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Learning the Optimal Policy

Fori=1,...,n
1. Sett=0
2. Set initial state xg
3. While (x; not terminal)

3.1 Take action a; according to a suitable exploration policy
3.2 Observe next state x;1 and reward r;

3.3 Compute the temporal difference é; (e.g., Q-learning)

3.4 Update the Q-function

a(Xt7 at) = a(Xty at) + Ol(Xt, at)5t

35 Sett=t+1
EndWhile

EndFor
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Learning the Optimal Policy

Fori=1,...,n
1. Sett=0
2. Set initial state xg
3. While (x; not terminal)

3.1 Take action a; = arg max, Q(x;, a)

3.2 Observe next state x;1 and reward r;

3.3 Compute the temporal difference ¢; (e.g., Q-learning)
3.4 Update the Q-function

a(Xn 3t) = a(Xt» at) + Ol(Xh a1:)51r

35 Sett=t+1
EndWhile

EndFor
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Learning the Optimal Policy

Fori=1,...,n

1. Sett=0

2. Set initial state xg

3. While (x; not terminal)
3.1 Take action a; = arg max, Q(x;, a)
3.2 Observe next state x;1 and reward r;
3.3 Compute the temporal difference ¢; (e.g., Q-learning)
3.4 Update the Q-function

a(Xn 3t) = a(Xt» at) + Ol(Xh a1:)51r

35 Sett=t+1
EndWhile

EndFor
= Nno convergence
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Learning the Optimal Policy

Fori=1,...,n

1. Sett=0

2. Set initial state xg

3. While (x; not terminal)
3.1 Take action a; ~ U(A)
3.2 Observe next state x;1 and reward r;
3.3 Compute the temporal difference ¢; (e.g., Q-learning)
3.4 Update the Q-function

a(Xn 3t) = a(Xt» at) + Ol(Xh a1:)51r

35 Sett=t+1
EndWhile

EndFor
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Learning the Optimal Policy

Fori=1,...,n
1. Sett=0
2. Set initial state xg
3. While (x; not terminal)

3.1 Take action a; ~ U(A)

3.2 Observe next state x;1 and reward r;

3.3 Compute the temporal difference ¢; (e.g., Q-learning)
3.4 Update the Q-function

a(Xn 3t) = a(Xt» at) + Ol(Xh a1:)51r

35 Sett=t+1
EndWhile

EndFor
= very poor rewards
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Mathematical Tools

Concentration Inequalities

Proposition (Chernoff-Hoeffding Inequality)

Let X; € [a;, b;| be n independent r.v. with mean p; = EX;. Then

PHEH}(X"—“")( > 32“‘[’(‘%)-

. Crzia—~
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Mathematical Tools

Concentration Inequalities

Proof.

n
P(YoXi—mize) = BEXhXm>e)
i=1
< e SE[e* X XimH] Markov inequality

n
= e * HE[eS(X’*’“)], independent random variables
i=1

n

< et H esz(b’_a’)z/s, Hoeffding inequality
i=1

L emsest X, (b-a)/8

If we choose s =4¢/ Y7 (b; — a;)?, the result follows.

Similar arguments hold for IP’( S X — i < fe).

. Crzia—~
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Mathematical Tools

Concentration Inequalities

Finite sample guarantee:

5N 2ne?
- - < - -
P ‘nZXt E[XI]‘> € ] _2exp( (b—a)2>
t=1 accuracy -
de\ﬁzion confidence
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Mathematical Tools

Concentration Inequalities

Finite sample guarantee:

P[‘})ilXt—E[Xl]‘ > (b a) 'Og;’/&] <5
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Mathematical Tools

Concentration Inequalities

Finite sample guarantee:

P["l?i:xt—E[Xl]‘ > e] <
t=1

. (b—a)?log2/6
if n > =525

. brezia~
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Mathematical Tools

The Exploration-Exploitation
Dilemma

Stochastic Multi-Armed Bandit
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Mathematical Tools

Reducing RL down to Multi-Armed Bandit

Definition (Markov decision process)

A Markov decision process is defined as a tuple M = (X, A, p,r):
> X—isthestatc-spacey

» A is the action space,

= r(a) is the reward of action a

. brezia~
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Mathematical Tools

Notice

For coherence with the bandit literature we use the notation
» i =1,...,K set of possible actions

» t=1,...,ntime

» [, action selected at time t

» Xi . reward for action / at time t

A. LAZARIC — Reinforcement Learning Fall 2017 -



Mathematical Tools

Learning the Optimal Policy

Objective: learn the optimal policy ©n* as efficiently as possible

. brezia~
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Mathematical Tools

Learning the Optimal Policy

Objective: learn the optimal policy ©n* as efficiently as possible
Fort=1,...,n

1. Set+=86
2. Set-initial-statexqy
3. While{>¢—net-terminal)

3.1 Take action a;

3.2 Observe next-statesgrrand reward r,
3.3 Sett=t+1

EndWhile
EndFor

IlédzéLA
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Mathematical Tools

The Multi—armed Bandit Protocol

The learner has i = 1,..., K arms (actions)

Ateachround t=1,...,n

. brezia~
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Mathematical Tools

The Multi—armed Bandit Protocol

The learner has i = 1,..., K arms (actions)

Ateachround t=1,...,n
» At the same time
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Mathematical Tools

The Multi—armed Bandit Protocol

The learner has i = 1,..., K arms (actions)

Ateachround t=1,...,n
» At the same time

» The environment chooses a vector of rewards {X; . }£
» The learner chooses an arm /;

. Cbreia—
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Mathematical Tools

The Multi—armed Bandit Protocol

The learner has i = 1,..., K arms (actions)

Ateachround t=1,...,n
» At the same time

» The environment chooses a vector of rewards {X; . }£
» The learner chooses an arm /;

» The learner receives a reward X, ;
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Mathematical Tools

The Multi—armed Bandit Protocol

The learner has i = 1,..., K arms (actions)

Ateachround t=1,...,n
» At the same time

» The environment chooses a vector of rewards {X; . }£
» The learner chooses an arm /;

» The learner receives a reward X, ;

» The environment does not reveal the rewards of the other
arms
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Mathematical Tools

The Multi-armed Bandit Game (cont'd)

The regret

R,(A) = ’_:nlﬂlaxK]E [ Z X/,t} - E[Zn: Xlt,t}
t=1

t=1
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Mathematical Tools

The Multi-armed Bandit Game (cont'd)

The regret

Rn(A) = _ max ]E[ZH:X, t} —E[Zn:xlt,t}
t=1 t=1

The expectation summarizes any possible source of randomness (either in
X or in the algorithm)
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Mathematical Tools

The Exploration—Exploitation Lemma

Problem 1: The environment does not reveal the rewards of the arms
not pulled by the learner
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Mathematical Tools

The Exploration—Exploitation Lemma

Problem 1: The environment does not reveal the rewards of the arms
not pulled by the learner
= the learner should gain information by repeatedly pulling all the arms
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Mathematical Tools

The Exploration—Exploitation Lemma

Problem 1: The environment does not reveal the rewards of the arms

not pulled by the learner
= the learner should gain information by repeatedly pulling all the arms

Problem 2: Whenever the learner pulls a bad arm, it suffers some regret
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Mathematical Tools

The Exploration—Exploitation Lemma

Problem 1: The environment does not reveal the rewards of the arms
not pulled by the learner
= the learner should gain information by repeatedly pulling all the arms

Problem 2: Whenever the learner pulls a bad arm, it suffers some regret
= the learner should reduce the regret by repeatedly pulling the best arm
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Mathematical Tools

The Exploration—Exploitation Lemma

Problem 1: The environment does not reveal the rewards of the arms
not pulled by the learner
= the learner should gain information by repeatedly pulling all the arms

Problem 2: Whenever the learner pulls a bad arm, it suffers some regret
= the learner should reduce the regret by repeatedly pulling the best arm

Challenge: The learner should solve two opposite problems!
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Mathematical Tools

The Exploration—Exploitation Lemma

Problem 1: The environment does not reveal the rewards of the arms
not pulled by the learner

= the learner should gain information by repeatedly pulling all the arms
= exploration

Problem 2: Whenever the learner pulls a bad arm, it suffers some regret
= the learner should reduce the regret by repeatedly pulling the best arm

Challenge: The learner should solve two opposite problems!
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Mathematical Tools

The Exploration—Exploitation Lemma

Problem 1: The environment does not reveal the rewards of the arms
not pulled by the learner

= the learner should gain information by repeatedly pulling all the arms
= exploration

Problem 2: Whenever the learner pulls a bad arm, it suffers some regret
= the learner should reduce the regret by repeatedly pulling the best arm
= exploitation

Challenge: The learner should solve two opposite problems!
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Mathematical Tools

The Exploration—Exploitation Lemma

Problem 1: The environment does not reveal the rewards of the arms
not pulled by the learner

= the learner should gain information by repeatedly pulling all the arms
= exploration

Problem 2: Whenever the learner pulls a bad arm, it suffers some regret
= the learner should reduce the regret by repeatedly pulling the best arm
= exploitation

Challenge: The learner should solve the exploration-exploitation
dilemmal
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Mathematical Tools

The Multi-armed Bandit Game (cont'd)

Examples
» Packet routing

Clinical trials

v

v

Web advertising

v

Computer games

v

Resource mining

. brezia~
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Mathematical Tools

The Stochastic Multi—-armed Bandit Problem

The environment is stochastic

» Each arm has a distribution v; bounded in [0, 1] and
characterized by an expected value pi;

> The rewards are i.i.d. Xj+ ~ vj (as in the MDP model)

. Crzia—~
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Mathematical Tools

The Stochastic Multi-armed Bandit Problem (cont'd)

Notation
» Number of times arm i has been pulled after n rounds

n

Tin=> Il =i}

t=1

. brezia~
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Mathematical Tools

The Stochastic Multi-armed Bandit Problem (cont'd)

Notation

» Number of times arm i has been pulled after n rounds

ln—ZH{/t—’}
t=1

> Regret
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Mathematical Tools

The Stochastic Multi-armed Bandit Problem (cont'd)

Notation

» Number of times arm i has been pulled after n rounds

IH_Z]I{II’_I}
t=1

> Regret

Rn(A) = max (nu;) [Z Xt ]
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Mathematical Tools

The Stochastic Multi-armed Bandit Problem (cont'd)

Notation

» Number of times arm i has been pulled after n rounds

Tin=> Il=i}
t=1

> Regret

Rn(A) = _max ZE[T, nlpti
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Mathematical Tools

The Stochastic Multi-armed Bandit Problem (cont'd)

Notation

» Number of times arm i has been pulled after n rounds

Tin=> Il=i}
t=1

> Regret

K
Rn(A) = Npj= — ZE[Ti,n]Mi
i=1
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Mathematical Tools

The Stochastic Multi-armed Bandit Problem (cont'd)

Notation

» Number of times arm i has been pulled after n rounds

Ton= "Ik = 1}
t=1

> Regret

= E[Tinl (i — 1)

i
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Mathematical Tools

The Stochastic Multi-armed Bandit Problem (cont'd)

Notation

» Number of times arm i has been pulled after n rounds

Ton= "Ik = 1}
t=1

> Regret
Ra(A) =D E[T;A]A
i#i*
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Mathematical Tools

The Stochastic Multi-armed Bandit Problem (cont'd)

Notation

» Number of times arm i has been pulled after n rounds

IH_Z]I{II’_I}
t=1

> Regret
Ra(A) =D E[T;A]A
i#i*
> Gap A = pjx — pi

. brezia~
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Mathematical Tools

The Stochastic Multi-armed Bandit Problem (cont'd)

Ra(A) = E[T;qlA
i#i*
=- we only need to study the expected number of pulls of the
suboptimal arms
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Mathematical Tools

The Stochastic Multi-armed Bandit Problem (cont'd)

Optimism in Face of Uncertainty Learning (OFUL)

Whenever we are uncertain about the outcome of an arm, we
consider the best possible world and choose the best arm.

. brezia~
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Mathematical Tools

The Stochastic Multi-armed Bandit Problem (cont'd)

Optimism in Face of Uncertainty Learning (OFUL)

Whenever we are uncertain about the outcome of an arm, we
consider the best possible world and choose the best arm.

Why it works:
> If the best possible world is correct = no regret
> If the best possible world is wrong = the reduction in the
uncertainty is maximized

5 -
(777 BN
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Mathematical Tools

The Upper—Confidence Bound (UCB) Algorithm

The idea
2
1.5¢
| ¥
- 05 %
% (0}
T 0 [
-0.5
1+
18 1 (10) 2 (73) 3 {3) 4 (é3)

Arms
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Mathematical Tools

The Upper—Confidence Bound (UCB) Algorithm

Show time!
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Mathematical Tools

The Upper—Confidence Bound (UCB) Algorithm (cont'd)

At eachround t=1,...,n

» Compute the score of each arm i

B; = (optimistic score of arm i)

» Pull arm
Iy =arg Tax Bist
i=1,...,
» Update the number of pulls T}, ; = T}, —1 + 1 and the other
statistics

‘ -
LA~
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Mathematical Tools

The Upper—Confidence Bound (UCB) Algorithm (cont'd)

The score (with parameters p and ¢)

B; = (optimistic score of arm i)
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Mathematical Tools

The Upper—Confidence Bound (UCB) Algorithm (cont'd)

The score (with parameters p and ¢)

Bi 5.+ = (optimistic score of arm i if pulled s times up to round t)
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Mathematical Tools

The Upper—Confidence Bound (UCB) Algorithm (cont'd)

The score (with parameters p and ¢)

Bi s+ = (optimistic score of arm i if pulled s times up to round t)

Optimism in face of uncertainty:
Current knowledge: average rewards fi; s
Current uncertainty: number of pulls s

. Cbreia—
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Mathematical Tools

The Upper—Confidence Bound (UCB) Algorithm (cont'd)

The score (with parameters p and ¢)

Bis: = knowledge + uncertainty

optimism
Optimism in face of uncertainty:

Current knowledge: average rewards fi; s
Current uncertainty: number of pulls s

. Cbreia—
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Mathematical Tools

The Upper—Confidence Bound (UCB) Algorithm (cont'd)

The score (with parameters p and ¢)

log1/6
2s

Bi,s,t = /:\Li,s +p

Optimism in face of uncertainty:
Current knowledge: average rewards [i; s
Current uncertainty: number of pulls s
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Mathematical Tools

The Upper—Confidence Bound (UCB) Algorithm (cont'd)

At eachround t=1,...,n

» Compute the score of each arm i

log(t)
2T,

Bit= i1, +p

» Pull arm
It =arg max Bj;
i=1,..K

=1,...,

» Update the number of pulls 7), ; = T}, ;—1 + 1 and ﬂi,T,-,t

. brezia~

A. LAZARIC — Reinforcement Learning Fall 2017 - 28/95



Mathematical Tools

The Upper—Confidence Bound (UCB) Algorithm (cont'd)

Let Xi,...,X, be i.id. samples from a distribution bounded in
[a, b], then for any 6 € (0,1)
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Mathematical Tools

The Upper—Confidence Bound (UCB) Algorithm (cont'd)

After s pulls, arm i

P
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Mathematical Tools

The Upper—Confidence Bound (UCB) Algorithm (cont'd)

After s pulls, arm j

P >1-6

wi < flis +

log1/6
2s
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Mathematical Tools

The Upper—Confidence Bound (UCB) Algorithm (cont'd)

After s pulls, arm f

P >1-96

wi < fljs + 5

Iogl/é]

= UCB uses an upper confidence bound on the expectation
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Mathematical Tools

The Upper—Confidence Bound (UCB) Algorithm (cont'd)

For any set of K arms with distributions bounded in [0, b], if
d =1/t, then UCB(p) with p > 1, achieves a regret

2
Ra(A) <> %plog(n) +4; <§ + ﬁ)]

i£i*
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Mathematical Tools

The Upper—Confidence Bound (UCB) Algorithm (cont'd)

Let K =2 with i* =1

RolA) < o(imog(m)

Remark 1: the cumulative regret slowly increases as log(n)
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Mathematical Tools

The Upper—Confidence Bound (UCB) Algorithm (cont'd)

Let K =2 with i* =1

RolA) < o(imog(m)

Remark 1: the cumulative regret slowly increases as log(n)
Remark 2: the smaller the gap the bigger the regret... why?
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Mathematical Tools

The Upper—Confidence Bound (UCB) Algorithm (cont'd)

Show time (again)!
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Mathematical Tools

The Worst—case Performance

Remark: the regret bound is distribution—dependent

Ra(A;A) <O (ip Iog(n)>

. brezia~
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Mathematical Tools

The Worst—case Performance

Remark: the regret bound is distribution—dependent

Ra(A;A) <O (ip Iog(n)>

Meaning: the algorithm is able to adapt to the specific problem at
hand!
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Mathematical Tools

The Worst—case Performance

Remark: the regret bound is distribution—dependent

Ra(A;A) <O (ip Iog(n)>

Meaning: the algorithm is able to adapt to the specific problem at

hand!

Worst—case performance: what is the distribution which leads to
the worst possible performance of UCB? what is the
distribution—free performance of UCB?

Ra(A) = szp Rn(A; A)

Fall 2017 - 34/95
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Mathematical Tools

The Worst—case Performance

Problem: it seems like if A — 0 then the regret tends to infinity...

. brezia~
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Mathematical Tools

The Worst—case Performance

Problem: it seems like if A — 0 then the regret tends to infinity...
. nosense because the regret is defined as

R(A; A) = E[To,]A

. Cbreia—

A. LAZARIC — Reinforcement Learning Fall 2017 - 35/95



Mathematical Tools

The Worst—case Performance

Problem: it seems like if A — 0 then the regret tends to infinity...
. nosense because the regret is defined as

R(A; A) = E[To,]A

then if A; is small, the regret is also small...

. Crzia—~
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Mathematical Tools

The Worst—case Performance

Problem: it seems like if A — 0 then the regret tends to infinity...
. nosense because the regret is defined as

R(A; A) = E[To,]A

then if A; is small, the regret is also small...
In fact

Rn(A; A) = min {O(iplog(n)) ,E[T;,,]A}
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Mathematical Tools

The Worst—case Performance

Then
Rn(A) = sup Rp(A; A) = sup min {O(lplog(n)) , nA} ~+/n
A A A

for A =+/1/n
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Mathematical Tools

Tuning the confidence 6 of UCB

Remark: UCB is an anytime algorithm (6 = 1/t)

R log t
Bi,s,t = ljs+p 2gs
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Mathematical Tools

Tuning the confidence 6 of UCB

Remark: UCB is an anytime algorithm (6 = 1/t)

R log t
Bi,s,t = ljs+p 2gs
Remark: If the time horizon n is known then the optimal choice is
d=1/n
. log n
Bi,s,t = jlist+p 2%
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Mathematical Tools

Tuning the confidence § of UCB (cont'd)

Intuition: UCB should pull the suboptimal arms
> Enough: so as to understand which arm is the best

» Not too much: so as to keep the regret as small as possible

. Cbreia—
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Mathematical Tools

Tuning the confidence § of UCB (cont'd)

Intuition: UCB should pull the suboptimal arms

> Enough: so as to understand which arm is the best

» Not too much: so as to keep the regret as small as possible
The confidence 1 — § has the following impact (similar for p)

> Big 1 —§: high level of exploration

» Small 1 — 0: high level of exploitation
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Mathematical Tools

Tuning the confidence § of UCB (cont'd)

Intuition: UCB should pull the suboptimal arms

> Enough: so as to understand which arm is the best

» Not too much: so as to keep the regret as small as possible
The confidence 1 — § has the following impact (similar for p)

> Big 1 —§: high level of exploration

» Small 1 — 0: high level of exploitation

Solution: depending on the time horizon, we can tune how to
trade-off between exploration and exploitation

. Cbreia—
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Mathematical Tools

UCB Proof

Let's dig into the (1 page and half!!) proof.

Define the (high-probability) event [statistics]

g_{v,-vs S1/'°g1/5}
2s

By Chernoff-Hoeffding P[] > 1 — nK3§.

ﬂi,s —
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Mathematical Tools

UCB Proof

Let's dig into the (1 page and half!!) proof.

Define the (high-probability) event [statistics]

5:{\,,-,5 S,/'OgW}
2s

By Chernoff-Hoeffding P[] > 1 — nK?é.
At time t we pull arm i [algorithm]

ﬂi,s — K

B’.aTi,t—l > Bi*7Ti*,t—1
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Mathematical Tools

UCB Proof

Let's dig into the (1 page and half!!) proof.

Define the (high-probability) event [statistics]

g_{ws . /|og1/5}
2s

By Chernoff-Hoeffding P[€] > 1 — nK3J.
At time t we pull arm i [algorithm]

ﬁi,s — M

N logl/6 _ . log1/6
:u’l,Ti,t—l + 27—i,t—1 - lu"*ny*,t—l + 27—/*,1‘—1

. Crzia—~
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Mathematical Tools

UCB Proof

Let's dig into the (1 page and half!l) proof.

Define the (high-probability) event [statistics]

. log1/6
=4V flis — pi| <
{ 1,5 |His — M s }
By Chernoff-Hoeffding P[] > 1 — nK?é.
At time t we pull arm i [algorithm]
logl/6 _ . log1/§

fui, 70 2 fhie T oy F
* 2T; 1 ot 2T 1

On the event £ we have [math]
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Mathematical Tools

UCB Proof (cont'd)

Assume t is the last time i is pulled, then T; , = T;:_1 + 1, thus

log1/6

Hit AT, —n =

. brezia~
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Mathematical Tools

UCB Proof (cont'd)

Assume t is the last time i is pulled, then T; , = T; ;1 + 1, thus
log1/6
ST TE A

Reordering [math]

log1/6
202

under event £ and thus with probability 1 — nKJ.

+1

Tin <

. Cbreia—
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Mathematical Tools

UCB Proof (cont'd)

Assume t is the last time i is pulled, then T; , = T; ;1 + 1, thus
log1/6
ST TE A

Reordering [math]

log1/6

202
under event £ and thus with probability 1 — nKJ.
Moving to the expectation [statistics|

+1

Tin <

E[T;,] = E[T; ,I€] + E[T; ,IE€]

. Cbreia—
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Mathematical Tools

UCB Proof (cont'd)

Assume t is the last time i is pulled, then T; , = T; ;1 + 1, thus
log1/6
ST TE A

Reordering [math]

log1/6

202
under event £ and thus with probability 1 — nKJ.
Moving to the expectation [statistics|

+1

Tin <

log1/6
202

E[T:n] < + 1+ n(nK?9)

. Crzia—~
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Mathematical Tools

UCB Proof (cont'd)

Assume t is the last time i is pulled, then T; , = T; ;1 + 1, thus
log1/6
ST TE A

Reordering [math]

log1/6

202
under event £ and thus with probability 1 — nKJ.
Moving to the expectation [statistics|

+1

Tin <

log1/6
2A?
Trading-off the two terms § = 1/n?, we obtain

E[T:n] < + 1+ n(nK?9)

. n 2logn
IU”aTi,t—l 27-’_71._1
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Mathematical Tools

UCB Proof (cont'd)

Trading-off the two terms § = 1/n?, we obtain

N n 2logn
:U’hTi,r—l 27-’_71._1

and

log n
E[T;n] < Agg +1+K

I
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Mathematical Tools

Tuning the confidence § of UCB (cont'd)

Multi—-armed Bandit: the same for § =1/t and § =1/n...
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Mathematical Tools

Tuning the confidence § of UCB (cont'd)

Multi—-armed Bandit: the same for § =1/t and § =1/n...
. almost (i.e., in expectation)

. brezia~
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Mathematical Tools

Tuning the confidence § of UCB (cont'd)

The value—at—risk of the regret for UCB-anytime

5000
|

4000

3000
1

Frequency
2000

1000
1

r T T T 1
0 1000 2000 3000 4000

Regret
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Mathematical Tools

Tuning the p of UCB (cont'd)

UCB values (for the 6 = 1/n algorithm)

log n
2s

Bi,s = l’li,s +p

. brezia~
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Mathematical Tools

Tuning the p of UCB (cont'd)

UCB values (for the 6 = 1/n algorithm)

log n
2s

Bis = fis +p
Theory
> p < 0.5, polynomial regret w.r.t. n
> p > 0.5, logarithmic regret w.r.t. n
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Mathematical Tools

Tuning the p of UCB (cont'd)

UCB values (for the 6 = 1/n algorithm)

log n
2s

Bi,s = ﬁi,s +p

Theory
> p < 0.5, polynomial regret w.r.t. n

> p > 0.5, logarithmic regret w.r.t. n

Practice: p = 0.2 is often the best choice
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Mathematical Tools

Tuning the p of UCB (cont'd)

UCB values (for the 6 = 1/n algorithm)

log n
Bis = fpis+p
2s
Theory
> p < 0.5, polynomial regret w.r.t. n
> p > 0.5, logarithmic regret w.r.t. n
Practice: p = 0.2 is often the best choice
Regret of UCB1(p) for n = 1000 and K = 3 arms: Regret of UCB1(p) for n = 1000 and K = 5 arms:
" Ber(0.6), Ber(0.5) and Ber(0.5) Ber(0.7), Ber(0.6), Ber(0.5), Ber(0.4) and Ber(0.3)
45 : e 8
| [
0f e U
| —
B 36H T B
Eofil) ‘J E‘;Gﬂ
L 9
g 2w
g2 2.
£ &
10 2@
5 10
0.0 02 04 06 08 10 12 14 16 18 20 5.0 02 04 06 08 10 1.2 14 16 L8 20
Exploration parameter p Exploration parameter p

ZARIC — Reinforcement Learnin



Mathematical Tools

Improvements: UCB-V

Idea: use empirical Bernstein bounds for more accurate c.i.
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Mathematical Tools

Improvements: UCB-V

Idea: use empirical Bernstein bounds for more accurate c.i.

Algorithm
» Compute the score of each arm i

log(t)
27T; ¢

Bit=pit,+p

» Pull arm
Iy =arg max B,
i=1,....K

yeeey

> Update the number of pulls T}, ;, fi; 1,

. Cbreia—
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Mathematical Tools

Improvements: UCB-V

Idea: use empirical Bernstein bounds for more accurate c.i.

Algorithm
» Compute the score of each arm i

~

267, logt
Bt = fuT.+ —

8logt
Ti: 3T

» Pull arm
Iy =arg max B,
i=1,....K

[RRRE}

> Update the number of pulls T}, ¢, i 7., and 6;%7

St it

. Cbreia—
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Mathematical Tools

Improvements: UCB-V

Idea: use empirical Bernstein bounds for more accurate c.i.

Algorithm
» Compute the score of each arm i

267 logt glogt
Tie 3Tit

Bit=fiT, +

» Pull arm
Iy =arg max B;;
i=1,....K

I=1,...

» Update the number of pulls T}, , fij 7., and 6%T

iy

Regret |
R, < O( % log n)

. Crzia—~
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Mathematical Tools

Improvements: UCB-V

Idea: use empirical Bernstein bounds for more accurate c.i.

Algorithm
» Compute the score of each arm i

23,-2, T logt 8logt

Bi, = fiiT
>t H 3Tt + 7-i,t 3Ti,t

» Pull arm
Iy = arg maxK B

i=1,...,

> Update the number of pulls Ty, ¢, fi;,7,, and 67

Regret
2

R, < O(UK log n)
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Mathematical Tools

Improvements: KL-UCB

Idea: use even tighter c.i. based on Kullback—Leibler divergence

1-p
1-gq

p
d(p,q) = ploga + (1~ p)log

. brezia~
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Mathematical Tools

Improvements: KL-UCB

Idea: use even tighter c.i. based on Kullback—Leibler divergence

1-p
1-gq

p
d(p,q) = ploga + (1~ p)log

Algorithm: Compute the score of each arm i (convex optimization)

Bi:= max{q €[0,1] : Tied (7., q) < log(t) + clog(log(t))}

. Crzia—~
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Mathematical Tools

Improvements: KL-UCB

Idea: use even tighter c.i. based on Kullback—Leibler divergence

1-p
1-gq

p
d(p,q) = ploga + (1~ p)log

Algorithm: Compute the score of each arm i (convex optimization)

Bi:= max{q €[0,1] : Tied (7., q) < log(t) + clog(log(t))}

Regret: pulls to suboptimal arms

log(n) &9
Ty + G log(log(n)) + nfs(e)

]E[T,'m] S (]. =+ 6)

where d(p;, u*) > 2A?
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Mathematical Tools

Improvements: Thompson strategy

Idea: Use a Bayesian approach to estimate the means {y;};

. brezia~
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Mathematical Tools

Improvements: Thompson strategy

Idea: Use a Bayesian approach to estimate the means {y;};

Algorithm: Assuming Bernoulli arms and a Beta prior on the mean

» Compute
D;:=Beta(S;:+1,Fi:+1)

» Draw a mean sample as
Hit ~ Di,t
» Pull arm
Iy = arg max i+

> If Xj,+ =1update S, 11 = S,+ + 1, else update Fj, 11 =Fj, ¢+ +1

Regret:

. Cbreia—
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Mathematical Tools

The Lower Bound

For any stochastic bandit {v;}, any algorithm A has a regret

. Rn A
lim > -
n—oo logn — inf, KL(vj, V)

. Crzia—~
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Mathematical Tools

The Lower Bound

For any stochastic bandit {v;}, any algorithm A has a regret

. Rn A
lim > -
n—oo logn — inf, KL(vj, )

Problem: this is just asymptotic
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Mathematical Tools

The Lower Bound

Theorem

For any stochastic bandit {v;}, any algorithm A has a regret

. Rn A
lim > -
n—oo logn — inf, KL(vj, V)

Problem: this is just asymptotic
Open Question: what is the finite-time lower bound?
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Mathematical Tools

The Exploration-Exploitation
Dilemma

Contextual Linear Bandit
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Mathematical Tools

The Contextual Linear Bandit Problem

Motivating Example: news recommendation

v

Different users may have different preferences

v

Different news may have different characteristics

v

The set of available news may change over time

v

We want to minimise the regret w.r.t. the best news for each
user

. Cbreia—
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Mathematical Tools

The Linear Bandit Problem

Limitations of MAB:
> Arms are independent
> Each single arm has to be tested at least once

> Regret scales linearly with K
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Mathematical Tools

The Linear Bandit Problem

Limitations of MAB:
> Arms are independent
> Each single arm has to be tested at least once
> Regret scales linearly with K

Linear bandit approach:

» Embed arms in RY (each arm a is mapped to a feature vector
$a € RY)

» The reward varies linearly with the arm
Elr(a)] = ¢, 0"

where 6* € R? is unknown.

. Crzia—~
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Mathematical Tools

The Linear Bandit Problem

Limitations of MAB:
> Arms are independent
> Each single arm has to be tested at least once
> Regret scales linearly with K

Linear bandit approach:

» Embed arms in RY (each arm a is mapped to a feature vector
$a € RY)

» The reward varies linearly with the arm
Elr(a)] = ¢, 0"
where 0* € R9 is unknown.

Remark: if d = A and ¢, = e, then it coincides with MAB

. Cbreia—
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Mathematical Tools

The Linear Bandit Problem

The problem: at each timet=1,...,n

> The learner chooses an arm a; and receives a reward r,,
The optimal arm: a* = arg maxaec 4 E[r(a)] = arg maxac 4 ¢) 6*

The regret:

. Crzia—~
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Mathematical Tools

The Linear Bandit Problem

The MAB approach: the value of an arm is estimated by fi; ;
Exploiting the linear assumption:

» Estimate 6* using regularized least squares

_argmlnz (qﬁT at))z“‘/\HeH%

. Clreia—
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Mathematical Tools
The Linear Bandit Problem
The MAB approach: the value of an arm is estimated by fi; ;

Exploiting the linear assumption:

» Estimate 6* using regularized least squares

_argmlnz (qﬁT at))z“‘/\HeH%

» Closed-form solution

n

An = ¢at ;Ft + Al b, = Z ¢atrt(at)
t=1

t=1

=6, =A;"b,
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Mathematical Tools
The Linear Bandit Problem
The MAB approach: the value of an arm is estimated by fi; ;

Exploiting the linear assumption:

» Estimate 6* using regularized least squares

_argmlnz (qﬁT at))z“‘/\HeH%

» Closed-form solution
An = ¢at ;Ft + Al b, = Z ¢atrt(at)
t=1 t=1
=6, =A;"b,

» Estimate of the value of arm a

. Crzia—~
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Mathematical Tools

The Linear Bandit Problem

The MAB approach: construct confidence intervals /log(1/6)/T; »
Exploiting the linear assumption:

> Estimate of an arm 7,(a) may be accurate when “similar” arms have
been selected (even if T,(a) = 0!)

. Crzia—~
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Mathematical Tools

The Linear Bandit Problem

The MAB approach: construct confidence intervals /log(1/6)/T; »
Exploiting the linear assumption:

> Estimate of an arm 7,(a) may be accurate when “similar” arms have
been selected (even if T,(a) = 0!)

» Confidence intervals
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Mathematical Tools

The Linear Bandit Problem

The MAB approach: construct confidence intervals /log(1/6)/T; »
Exploiting the linear assumption:

> Estimate of an arm 7,(a) may be accurate when “similar” arms have
been selected (even if T,(a) = 0!)

» Confidence intervals
r(a) = 7a(a)| < any/ 0] As' 0,

» Tuning of the confidence interval

o, = B\/d log (%) + AM2)16%|

Remark: the confidence interval reduces to MAB when all arms are
orthogonal

. Clreia—
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Mathematical Tools

The Linear Bandit Problem

The MAB approach — UCB: pull arm Iy = [i; ¢ + +/log(1/8)/ T;.+
Exploiting the linear assumption:

> At each time step t select arm

3 / 1
ar = arg meaA?( (b;ret + a; ¢aTAt Pa
a

. Cbreia—
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Mathematical Tools

The Linear Bandit Problem

The MAB approach — UCB: regret O(K log(n)/A) or O(y/Knlog(K))
Exploiting the linear assumption:

> Regret bound
R, = O(dlog(n)v/n)
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Mathematical Tools

The Linear Bandit Problem

The MAB approach — TS:
» Compute a posterior over p;
» Draw a fi; from the posterior

> Select arm I; = arg max; [;

Exploiting the linear assumption:

> Regret bound
R, = O(dlog(n)v/n)

. Cbreia—
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Mathematical Tools

The Contextual Linear Bandit Problem
Limitations of MAB:

» The value of an arm is fixed

> No side-information / context is used

. bezia~
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Mathematical Tools

The Contextual Linear Bandit Problem
Limitations of MAB:

> The value of an arm is fixed

> No side-information / context is used
Contextual linear bandit approach:

» Finite arms

> Define a context x € X

» The reward varies linearly with the context

Elr(x, a)] = ¢4 0;

. Cbreia—
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Mathematical Tools

The Contextual Linear Bandit Problem
Limitations of MAB:

> The value of an arm is fixed

> No side-information / context is used
Contextual linear bandit approach:

» Finite arms

> Define a context x € X

» The reward varies linearly with the context
Elr(x, a)] = ¢4 0;
Extensions:
» Embed arms in R9 and
Elr(x,a)] = ¢, .0;

~ Let the arm set change over time A;
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Mathematical Tools

The Contextual Linear Bandit Problem
The problem: at each time t=1,...,n

» User x; arrives and a set of news A; is provided

» The user x; together with a news a € A; are described by a
feature vector ¢y, ,

» The learner chooses a news a; € A; and receives a reward

re(xt, at)
The optimal news: at each time t =1,..., n, the optimal news is
a; = argmax E[ri(x¢, at)]
ac A
The regret:

[Zn:rt (xt, a; } IE[ rt(xt,at)}

t=1 t=1

. brezia~
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Mathematical Tools

The Contextual Linear Bandit Problem

The linear regression estimate:
> To={t:a=a}
» Construct the design matrix of all the contexts observed when
action a has been taken D, € RI7alxd

» Construct the reward vector of all the rewards observed when
action a has been taken ¢, € R/l

» Estimate 6, as

0,=(DID,+ND]c,

. Cbreia—
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Mathematical Tools

The Contextual Linear Bandit Problem

Optimism in face of uncertainty: the LinUCB algorithm

» Chernoff-Hoeffding in this case becomes

(61,05 — r(x, )| < 0 /07 (D] Da + 1)L

> and the UCB strategy is

ar = arg max qﬁ;aéa + a\/gb;a(D;Da + )"y
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Mathematical Tools

The Contextual Linear Bandit Problem

The evaluation problem
» Online evaluation: too expensive

» Offline evaluation: how to use the logged data?

. Cbreia—
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Mathematical Tools

The Contextual Linear Bandit Problem

Evaluation from logged data

» Assumption 1: contexts and rewards are i.i.d. from a
stationary distribution

(X1, s XKy M1y 1) ~ D

> Assumption 2: the logging strategy is random

. Crzia—~
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Mathematical Tools

The Contextual Linear Bandit Problem

Evaluation from logged data: given a bandit strategy =, a
desired number of samples T, and a (infinite) stream of data

Algorithm 3 Policy_Evaluator.

—_

SRR IN RO

: Inputs: T' > 0; policy ; stream of events

ho < (0 {An initially empty history}
Ro <+ 0 {An initially zero total payoff}
fort=1,2,3,...,Tdo
repeat
Get next event (X1, ..., Xk, G, Tq)
until 7 (he—1, (x1,...,XK)) = a
ht < CONCATENATE(h¢—1, (X1, ..., XK,y Tq))
R+ Ri1+7q
end for
Output: Rt /T

§\
§~

A. LAZARIC — Reinforcement Learning Fall 2017 - 64/95



Mathematical Tools

The Exploration-Exploitation
Dilemma
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Mathematical Tools

The Exploration-Exploitation
Dilemma

Other Multi-Armed Bandit Problems
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Other Stochastic Multi-arm Bandit Problems

The Best Arm Identification Problem

Motivating Examples

v

Find the best shortest path in a limited number of days

» Maximize the confidence about the best treatment after a
finite number of patients

Discover the best advertisements after a training phase

v

. Crzia—~
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Other Stochastic Multi-arm Bandit Problems

The Best Arm Identification Problem

Objective: given a fixed budget n, return the best arm
i* = arg max; u; at the end of the experiment

. brezia~

A. LAZARIC — Reinforcement Learning Fall 2017 - 68/95



Other Stochastic Multi-arm Bandit Problems

The Best Arm Identification Problem

Objective: given a fixed budget n, return the best arm
i* = argmax; p; at the end of the experiment
Measure of performance: the probability of error

N
P[J, # i*] < Zexp ( — T;,nA,?)

i=1
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Other Stochastic Multi-arm Bandit Problems

The Best Arm Identification Problem

Objective: given a fixed budget n, return the best arm
i* = arg max; u; at the end of the experiment
Measure of performance: the probability of error

N
Pln # "1 <D _exp (= Tinl})
i=1

Algorithm idea: mimic the behavior of the optimal strategy
12
A?
Ti n = :

) N 1
RS

n

. Clreia—
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Other Stochastic Multi-arm Bandit Problems

The Best Arm Identification Problem

The Successive Reject Algorithm

> Divide the budget in N — 1 phases. Define
(log(N) =05+ 31, 1/i)

1 n—N
KT TogK N+ 1—k

n
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Other Stochastic Multi-arm Bandit Problems

The Best Arm Identification Problem

The Successive Reject Algorithm

> Divide the budget in N — 1 phases. Define
(log(N) =05+ 31, 1/i)

1 n—N
KT TogK N+ 1—k

n

> Set of active arms Ay at phase k (A1 ={1,...,N})
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Other Stochastic Multi-arm Bandit Problems

The Best Arm Identification Problem
The Successive Reject Algorithm
> Divide the budget in N — 1 phases. Define
(log(N) =05+ 31, 1/i)
1 n—N
KT TogK N+ 1—k

n

> Set of active arms Ay at phase k (A1 ={1,...,N})
» For each phase k=1,...,N —1

» For each arm j € A, pull arm i for nx — nx_1 rounds

A. LAZARIC — Reinforcement Learning
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Other Stochastic Multi-arm Bandit Problems

The Best Arm Identification Problem
The Successive Reject Algorithm
> Divide the budget in N — 1 phases. Define
(log(N) =05+ 31, 1/i)

1 n—N
KT TogK N+ 1—k

n

> Set of active arms Ay at phase k (A1 ={1,...,N})
» For each phase k=1,...,N —1

» For each arm j € A, pull arm i for nx — nx_1 rounds
» Remove the worst arm

Aks1 = Ai\ arg min fij n,
€A

. Clreia—
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Other Stochastic Multi-arm Bandit Problems

The Best Arm Identification Problem
The Successive Reject Algorithm
> Divide the budget in N — 1 phases. Define
(log(N) =05+ 31, 1/i)

1 n—N
KT TogK N+ 1—k

n

> Set of active arms Ay at phase k (A1 ={1,...,N})
» For each phase k=1,...,N —1

» For each arm j € A, pull arm i for nx — nx_1 rounds
» Remove the worst arm

Aks1 = Ai\ arg min fij n,
€A

> Return the only remaining arm J, = Ap

. Clreia—

A. LAZARIC — Reinforcement Learning Fall 2017 - 69/95



Other Stochastic Multi-arm Bandit Problems

The Best Arm Identification Problem

The Successive Reject Algorithm

Theorem

The successive reject algorithm have a probability of doing a
mistake of

o K(K-1) n—N
P[Jn?é’]STeXP(—@NH)

with Hy = max;—1 . n iAa)z.

. brezia~
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Other Stochastic Multi-arm Bandit Problems

The Best Arm Identification Problem

The UCB-E Algorithm

» Define an exploration parameter a

. a
Bi,s = ljs+ \/:

» Compute

. brezia~
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Other Stochastic Multi-arm Bandit Problems

The Best Arm Identification Problem

The UCB-E Algorithm

» Define an exploration parameter a

» Compute
a
Bis=[ijs+4/—
i,s = Mis \/:

> Select
Iy = arg max

i,s

Fall 2017
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Other Stochastic Multi-arm Bandit Problems

The Best Arm Identification Problem

The UCB-E Algorithm

» Define an exploration parameter a
N a
Bi,s = ljs+ \/:

Iy = arg max

i,s

» Compute

» Select

» At the end return

Jn = arg max /),-77,.’”
1

‘ -
LA —
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Other Stochastic Multi-arm Bandit Problems

The Best Arm Identification Problem

The UCB-E Algorithm

Theorem

The UCB-E algorithm with a = % ”ﬁlN has a probability of doing a
mistake of

P[Jn # i*] < 2nN exp ( - ;—Z)

with Hy = SN L 1/A2.
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Other Stochastic Multi-arm Bandit Problems

The Best Arm Identification Problem

Experiment 1, n=2000 Experiment 7, n=12000
05— — 0.35
i :
0.45 2°4:HR i
5:SR 03 B 5:SR
04 6-9: UCB-E 6-9: UCB-E
= fo-14:AdUCB-E| 10-14; Ad UCB-E|
g oss S o025
o o
w03
© B o2
2oz 2
= =
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Other Stochastic Multi-arm Bandit Problems

The Active Bandit Problem

Motivating Examples

» N production lines

» The test of the performance of a line is expensive

» We want an accurate estimation of the performance of each
production line

5 -
(777 BN
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Other Stochastic Multi-arm Bandit Problems

The Active Bandit Problem

Objective: given a fixed budget n, return the an estimate of the
means fi;  which is as accurate as possible for all the arms
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Other Stochastic Multi-arm Bandit Problems

The Active Bandit Problem

Objective: given a fixed budget n, return the an estimate of the
means fi;  which is as accurate as possible for all the arms

Notice: Given an arm has a mean y; and a variance a,-2, if it is
pulled T; , times, then

Lin=E[(fi1,, — mi)*] = =
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Other Stochastic Multi-arm Bandit Problems

The Active Bandit Problem

Objective: given a fixed budget n, return the an estimate of the
means fi;  which is as accurate as possible for all the arms

Notice: Given an arm has a mean y; and a variance a,-2, if it is
pulled T; , times, then

Lin=E[(fi1,, — mi)*] = =

L, =maxL;,
1
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Other Stochastic Multi-arm Bandit Problems

The Active Bandit Problem

Problem: what are the number of pulls (71 ,..., Tn,n) (such
that Y T; , = n) which minimizes the loss?

(T{ Tyn)=arg  min L
Ly I'N, n
" (T1,n5-Th,n)

. Cbreia—
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Other Stochastic Multi-arm Bandit Problems

The Active Bandit Problem

Problem: what are the number of pulls (71 ,..., Tn,n) (such
that Y T; , = n) which minimizes the loss?

(T{ Tyn)=arg  min L
Ly I'N, n
" (T1,n5-Th,n)

Answer
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The Active Bandit Problem

Problem: what are the number of pulls (71 ,..., Tn,n) (such
that Y T; , = n) which minimizes the loss?

(T{ Tyn)=arg  min L
Ly I'N, n
" (T1,n5-Th,n)
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Other Stochastic Multi-arm Bandit Problems

The Active Bandit Problem

Objective: given a fixed budget n, return the an estimate of the
means [i;  which is as accurate as possible for all the arms
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Other Stochastic Multi-arm Bandit Problems

The Active Bandit Problem

Objective: given a fixed budget n, return the an estimate of the
means [i;  which is as accurate as possible for all the arms
Measure of performance: the regret on the quadratic error
N 2
19

R.(A) = max L,(A) — 2107

n
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Other Stochastic Multi-arm Bandit Problems

The Active Bandit Problem

Objective: given a fixed budget n, return the an estimate of the
means [i;  which is as accurate as possible for all the arms
Measure of performance: the regret on the quadratic error

N 2
Ro(A) = max Ly(A) — 22171

n
Algorithm idea: mimic the behavior of the optimal strategy

2

o;
Ti,n = 7,\, 2 n= )\,-n
j=19j
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Other Stochastic Multi-arm Bandit Problems

The Active Bandit Problem

An UCB-based strategy
At each timestept=1,...,n

Tit—1

2 ~2
Z XS,I' - /“LI',T,"tfl
s=1

1 [log1/é
it UI,TI,tA + 2Ti,t—1

It = arg max B; +

» Estimate
5? _ !
i Tit—1 = Tit1
» Compute
Tit-1
» Pull arm

. Crzia—~
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Other Stochastic Multi-arm Bandit Problems

The Active Bandit Problem

The UCB-based algorithm achieves a regret

Ro(A) < 2Bloe(n) O<|ogn>

3/215/2 n?
i / >‘min
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Other Stochastic Multi-arm Bandit Problems

The Active Bandit Problem

The UCB-based algorithm achieves a regret

Ro(A) < Bloe(n) O<|ogn>

3/215/2 n?
n / )\min
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Other Stochastic Multi-arm Bandit Problems

The Exploration-Exploitation
Dilemma

Bonus: Reinforcement Learning
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Other Stochastic Multi-arm Bandit Problems

Learning the Optimal Policy

Fori=1,...,n
1. Sett=0
2. Set initial state xg
3. While (x; not terminal)

3.1 Take action a; according to a suitable exploration policy
3.2 Observe next state x;1 and reward r;

3.3 Compute the temporal difference é; (e.g., Q-learning)

3.4 Update the Q-function

a(Xt7 at) = a(Xty at) + Ol(Xt, at)5t

35 Sett=t+1
EndWhile

EndFor

. Cbreia—
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Other Stochastic Multi-arm Bandit Problems

Learning the Optimal Policy

The regret in MAB

Rn(A) = _7maxK]E [ Z Xi,t} - E[Zn: Xlt,t}
t=1

'717"'7
t=1

. bezia~
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Other Stochastic Multi-arm Bandit Problems

Learning the Optimal Policy

The regret in MAB

Rn(A) = ’,nlﬂf?leE[iXi,t} - E[iX/t,t}
= R,(A) = mﬁxE{ g r(xt,Tr(Xt))} - E[Xn: r(xt, at)}
t=1 t=1
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Other Stochastic Multi-arm Bandit Problems

Learning the Optimal Policy

The regret in MAB

Rul) = _mox, B[S %] B[ D%
T t=1
= Rn(A) —maxE{Xn:rxt,Tr(Xt } _E[Xn:r(xtaat)}
t=1 t=1

= not correct: actions influence the state as well!

. Cbreia—
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Other Stochastic Multi-arm Bandit Problems

Learning the Optimal Policy

The regret in MAB

R.(A) = inlqaxK]E[Zn:X;,t} - E[anxlt,t}
t=1 t=1
= Rp(A _maxE{Xn:rxt,Tr(xt } —E[zn:f(xtaat)}
t=1 t=1

= not correct: actions influence the state as well!
The regret in RL

Ra(A) = mﬁxE[zn: r¢ ()| - E[Z rxesat)]
t=1 t=1
Xt~ (- Ixgg, T (3 )

. Crzia—~
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Other Stochastic Multi-arm Bandit Problems

Learning the Optimal Policy

Idea: can we adapt UCB (that already works in MAB, contextual
bandit) here?

. brezia~
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Other Stochastic Multi-arm Bandit Problems

Learning the Optimal Policy

Idea: can we adapt UCB (that already works in MAB, contextual
bandit) here? Yes!
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Other Stochastic Multi-arm Bandit Problems

Exploration-Exploitation in RL

» A policy 7 is defined as 7: X — A

» The long-term average reward of a policy is

1I1
(M) = lim E|=
pr(t) = fim E[ 73]

» Optimal policy

w*(M):argmfxp,r(M) = p (M) = pre(my(M)
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Other Stochastic Multi-arm Bandit Problems

Exploration-Exploitation in RL

v

A policy 7 is defined as 7 : X — A

v

The long-term average reward of a policy is

pr(M) = H'L“;E[ii“]

v

Optimal policy

7 (M) = arg mfxp,r(M) = p (M) = pre(my(M)

v

Exploration-exploitation dilemma

» Explore the environment to estimate its parameters
» Exploit the estimates to collect reward

. Cbreia—
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Other Stochastic Multi-arm Bandit Problems
Exploration-Exploitation in RL

A Per-step reward

Learning curve

Regret

Y

Steps
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Other Stochastic Multi-arm Bandit Problems

Exploration-Exploitation in RL

|

A Per-step reward

Regret

Learning curve

L.
>

Cumulative Regret

A. LAZARIC — Reinforcement Learning
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Other Stochastic Multi-arm Bandit Problems

Upper-confidence Bound for RL (UCRL)

Space of MDPs
(. } ] N
High confidence space
M*
True MDP
M,
Estimated MDP

[ i

Optimistic MDP

p(M,) P P (My) p"(M)
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Other Stochastic Multi-arm Bandit Problems

Upper-confidence Bound for RL (UCRL)

Space of MDPs
(. } ] N
High confidence space
M*
True MDP
M,
Estimated MDP

[ i

Optimistic MDP
J
‘ : fN L

p(M,) P P (My) p"(M)
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Other Stochastic Multi-arm Bandit Problems

Upper-confidence Bound for RL (UCRL)

Space of MDPs

High confidence space

~

ZARIC — Reinforcement Learning

M*
True MDP

M,
Estimated MDP

My
Optimistic MDP
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Other Stochastic Multi-arm Bandit Problems

Upper-confidence Bound for RL (UCRL)

Space of MDPs
4 ] N
High confidence space
M*
True MDP
A/T\]n
Estimated MDP
Optimistic MDP
/
| ror >
pp*(M,) p*(My) pH(M)
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Other Stochastic Multi-arm Bandit Problems

Upper-confidence Bound for RL (UCRL)

Start

@ Initial policy

‘ Observe current Execute action Observe reward
state T¢ ag ~ fuo(-|2t) ri~ fr(|me, az)

No Enough new
information?
Yes
Compute optimistic Update confidence
MDP/policy I — intervals and
My, Tk construct M,
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Other Stochastic Multi-arm Bandit Problems

The UCRL2 Algorithm

Initialize episode k

1.

Current time ty

2. Let Nk(x,a) = |{T < tgiXe =X,ar = a}|
3. Let Ri(x,a) = >k, nl{x = x,a = a}
4. Let Pi(x,a,x") = ‘{T <tk iXe=X,ar = a,Xer1 = X/}‘

~ Ry (x, N Py (x,a,x"
5. Compute %(x,a) = N:EXZ; . Pr(x,a,x") = ﬁ

Compute optimistic policy
1. Let
M, = {/\71 |7(x, a) — Fe(x, )| < Bi(x, a);
I1B(-1x, @) = Bel-1x, a)llx < Bylx, 2) |

2. Compute

7k = arg max max p(m; M)
T MeMy

Execute 7, until at least one state-action space counter is doubled

. Cbreia—
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Other Stochastic Multi-arm Bandit Problems

Upper-confidence Bound for RL (UCRL)

Set of plausible MDPs M, = {M}: confidence intervals built using
Chernoff bounds

_ Jlog(xA/5) . _[Xx1og(xA/s)
B/ (x,a) ~ Ne(x,a) By(x,a) = TNexa)
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Other Stochastic Multi-arm Bandit Problems

Upper-confidence Bound for RL (UCRL)

Set of plausible MDPs M, = {M}: confidence intervals built using
Chernoff bounds

_ Jlog(xA/5) . _[Xx1og(xA/s)
B.(x,a) = Ne(x,a) By(x,a) = TNexa)

Computation of the optimistic optimal policy 7y
T, = argmax _max px(M)
7r Me My
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Other Stochastic Multi-arm Bandit Problems

The Extended Value lteration Algorithm

Planning in average reward MDPs

» The optimal Bellman equation: optimal gain p* and bias u*

u*()+p—max xa)—i—Zp "|x, a)u*(x")]

> Value iteration (given vp)
v,,_max r(x a)+Zp (X'|x, a)va—1(x")]

until span(v, — v,_1) < €

» Guarantees of greedy policy

(X)—argmax r(x,a +Zp(x X, a)va-1(x)] = [g™ —g*| < ¢
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Other Stochastic Multi-arm Bandit Problems

The Extended Value lteration Algorithm

Planning in optimistic average reward MDPs

» The optimal Bellman equation: optimal gain p and bias u

a  F(x,a)p(-|x,a

u(x) + p = max max max) [F(x,a) + Z B(X'|x, a)u(x")]

> Value iteration (given vp)

Vo = max max max |[F(x,a) + » p(x'|x, a)v,_1(x’
a F(Xﬁa)ﬁ(ﬁx,a)[ ( ) ;P( | ) 1( )]

=max max [F(x,a) + > p(X|x, a)va-1(x)]  (F" =P+ /1/Ny)

a B(:|x,a)

= max [F"(x,a) + max p(x'|x, a)vp—1(x’ simple LP
ox[F*(x,3) 4 max 3" (12 1(x)]  (smple LP)

x!

> LP problem: assign highest probability from ||p(:|x, a) — p(:|x, a)||1 to
highest v,_1(x")

. Crzia—~
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Other Stochastic Multi-arm Bandit Problems
The Regret

UCRL2 run over n steps in an MDP with diameter D, X states and A
actions suffers a regret

R, = O(DXV/'An)

where diameter D = max, - min; E[ T(x, x')].

T(s) = 14

< = =
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Other Stochastic Multi-arm Bandit Problems

Posterior Sampling for Reinforcement Learning (PSRL)

Initialize episode k
1. Current time ty

2. Let Ni(x,a) = {7 < tx : x¢ = x, a; = a}|
3. Compute posterior over r(x, a) and p(-|x, a)

Compute random policy
1. Let My = {F«, px} such that 7, px sampled from their posteriors
2. Compute optimal policy Ty = arg max, p™ (M)

Execute 7, until at least one state-action space counter is doubled

. Cbreia—
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Other Stochastic Multi-arm Bandit Problems
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