
MVA-RL Course

The Exploration-Exploitation Dilemma

A. LAZARIC (SequeL Team @INRIA-Lille)
ENS Cachan - Master 2 MVA

SequeL – INRIA Lille

The Exploration-Exploitation
Dilemma

Tools

Stochastic Multi-Armed Bandit

Contextual Linear Bandit

Other Multi-Armed Bandit Problems

A. LAZARIC – Reinforcement Learning Fall 2017 - 2/95

The Exploration-Exploitation
Dilemma

Tools

Stochastic Multi-Armed Bandit

Contextual Linear Bandit

Other Multi-Armed Bandit Problems

A. LAZARIC – Reinforcement Learning Fall 2017 - 2/95

Learning the Optimal Policy

For i = 1, . . . , n
1. Set t = 0
2. Set initial state x0

3. While (xt not terminal)

3.1 Take action at according to a suitable exploration policy
3.2 Observe next state xt+1 and reward rt
3.3 Compute the temporal difference δt (e.g., Q-learning)
3.4 Update the Q-function

Q̂(xt , at) = Q̂(xt , at) + α(xt , at)δt

3.5 Set t = t + 1
EndWhile

EndFor

A. LAZARIC – Reinforcement Learning Fall 2017 - 3/95

Learning the Optimal Policy

For i = 1, . . . , n
1. Set t = 0
2. Set initial state x0

3. While (xt not terminal)

3.1 Take action at = arg maxa Q(xt , a)
3.2 Observe next state xt+1 and reward rt
3.3 Compute the temporal difference δt (e.g., Q-learning)
3.4 Update the Q-function

Q̂(xt , at) = Q̂(xt , at) + α(xt , at)δt

3.5 Set t = t + 1
EndWhile

EndFor

⇒ no convergence

A. LAZARIC – Reinforcement Learning Fall 2017 - 4/95

Learning the Optimal Policy

For i = 1, . . . , n
1. Set t = 0
2. Set initial state x0

3. While (xt not terminal)

3.1 Take action at = arg maxa Q(xt , a)
3.2 Observe next state xt+1 and reward rt
3.3 Compute the temporal difference δt (e.g., Q-learning)
3.4 Update the Q-function

Q̂(xt , at) = Q̂(xt , at) + α(xt , at)δt

3.5 Set t = t + 1
EndWhile

EndFor
⇒ no convergence

A. LAZARIC – Reinforcement Learning Fall 2017 - 4/95

Learning the Optimal Policy

For i = 1, . . . , n
1. Set t = 0
2. Set initial state x0

3. While (xt not terminal)

3.1 Take action at ∼ U(A)
3.2 Observe next state xt+1 and reward rt
3.3 Compute the temporal difference δt (e.g., Q-learning)
3.4 Update the Q-function

Q̂(xt , at) = Q̂(xt , at) + α(xt , at)δt

3.5 Set t = t + 1
EndWhile

EndFor

⇒ very poor rewards

A. LAZARIC – Reinforcement Learning Fall 2017 - 5/95

Learning the Optimal Policy

For i = 1, . . . , n
1. Set t = 0
2. Set initial state x0

3. While (xt not terminal)

3.1 Take action at ∼ U(A)
3.2 Observe next state xt+1 and reward rt
3.3 Compute the temporal difference δt (e.g., Q-learning)
3.4 Update the Q-function

Q̂(xt , at) = Q̂(xt , at) + α(xt , at)δt

3.5 Set t = t + 1
EndWhile

EndFor
⇒ very poor rewards

A. LAZARIC – Reinforcement Learning Fall 2017 - 5/95

The Exploration-Exploitation
Dilemma

Tools

Contextual Linear Bandit

Stochastic Multi-Armed Bandit

Other Multi-Armed Bandit Problems

A. LAZARIC – Reinforcement Learning Fall 2017 - 6/95

Mathematical Tools

Concentration Inequalities

Proposition (Chernoff-Hoeffding Inequality)

Let Xi ∈ [ai , bi] be n independent r.v. with mean µi = EXi . Then

P
[∣∣∣

n∑

i=1

(
Xi − µi

)∣∣∣ ≥ ε
]
≤ 2 exp

(
− 2ε2∑n

i=1(bi − ai)2

)
.

A. LAZARIC – Reinforcement Learning Fall 2017 - 7/95

Mathematical Tools

Concentration Inequalities

Proof.

P
(n∑

i=1
Xi − µi ≥ ε

)
= P(es

∑n
i=1 Xi−µi ≥ esε)

≤ e−sεE[es
∑n

i=1 Xi−µi], Markov inequality

= e−sε
n∏

i=1
E[es(Xi−µi)], independent random variables

≤ e−sε
n∏

i=1
es2(bi−ai)

2/8, Hoeffding inequality

= e−sε+s2 ∑n
i=1(bi−ai)

2/8

If we choose s = 4ε/
∑n

i=1(bi − ai)
2, the result follows.

Similar arguments hold for P
(∑n

i=1 Xi − µi ≤ −ε
)
.

A. LAZARIC – Reinforcement Learning Fall 2017 - 8/95

Mathematical Tools

Concentration Inequalities

Finite sample guarantee:

P

[∣∣∣1n

n∑

t=1
Xt − E[X1]

∣∣∣
︸ ︷︷ ︸

deviation

> ε︸︷︷︸
accuracy

]
≤ 2 exp

(
− 2nε2

(b − a)2

)

︸ ︷︷ ︸
confidence

A. LAZARIC – Reinforcement Learning Fall 2017 - 9/95

Mathematical Tools

Concentration Inequalities

Finite sample guarantee:

P

[∣∣∣1n

n∑

t=1
Xt − E[X1]

∣∣∣ > (b − a)

√
log 2/δ

2n

]
≤ δ

A. LAZARIC – Reinforcement Learning Fall 2017 - 10/95

Mathematical Tools

Concentration Inequalities

Finite sample guarantee:

P

[∣∣∣1n

n∑

t=1
Xt − E[X1]

∣∣∣ > ε

]
≤ δ

if n ≥ (b−a)2 log 2/δ
2ε2 .

A. LAZARIC – Reinforcement Learning Fall 2017 - 11/95

Mathematical Tools

The Exploration-Exploitation
Dilemma

Tools

Stochastic Multi-Armed Bandit

Contextual Linear Bandit

Other Multi-Armed Bandit Problems

A. LAZARIC – Reinforcement Learning Fall 2017 - 12/95

Mathematical Tools

Reducing RL down to Multi-Armed Bandit

Definition (Markov decision process)
A Markov decision process is defined as a tuple M = (X ,A, p, r):

I X is the state space,
I A is the action space,
I p(y |x , a) is the transition probability
I r(x , a, y) is the reward of transition (x , a, y)
⇒ r(a) is the reward of action a

A. LAZARIC – Reinforcement Learning Fall 2017 - 13/95

Mathematical Tools

Notice

For coherence with the bandit literature we use the notation
I i = 1, . . . ,K set of possible actions
I t = 1, . . . , n time
I It action selected at time t
I Xi ,t reward for action i at time t

A. LAZARIC – Reinforcement Learning Fall 2017 - 14/95

Mathematical Tools

Learning the Optimal Policy

Objective: learn the optimal policy π∗ as efficiently as possible

For t = 1, . . . , n
1. Set t = 0
2. Set initial state x0
3. While (xt not terminal)

3.1 Take action at
3.2 Observe next state xt+1 and reward rt
3.3 Set t = t + 1

EndWhile
EndFor

A. LAZARIC – Reinforcement Learning Fall 2017 - 15/95

Mathematical Tools

Learning the Optimal Policy

Objective: learn the optimal policy π∗ as efficiently as possible
For t = 1, . . . , n

1. Set t = 0
2. Set initial state x0
3. While (xt not terminal)

3.1 Take action at
3.2 Observe next state xt+1 and reward rt
3.3 Set t = t + 1

EndWhile
EndFor

A. LAZARIC – Reinforcement Learning Fall 2017 - 15/95

Mathematical Tools

The Multi–armed Bandit Protocol

The learner has i = 1, . . . ,K arms (actions)

At each round t = 1, . . . , n

I At the same time
I The environment chooses a vector of rewards {Xi,t}K

i=1
I The learner chooses an arm It

I The learner receives a reward XIt ,t
I The environment does not reveal the rewards of the other

arms

A. LAZARIC – Reinforcement Learning Fall 2017 - 16/95

Mathematical Tools

The Multi–armed Bandit Protocol

The learner has i = 1, . . . ,K arms (actions)

At each round t = 1, . . . , n
I At the same time

I The environment chooses a vector of rewards {Xi,t}K
i=1

I The learner chooses an arm It
I The learner receives a reward XIt ,t
I The environment does not reveal the rewards of the other

arms

A. LAZARIC – Reinforcement Learning Fall 2017 - 16/95

Mathematical Tools

The Multi–armed Bandit Protocol

The learner has i = 1, . . . ,K arms (actions)

At each round t = 1, . . . , n
I At the same time

I The environment chooses a vector of rewards {Xi,t}K
i=1

I The learner chooses an arm It

I The learner receives a reward XIt ,t
I The environment does not reveal the rewards of the other

arms

A. LAZARIC – Reinforcement Learning Fall 2017 - 16/95

Mathematical Tools

The Multi–armed Bandit Protocol

The learner has i = 1, . . . ,K arms (actions)

At each round t = 1, . . . , n
I At the same time

I The environment chooses a vector of rewards {Xi,t}K
i=1

I The learner chooses an arm It
I The learner receives a reward XIt ,t

I The environment does not reveal the rewards of the other
arms

A. LAZARIC – Reinforcement Learning Fall 2017 - 16/95

Mathematical Tools

The Multi–armed Bandit Protocol

The learner has i = 1, . . . ,K arms (actions)

At each round t = 1, . . . , n
I At the same time

I The environment chooses a vector of rewards {Xi,t}K
i=1

I The learner chooses an arm It
I The learner receives a reward XIt ,t
I The environment does not reveal the rewards of the other

arms

A. LAZARIC – Reinforcement Learning Fall 2017 - 16/95

Mathematical Tools

The Multi–armed Bandit Game (cont’d)

The regret

Rn(A) = max
i=1,...,K

E
[n∑

t=1
Xi ,t
]
− E

[n∑

t=1
XIt ,t

]

The expectation summarizes any possible source of randomness (either in
X or in the algorithm)

A. LAZARIC – Reinforcement Learning Fall 2017 - 17/95

Mathematical Tools

The Multi–armed Bandit Game (cont’d)

The regret

Rn(A) = max
i=1,...,K

E
[n∑

t=1
Xi ,t
]
− E

[n∑

t=1
XIt ,t

]

The expectation summarizes any possible source of randomness (either in
X or in the algorithm)

A. LAZARIC – Reinforcement Learning Fall 2017 - 17/95

Mathematical Tools

The Exploration–Exploitation Lemma

Problem 1: The environment does not reveal the rewards of the arms
not pulled by the learner

⇒ the learner should gain information by repeatedly pulling all the arms
⇒ exploration

Problem 2: Whenever the learner pulls a bad arm, it suffers some regret
⇒ the learner should reduce the regret by repeatedly pulling the best arm
⇒ exploitation

A. LAZARIC – Reinforcement Learning Fall 2017 - 18/95

Mathematical Tools

The Exploration–Exploitation Lemma

Problem 1: The environment does not reveal the rewards of the arms
not pulled by the learner
⇒ the learner should gain information by repeatedly pulling all the arms

⇒ exploration

Problem 2: Whenever the learner pulls a bad arm, it suffers some regret
⇒ the learner should reduce the regret by repeatedly pulling the best arm
⇒ exploitation

A. LAZARIC – Reinforcement Learning Fall 2017 - 18/95

Mathematical Tools

The Exploration–Exploitation Lemma

Problem 1: The environment does not reveal the rewards of the arms
not pulled by the learner
⇒ the learner should gain information by repeatedly pulling all the arms

⇒ exploration

Problem 2: Whenever the learner pulls a bad arm, it suffers some regret

⇒ the learner should reduce the regret by repeatedly pulling the best arm
⇒ exploitation

A. LAZARIC – Reinforcement Learning Fall 2017 - 18/95

Mathematical Tools

The Exploration–Exploitation Lemma

Problem 1: The environment does not reveal the rewards of the arms
not pulled by the learner
⇒ the learner should gain information by repeatedly pulling all the arms

⇒ exploration

Problem 2: Whenever the learner pulls a bad arm, it suffers some regret
⇒ the learner should reduce the regret by repeatedly pulling the best arm

⇒ exploitation

A. LAZARIC – Reinforcement Learning Fall 2017 - 18/95

Mathematical Tools

The Exploration–Exploitation Lemma

Problem 1: The environment does not reveal the rewards of the arms
not pulled by the learner
⇒ the learner should gain information by repeatedly pulling all the arms

⇒ exploration

Problem 2: Whenever the learner pulls a bad arm, it suffers some regret
⇒ the learner should reduce the regret by repeatedly pulling the best arm

⇒ exploitation

Challenge: The learner should solve two opposite problems!

A. LAZARIC – Reinforcement Learning Fall 2017 - 18/95

Mathematical Tools

The Exploration–Exploitation Lemma

Problem 1: The environment does not reveal the rewards of the arms
not pulled by the learner
⇒ the learner should gain information by repeatedly pulling all the arms
⇒ exploration

Problem 2: Whenever the learner pulls a bad arm, it suffers some regret
⇒ the learner should reduce the regret by repeatedly pulling the best arm

⇒ exploitation

Challenge: The learner should solve two opposite problems!

A. LAZARIC – Reinforcement Learning Fall 2017 - 18/95

Mathematical Tools

The Exploration–Exploitation Lemma

Problem 1: The environment does not reveal the rewards of the arms
not pulled by the learner
⇒ the learner should gain information by repeatedly pulling all the arms
⇒ exploration

Problem 2: Whenever the learner pulls a bad arm, it suffers some regret
⇒ the learner should reduce the regret by repeatedly pulling the best arm
⇒ exploitation
Challenge: The learner should solve two opposite problems!

A. LAZARIC – Reinforcement Learning Fall 2017 - 18/95

Mathematical Tools

The Exploration–Exploitation Lemma

Problem 1: The environment does not reveal the rewards of the arms
not pulled by the learner
⇒ the learner should gain information by repeatedly pulling all the arms
⇒ exploration

Problem 2: Whenever the learner pulls a bad arm, it suffers some regret
⇒ the learner should reduce the regret by repeatedly pulling the best arm
⇒ exploitation
Challenge: The learner should solve the exploration-exploitation
dilemma!

A. LAZARIC – Reinforcement Learning Fall 2017 - 18/95

Mathematical Tools

The Multi–armed Bandit Game (cont’d)

Examples
I Packet routing
I Clinical trials
I Web advertising
I Computer games
I Resource mining
I ...

A. LAZARIC – Reinforcement Learning Fall 2017 - 19/95

Mathematical Tools

The Stochastic Multi–armed Bandit Problem

Definition
The environment is stochastic

I Each arm has a distribution νi bounded in [0, 1] and
characterized by an expected value µi

I The rewards are i.i.d. Xi ,t ∼ νi (as in the MDP model)

A. LAZARIC – Reinforcement Learning Fall 2017 - 20/95

Mathematical Tools

The Stochastic Multi–armed Bandit Problem (cont’d)

Notation
I Number of times arm i has been pulled after n rounds

Ti ,n =
n∑

t=1
I{It = i}

I Regret

A. LAZARIC – Reinforcement Learning Fall 2017 - 21/95

Mathematical Tools

The Stochastic Multi–armed Bandit Problem (cont’d)

Notation
I Number of times arm i has been pulled after n rounds

Ti ,n =
n∑

t=1
I{It = i}

I Regret

Rn(A) = max
i=1,...,K

E
[n∑

t=1
Xi ,t
]
− E

[n∑

t=1
XIt ,t

]

A. LAZARIC – Reinforcement Learning Fall 2017 - 21/95

Mathematical Tools

The Stochastic Multi–armed Bandit Problem (cont’d)

Notation
I Number of times arm i has been pulled after n rounds

Ti ,n =
n∑

t=1
I{It = i}

I Regret

Rn(A) = max
i=1,...,K

(nµi)− E
[n∑

t=1
XIt ,t

]

A. LAZARIC – Reinforcement Learning Fall 2017 - 21/95

Mathematical Tools

The Stochastic Multi–armed Bandit Problem (cont’d)

Notation
I Number of times arm i has been pulled after n rounds

Ti ,n =
n∑

t=1
I{It = i}

I Regret

Rn(A) = max
i=1,...,K

(nµi)−
K∑

i=1
E[Ti ,n]µi

A. LAZARIC – Reinforcement Learning Fall 2017 - 21/95

Mathematical Tools

The Stochastic Multi–armed Bandit Problem (cont’d)

Notation
I Number of times arm i has been pulled after n rounds

Ti ,n =
n∑

t=1
I{It = i}

I Regret

Rn(A) = nµi∗ −
K∑

i=1
E[Ti ,n]µi

A. LAZARIC – Reinforcement Learning Fall 2017 - 21/95

Mathematical Tools

The Stochastic Multi–armed Bandit Problem (cont’d)

Notation
I Number of times arm i has been pulled after n rounds

Ti ,n =
n∑

t=1
I{It = i}

I Regret
Rn(A) =

∑

i 6=i∗
E[Ti ,n](µi∗ − µi)

A. LAZARIC – Reinforcement Learning Fall 2017 - 21/95

Mathematical Tools

The Stochastic Multi–armed Bandit Problem (cont’d)

Notation
I Number of times arm i has been pulled after n rounds

Ti ,n =
n∑

t=1
I{It = i}

I Regret
Rn(A) =

∑

i 6=i∗
E[Ti ,n]∆i

A. LAZARIC – Reinforcement Learning Fall 2017 - 21/95

Mathematical Tools

The Stochastic Multi–armed Bandit Problem (cont’d)

Notation
I Number of times arm i has been pulled after n rounds

Ti ,n =
n∑

t=1
I{It = i}

I Regret
Rn(A) =

∑

i 6=i∗
E[Ti ,n]∆i

I Gap ∆i = µi∗ − µi

A. LAZARIC – Reinforcement Learning Fall 2017 - 21/95

Mathematical Tools

The Stochastic Multi–armed Bandit Problem (cont’d)

Rn(A) =
∑

i 6=i∗
E[Ti ,n]∆i

⇒ we only need to study the expected number of pulls of the
suboptimal arms

A. LAZARIC – Reinforcement Learning Fall 2017 - 22/95

Mathematical Tools

The Stochastic Multi–armed Bandit Problem (cont’d)

Optimism in Face of Uncertainty Learning (OFUL)

Whenever we are uncertain about the outcome of an arm, we
consider the best possible world and choose the best arm.

Why it works:
I If the best possible world is correct ⇒ no regret
I If the best possible world is wrong ⇒ the reduction in the

uncertainty is maximized

A. LAZARIC – Reinforcement Learning Fall 2017 - 23/95

Mathematical Tools

The Stochastic Multi–armed Bandit Problem (cont’d)

Optimism in Face of Uncertainty Learning (OFUL)

Whenever we are uncertain about the outcome of an arm, we
consider the best possible world and choose the best arm.
Why it works:

I If the best possible world is correct ⇒ no regret
I If the best possible world is wrong ⇒ the reduction in the

uncertainty is maximized

A. LAZARIC – Reinforcement Learning Fall 2017 - 23/95

Mathematical Tools

The Upper–Confidence Bound (UCB) Algorithm
The idea

1 (10) 2 (73) 3 (3) 4 (23)
−1.5

−1

−0.5

0

0.5

1

1.5

2

Arms

R
e
w

a
rd

A. LAZARIC – Reinforcement Learning Fall 2017 - 24/95

Mathematical Tools

The Upper–Confidence Bound (UCB) Algorithm

Show time!

A. LAZARIC – Reinforcement Learning Fall 2017 - 25/95

Mathematical Tools

The Upper–Confidence Bound (UCB) Algorithm (cont’d)

At each round t = 1, . . . , n
I Compute the score of each arm i

Bi = (optimistic score of arm i)

I Pull arm
It = arg max

i=1,...,K
Bi ,s,t

I Update the number of pulls TIt ,t = TIt ,t−1 + 1 and the other
statistics

A. LAZARIC – Reinforcement Learning Fall 2017 - 26/95

Mathematical Tools

The Upper–Confidence Bound (UCB) Algorithm (cont’d)

The score (with parameters ρ and δ)

Bi = (optimistic score of arm i)

A. LAZARIC – Reinforcement Learning Fall 2017 - 27/95

Mathematical Tools

The Upper–Confidence Bound (UCB) Algorithm (cont’d)

The score (with parameters ρ and δ)

Bi ,s,t = (optimistic score of arm i if pulled s times up to round t)

A. LAZARIC – Reinforcement Learning Fall 2017 - 27/95

Mathematical Tools

The Upper–Confidence Bound (UCB) Algorithm (cont’d)

The score (with parameters ρ and δ)

Bi ,s,t = (optimistic score of arm i if pulled s times up to round t)

Optimism in face of uncertainty:
Current knowledge: average rewards µ̂i ,s
Current uncertainty : number of pulls s

A. LAZARIC – Reinforcement Learning Fall 2017 - 27/95

Mathematical Tools

The Upper–Confidence Bound (UCB) Algorithm (cont’d)

The score (with parameters ρ and δ)

Bi ,s,t = knowledge +︸︷︷︸
optimism

uncertainty

Optimism in face of uncertainty:
Current knowledge: average rewards µ̂i ,s
Current uncertainty : number of pulls s

A. LAZARIC – Reinforcement Learning Fall 2017 - 27/95

Mathematical Tools

The Upper–Confidence Bound (UCB) Algorithm (cont’d)

The score (with parameters ρ and δ)

Bi ,s,t = µ̂i ,s + ρ

√
log 1/δ

2s

Optimism in face of uncertainty:
Current knowledge: average rewards µ̂i ,s
Current uncertainty : number of pulls s

A. LAZARIC – Reinforcement Learning Fall 2017 - 27/95

Mathematical Tools

The Upper–Confidence Bound (UCB) Algorithm (cont’d)

At each round t = 1, . . . , n
I Compute the score of each arm i

Bi ,t = µ̂i ,Ti,t + ρ

√
log(t)

2Ti ,t

I Pull arm
It = arg max

i=1,...,K
Bi ,t

I Update the number of pulls TIt ,t = TIt ,t−1 + 1 and µ̂i ,Ti,t

A. LAZARIC – Reinforcement Learning Fall 2017 - 28/95

Mathematical Tools

The Upper–Confidence Bound (UCB) Algorithm (cont’d)

Theorem
Let X1, . . . ,Xn be i.i.d. samples from a distribution bounded in
[a, b], then for any δ ∈ (0, 1)

P

[∣∣∣1n

n∑

t=1
Xt − E[X1]

∣∣∣ > (b − a)

√
log 2/δ

2n

]
≤ δ

A. LAZARIC – Reinforcement Learning Fall 2017 - 29/95

Mathematical Tools

The Upper–Confidence Bound (UCB) Algorithm (cont’d)

After s pulls, arm i

P

[
E[Xi] ≤

1
s

s∑

t=1
Xi ,t +

√
log 1/δ

2s

]
≥ 1− δ

A. LAZARIC – Reinforcement Learning Fall 2017 - 30/95

Mathematical Tools

The Upper–Confidence Bound (UCB) Algorithm (cont’d)

After s pulls, arm i

P

[
µi ≤ µ̂i ,s +

√
log 1/δ

2s

]
≥ 1− δ

A. LAZARIC – Reinforcement Learning Fall 2017 - 30/95

Mathematical Tools

The Upper–Confidence Bound (UCB) Algorithm (cont’d)

After s pulls, arm i

P

[
µi ≤ µ̂i ,s +

√
log 1/δ

2s

]
≥ 1− δ

⇒ UCB uses an upper confidence bound on the expectation

A. LAZARIC – Reinforcement Learning Fall 2017 - 30/95

Mathematical Tools

The Upper–Confidence Bound (UCB) Algorithm (cont’d)

Theorem
For any set of K arms with distributions bounded in [0, b], if
δ = 1/t, then UCB(ρ) with ρ > 1, achieves a regret

Rn(A) ≤
∑

i 6=i∗

[
4b2

∆i
ρ log(n) + ∆i

(
3
2 +

1
2(ρ− 1)

)]

A. LAZARIC – Reinforcement Learning Fall 2017 - 31/95

Mathematical Tools

The Upper–Confidence Bound (UCB) Algorithm (cont’d)

Let K = 2 with i∗ = 1

Rn(A) ≤ O
(

1
∆
ρ log(n)

)

Remark 1: the cumulative regret slowly increases as log(n)

Remark 2: the smaller the gap the bigger the regret... why?

A. LAZARIC – Reinforcement Learning Fall 2017 - 32/95

Mathematical Tools

The Upper–Confidence Bound (UCB) Algorithm (cont’d)

Let K = 2 with i∗ = 1

Rn(A) ≤ O
(

1
∆
ρ log(n)

)

Remark 1: the cumulative regret slowly increases as log(n)
Remark 2: the smaller the gap the bigger the regret... why?

A. LAZARIC – Reinforcement Learning Fall 2017 - 32/95

Mathematical Tools

The Upper–Confidence Bound (UCB) Algorithm (cont’d)

Show time (again)!

A. LAZARIC – Reinforcement Learning Fall 2017 - 33/95

Mathematical Tools

The Worst–case Performance

Remark: the regret bound is distribution–dependent

Rn(A; ∆) ≤ O
(

1
∆
ρ log(n)

)

Meaning: the algorithm is able to adapt to the specific problem at
hand!
Worst–case performance: what is the distribution which leads to
the worst possible performance of UCB? what is the
distribution–free performance of UCB?

Rn(A) = sup
∆

Rn(A; ∆)

A. LAZARIC – Reinforcement Learning Fall 2017 - 34/95

Mathematical Tools

The Worst–case Performance

Remark: the regret bound is distribution–dependent

Rn(A; ∆) ≤ O
(

1
∆
ρ log(n)

)

Meaning: the algorithm is able to adapt to the specific problem at
hand!

Worst–case performance: what is the distribution which leads to
the worst possible performance of UCB? what is the
distribution–free performance of UCB?

Rn(A) = sup
∆

Rn(A; ∆)

A. LAZARIC – Reinforcement Learning Fall 2017 - 34/95

Mathematical Tools

The Worst–case Performance

Remark: the regret bound is distribution–dependent

Rn(A; ∆) ≤ O
(

1
∆
ρ log(n)

)

Meaning: the algorithm is able to adapt to the specific problem at
hand!
Worst–case performance: what is the distribution which leads to
the worst possible performance of UCB? what is the
distribution–free performance of UCB?

Rn(A) = sup
∆

Rn(A; ∆)

A. LAZARIC – Reinforcement Learning Fall 2017 - 34/95

Mathematical Tools

The Worst–case Performance

Problem: it seems like if ∆→ 0 then the regret tends to infinity...

... nosense because the regret is defined as

Rn(A; ∆) = E[T2,n]∆

then if ∆i is small, the regret is also small...
In fact

Rn(A; ∆) = min

{
O
(

1
∆
ρ log(n)

)
,E[T2,n]∆

}

A. LAZARIC – Reinforcement Learning Fall 2017 - 35/95

Mathematical Tools

The Worst–case Performance

Problem: it seems like if ∆→ 0 then the regret tends to infinity...
... nosense because the regret is defined as

Rn(A; ∆) = E[T2,n]∆

then if ∆i is small, the regret is also small...
In fact

Rn(A; ∆) = min

{
O
(

1
∆
ρ log(n)

)
,E[T2,n]∆

}

A. LAZARIC – Reinforcement Learning Fall 2017 - 35/95

Mathematical Tools

The Worst–case Performance

Problem: it seems like if ∆→ 0 then the regret tends to infinity...
... nosense because the regret is defined as

Rn(A; ∆) = E[T2,n]∆

then if ∆i is small, the regret is also small...

In fact

Rn(A; ∆) = min

{
O
(

1
∆
ρ log(n)

)
,E[T2,n]∆

}

A. LAZARIC – Reinforcement Learning Fall 2017 - 35/95

Mathematical Tools

The Worst–case Performance

Problem: it seems like if ∆→ 0 then the regret tends to infinity...
... nosense because the regret is defined as

Rn(A; ∆) = E[T2,n]∆

then if ∆i is small, the regret is also small...
In fact

Rn(A; ∆) = min

{
O
(

1
∆
ρ log(n)

)
,E[T2,n]∆

}

A. LAZARIC – Reinforcement Learning Fall 2017 - 35/95

Mathematical Tools

The Worst–case Performance

Then

Rn(A) = sup
∆

Rn(A; ∆) = sup
∆

min

{
O
(

1
∆
ρ log(n)

)
, n∆

}
≈ √n

for ∆ =
√

1/n

A. LAZARIC – Reinforcement Learning Fall 2017 - 36/95

Mathematical Tools

Tuning the confidence δ of UCB

Remark: UCB is an anytime algorithm (δ = 1/t)

Bi ,s,t = µ̂i ,s + ρ

√
log t
2s

Remark: If the time horizon n is known then the optimal choice is
δ = 1/n

Bi ,s,t = µ̂i ,s + ρ

√
log n

2s

A. LAZARIC – Reinforcement Learning Fall 2017 - 37/95

Mathematical Tools

Tuning the confidence δ of UCB

Remark: UCB is an anytime algorithm (δ = 1/t)

Bi ,s,t = µ̂i ,s + ρ

√
log t
2s

Remark: If the time horizon n is known then the optimal choice is
δ = 1/n

Bi ,s,t = µ̂i ,s + ρ

√
log n

2s

A. LAZARIC – Reinforcement Learning Fall 2017 - 37/95

Mathematical Tools

Tuning the confidence δ of UCB (cont’d)

Intuition: UCB should pull the suboptimal arms
I Enough: so as to understand which arm is the best
I Not too much: so as to keep the regret as small as possible

The confidence 1− δ has the following impact (similar for ρ)
I Big 1− δ: high level of exploration
I Small 1− δ: high level of exploitation

Solution: depending on the time horizon, we can tune how to
trade-off between exploration and exploitation

A. LAZARIC – Reinforcement Learning Fall 2017 - 38/95

Mathematical Tools

Tuning the confidence δ of UCB (cont’d)

Intuition: UCB should pull the suboptimal arms
I Enough: so as to understand which arm is the best
I Not too much: so as to keep the regret as small as possible

The confidence 1− δ has the following impact (similar for ρ)
I Big 1− δ: high level of exploration
I Small 1− δ: high level of exploitation

Solution: depending on the time horizon, we can tune how to
trade-off between exploration and exploitation

A. LAZARIC – Reinforcement Learning Fall 2017 - 38/95

Mathematical Tools

Tuning the confidence δ of UCB (cont’d)

Intuition: UCB should pull the suboptimal arms
I Enough: so as to understand which arm is the best
I Not too much: so as to keep the regret as small as possible

The confidence 1− δ has the following impact (similar for ρ)
I Big 1− δ: high level of exploration
I Small 1− δ: high level of exploitation

Solution: depending on the time horizon, we can tune how to
trade-off between exploration and exploitation

A. LAZARIC – Reinforcement Learning Fall 2017 - 38/95

Mathematical Tools

UCB Proof

Let’s dig into the (1 page and half!!) proof.

Define the (high-probability) event [statistics]

E =

{
∀i , s

∣∣∣µ̂i,s − µi

∣∣∣ ≤
√

log 1/δ
2s

}

By Chernoff-Hoeffding P[E] ≥ 1− nKδ.

At time t we pull arm i [algorithm]

On the event E we have [math]

A. LAZARIC – Reinforcement Learning Fall 2017 - 39/95

Mathematical Tools

UCB Proof

Let’s dig into the (1 page and half!!) proof.

Define the (high-probability) event [statistics]

E =

{
∀i , s

∣∣∣µ̂i,s − µi

∣∣∣ ≤
√

log 1/δ
2s

}

By Chernoff-Hoeffding P[E] ≥ 1− nKδ.
At time t we pull arm i [algorithm]

Bi,Ti,t−1 ≥ Bi∗,Ti∗,t−1

On the event E we have [math]

A. LAZARIC – Reinforcement Learning Fall 2017 - 39/95

Mathematical Tools

UCB Proof

Let’s dig into the (1 page and half!!) proof.

Define the (high-probability) event [statistics]

E =

{
∀i , s

∣∣∣µ̂i,s − µi

∣∣∣ ≤
√

log 1/δ
2s

}

By Chernoff-Hoeffding P[E] ≥ 1− nKδ.
At time t we pull arm i [algorithm]

µ̂i,Ti,t−1 +

√
log 1/δ
2Ti,t−1

≥ µ̂i∗,Ti∗,t−1 +

√
log 1/δ

2Ti∗,t−1

On the event E we have [math]

A. LAZARIC – Reinforcement Learning Fall 2017 - 39/95

Mathematical Tools

UCB Proof
Let’s dig into the (1 page and half!!) proof.

Define the (high-probability) event [statistics]

E =

{
∀i , s

∣∣∣µ̂i,s − µi

∣∣∣ ≤
√

log 1/δ
2s

}

By Chernoff-Hoeffding P[E] ≥ 1− nKδ.
At time t we pull arm i [algorithm]

µ̂i,Ti,t−1 +

√
log 1/δ
2Ti,t−1

≥ µ̂i∗,Ti∗,t−1 +

√
log 1/δ

2Ti∗,t−1

On the event E we have [math]

µi + 2

√
log 1/δ
2Ti,t−1

≥ µi∗

A. LAZARIC – Reinforcement Learning Fall 2017 - 39/95

Mathematical Tools

UCB Proof (cont’d)
Assume t is the last time i is pulled, then Ti,n = Ti,t−1 + 1, thus

µi + 2

√
log 1/δ

2(Ti,n − 1)
≥ µi∗

Reordering [math]

Ti,n ≤
log 1/δ

2∆2
i

+ 1

under event E and thus with probability 1− nKδ.
Moving to the expectation [statistics]
Trading-off the two terms δ = 1/n2, we obtain

µ̂i,Ti,t−1 +

√
2 log n
2Ti,t−1

and

E[Ti,n] ≤ log n
∆2

i
+ 1 + K

A. LAZARIC – Reinforcement Learning Fall 2017 - 40/95

Mathematical Tools

UCB Proof (cont’d)
Assume t is the last time i is pulled, then Ti,n = Ti,t−1 + 1, thus

µi + 2

√
log 1/δ

2(Ti,n − 1)
≥ µi∗

Reordering [math]

Ti,n ≤
log 1/δ

2∆2
i

+ 1

under event E and thus with probability 1− nKδ.

Moving to the expectation [statistics]
Trading-off the two terms δ = 1/n2, we obtain

µ̂i,Ti,t−1 +

√
2 log n
2Ti,t−1

and

E[Ti,n] ≤ log n
∆2

i
+ 1 + K

A. LAZARIC – Reinforcement Learning Fall 2017 - 40/95

Mathematical Tools

UCB Proof (cont’d)
Assume t is the last time i is pulled, then Ti,n = Ti,t−1 + 1, thus

µi + 2

√
log 1/δ

2(Ti,n − 1)
≥ µi∗

Reordering [math]

Ti,n ≤
log 1/δ

2∆2
i

+ 1

under event E and thus with probability 1− nKδ.
Moving to the expectation [statistics]

E[Ti,n] = E[Ti,nIE] + E[Ti,nIEC]

Trading-off the two terms δ = 1/n2, we obtain

µ̂i,Ti,t−1 +

√
2 log n
2Ti,t−1

and

E[Ti,n] ≤ log n
∆2

i
+ 1 + K

A. LAZARIC – Reinforcement Learning Fall 2017 - 40/95

Mathematical Tools

UCB Proof (cont’d)
Assume t is the last time i is pulled, then Ti,n = Ti,t−1 + 1, thus

µi + 2

√
log 1/δ

2(Ti,n − 1)
≥ µi∗

Reordering [math]

Ti,n ≤
log 1/δ

2∆2
i

+ 1

under event E and thus with probability 1− nKδ.
Moving to the expectation [statistics]

E[Ti,n] ≤ log 1/δ
2∆2

i
+ 1 + n(nKδ)

Trading-off the two terms δ = 1/n2, we obtain

µ̂i,Ti,t−1 +

√
2 log n
2Ti,t−1

and

E[Ti,n] ≤ log n
∆2

i
+ 1 + K

A. LAZARIC – Reinforcement Learning Fall 2017 - 40/95

Mathematical Tools

UCB Proof (cont’d)
Assume t is the last time i is pulled, then Ti,n = Ti,t−1 + 1, thus

µi + 2

√
log 1/δ

2(Ti,n − 1)
≥ µi∗

Reordering [math]

Ti,n ≤
log 1/δ

2∆2
i

+ 1

under event E and thus with probability 1− nKδ.
Moving to the expectation [statistics]

E[Ti,n] ≤ log 1/δ
2∆2

i
+ 1 + n(nKδ)

Trading-off the two terms δ = 1/n2, we obtain

µ̂i,Ti,t−1 +

√
2 log n
2Ti,t−1

and

E[Ti,n] ≤ log n
∆2

i
+ 1 + K

A. LAZARIC – Reinforcement Learning Fall 2017 - 40/95

Mathematical Tools

UCB Proof (cont’d)

Trading-off the two terms δ = 1/n2, we obtain

µ̂i,Ti,t−1 +

√
2 log n
2Ti,t−1

and

E[Ti,n] ≤ log n
∆2

i
+ 1 + K

A. LAZARIC – Reinforcement Learning Fall 2017 - 41/95

Mathematical Tools

Tuning the confidence δ of UCB (cont’d)

Multi–armed Bandit: the same for δ = 1/t and δ = 1/n...

... almost (i.e., in expectation)

A. LAZARIC – Reinforcement Learning Fall 2017 - 42/95

Mathematical Tools

Tuning the confidence δ of UCB (cont’d)

Multi–armed Bandit: the same for δ = 1/t and δ = 1/n...
... almost (i.e., in expectation)

A. LAZARIC – Reinforcement Learning Fall 2017 - 42/95

Mathematical Tools

Tuning the confidence δ of UCB (cont’d)
The value–at–risk of the regret for UCB-anytime

A. LAZARIC – Reinforcement Learning Fall 2017 - 43/95

Mathematical Tools

Tuning the ρ of UCB (cont’d)
UCB values (for the δ = 1/n algorithm)

Bi,s = µ̂i,s + ρ

√
log n
2s

Theory
I ρ < 0.5, polynomial regret w.r.t. n
I ρ > 0.5, logarithmic regret w.r.t. n

Practice: ρ = 0.2 is often the best choice

A. LAZARIC – Reinforcement Learning Fall 2017 - 44/95

Mathematical Tools

Tuning the ρ of UCB (cont’d)
UCB values (for the δ = 1/n algorithm)

Bi,s = µ̂i,s + ρ

√
log n
2s

Theory
I ρ < 0.5, polynomial regret w.r.t. n
I ρ > 0.5, logarithmic regret w.r.t. n

Practice: ρ = 0.2 is often the best choice

A. LAZARIC – Reinforcement Learning Fall 2017 - 44/95

Mathematical Tools

Tuning the ρ of UCB (cont’d)
UCB values (for the δ = 1/n algorithm)

Bi,s = µ̂i,s + ρ

√
log n
2s

Theory
I ρ < 0.5, polynomial regret w.r.t. n
I ρ > 0.5, logarithmic regret w.r.t. n

Practice: ρ = 0.2 is often the best choice

A. LAZARIC – Reinforcement Learning Fall 2017 - 44/95

Mathematical Tools

Tuning the ρ of UCB (cont’d)
UCB values (for the δ = 1/n algorithm)

Bi,s = µ̂i,s + ρ

√
log n
2s

Theory
I ρ < 0.5, polynomial regret w.r.t. n
I ρ > 0.5, logarithmic regret w.r.t. n

Practice: ρ = 0.2 is often the best choice

A. LAZARIC – Reinforcement Learning Fall 2017 - 44/95

Mathematical Tools

Improvements: UCB-V

Idea: use empirical Bernstein bounds for more accurate c.i.

Algorithm
I Compute the score of each arm iI Pull arm

It = arg max
i=1,...,K

Bi,t

I Update the number of pulls TIt ,t , µ̂i,Ti,t

A. LAZARIC – Reinforcement Learning Fall 2017 - 45/95

Mathematical Tools

Improvements: UCB-V

Idea: use empirical Bernstein bounds for more accurate c.i.

Algorithm
I Compute the score of each arm i

Bi,t = µ̂i,Ti,t + ρ

√
log(t)

2Ti,t

I Pull arm
It = arg max

i=1,...,K
Bi,t

I Update the number of pulls TIt ,t , µ̂i,Ti,t

A. LAZARIC – Reinforcement Learning Fall 2017 - 45/95

Mathematical Tools

Improvements: UCB-V

Idea: use empirical Bernstein bounds for more accurate c.i.

Algorithm
I Compute the score of each arm i

Bi,t = µ̂i,Ti,t +

√
2σ̂2

i,Ti,t
log t

Ti,t
+

8 log t
3Ti,t

I Pull arm
It = arg max

i=1,...,K
Bi,t

I Update the number of pulls TIt ,t , µ̂i,Ti,t and σ̂2
i,Ti,t

A. LAZARIC – Reinforcement Learning Fall 2017 - 45/95

Mathematical Tools

Improvements: UCB-V
Idea: use empirical Bernstein bounds for more accurate c.i.

Algorithm
I Compute the score of each arm i

Bi,t = µ̂i,Ti,t +

√
2σ̂2

i,Ti,t
log t

Ti,t
+

8 log t
3Ti,t

I Pull arm
It = arg max

i=1,...,K
Bi,t

I Update the number of pulls TIt ,t , µ̂i,Ti,t and σ̂2
i,Ti,t

Regret
Rn ≤ O

(1
∆

log n
)

A. LAZARIC – Reinforcement Learning Fall 2017 - 45/95

Mathematical Tools

Improvements: UCB-V
Idea: use empirical Bernstein bounds for more accurate c.i.

Algorithm
I Compute the score of each arm i

Bi,t = µ̂i,Ti,t +

√
2σ̂2

i,Ti,t
log t

Ti,t
+

8 log t
3Ti,t

I Pull arm
It = arg max

i=1,...,K
Bi,t

I Update the number of pulls TIt ,t , µ̂i,Ti,t and σ̂2
i,Ti,t

Regret

Rn ≤ O
(σ2

∆
log n

)

A. LAZARIC – Reinforcement Learning Fall 2017 - 45/95

Mathematical Tools

Improvements: KL-UCB

Idea: use even tighter c.i. based on Kullback–Leibler divergence

d(p, q) = p log
p
q + (1− p) log

1− p
1− q

Algorithm: Compute the score of each arm i (convex optimization)

Bi,t = max
{

q ∈ [0, 1] : Ti,td
(
µ̂i,Ti,t , q

)
≤ log(t) + c log(log(t))

}

Regret: pulls to suboptimal arms

E
[
Ti,n

]
≤ (1 + ε)

log(n)

d(µi , µ∗)
+ C1 log(log(n)) +

C2(ε)

nβ(ε)

where d(µi , µ
∗) > 2∆2

i

A. LAZARIC – Reinforcement Learning Fall 2017 - 46/95

Mathematical Tools

Improvements: KL-UCB

Idea: use even tighter c.i. based on Kullback–Leibler divergence

d(p, q) = p log
p
q + (1− p) log

1− p
1− q

Algorithm: Compute the score of each arm i (convex optimization)

Bi,t = max
{

q ∈ [0, 1] : Ti,td
(
µ̂i,Ti,t , q

)
≤ log(t) + c log(log(t))

}

Regret: pulls to suboptimal arms

E
[
Ti,n

]
≤ (1 + ε)

log(n)

d(µi , µ∗)
+ C1 log(log(n)) +

C2(ε)

nβ(ε)

where d(µi , µ
∗) > 2∆2

i

A. LAZARIC – Reinforcement Learning Fall 2017 - 46/95

Mathematical Tools

Improvements: KL-UCB

Idea: use even tighter c.i. based on Kullback–Leibler divergence

d(p, q) = p log
p
q + (1− p) log

1− p
1− q

Algorithm: Compute the score of each arm i (convex optimization)

Bi,t = max
{

q ∈ [0, 1] : Ti,td
(
µ̂i,Ti,t , q

)
≤ log(t) + c log(log(t))

}

Regret: pulls to suboptimal arms

E
[
Ti,n

]
≤ (1 + ε)

log(n)

d(µi , µ∗)
+ C1 log(log(n)) +

C2(ε)

nβ(ε)

where d(µi , µ
∗) > 2∆2

i

A. LAZARIC – Reinforcement Learning Fall 2017 - 46/95

Mathematical Tools

Improvements: Thompson strategy

Idea: Use a Bayesian approach to estimate the means {µi}i

Algorithm: Assuming Bernoulli arms and a Beta prior on the mean
I Compute

Di,t = Beta(Si,t + 1,Fi,t + 1)

I Draw a mean sample as
µ̃i,t ∼ Di,t

I Pull arm
It = arg max µ̃i,t

I If XIt ,t = 1 update SIt ,t+1 = SIt ,t + 1, else update FIt ,t+1 = FIt ,t + 1

Regret:

lim
n→∞

Rn
log(n)

=
K∑

i=1

∆i
d(µi , µ∗)

A. LAZARIC – Reinforcement Learning Fall 2017 - 47/95

Mathematical Tools

Improvements: Thompson strategy

Idea: Use a Bayesian approach to estimate the means {µi}i

Algorithm: Assuming Bernoulli arms and a Beta prior on the mean
I Compute

Di,t = Beta(Si,t + 1,Fi,t + 1)

I Draw a mean sample as
µ̃i,t ∼ Di,t

I Pull arm
It = arg max µ̃i,t

I If XIt ,t = 1 update SIt ,t+1 = SIt ,t + 1, else update FIt ,t+1 = FIt ,t + 1

Regret:

lim
n→∞

Rn
log(n)

=
K∑

i=1

∆i
d(µi , µ∗)

A. LAZARIC – Reinforcement Learning Fall 2017 - 47/95

Mathematical Tools

The Lower Bound

Theorem
For any stochastic bandit {νi}, any algorithm A has a regret

lim
n→∞

Rn
log n ≥

∆i
infν KL(νi , ν)

Problem: this is just asymptotic
Open Question: what is the finite-time lower bound?

A. LAZARIC – Reinforcement Learning Fall 2017 - 48/95

Mathematical Tools

The Lower Bound

Theorem
For any stochastic bandit {νi}, any algorithm A has a regret

lim
n→∞

Rn
log n ≥

∆i
infν KL(νi , ν)

Problem: this is just asymptotic

Open Question: what is the finite-time lower bound?

A. LAZARIC – Reinforcement Learning Fall 2017 - 48/95

Mathematical Tools

The Lower Bound

Theorem
For any stochastic bandit {νi}, any algorithm A has a regret

lim
n→∞

Rn
log n ≥

∆i
infν KL(νi , ν)

Problem: this is just asymptotic
Open Question: what is the finite-time lower bound?

A. LAZARIC – Reinforcement Learning Fall 2017 - 48/95

Mathematical Tools

The Exploration-Exploitation
Dilemma

Tools

Stochastic Multi-Armed Bandit

Contextual Linear Bandit

Other Multi-Armed Bandit Problems

A. LAZARIC – Reinforcement Learning Fall 2017 - 49/95

Mathematical Tools

The Contextual Linear Bandit Problem

Motivating Example: news recommendation
I Different users may have different preferences
I Different news may have different characteristics
I The set of available news may change over time
I We want to minimise the regret w.r.t. the best news for each

user

A. LAZARIC – Reinforcement Learning Fall 2017 - 50/95

Mathematical Tools

The Linear Bandit Problem

Limitations of MAB:
I Arms are independent
I Each single arm has to be tested at least once
I Regret scales linearly with K

Linear bandit approach:
I Embed arms in Rd (each arm a is mapped to a feature vector
φa ∈ Rd)

I The reward varies linearly with the arm

E[r(a)] = φ>a θ
∗

where θ∗ ∈ Rd is unknown.

Remark: if d = A and φa = ea, then it coincides with MAB

A. LAZARIC – Reinforcement Learning Fall 2017 - 51/95

Mathematical Tools

The Linear Bandit Problem

Limitations of MAB:
I Arms are independent
I Each single arm has to be tested at least once
I Regret scales linearly with K

Linear bandit approach:
I Embed arms in Rd (each arm a is mapped to a feature vector
φa ∈ Rd)

I The reward varies linearly with the arm

E[r(a)] = φ>a θ
∗

where θ∗ ∈ Rd is unknown.

Remark: if d = A and φa = ea, then it coincides with MAB

A. LAZARIC – Reinforcement Learning Fall 2017 - 51/95

Mathematical Tools

The Linear Bandit Problem

Limitations of MAB:
I Arms are independent
I Each single arm has to be tested at least once
I Regret scales linearly with K

Linear bandit approach:
I Embed arms in Rd (each arm a is mapped to a feature vector
φa ∈ Rd)

I The reward varies linearly with the arm

E[r(a)] = φ>a θ
∗

where θ∗ ∈ Rd is unknown.

Remark: if d = A and φa = ea, then it coincides with MAB

A. LAZARIC – Reinforcement Learning Fall 2017 - 51/95

Mathematical Tools

The Linear Bandit Problem

The problem: at each time t = 1, . . . , n
I The learner chooses an arm at and receives a reward rat

The optimal arm: a∗ = arg maxa∈A E[r(a)] = arg maxa∈A φ
>
a θ
∗

The regret:

Rn = E
[n∑

t=1
rt(a)

]
− E

[n∑

t=1
rt(at)

]

A. LAZARIC – Reinforcement Learning Fall 2017 - 52/95

Mathematical Tools

The Linear Bandit Problem
The MAB approach: the value of an arm is estimated by µ̂i,t

Exploiting the linear assumption:
I Estimate θ∗ using regularized least squares

θ̂n = arg min
θ

n∑

t=1

(
φ>at
θ − rt(at)

)2
+ λ‖θ‖2

2

I Closed-form solution

An =
n∑

t=1
φatφ

>
at

+ λI bn =
n∑

t=1
φat rt(at)

⇒ θ̂n = A−1
n bn

I Estimate of the value of arm a

r̂n(a) = φ>a θ̂n

A. LAZARIC – Reinforcement Learning Fall 2017 - 53/95

Mathematical Tools

The Linear Bandit Problem
The MAB approach: the value of an arm is estimated by µ̂i,t

Exploiting the linear assumption:
I Estimate θ∗ using regularized least squares

θ̂n = arg min
θ

n∑

t=1

(
φ>at
θ − rt(at)

)2
+ λ‖θ‖2

2

I Closed-form solution

An =
n∑

t=1
φatφ

>
at

+ λI bn =
n∑

t=1
φat rt(at)

⇒ θ̂n = A−1
n bn

I Estimate of the value of arm a

r̂n(a) = φ>a θ̂n

A. LAZARIC – Reinforcement Learning Fall 2017 - 53/95

Mathematical Tools

The Linear Bandit Problem
The MAB approach: the value of an arm is estimated by µ̂i,t

Exploiting the linear assumption:
I Estimate θ∗ using regularized least squares

θ̂n = arg min
θ

n∑

t=1

(
φ>at
θ − rt(at)

)2
+ λ‖θ‖2

2

I Closed-form solution

An =
n∑

t=1
φatφ

>
at

+ λI bn =
n∑

t=1
φat rt(at)

⇒ θ̂n = A−1
n bn

I Estimate of the value of arm a

r̂n(a) = φ>a θ̂n

A. LAZARIC – Reinforcement Learning Fall 2017 - 53/95

Mathematical Tools

The Linear Bandit Problem
The MAB approach: construct confidence intervals

√
log(1/δ)/Ti,n

Exploiting the linear assumption:
I Estimate of an arm r̂n(a) may be accurate when “similar” arms have

been selected (even if Tn(a) = 0!)

I Confidence intervals
∣∣r(a)− r̂n(a)

∣∣ ≤ αn

√
φ>a A−1

n φa

I Tuning of the confidence interval

αn = B
√

d log
(1 + nL/λ

δ

)
+ λ1/2‖θ∗‖2

Remark: the confidence interval reduces to MAB when all arms are
orthogonal

A. LAZARIC – Reinforcement Learning Fall 2017 - 54/95

Mathematical Tools

The Linear Bandit Problem
The MAB approach: construct confidence intervals

√
log(1/δ)/Ti,n

Exploiting the linear assumption:
I Estimate of an arm r̂n(a) may be accurate when “similar” arms have

been selected (even if Tn(a) = 0!)
I Confidence intervals

∣∣r(a)− r̂n(a)
∣∣ ≤ αn

√
φ>a A−1

n φa

I Tuning of the confidence interval

αn = B
√

d log
(1 + nL/λ

δ

)
+ λ1/2‖θ∗‖2

Remark: the confidence interval reduces to MAB when all arms are
orthogonal

A. LAZARIC – Reinforcement Learning Fall 2017 - 54/95

Mathematical Tools

The Linear Bandit Problem
The MAB approach: construct confidence intervals

√
log(1/δ)/Ti,n

Exploiting the linear assumption:
I Estimate of an arm r̂n(a) may be accurate when “similar” arms have

been selected (even if Tn(a) = 0!)
I Confidence intervals

∣∣r(a)− r̂n(a)
∣∣ ≤ αn

√
φ>a A−1

n φa

I Tuning of the confidence interval

αn = B
√

d log
(1 + nL/λ

δ

)
+ λ1/2‖θ∗‖2

Remark: the confidence interval reduces to MAB when all arms are
orthogonal

A. LAZARIC – Reinforcement Learning Fall 2017 - 54/95

Mathematical Tools

The Linear Bandit Problem

The MAB approach – UCB: pull arm It = µ̂i,t +
√

log(1/δ)/Ti,t

Exploiting the linear assumption:
I At each time step t select arm

at = arg max
a∈A

φ>a θ̂t + αt

√
φ>a A−1

t φa

A. LAZARIC – Reinforcement Learning Fall 2017 - 55/95

Mathematical Tools

The Linear Bandit Problem

The MAB approach – UCB: regret O(K log(n)/∆) or O(
√

Kn log(K))

Exploiting the linear assumption:
I Regret bound

Rn = O
(
d log(n)

√
n
)

A. LAZARIC – Reinforcement Learning Fall 2017 - 56/95

Mathematical Tools

The Linear Bandit Problem

The MAB approach – TS:
I Compute a posterior over µi

I Draw a µ̃i from the posterior
I Select arm It = arg maxi µ̃i

Exploiting the linear assumption:
I Regret bound

Rn = O
(
d log(n)

√
n
)

A. LAZARIC – Reinforcement Learning Fall 2017 - 57/95

Mathematical Tools

The Contextual Linear Bandit Problem
Limitations of MAB:

I The value of an arm is fixed
I No side-information / context is used

Contextual linear bandit approach:
I Finite arms
I Define a context x ∈ X
I The reward varies linearly with the context

E[r(x , a)] = φ>x θ
∗
a

Extensions:
I Embed arms in Rd and

E[r(x , a)] = φ>x ,aθ
∗
a

I Let the arm set change over time At

A. LAZARIC – Reinforcement Learning Fall 2017 - 58/95

Mathematical Tools

The Contextual Linear Bandit Problem
Limitations of MAB:

I The value of an arm is fixed
I No side-information / context is used

Contextual linear bandit approach:
I Finite arms
I Define a context x ∈ X
I The reward varies linearly with the context

E[r(x , a)] = φ>x θ
∗
a

Extensions:
I Embed arms in Rd and

E[r(x , a)] = φ>x ,aθ
∗
a

I Let the arm set change over time At

A. LAZARIC – Reinforcement Learning Fall 2017 - 58/95

Mathematical Tools

The Contextual Linear Bandit Problem
Limitations of MAB:

I The value of an arm is fixed
I No side-information / context is used

Contextual linear bandit approach:
I Finite arms
I Define a context x ∈ X
I The reward varies linearly with the context

E[r(x , a)] = φ>x θ
∗
a

Extensions:
I Embed arms in Rd and

E[r(x , a)] = φ>x ,aθ
∗
a

I Let the arm set change over time At

A. LAZARIC – Reinforcement Learning Fall 2017 - 58/95

Mathematical Tools

The Contextual Linear Bandit Problem
The problem: at each time t = 1, . . . , n

I User xt arrives and a set of news At is provided
I The user xt together with a news a ∈ At are described by a

feature vector φxt ,a
I The learner chooses a news at ∈ At and receives a reward

rt(xt , at)

The optimal news: at each time t = 1, . . . , n, the optimal news is

a∗t = arg max
a∈At

E[rt(xt , at)]

The regret:

Rn = E
[n∑

t=1
rt(xt , a∗t)

]
− E

[n∑

t=1
rt(xt , at)

]

A. LAZARIC – Reinforcement Learning Fall 2017 - 59/95

Mathematical Tools

The Contextual Linear Bandit Problem

The linear regression estimate:
I Ta = {t : at = a}
I Construct the design matrix of all the contexts observed when

action a has been taken Da ∈ R|Ta|×d

I Construct the reward vector of all the rewards observed when
action a has been taken ca ∈ R|Ta|

I Estimate θa as

θ̂a = (D>a Da + I)−1D>a ca

A. LAZARIC – Reinforcement Learning Fall 2017 - 60/95

Mathematical Tools

The Contextual Linear Bandit Problem

Optimism in face of uncertainty: the LinUCB algorithm
I Chernoff-Hoeffding in this case becomes

∣∣φ>x ,aθ̂a − r(x , a)]
∣∣ ≤ α

√
φ>x ,a(D>a Da + I)−1φx ,a

I and the UCB strategy is

at = arg max
a∈At

φ>x ,aθ̂a + α
√
φ>x ,a(D>a Da + I)−1φx ,a

A. LAZARIC – Reinforcement Learning Fall 2017 - 61/95

Mathematical Tools

The Contextual Linear Bandit Problem

The evaluation problem
I Online evaluation: too expensive
I Offline evaluation: how to use the logged data?

A. LAZARIC – Reinforcement Learning Fall 2017 - 62/95

Mathematical Tools

The Contextual Linear Bandit Problem

Evaluation from logged data
I Assumption 1: contexts and rewards are i.i.d. from a

stationary distribution

(x1, . . . , xK , r1, . . . , rK) ∼ D

I Assumption 2: the logging strategy is random

A. LAZARIC – Reinforcement Learning Fall 2017 - 63/95

Mathematical Tools

The Contextual Linear Bandit Problem
Evaluation from logged data: given a bandit strategy π, a
desired number of samples T , and a (infinite) stream of data

A. LAZARIC – Reinforcement Learning Fall 2017 - 64/95

Mathematical Tools

The Exploration-Exploitation
Dilemma

Tools

Stochastic Multi-Armed Bandit

Contextual Linear Bandit

Other Multi-Armed Bandit Problems

A. LAZARIC – Reinforcement Learning Fall 2017 - 65/95

Mathematical Tools

The Exploration-Exploitation
Dilemma

Tools

Stochastic Multi-Armed Bandit

Contextual Linear Bandit

Other Multi-Armed Bandit Problems

A. LAZARIC – Reinforcement Learning Fall 2017 - 66/95

Other Stochastic Multi-arm Bandit Problems

The Best Arm Identification Problem

Motivating Examples
I Find the best shortest path in a limited number of days
I Maximize the confidence about the best treatment after a

finite number of patients
I Discover the best advertisements after a training phase
I ...

A. LAZARIC – Reinforcement Learning Fall 2017 - 67/95

Other Stochastic Multi-arm Bandit Problems

The Best Arm Identification Problem

Objective: given a fixed budget n, return the best arm
i∗ = arg maxi µi at the end of the experiment

Measure of performance: the probability of error

P[Jn 6= i∗]

A. LAZARIC – Reinforcement Learning Fall 2017 - 68/95

Other Stochastic Multi-arm Bandit Problems

The Best Arm Identification Problem

Objective: given a fixed budget n, return the best arm
i∗ = arg maxi µi at the end of the experiment
Measure of performance: the probability of error

P[Jn 6= i∗] ≤
N∑

i=1
exp

(
− Ti ,n∆2

i
)

A. LAZARIC – Reinforcement Learning Fall 2017 - 68/95

Other Stochastic Multi-arm Bandit Problems

The Best Arm Identification Problem

Objective: given a fixed budget n, return the best arm
i∗ = arg maxi µi at the end of the experiment
Measure of performance: the probability of error

P[Jn 6= i∗] ≤
N∑

i=1
exp

(
− Ti ,n∆2

i
)

Algorithm idea: mimic the behavior of the optimal strategy

Ti ,n =

1
∆2

i∑N
j=1

1
∆2

j

n

A. LAZARIC – Reinforcement Learning Fall 2017 - 68/95

Other Stochastic Multi-arm Bandit Problems

The Best Arm Identification Problem
The Successive Reject Algorithm

I Divide the budget in N − 1 phases. Define
(log(N) = 0.5 +

∑N
i=2 1/i)

nk =
1

logK
n − N

N + 1− k

I Set of active arms Ak at phase k (A1 = {1, . . . ,N})
I For each phase k = 1, . . . ,N − 1

I For each arm i ∈ Ak , pull arm i for nk − nk−1 rounds
I Remove the worst arm

Ak+1 = Ak\ arg min
i∈Ak

µ̂i,nk

I Return the only remaining arm Jn = AN

A. LAZARIC – Reinforcement Learning Fall 2017 - 69/95

Other Stochastic Multi-arm Bandit Problems

The Best Arm Identification Problem
The Successive Reject Algorithm

I Divide the budget in N − 1 phases. Define
(log(N) = 0.5 +

∑N
i=2 1/i)

nk =
1

logK
n − N

N + 1− k

I Set of active arms Ak at phase k (A1 = {1, . . . ,N})

I For each phase k = 1, . . . ,N − 1
I For each arm i ∈ Ak , pull arm i for nk − nk−1 rounds
I Remove the worst arm

Ak+1 = Ak\ arg min
i∈Ak

µ̂i,nk

I Return the only remaining arm Jn = AN

A. LAZARIC – Reinforcement Learning Fall 2017 - 69/95

Other Stochastic Multi-arm Bandit Problems

The Best Arm Identification Problem
The Successive Reject Algorithm

I Divide the budget in N − 1 phases. Define
(log(N) = 0.5 +

∑N
i=2 1/i)

nk =
1

logK
n − N

N + 1− k

I Set of active arms Ak at phase k (A1 = {1, . . . ,N})
I For each phase k = 1, . . . ,N − 1

I For each arm i ∈ Ak , pull arm i for nk − nk−1 rounds

I Remove the worst arm

Ak+1 = Ak\ arg min
i∈Ak

µ̂i,nk

I Return the only remaining arm Jn = AN

A. LAZARIC – Reinforcement Learning Fall 2017 - 69/95

Other Stochastic Multi-arm Bandit Problems

The Best Arm Identification Problem
The Successive Reject Algorithm

I Divide the budget in N − 1 phases. Define
(log(N) = 0.5 +

∑N
i=2 1/i)

nk =
1

logK
n − N

N + 1− k

I Set of active arms Ak at phase k (A1 = {1, . . . ,N})
I For each phase k = 1, . . . ,N − 1

I For each arm i ∈ Ak , pull arm i for nk − nk−1 rounds
I Remove the worst arm

Ak+1 = Ak\ arg min
i∈Ak

µ̂i,nk

I Return the only remaining arm Jn = AN

A. LAZARIC – Reinforcement Learning Fall 2017 - 69/95

Other Stochastic Multi-arm Bandit Problems

The Best Arm Identification Problem
The Successive Reject Algorithm

I Divide the budget in N − 1 phases. Define
(log(N) = 0.5 +

∑N
i=2 1/i)

nk =
1

logK
n − N

N + 1− k

I Set of active arms Ak at phase k (A1 = {1, . . . ,N})
I For each phase k = 1, . . . ,N − 1

I For each arm i ∈ Ak , pull arm i for nk − nk−1 rounds
I Remove the worst arm

Ak+1 = Ak\ arg min
i∈Ak

µ̂i,nk

I Return the only remaining arm Jn = AN

A. LAZARIC – Reinforcement Learning Fall 2017 - 69/95

Other Stochastic Multi-arm Bandit Problems

The Best Arm Identification Problem

The Successive Reject Algorithm

Theorem
The successive reject algorithm have a probability of doing a
mistake of

P[Jn 6= i∗] ≤ K (K − 1)

2 exp
(
− n − N

logNH2

)

with H2 = maxi=1,...,N i∆−2
(i) .

A. LAZARIC – Reinforcement Learning Fall 2017 - 70/95

Other Stochastic Multi-arm Bandit Problems

The Best Arm Identification Problem

The UCB-E Algorithm
I Define an exploration parameter a
I Compute

Bi ,s = µ̂i ,s +

√
a
s

I Select
It = arg max

Bi,s

I At the end return

Jn = arg max
i
µ̂i ,Ti,n

A. LAZARIC – Reinforcement Learning Fall 2017 - 71/95

Other Stochastic Multi-arm Bandit Problems

The Best Arm Identification Problem

The UCB-E Algorithm
I Define an exploration parameter a
I Compute

Bi ,s = µ̂i ,s +

√
a
s

I Select
It = arg max

Bi,s

I At the end return

Jn = arg max
i
µ̂i ,Ti,n

A. LAZARIC – Reinforcement Learning Fall 2017 - 71/95

Other Stochastic Multi-arm Bandit Problems

The Best Arm Identification Problem

The UCB-E Algorithm
I Define an exploration parameter a
I Compute

Bi ,s = µ̂i ,s +

√
a
s

I Select
It = arg max

Bi,s

I At the end return

Jn = arg max
i
µ̂i ,Ti,n

A. LAZARIC – Reinforcement Learning Fall 2017 - 71/95

Other Stochastic Multi-arm Bandit Problems

The Best Arm Identification Problem

The UCB-E Algorithm

Theorem

The UCB-E algorithm with a = 25
36

n−N
H1

has a probability of doing a
mistake of

P[Jn 6= i∗] ≤ 2nN exp
(
− 2a

25

)

with H1 =
∑N

i=1 1/∆2
i .

A. LAZARIC – Reinforcement Learning Fall 2017 - 72/95

Other Stochastic Multi-arm Bandit Problems

The Best Arm Identification Problem

A. LAZARIC – Reinforcement Learning Fall 2017 - 73/95

Other Stochastic Multi-arm Bandit Problems

The Active Bandit Problem

Motivating Examples
I N production lines
I The test of the performance of a line is expensive
I We want an accurate estimation of the performance of each

production line

A. LAZARIC – Reinforcement Learning Fall 2017 - 74/95

Other Stochastic Multi-arm Bandit Problems

The Active Bandit Problem

Objective: given a fixed budget n, return the an estimate of the
means µ̂i ,t which is as accurate as possible for all the arms

Notice: Given an arm has a mean µi and a variance σ2
i , if it is

pulled Ti ,n times, then

Li ,n = E
[
(µ̂i ,Ti,n − µi)

2] =
σ2

i
Ti ,n

Ln = max
i

Li ,n

A. LAZARIC – Reinforcement Learning Fall 2017 - 75/95

Other Stochastic Multi-arm Bandit Problems

The Active Bandit Problem

Objective: given a fixed budget n, return the an estimate of the
means µ̂i ,t which is as accurate as possible for all the arms

Notice: Given an arm has a mean µi and a variance σ2
i , if it is

pulled Ti ,n times, then

Li ,n = E
[
(µ̂i ,Ti,n − µi)

2] =
σ2

i
Ti ,n

Ln = max
i

Li ,n

A. LAZARIC – Reinforcement Learning Fall 2017 - 75/95

Other Stochastic Multi-arm Bandit Problems

The Active Bandit Problem

Objective: given a fixed budget n, return the an estimate of the
means µ̂i ,t which is as accurate as possible for all the arms

Notice: Given an arm has a mean µi and a variance σ2
i , if it is

pulled Ti ,n times, then

Li ,n = E
[
(µ̂i ,Ti,n − µi)

2] =
σ2

i
Ti ,n

Ln = max
i

Li ,n

A. LAZARIC – Reinforcement Learning Fall 2017 - 75/95

Other Stochastic Multi-arm Bandit Problems

The Active Bandit Problem

Problem: what are the number of pulls (T1,n, . . . ,TN,n) (such
that

∑
Ti ,n = n) which minimizes the loss?

(T ∗1,n, . . . ,T ∗N,n) = arg min
(T1,n,...,TN,n)

Ln

Answer
T ∗i ,n =

σ2
i∑N

j=1 σ
2
j

n

L∗n =

∑N
i=1 σ

2
i

n =
Σ

n

A. LAZARIC – Reinforcement Learning Fall 2017 - 76/95

Other Stochastic Multi-arm Bandit Problems

The Active Bandit Problem

Problem: what are the number of pulls (T1,n, . . . ,TN,n) (such
that

∑
Ti ,n = n) which minimizes the loss?

(T ∗1,n, . . . ,T ∗N,n) = arg min
(T1,n,...,TN,n)

Ln

Answer
T ∗i ,n =

σ2
i∑N

j=1 σ
2
j

n

L∗n =

∑N
i=1 σ

2
i

n =
Σ

n

A. LAZARIC – Reinforcement Learning Fall 2017 - 76/95

Other Stochastic Multi-arm Bandit Problems

The Active Bandit Problem

Problem: what are the number of pulls (T1,n, . . . ,TN,n) (such
that

∑
Ti ,n = n) which minimizes the loss?

(T ∗1,n, . . . ,T ∗N,n) = arg min
(T1,n,...,TN,n)

Ln

Answer
T ∗i ,n =

σ2
i∑N

j=1 σ
2
j

n

L∗n =

∑N
i=1 σ

2
i

n =
Σ

n

A. LAZARIC – Reinforcement Learning Fall 2017 - 76/95

Other Stochastic Multi-arm Bandit Problems

The Active Bandit Problem

Objective: given a fixed budget n, return the an estimate of the
means µ̂i ,t which is as accurate as possible for all the arms

Measure of performance: the regret on the quadratic error

Rn(A) = max
i

Ln(A)−
∑N

i=1 σ
2
i

n

Algorithm idea: mimic the behavior of the optimal strategy

Ti ,n =
σ2

i∑N
j=1 σ

2
j

n = λi n

A. LAZARIC – Reinforcement Learning Fall 2017 - 77/95

Other Stochastic Multi-arm Bandit Problems

The Active Bandit Problem

Objective: given a fixed budget n, return the an estimate of the
means µ̂i ,t which is as accurate as possible for all the arms
Measure of performance: the regret on the quadratic error

Rn(A) = max
i

Ln(A)−
∑N

i=1 σ
2
i

n

Algorithm idea: mimic the behavior of the optimal strategy

Ti ,n =
σ2

i∑N
j=1 σ

2
j

n = λi n

A. LAZARIC – Reinforcement Learning Fall 2017 - 77/95

Other Stochastic Multi-arm Bandit Problems

The Active Bandit Problem

Objective: given a fixed budget n, return the an estimate of the
means µ̂i ,t which is as accurate as possible for all the arms
Measure of performance: the regret on the quadratic error

Rn(A) = max
i

Ln(A)−
∑N

i=1 σ
2
i

n

Algorithm idea: mimic the behavior of the optimal strategy

Ti ,n =
σ2

i∑N
j=1 σ

2
j

n = λi n

A. LAZARIC – Reinforcement Learning Fall 2017 - 77/95

Other Stochastic Multi-arm Bandit Problems

The Active Bandit Problem

An UCB–based strategy
At each time step t = 1, . . . , n

I Estimate

σ̂2
i ,Ti,t−1 =

1
Ti ,t−1

Ti,t−1∑

s=1
X 2

s,i − µ̂2
i ,Ti,t−1

I Compute

Bi ,t =
1

Ti ,t−1

(
σ̂2

i ,Ti,t−1 + 5

√
log 1/δ
2Ti ,t−1

)

I Pull arm
It = arg max Bi ,t

A. LAZARIC – Reinforcement Learning Fall 2017 - 78/95

Other Stochastic Multi-arm Bandit Problems

The Active Bandit Problem

Theorem
The UCB–based algorithm achieves a regret

Rn(A) ≤ 98 log(n)

n3/2λ
5/2
min

+ O
(

log n
n2

)

A. LAZARIC – Reinforcement Learning Fall 2017 - 79/95

Other Stochastic Multi-arm Bandit Problems

The Active Bandit Problem

Theorem
The UCB–based algorithm achieves a regret

Rn(A) ≤ 98 log(n)

n3/2λ
5/2
min

+ O
(

log n
n2

)

A. LAZARIC – Reinforcement Learning Fall 2017 - 79/95

Other Stochastic Multi-arm Bandit Problems

The Exploration-Exploitation
Dilemma

Tools

Stochastic Multi-Armed Bandit

Contextual Linear Bandit

Other Multi-Armed Bandit Problems

Bonus: Reinforcement Learning

A. LAZARIC – Reinforcement Learning Fall 2017 - 80/95

Other Stochastic Multi-arm Bandit Problems

Learning the Optimal Policy

For i = 1, . . . , n
1. Set t = 0
2. Set initial state x0

3. While (xt not terminal)

3.1 Take action at according to a suitable exploration policy
3.2 Observe next state xt+1 and reward rt
3.3 Compute the temporal difference δt (e.g., Q-learning)
3.4 Update the Q-function

Q̂(xt , at) = Q̂(xt , at) + α(xt , at)δt

3.5 Set t = t + 1
EndWhile

EndFor

A. LAZARIC – Reinforcement Learning Fall 2017 - 81/95

Other Stochastic Multi-arm Bandit Problems

Learning the Optimal Policy

The regret in MAB

Rn(A) = max
i=1,...,K

E
[n∑

t=1
Xi ,t
]
− E

[n∑

t=1
XIt ,t

]

⇒ Rn(A) = max
π

E
[n∑

t=1
r(xt , π(xt))

]
− E

[n∑

t=1
r(xt , at)

]

⇒ not correct: actions influence the state as well!
The regret in RL

Rn(A) = max
π

E
[n∑

t=1
r(x∗t , π(x∗t))

]
− E

[n∑

t=1
r(xt , at)

]
,

x∗t ∼ p
(
· |x∗t−1, π

∗(x∗t−1)
)

A. LAZARIC – Reinforcement Learning Fall 2017 - 82/95

Other Stochastic Multi-arm Bandit Problems

Learning the Optimal Policy

The regret in MAB

Rn(A) = max
i=1,...,K

E
[n∑

t=1
Xi ,t
]
− E

[n∑

t=1
XIt ,t

]

⇒ Rn(A) = max
π

E
[n∑

t=1
r(xt , π(xt))

]
− E

[n∑

t=1
r(xt , at)

]

⇒ not correct: actions influence the state as well!
The regret in RL

Rn(A) = max
π

E
[n∑

t=1
r(x∗t , π(x∗t))

]
− E

[n∑

t=1
r(xt , at)

]
,

x∗t ∼ p
(
· |x∗t−1, π

∗(x∗t−1)
)

A. LAZARIC – Reinforcement Learning Fall 2017 - 82/95

Other Stochastic Multi-arm Bandit Problems

Learning the Optimal Policy

The regret in MAB

Rn(A) = max
i=1,...,K

E
[n∑

t=1
Xi ,t
]
− E

[n∑

t=1
XIt ,t

]

⇒ Rn(A) = max
π

E
[n∑

t=1
r(xt , π(xt))

]
− E

[n∑

t=1
r(xt , at)

]

⇒ not correct: actions influence the state as well!

The regret in RL

Rn(A) = max
π

E
[n∑

t=1
r(x∗t , π(x∗t))

]
− E

[n∑

t=1
r(xt , at)

]
,

x∗t ∼ p
(
· |x∗t−1, π

∗(x∗t−1)
)

A. LAZARIC – Reinforcement Learning Fall 2017 - 82/95

Other Stochastic Multi-arm Bandit Problems

Learning the Optimal Policy

The regret in MAB

Rn(A) = max
i=1,...,K

E
[n∑

t=1
Xi ,t
]
− E

[n∑

t=1
XIt ,t

]

⇒ Rn(A) = max
π

E
[n∑

t=1
r(xt , π(xt))

]
− E

[n∑

t=1
r(xt , at)

]

⇒ not correct: actions influence the state as well!
The regret in RL

Rn(A) = max
π

E
[n∑

t=1
r(x∗t , π(x∗t))

]
− E

[n∑

t=1
r(xt , at)

]
,

x∗t ∼ p
(
· |x∗t−1, π

∗(x∗t−1)
)

A. LAZARIC – Reinforcement Learning Fall 2017 - 82/95

Other Stochastic Multi-arm Bandit Problems

Learning the Optimal Policy

Idea: can we adapt UCB (that already works in MAB, contextual
bandit) here?

Yes!

A. LAZARIC – Reinforcement Learning Fall 2017 - 83/95

Other Stochastic Multi-arm Bandit Problems

Learning the Optimal Policy

Idea: can we adapt UCB (that already works in MAB, contextual
bandit) here? Yes!

A. LAZARIC – Reinforcement Learning Fall 2017 - 83/95

Other Stochastic Multi-arm Bandit Problems

Exploration-Exploitation in RL

I A policy π is defined as π : X → A

I The long-term average reward of a policy is

ρπ(M) = lim
n→∞

E
[

1
n

n∑

t=1
rt

]

I Optimal policy

π∗(M) = arg max
π
ρπ(M) =⇒ ρ∗(M) = ρπ∗(M)(M)

I Exploration-exploitation dilemma
I Explore the environment to estimate its parameters
I Exploit the estimates to collect reward

A. LAZARIC – Reinforcement Learning Fall 2017 - 84/95

Other Stochastic Multi-arm Bandit Problems

Exploration-Exploitation in RL

I A policy π is defined as π : X → A

I The long-term average reward of a policy is

ρπ(M) = lim
n→∞

E
[

1
n

n∑

t=1
rt

]

I Optimal policy

π∗(M) = arg max
π
ρπ(M) =⇒ ρ∗(M) = ρπ∗(M)(M)

I Exploration-exploitation dilemma
I Explore the environment to estimate its parameters
I Exploit the estimates to collect reward

A. LAZARIC – Reinforcement Learning Fall 2017 - 84/95

Other Stochastic Multi-arm Bandit Problems

Exploration-Exploitation in RL

Regret

Learning curve

Steps

Per-step reward
ρ∗

Cumulative Regret Rn = nρ∗ −
n∑

t=1
rt

A. LAZARIC – Reinforcement Learning Fall 2017 - 85/95

Other Stochastic Multi-arm Bandit Problems

Exploration-Exploitation in RL

Regret

Learning curve

Steps

Per-step reward
ρ∗

Cumulative Regret Rn = nρ∗ −
n∑

t=1
rt

A. LAZARIC – Reinforcement Learning Fall 2017 - 85/95

Other Stochastic Multi-arm Bandit Problems

Upper-confidence Bound for RL (UCRL)

Space of MDPs

ρ∗(M̃t) ρ∗(M)ρ∗

Estimated MDP

M̃t

Optimistic MDP

True MDP

M̂t

M ∗

M ∗

ρ∗(M̂t)

High confidence space

M̂t

M̃t

π∗(M̃) Optimism in face of uncertainty

⇒

A. LAZARIC – Reinforcement Learning Fall 2017 - 86/95

Other Stochastic Multi-arm Bandit Problems

Upper-confidence Bound for RL (UCRL)

Space of MDPs

ρ∗(M̃t) ρ∗(M)ρ∗

Estimated MDP

M̃t

Optimistic MDP

True MDP

M̂t

M ∗

M ∗

ρ∗(M̂t)

High confidence space

M̂t

M̃t

⇒

Optimism in face of uncertaintyπ∗(M̃t)

A. LAZARIC – Reinforcement Learning Fall 2017 - 86/95

Other Stochastic Multi-arm Bandit Problems

Upper-confidence Bound for RL (UCRL)

⇒

π∗(M̃t′)

ρ∗(M̂t′)

Space of MDPs

ρ∗(M̃t′) ρ∗(M)ρ∗

Estimated MDP

M̃t′

Optimistic MDP

True MDP

M̂t′

M ∗

M ∗

High confidence space

M̃t′M̂t′

A. LAZARIC – Reinforcement Learning Fall 2017 - 86/95

Other Stochastic Multi-arm Bandit Problems

Upper-confidence Bound for RL (UCRL)

ρ∗(M̃n)

π∗(M̃n)

⇒

Space of MDPs

Estimated MDP

M̃n

Optimistic MDP

True MDP

M̂n

M ∗

M ∗

High confidence space

M̃n

M̂n

ρ∗ρ∗(M̂n) ρ∗(M)

A. LAZARIC – Reinforcement Learning Fall 2017 - 86/95

Other Stochastic Multi-arm Bandit Problems

Upper-confidence Bound for RL (UCRL)

A. LAZARIC – Reinforcement Learning Fall 2017 - 87/95

Other Stochastic Multi-arm Bandit Problems

The UCRL2 Algorithm
Initialize episode k

1. Current time tk

2. Let Nk(x , a) =
∣∣{τ < tk : xt = x , at = a}

∣∣
3. Let Rk(x , a) =

∑tk
t=1 rtI{xt = x , at = a}

4. Let Pk(x , a, x ′) =
∣∣{τ < tk : xt = x , at = a, xt+1 = x ′}

∣∣
5. Compute r̂k(x , a) = Rk (x,a)

Nk (x,a)
, p̂k(x , a, x ′) = Pk (x,a,x′)

Nk (x,a)

Compute optimistic policy
1. Let

Mk =
{

M̃ :|r̃(x , a)− r̂k(x , a)| ≤ Br (x , a);

‖p̃(·|x , a)− p̂k(·|x , a)‖1 ≤ Bp(x , a)
}

2. Compute
π̃k = argmax

π
max

M̃∈Mk
ρ(π; M̃)

Execute π̃k until at least one state-action space counter is doubled

A. LAZARIC – Reinforcement Learning Fall 2017 - 88/95

Other Stochastic Multi-arm Bandit Problems

Upper-confidence Bound for RL (UCRL)

Set of plausible MDPs Mk = {M̃}: confidence intervals built using
Chernoff bounds

Br (x , a) ≈
√

log(XA/δ)

Nk (x , a)
; Bp(x , a) ≈

√
X log(XA/δ)

Nk (x , a)

Computation of the optimistic optimal policy π̃k

π̃k = arg max
π

max
M̃∈Mk

ρπ(M̃)

A. LAZARIC – Reinforcement Learning Fall 2017 - 89/95

Other Stochastic Multi-arm Bandit Problems

Upper-confidence Bound for RL (UCRL)

Set of plausible MDPs Mk = {M̃}: confidence intervals built using
Chernoff bounds

Br (x , a) ≈
√

log(XA/δ)

Nk (x , a)
; Bp(x , a) ≈

√
X log(XA/δ)

Nk (x , a)

Computation of the optimistic optimal policy π̃k

π̃k = arg max
π

max
M̃∈Mk

ρπ(M̃)

A. LAZARIC – Reinforcement Learning Fall 2017 - 89/95

Other Stochastic Multi-arm Bandit Problems

The Extended Value Iteration Algorithm
Planning in average reward MDPs

I The optimal Bellman equation: optimal gain ρ∗ and bias u∗

u∗(x) + ρ∗ = max
a

[
r(x , a) +

∑

x ′
p(x ′|x , a)u∗(x ′)

]

I Value iteration (given v0)

vn = max
a

[
r(x , a) +

∑

x ′
p(x ′|x , a)vn−1(x ′)

]

until span(vn − vn−1) ≤ ε
I Guarantees of greedy policy

πn(x) = arg max
a

[
r(x , a) +

∑

x ′
p(x ′|x , a)vn−1(x ′)

]
⇒ |gπn − g∗| ≤ ε

A. LAZARIC – Reinforcement Learning Fall 2017 - 90/95

Other Stochastic Multi-arm Bandit Problems

The Extended Value Iteration Algorithm
Planning in optimistic average reward MDPs

I The optimal Bellman equation: optimal gain ρ̃ and bias ũ

ũ(x) + ρ̃ = max
a

max
r̃(x ,a)

max
p̃(·|x ,a)

[
r̃(x , a) +

∑

x ′
p̃(x ′|x , a)ũ(x ′)

]

I Value iteration (given v0)

vn = max
a

max
r̃(x ,a)

max
p̃(·|x ,a)

[
r̃(x , a) +

∑

x ′
p̃(x ′|x , a)vn−1(x ′)

]

= max
a

max
p̃(·|x ,a)

[
r̃ +(x , a) +

∑

x ′
p̃(x ′|x , a)vn−1(x ′)

]
(r̃ + = r̂ +

√
1/Nk)

= max
a

[
r̃ +(x , a) + max

p̃(·|x ,a)

∑

x ′
p̃(x ′|x , a)vn−1(x ′)

]
(simple LP)

I LP problem: assign highest probability from ‖p̃(·|x , a)− p̂(·|x , a)‖1 to
highest vn−1(x ′)

A. LAZARIC – Reinforcement Learning Fall 2017 - 91/95

Other Stochastic Multi-arm Bandit Problems

The Regret
Theorem
UCRL2 run over n steps in an MDP with diameter D, X states and A
actions suffers a regret

Rn = O(DX
√

An)

where diameter D = maxx ,x ′ minπ E
[
Tπ(x , x ′)

]
.

A. LAZARIC – Reinforcement Learning Fall 2017 - 92/95

Other Stochastic Multi-arm Bandit Problems

Posterior Sampling for Reinforcement Learning (PSRL)

Initialize episode k
1. Current time tk

2. Let Nk (x , a) =
∣∣{τ < tk : xt = x , at = a}

∣∣

3. Compute posterior over r(x , a) and p(·|x , a)

Compute random policy
1. Let M̃k = {r̃k , p̃k} such that r̃k , p̃k sampled from their posteriors
2. Compute optimal policy π̃k = arg maxπ ρ

π(M̃k)

Execute π̃k until at least one state-action space counter is doubled

A. LAZARIC – Reinforcement Learning Fall 2017 - 93/95

Other Stochastic Multi-arm Bandit Problems

Bibliography I

A. LAZARIC – Reinforcement Learning Fall 2017 - 94/95

Other Stochastic Multi-arm Bandit Problems

Reinforcement Learning

Alessandro Lazaric
alessandro.lazaric@inria.fr

sequel.lille.inria.fr

