit dependency on the design parameters
» Explicit dependency on the problem parameters
» First guess on how to tune parameters

» Better understanding of the algorithms
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Sample Complexity of LSTD The Algorithm

Least-Squares Temporal-Difference Learning (LSTD)
> Linear function space F = {f: f() = 2421 ajoi()}

j
» V7 is the fixed-point of 7™ VT =TTV"
» V™ may not belong to F VT ¢ F

» Best approximation of V7 in F is
Nnv"™ =arg ;nijg_||V” —f] (M is the projection onto F)
€

T?ﬁ\‘)
Y 17a

Iy

ovre
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Sample Complexity of LSTD The Algorithm

Least-Squares Temporal-Difference Learning (LSTD)

» LSTD searches for the fixed-point of 1,77 instead (I1; is a
projection into F w.r.t. L,-norm)

» M7 ™ is a contraction in Ls,-norm

» L..-projection is numerically expensive when the number of
states is large or infinite

» LSTD searches for the fixed-point of My , 77

M2y g = argp;i]rgllg — fll2,p

. Cbreia—
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Sample Complexity of LSTD The Algorithm

Least-Squares Temporal-Difference Learning (LSTD)

When the fixed-point of 1,77 exists, we call it the LSTD solution
Vip =MN,7T™Vrp

(T™ Vo — Vi, i), =0, i=1,...,d
<I’W+’YP VTD*VTD, >p:0

d
(o, = o =P om0, o =0 —  Aam=b
H/—/ -1

Ajj
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Sample Complexity of LSTD The Algorithm

LSTD Algorithm

> In general, I'IpT7T is not a contraction and does not have a
fixed-point.

» If p = p™, the stationary dist. of 7, then 1,=7™ has a unique
fixed-point.

Proposition (LSTD Performance)

inf [|V™ — V||~

1
1/1_1'}/2 VeF

[[VT — Vrp||pr <

-
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Sample Complexity of LSTD The Algorithm

LSTD Algorithm

Empirical LSTD

» We observe a trajectory (Xo, Ro, X1, Ri, ..., Xn) where
Xt+1 ~ P( . |Xt,7T(Xt)) and Rt— = r(Xt,’]T(Xt))

» We build estimators of the matrix A and vector b

N—1 N—1
. 1 ~ 1
Aj =55 D eilXe)[pi(X)—10i(Xern)]. b= > pilXe)Re
t=0 t=0
> 2&TD = B ) VTD(') = ¢(')TaTD

when n — oo then A — A and b — b, and thus, atp — a1p and
Vo — Vip.

. brezia~
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Sample Complexity of LSTD LSTD and LSPI Error Bounds

LSTD Error Bound
When the Markov chain induced by the policy under evaluation 7 has a
stationary distribution p™ (Markov chain is ergodic - e.g. S-mixing), then

Theorem (LSTD Error Bound)

Let V be the truncated LSTD solution computed using n samples along
a trajectory generated by following the policy 7. Then with probability
1— 6, we have

~ c dlog(d/o
V7 = Ve < —= ot [IV7 = fll» + O/ L2ELLD)
\/1—~2feF nv
» n = of samples , d = dimension of the linear function space F

> 1 = the smallest eigenvalue of the Gram matrix ([ @i ¢; dp™)i;
(Assume: eigenvalues of the Gram matrix are strictly positive - existence of the
model-based LSTD solution)

> B-mixing coefficients are hidden in the O(-) notation

. brezia~
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Sample Complexity of LSTD LSTD and LSPI Error Bounds

LSTD Error Bound

dlog(d/o
|V = Al + O () loed)
1/1_72 feF nv

—_———

approximation error

IV = V]|~ <

estimation error

» Approximation error: it depends on how well the function space F
can approximate the value function V™

» Estimation error: it depends on the number of samples n, the dim of
the function space d, the smallest eigenvalue of the Gram matrix v, the
mixing properties of the Markov chain (hidden in O)

. brezia~
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Sample Complexity of LSTD LSTD and LSPI Error Bounds

LSPI Error Bound

Theorem (LSPI Error Bound)

Let V_; € F be an arbitrary initial value function, VO, e VKA be the
sequence of truncated value functions generated by LSPI after K iterations,
and 7wk be the greedy policy w.r.t. Vi_1. Then with probability 1 — §, we have

IV =Vl € s {x/ccu,p [ch(f) +o <,/d'°g(‘”</5)>] +w“z“Rmax}
_ nvy
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Sample Complexity of LSTD LSTD and LSPI Error Bounds

LSPI Error Bound

Theorem (LSPI Error Bound)

Let V_; € F be an arbitrary initial value function, VO, e VKA be the
sequence of truncated value functions generated by LSPI after K iterations,
and 7wk be the greedy policy w.r.t. Vi_1. Then with probability 1 — §, we have

[[V*=VTK]|u < uji’y,y)z {m |:CE0(]-')+O< dIog(dK/5)>

nv,

k-1
+"Y 2 Rmax

> Approximation error:  Eo(F) = sup, gz infrer |[VT — fl[om

. brezia~
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Sample Complexity of LSTD LSTD and LSPI Error Bounds

LSPI Error Bound

Theorem (LSPI Error Bound)

Let V_; € F be an arbitrary initial value function, Vo, ey VK_l be the
sequence of truncated value functions generated by LSPI after K iterations,
and mx be the greedy policy w.r.t. Vi_1. Then with probability 1 — §, we have

4 dl dK /o K—
Vv, < {x/ccw [ch(fH o( M)] +w‘Rmax}

1—7) nvp

> Approximation error:  Eo(F) = sup, ¢z infrer ||V — fl[om

> Estimation error: depends on n,d,v,, K

. brezia~
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Sample Complexity of LSTD LSTD and LSPI Error Bounds

LSPI Error Bound

Theorem (LSPI Error Bound)

Let V_; € F be an arbitrary initial value function, Vo, ey Vk_1 be the
sequence of truncated value functions generated by LSPI after K iterations,

and 7wk be the greedy policy w.r.t. Vi_1. Then with probability 1 — §, we have
IV*—V7K||, < 4772 /CCprp |cEo(F) + O /M +’Y%Rmax
(1-7) il P

> Approximation error:  Eo(F) = sup, g7 infrer |[[VT — fl[on

> Estimation error: depends on n,d,v,, K

> Initialization error: error due to the choice of the initial value function or
initial policy |V* — V™|

. lrezia~
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Sample Complexity of LSTD LSTD and LSPI Error Bounds

LSPI Error Bound

LSPI Error Bound

V*—VTK
[ e S = N,

7)2

Lower-Bounding Distribution

2 |

There exists a distribution p such that for any policy = € G(F), we have
p < Cp™, where C < oo is a constant and p” is the stationary distribution of
m. Furthermore, we can define the concentrability coefficient C,, , as before.

. brezia~
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Sample Complexity of LSTD LSTD and LSPI Error Bounds

LSPI Error Bound
HV*_VWKHM < (]_ii’yryy {\/ CCM,/) |:CE0(]:)+ (0] <“ dlogn(iK/é))] +’7K21Rmax}

Lower-Bounding Distribution

There exists a distribution p such that for any policy 7 € g(f) we have
p < Cp™, where C < oo is a constant and p” is the stationary distribution of

m. Furthermore, we can define the concentrability coefficient C,, , as before.

> 1, = the smallest eigenvalue of the Gram matrix ([ ¢; ; dp)i,;

-
brzia—
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Sample Complexity of Fitted Q-iteration
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Sample Complexity of Fitted Q-iteration
Linear Fitted Q-iteration

Input: space F, iterations K, sampling distribution p, num of samples n

Initial function C~QO e F
Fork=1,...,K N
» Draw n samples (x;, a;) IS p
> Sample x! ~ p(:|x;, a;) and r; = r(x;, a;)
» Compute y; = r; + v max, Q“"1(x/, a)
» Build training set {((X,-, a;),y;)};’:l
» Solve the least squares problem
1 2
fa, = arg min — Z (fa(xi, ai) — yi)

fa€F N

> Return Q% = Trunc(f,)

Return 7x(-) = arg max, QX (-, a) (greedy policy)

. Crzia—~
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Sample Complexity of Fitted Q-iteration

Theoretical Objectives

Objective 1: derive a bound on the performance (quadratic) loss
w.r.t. a testing distribution p

Q" = Q™| < 777

. brezia~
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Sample Complexity of Fitted Q-iteration Error at Each Iteration
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Sample Complexity of Fitted Q-iteration Error at Each Iteration
Linear Fitted Q-iteration

Input: space F, iterations K, sampling distribution p

Initial function C~QO e F
Fork=1,....K

i.id
» Draw n samples (x;,a;) ~ p

v

Sample x/ ~ p(-|x;, a;) and r; = r(x;, a;)

v

Compute y; = r; + v max, Q“"1(x/, a)
Build training set {((X,-, a,-),y,-) }7:1

v

v

Solve the least squares problem

fs, = arg min 1 Z (ﬁy(x,-, a;) — y,-)2

fa€F N

i=1
» Return QK = Trunc(f,)

Return mx(-) = arg max, QX (-, a) (greedy policy)
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Linear

Sample Complexity of Fitted Q-iteration Error at Each Iteration

Fitted Q-iteration

Draw n samples (x;, a;) W P

Sample x/ ~ p(-|x;, a;) and r; = r(x;, a;)
Compute y; = r; + v max, Q“"1(x/, a)
Build training set {((x,-7 a,-),y,-) }7:1

Solve the least squares problem
1

n

fa, = arg min — Z (fo(xi, ) —y,-)2

fa€F N

Return Q% = Trunc(fs,)

i=1
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Sample Complexity of Fitted Q-iteration Error at Each Iteration

Theoretical Objectives

Target: at each iteration we want to approximate Q = T QK1

Objective 2: derive an intermediate bound on the prediction error
[random design]

1Q% — Q|| < 777
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Sample Complexity of Fitted Q-iteration Error at Each lteration

Theoretical Objectives

Target: at each iteration we have samples {(x;, a;)}7_; (from p)

Objective 3: derive an intermediate bound on the prediction error
on the samples [deterministic design|

1 — _ X )
n;(Qk(Xhai)_Qk(X;?ai)) :HQk_QkHQAS 277

. Crzia—~
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Sample Complexity of Fitted Q-iteration Error at Each Iteration

Theoretical Objectives

Obj 3

1QF = QXlp < 777
= Obj 2

1Q* = Q4l, < 777
= Obj 1

Q" = Q7] < 777

. lrezia~
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Sample Complexity of Fitted Q-iteration Error at Each Iteration

Theoretical Objectives

Returned solution

n

1
fa, = arg min — Z (fa(xi. a) — )/i)2

1=

Best solution

A. LAZARIC — Reinforcement Learning Algorithms



Sample Complexity of Fitted Q-iteration Error at Each lteration

Additional Notation

Given the set of inputs {(x;, aj)}"_; drawn from p.
Vector space

Fo={z€eR" zi =1fy(x;,a); fo € F} CR"

Empirical Ly-norm
1 o 1
1fall3 = ;Z fo (X, 3)% = . >z =zl
i=1 i=1

Empirical orthogonal projection

My = i _
y a@ggﬁy z[|n
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Sample Complexity of Fitted Q-iteration Error at Each Iteration

Additional Notation

> Target vector:

qi = Q“(xi, a)) = T@k_l(xi, aj)

= r(x,-,a;)—i—vmax/ Q“Y(dx', a)p(dx’|x:, ar)
2 Jx

» Observed target vector:
Yi = ri +ymax QFY(x!, a)
> Noise vector (zero-mean and bounded):

Si=qi—Yi

|£l| < Vinax ]E[g,"X,-] =0
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Sample Complexity of Fitted Q-iteration Error at Each Iteration

Additional Notation
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Sample Complexity of Fitted Q-iteration Error at Each Iteration

Additional Notation

» Optimal solution in F,
ﬁ = arg min -z
q = arg min g — z||n
» Returned vector
qi = fa,(xi, ai)

g="ny argzrgljpn!ly z[|n
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Sample Complexity of Fitted Q-iteration Error at Each Iteration

Additional Notation

<)

o D2 P
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Sample Complexity of Fitted Q-iteration Error at Each Iteration

Theoretical Analysis

k —~
QX — farl5 = Ilg —4lI3

N
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Sample Complexity of Fitted Q-iteration Error at Each lteration

Theoretical Analysis

llg —qll» <|lg—Nqll,+ [I&l]n
——— —_—— ~——

prediction err approx. err estim. err

» Prediction error: distance between learned function and
target function

» Approximation error: distance between the best function in
F and the target function = depends on F

» Estimation error: distance between the best function in F
and the learned function = depends on the samples

. Clreia—
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Sample Complexity of Fitted Q-iteration Error at Each Iteration

Theoretical Analysis

The noise fA: ﬁf
The projected noise belongs to F,
= Hfg e F: f;g(X,', a,-) = §A,-, V(X,', a,-)

By definition of inner product

- 1 <&
= [[Elln = = D" ol )¢
i=1

. Cbreia—
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Sample Complexity of Fitted Q-iteration Error at Each lteration

Theoretical Analysis

The noise & has zero mean and it is bounded in [— Vinax, Vinax]
Thus for any fixed fz € F (the expectation is conditioned on

(xi, ai))

:>E5|: Zfﬁ Xnal I:| ZEE fB X’7a’)§]

n

1 n
= =3 (fx, a)6)” < AVina Y F3xi, ) = 4Vl 313
i=1 i=1

= we can use concentration inequalities

. Crzia—~
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Sample Complexity of Fitted Q-iteration Error at Each Iteration

Theoretical Analysis

Problem: f3 is a random function
Solution: we need functional concentration inequalities
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Sample Complexity of Fitted Q-iteration Error at Each Iteration

Theoretical Analysis

Define the space of normalized functions

fa(')
HfaHﬁ

[by definition] = Vg € G, ||g]|; < 1

Q:{g(-): ,faef}

[F is a linear space] = V(G) =d +1
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Sample Complexity of Fitted Q-iteration Error at Each lteration

Theoretical Analysis

Application of Pollard’s inequality for space G
Forany g € G

1¢ 2 3(9ne2)d+1
‘* Zg(Xi, a)&il < 4Vmax\/ log <(ne))
4 n 1)

with probability 1 — ¢ (w.r.t., the realization of the noise §).

. Crzia—~
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Sample Complexity of Fitted Q-iteration Error at Each lteration

Theoretical Analysis
By definition of g

1@ 2 3(9ne?)d+1
= [0 ) < 4vmax|fa||ﬁ\/n log ((5)>
i=1

For the specific f3 equivalent to 2

~ ~ ]2 3(9ne2)d+1
N 4vmax|£|n\/ 2 1og 201

Recalling the objective

£l T 3(9ne?)d+1
= H§||2 S 4Vmax|£|n\/n |Og <(6))

~ N 2 3(9ne2)d+1
= [|Ng —ql|» < 4VmaX\/n log (H)

1)
. &’zub/
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Sample Complexity of Fitted Q-iteration Error at Each lteration

Theoretical Analysis

Theorem (see e.g. Lazaric et al.,'11)

At each iteration k and given a set of state—action pairs {(x;, a;)},
LinearFQI returns an approximation q such that

la~lls < llg — Al + g — l,
~ dlogn/d
<llg = Aglln+ O Vit 572

. Crzia—~
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Sample Complexity of Fitted Q-iteration Error at Each Iteration

Theoretical Analysis

Moving back from vectors to functions

g —alln = 11Q° = fa,ll5
||q_ I_Ian < ||Qk - fa,’i“ﬁ

dlogn/o
= 110* = fayllp < 104 = figlly + O Vit 7%
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Sample Complexity of Fitted Q-iteration Error at Each lteration

Theoretical Analysis

By definition of truncation ((~?k = Trunc(f,))

Theorem

At each iteration k and given a set of state-action pairs {(x;, a;)},
LinearFQI returns an approximation @* such that (Objective 3)

1QX = Q¥|l < 11Q% = fa, Il

dl 1)
< 110* = gl + O Vnr 772

. brezia~
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Sample Complexity of Fitted Q-iteration Error at Each lteration

Theoretical Analysis

Remark: in order to move from Obj3 to Obj2 we need to move
from empirical to expected Ly-norms

Since ék is truncated, it is bounded in [—Vinax, Vimax]

~ ~ |
210" - Qs 2 110* -~ ¥l — O Vimey| 52

The best solution fa; is a fixed function in F

. log1/d
1QK — furllp < 2/|Q% — Fur |l + o((vmax + Lloll) / )

n

. brezia~
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Sample Complexity of Fitted Q-iteration Error at Each lteration

Theoretical Analysis

At each iteration k, LinearFQI returns an approximation QK such
that (Objective 2)

1Q¥ — Q¥l, < 4I1Q* — furll,

+O((Vmax+maiil)\/@>
-+ O(Vmax\/@)’

with probability 1 — §.

. lrezia~
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Sample Complexity of Fitted Q-iteration Error at Each Iteration

Theoretical Analysis

1Q% — Q[l, < 4l1Q* — fu; I,

. log1/d
+0( (Ve + Ui 22222
+O<Vmax /dlogn/b)
n
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Sample Complexity of Fitted Q-iteration Error at Each Iteration

Theoretical Analysis

HQk - aka < 4||Qk - fa: P

N o((vmax + Lllatll)\/@)
+ O(Vmax\/@)

No algorithm can do better

Remarks

v

Constant 4

v

v

Depends on the space F

v

Changes with the iteration k

. Cbreia—
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Sample Complexity of Fitted Q-iteration Error at Each Iteration

Theoretical Analysis

1QX — Q ||, < 41Q* — £us 1],

log 1/6
+o<(\/max+LnZ)\/ Ogn/(>
+O<Vmax /dloin/é)

» Vanishing to zero as O(n~1/?)

Remarks

» Depends on the features (L) and on the best solution (||c||)

. brezia~
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Sample Complexity of Fitted Q-iteration Error at Each Iteration

Theoretical Analysis

1QF — Q¥l, < 4/|Q* — fu ],

N o((vmax + LII&*&II)W)
+ O<Vmax\/W>

> Vanishing to zero as O(n~'/?)

Remarks

» Depends on the dimensionality of the space (d) and the
number of samples (n)

. Cbreia—
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Sample Complexity of Fitted Q-iteration Error Propagation

Outline
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Sample Complexity of Fitted Q-iteration
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The Final Bound

A. LAZARIC — Reinforcement Learning Algorithms



Sample Complexity of Fitted Q-iteration Error Propagation

Theoretical Analysis

Objective 1
Q" — Q™l,

» Problem 1: the test norm p is different from the sampling
norm p

> Problem 2: we have bounds for Q not for the performance
of the corresponding 7y

» Problem 3: we have bounds for one single iteration

-
brzia—
. A. LAZARIC — Reinforcement Learning Algorithms Dec 3rd, 2013 -



Sample Complexity of Fitted Q-iteration Error Propagation

Propagation of Errors

» Bellman operators
TQ(x,a) = r(x,a) + 'y/ max Q(dx’, a’)p(dx’|x, a)
x @

TQ(x, ) = r(x,3) + /X QUdx’, w(dx'))p(dx'|x, 2)

» Optimal action—value function

> Greedy policy

m(x) = arg max Q(x, a)

7 (x) = arg max Q*(x, a)
> Prediction error a

k= QK — Ok
.&zu&»
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Sample Complexity of Fitted Q-iteration Error Propagation

Propagation of Errors
Step 1: upper-bound on the propagation (problem 3)

By definition 7QK > 77" QX

Q- Q= T7Q —T Q" +7T™ Q" -TQ + ex

fixed point 0 Qk+1

Q-QM =TT T+ Q TR+ e
~~

recursion §0 error

Q-QM =TT -TTRHT R - TR + e
<APT(Q - Q) + ek
K-1

P QK<Z")/Kk1(PTr)Kk16 + (Pﬂ)(Q_éO)
. zia—
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Sample Complexity of Fitted Q-iteration Error Propagation

Propagation of Errors
Step 2: lower-bound on the propagation (problem 3)

By definition 7 Q* > T« Q*

Q* . ék+1 _ TQ* —T Tk Q* 4+ Tk Q* —Ték + €
S~~~ ~

fixed point 0 Qk+1

Q- QM =TQ - T +T™Q -~ TQ"+ e
~ ~~

>0 greedy pol. error

Q*_ék—i_lZTﬂ-kQ*_Tﬂ’kék—F Ek
—~—

recursion error

Q* — QK > AP (Q* — Q) + ex

. brezia~
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Sample Complexity of Fitted Q-iteration Error Propagation

Propagation of Errors
Step 3: from QX to mk (problem 2)

By definition 77 QK = TQK > 77 QK

Q -Q=T"Q =T Q+T" QX —T™Q" + T™ QX —T™Q~
—— ——

fixed point 0 0 fixed point

Q* — Q™K = 7—7r* Q* — TTr* aK _’_TT(* aK — Tk aK 4 TR aK _ Tk aK

error <0 function vs policy

* ATk ™ r* _ AK mx (K _ O* * _ )Tk
QI — Q™ <P (QF = Q%) +yP™(Q" Q"+ Q" —Q™)

0

Q= Q< APT(Q = Q)+ P (QK — Q*+ Q*— Q™ )

error error policy performance

, ([ —2P™)(Q" — Q™) <~ (P™ — P™)(Q" — Q)

A. LAZARIC — Reinforcement Learning Algorithms Dec 3rd, 2013 - 60/82



Sample Complexity of Fitted Q-iteration Error Propagation

Propagation of Errors

Step 3: plugging the error propagation (problem 2)
K—-1
Q* _ QTrK S(l 7’YP‘"K)71{ Z ,nyk[(Pﬁ*)ka _ PTKPTK-1 . Pﬁk+1:|€k

k=0

+ (P77 Y4 — (PR PRt PTO)] (@ — 60)}

. brezia~
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Sample Complexity of Fitted Q-iteration Error Propagation

Propagation of Errors

Step 4: rewrite in compact form

2y(1 — AR+ TR ~
Q- Q™ sW[ZakAm +akAk| Q" — Q)
k=0

> ag: weights (3, a = 1)

» Ay summarize the P™ terms
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Sample Complexity of Fitted Q-iteration Error Propagation

Propagation of Errors

Step 5: take the norm w.r.t. to the test distribution p

Q" — Q™ I} = /u(dx,da)(Q*(x,a) - QT a))?

2y(1 — 4K+172 = ~012
< [P ] [ meda)| S anadad + axanl@” - @) (x.)
v k=0

K-1
Z akAkEi + OCKAK(Q* - 60)2] (X? a)

k=0

SR oo

(1-7)?

. Cbreia—
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Sample Complexity of Fitted Q-iteration Error Propagation

Propagation of Errors

Focusing on one single term

1- .
pA = %u(/ — yPTR)TL[(PTT Kk L pTR pTR-1 | pTki]

_ 1—')/ v M(PT\'K)I"[(PW )K—k_'_PTrKPTrK_l'“Pﬂ'kJrl]

2
m>0

= S [ o AP (PT YK 3Ty (PR TP PR L P |
m>0 m>0
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Sample Complexity of Fitted Q-iteration Error Propagation

Propagation of Errors

Assumption: concentrability terms

d(pP™ ... P™)

c(m) = sup dp

T T

o0

Cup = (L=7)* > My te(m) < 400
m>1

Remark: related to top-Lyapunov exponent = C, , < 00 is a weak
stability condition

. Cbreia—
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Sample Complexity of Fitted Q-iteration Error Propagation

Propagation of Errors

Step 5: take the norm w.r.t. to the test distribution p

1Q" — @« |13,
{27(1 —Wlﬂ“

e D> a1 =) > yme(m+ K = K)lexl? + ak(2Vimax)?
v k=0 m>0
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Sample Complexity of Fitted Q-iteration Error Propagation

Propagation of Errors

Step 5: take the norm w.r.t. to the test distribution x (problem 1)

2y 7 o
* _ Tk ||2 < |_Z 2 _ v 2
10"~ @15 < | 1205 | Gumpxliel + O 25 Vi

. brezia~
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Sample Complexity of Fitted Q-iteration The Final Bound

Outline

Sample Complexity of LSTD

Sample Complexity of Fitted Q-iteration
Error at Each lteration
Error Propagation
The Final Bound
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Sample Complexity of Fitted Q-iteration The Final Bound

Plugging the Per—lteration Error

2 2 K
* TK 2 < ) C - 2 V X2
||c Q || = [(1 7)2:| P kaXHFka C<(1 )3 ma

llewllp = 11Q% — @I, < 411Q% — .- |,

N o((vmax + LI@L‘I)W)
0/ £871)

. lrezia~
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Sample Complexity of Fitted Q-iteration The Final Bound

Plugging the Per—lteration Error

The inherent Bellman error

1Q" = fuzllo = jnf [1Q" = fll,
= nf [[TQ 1 Al
< fig;HTﬁxk,l —fllp
Sgsggggjrll’fg—fllp:d(ﬁ’ff)

. brezia~
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Sample Complexity of Fitted Q-iteration The Final Bound

Plugging the Per—lteration Error

far is the orthogonal projection of Q¥ onto F w.rt. p

= lfarllp < Q5N = 1T Q* Iy < 11Q% oo < Vinax
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Sample Complexity of Fitted Q-iteration The Final Bound

Plugging the Per—lteration Error

Gram matrix

Gij = E(x,a)~plwi(x; a)pi(x, a)]

Smallest eigenvalue of G is w

Ifllz =0T al} = a” Ga > wa'a = wl|alf?

||fa*

k

NG

P Vm ax

=V

*
<
m/?x||ak|| < max

. brezia~
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Sample Complexity of Fitted Q-iteration The Final Bound

The Final Bound

Theorem (see e.g., Munos,’'03)

LinearFQI with a space F of d features, with n samples at each iteration
returns a policy wx after K iterations such that

. Qri)), <21 L, [dlogn/s
Q" -@Q |uS(l_7)2\/m<4d(f,T.7:)+O<Vmax(1+ﬁ)ﬁ>>

’YK 2
+ o(ivmax )
(1-9)3
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Sample Complexity of Fitted Q-iteration The Final Bound

The Final Bound

LinearFQI with a space F of d features, with n samples at each iteration returns a
policy wi after K iterations such that

N - 2y L dlogn/é
Q" —Q |uS(l_7)2m<4d(.7'-,7-f)+o(\/max(1+\/a)\/n ))

’YK 2
O ————— Vimax
o ((1—7)3 m )

The propagation (and different norms) makes the problem more complex
= how do we choose the sampling distribution?

. brezia~
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Sample Complexity of Fitted Q-iteration The Final Bound

The Final Bound

LinearFQI with a space F of d features, with n samples at each iteration returns a
policy wi after K iterations such that

N - 2y L dlogn/é
Q" — Q |u§(1_7)2m<4d(.?,7’f)+0(vmax(l+\/a)\/n ))

’YK 2
O ————— Vimax
o ((1—7)3 m )

The approximation error is worse than in regression = how do adapt to
the Bellman operator?

. brezia~
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Sample Complexity of Fitted Q-iteration The Final Bound

The Final Bound

LinearFQI with a space F of d features, with n samples at each iteration returns a
policy wi after K iterations such that

Q" — @"K]|, sm\ﬁcﬂ,p(ma TF) + O(Vmax(l + ;E)WD

’YK 2
+ O(ivmax )
(1-9)?

The dependency on « is worse than at each iteration
= is it possible to avoid it?

. brezia~
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Sample Complexity of Fitted Q-iteration The Final Bound

The Final Bound

LinearFQI with a space F of d features, with n samples at each iteration returns a
policy wi after K iterations such that

‘g <2 Ly [diogn/s
Q* - Q |#g(l_7)2\/Cu,p<4d(.7-',7']-')+O(Vmax(1+\/5) - >>

K
+ 0(777 vmaxz)

The error decreases exponentially in K
= K~ e/(1-7)

. brezia~
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Sample Complexity of Fitted Q-iteration The Final Bound

The Final Bound

LinearFQI with a space F of d features, with n samples at each iteration returns a
policy wi after K iterations such that

19" — Q7L s(lf”v)z\ﬁcﬂ,p(mf, TF) + o(vmax(l + ﬁ)\/mw

’YK 2
+ O(ivmax )
(1-9)?

The smallest eigenvalue of the Gram matrix
= design the features so as to be orthogonal w.r.t. p

. brezia~
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Sample Complexity of Fitted Q-iteration The Final Bound

The Final Bound

LinearFQI with a space F of d features, with n samples at each iteration returns a
policy wi after K iterations such that

19" — Q7L s(lf”v)z\ﬁcﬂ,p(mf, TF) + o(vmax(l 4 ;E)WD

’YK 2
+ O(ivmax )
(1-9)?

The asymptotic rate O(d/n) is the same as for regression

. brezia~
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Sample Complexity of Fitted Q-iteration The Final Bound

Summary

» At each iteration FQI solves a regression problem
= least—squares prediction error bound

> The error is propagated through iterations
= propagation of any error
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