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1. Inégalité d’Azuma

2. Sample complexity of LSTD

3. Other results

1 Inégalité d’Azuma

Etend l’inégalité de Chernoff-Hoeffding à des variables aléatoires qui peuvent être dépendantes mais qui
forment une Martingale.
Proposition 1. Soient Xi ∈ [ai, bi] variables aléatoires telles que E[Xi|X1, . . . , Xi−1] = 0. Alors
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En choisissant s = 4ε/
∑n

i=1(bi−ai)2 on déduit P
(∑n

i=1 Xi−µi ≥ ε
)
≤ e

− 2ε2
Pn
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2 . En refaisant le même

calcul pour P
( ∑n

i=1 Xi − µi ≤ −ε
)

on déduit (1).
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2 Sample complexity of LSTD

2.1 Pathwise LSTD

We follow a fixed policy π. Our goal is to approximate the value function V π (written V removing reference
to π to simplify notations). We use a linear approximation space F spanned by a set of d basis functions
ϕi : X → R. We denote by φ : X → Rd, φ(·) =

(
ϕ1(·), . . . , ϕd(·)

)> the feature vector. Thus

F =
{
fα | α ∈ Rd and fα(·) = φ(·)>α

}
.

Let (X1, . . . , Xn) be a sample path (trajectory) of size n generated by following policy π. Let v ∈ Rn and
r ∈ Rn such that vt = V (Xt) and rt = R(Xt) be the value vector and the reward vector, respectively. Also,
let Φ = [φ(X1)>; . . . ; φ(Xn)>] be the feature matrix defined at the states, and Fn = {Φα, α ∈ Rd} ⊂ Rn be
the corresponding vector space. We denote by Π̂ : Rn → Fn the empirical orthogonal projection onto
Fn, defined as

Π̂y = arg min
z∈Fn

||y − z||n,

where ||y||2n = 1
n

∑n
t=1 y2

t . Note that Π̂ is a non-expansive mapping w.r.t. the `2-norm: ||Π̂y − Π̂z||n ≤
||y − z||n.

Define the empirical Bellman operator T̂ : Rn → Rn as

(T̂ y)t =
{

rt + γyt+1 1 ≤ t < n,
rt t = n.

Proposition 2. The operator Π̂T̂ is a contraction in `2-norm, thus possesses a unique fixed point v̂.

Preuve. Note that by defining the operator P̂ : Rn → Rn as (P̂ y)t = yt+1 for 1 ≤ t < n and (P̂ y)n = 0, we
have T̂ y = r + γP̂ y. The empirical Bellman operator is a γ-contraction in `2-norm since, for any y, z ∈ Rn,
we have

||T̂ y − T̂ z||2n = ||γP̂ (y − z)||2n ≤ γ2||y − z||2n .

Now, since the orthogonal projection Π̂ is non-expansive w.r.t. `2-norm, from Banach fixed point theorem,
there exists a unique fixed-point v̂ of the mapping Π̂T̂ , i.e., v̂ = Π̂T̂ v̂.

Since v̂ is the unique fixed point of Π̂T̂ , the vector v̂ − T̂ v̂ is perpendicular to the space Fn, and thus,
Φ>(v̂−T̂ v̂) = 0. By replacing v̂ with Φα, we obtain Φ>Φα = Φ>(r+γP̂Φα) and then Φ>(I − γP̂ )Φ︸ ︷︷ ︸

A

α = Φ>r︸︷︷︸
b

.

Therefore, by setting

Ai,j =
n−1∑
t=1

φi(xt)
[
φj(xt) − γφj(xt+1)

]
+ φi(xn)φj(xn),

bi =
n∑

t=1

φi(xt)rt,

we have that the system Aα = b always has at least one solution (since the fixed point v̂ exists) and we
call the solution with minimal norm, α̂ = A+b, where A+ is the Moore-Penrose pseudo-inverse of A, the
pathwise LSTD solution.
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2.2 Performance Bound

Here we derive a bound for the performance of v̂ evaluated on the states of the trajectory used by the
pathwise LSTD algorithm.

Théorème 1. Let X1, . . . , Xn be a trajectory of the Markov chain, and v, v̂ ∈ Rn be the vectors whose
components are the value function and the pathwise LSTD solution at {Xt}n

t=1, respectively. Then with
probability 1 − δ (the probability is w.r.t. the random trajectory), we have

||v̂ − v||n ≤ 1√
1 − γ2

||v − Π̂v||n +
1

1 − γ

[
γVmaxL

√
d

νn

(√
8 log(2d/δ)

n
+

1
n

)]
, (2)

where the random variable νn is the smallest strictly-positive eigenvalue of the sample-based Gram matrix
1
nΦ>Φ.

Remark 1 When the eigenvalues of the sample-based Gram matrix 1
nΦ>Φ are all non-zero, Φ>Φ is in-

vertible, and thus, Π̂ = Φ(Φ>Φ)−1Φ>. In this case, the uniqueness of v̂ implies the uniqueness of α̂ since

v̂ = Φα =⇒ Φ>v̂ = Φ>Φα =⇒ α̂ = (Φ>Φ)−1Φ>v̂.

On the other hand, when the sample-based Gram matrix 1
nΦ>Φ is not invertible, the system Ax = b may

have many solutions. Among all the possible solutions, one may choose the one with minimal norm: α̂ = A+b.

Remark 3 Theorem 1 provides a bound without any reference to the stationary distribution of the Markov
chain. In fact, the bound of Equation 2 holds even when the chain does not possess a stationary distribution.
For example, consider a Markov chain on the real line where the transitions always move the states to the
right, i.e., p(Xt+1 ∈ dy|Xt = x) = 0 for y ≤ x. For simplicity assume that the value function V is bounded
and belongs to F . This Markov chain is not recurrent, and thus, does not have a stationary distribution. We
also assume that the feature vectors φ(X1), . . . , φ(Xn) are sufficiently independent, so that the eigenvalues
of 1

nΦ>Φ are greater than ν > 0. Then according to Theorem 1, pathwise LSTD is able to estimate the value
function at the samples at a rate O(1/

√
n). This may seem surprising because at each state Xt the algorithm

is only provided with a noisy estimation of the expected value of the next state. However, the estimates are
unbiased conditioned on the current state, and we will see in the proof that using a concentration inequality
for martingale, pathwise LSTD is able to learn a good estimate of the value function at a state Xt using
noisy pieces of information at other states that may be far away from Xt. In other words, learning the value
function at a given state does not require making an average over many samples close to that state. This
implies that LSTD does not require the Markov chain to possess a stationary distribution.

In order to prove Theorem 1, we first introduce the model of regression with Markov design and then state
and prove a lemma about this model.
Définition. The model of regression Markov design is a regression problem where the data (Xt, Yt)1≤t≤n

are generated according to the following model: X1, . . . , Xn is a sample path generated by a Markov chain,
Yt = f(Xt) + ξt, where f is the target function, and the noise term ξt is a random variable which is adapted
to the filtration generated by X1, . . . , Xt+1 and is such that

|ξt| ≤ C and E[ξt|X1, . . . , Xt] = 0. (3)

The next lemma reports a risk bound for the Markov design setting.
Lemme (Regression bound for the Markov design setting). Let ŵ ∈ Fn be the least-squares estimate of the
(noisy) values Y = {Yt}n

1 , i.e., ŵ = Π̂Y , and w ∈ Fn be the least-squares estimate of the (noiseless) values
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Figure 1: This figure shows the components used in Lemma 2.2 and its proof such as w, ŵ, ξ, and ξ̂, and
the fact that 〈ξ̂, ξ〉n = ||ξ̂||2n.

Z = {Zt = f(Xt)}n
1 , i.e., w = Π̂Z. Then for any δ > 0, with probability at least 1 − δ (the probability is

w.r.t. the random sample path X1, . . . , Xn), we have

||ŵ − w||n ≤ CL

√
2d log(2d/δ)

nνn
, (4)

where νn is the smallest strictly-positive eigenvalue of the sample-based Gram matrix 1
nΦ>Φ.

Preuve. We define ξ ∈ Rn to be the vector with components ξt, and ξ̂ = ŵ − w = Π̂(Y − Z) = Π̂ξ. Since
the projection is orthogonal we have 〈ξ̂, ξ〉n = ||ξ̂||2n (see Figure 1). Since ξ̂ ∈ Fn, there exists at least one
α ∈ Rd such that ξ̂ = Φα, so by Cauchy-Schwarz inequality we have

||ξ̂||2n = 〈ξ̂, ξ〉n =
1
n

d∑
i=1

αi

n∑
t=1

ξtϕi(Xt) ≤
1
n
||α||2

[
d∑

i=1

( n∑
t=1

ξtϕi(Xt)
)2

]1/2

. (5)

Now among the vectors α such that ξ̂ = Φα, we define α̂ to be the one with minimal `2-norm, i.e., α̂ = Φ+ξ̂.
Let K denote the null space of Φ, which is also the null space of 1

nΦ>Φ. Then α̂ can be decomposed as
α̂ = α̂K + α̂K⊥ , where α̂K ∈ K and α̂K⊥ ∈ K⊥, and because the decomposition is orthogonal, we have
||α̂||22 = ||α̂K ||22 + ||α̂K⊥ ||22. Since α̂ is of minimal norm among all the vectors α such that ξ̂ = Φα, its
component in K must be zero, thus α̂ ∈ K⊥.

The Gram matrix 1
nΦ>Φ is positive-semidefinite, thus its eigenvectors corresponding to zero eigenvalues gen-

erate K and the other eigenvectors generate its orthogonal complement K⊥. Therefore, from the assumption
that the smallest strictly-positive eigenvalue of 1

nΦ>Φ is νn, we deduce that since α̂ ∈ K⊥,

||ξ̂||2n =
1
n

α̂>Φ>Φα̂ ≥ νnα̂>α̂ = νn||α̂||22. (6)

By using the result of Equation 6 in Equation 5, we obtain

||ξ̂||n ≤ 1
n
√

νn

[
d∑

i=1

( n∑
t=1

ξtϕi(Xt)
)2

]1/2

. (7)
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Figure 2: This figure represents the space Rn, the linear vector subspace Fn and some vectors used in the
proof of Theorem 1.

Now, from Equation 3, we have that for any i = 1, . . . , d

E[ξtϕi(Xt)|X1, . . . , Xt] = ϕi(Xt)E[ξt|X1, . . . , Xt] = 0,

and since ξtϕi(Xt) is adapted to the filtration generated by X1, . . . , Xt+1, it is a martingale difference
sequence w.r.t. that filtration. Thus one may apply Azuma’s inequality to deduce that with probability
1 − δ, ∣∣∣ n∑

t=1

ξtϕi(Xt)
∣∣∣ ≤ CL

√
2n log(2/δ) .

where we used that |ξtϕi(Xt)| ≤ CL for any i and t. By a union bound over all features, we have that with
probability 1 − δ, for all 1 ≤ i ≤ d

∣∣∣ n∑
t=1

ξtϕi(Xt)
∣∣∣ ≤ CL

√
2n log(2d/δ) . (8)

The result follows by combining Equations 8 and 7.

Remarks about this Lemma In the Markov design model considered in this lemma, states {Xt}n
1 are

random variables generated according to the Markov chain and the noise terms ξt may depend on the next
state Xt+1 (but should be centered conditioned on the past states X1, . . . , Xt). This lemma will be used in
order to prove Theorem 1, where we replace the target function f with the value function V , and the noise
term ξt with the temporal difference r(Xt) + γV (Xt+1) − V (Xt).

Note that this lemma is an extension of the bound for the model of regression with deterministic design in
which the states, {Xt}n

1 , are fixed and the noise terms, ξt’s, are independent. In deterministic design, usual
concentration results provide high probability bounds similar to Equation 4, but without the dependence on
νn. An open question is whether it is possible to remove νn in the bound for the Markov design regression
setting.

Preuve. [Théorème 1]
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Step 1: Using the Pythagorean theorem and the triangle inequality, we have (see Figure 2)

||v̂ − v||2n = ||v − Π̂v||2n + ||v̂ − Π̂v||2n ≤ ||v̂ − Π̂v||2n +
(
||v̂ − Π̂T̂ v||n + ||Π̂T̂ v − Π̂v||n

)2
. (9)

From the γ-contraction of the operator Π̂T̂ and the fact that v̂ is its unique fixed point, we obtain

||v̂ − Π̂T̂ v||n = ||Π̂T̂ v̂ − Π̂T̂ v||n ≤ γ||v̂ − v||n, (10)

Thus from Equation 9 and 10, we have

||v̂ − v||2n ≤ ||v̂ − Π̂v||2n +
(
γ||v̂ − v||n + ||Π̂T̂ v − Π̂v||n

)2
. (11)

Step 2: We now provide a high probability bound on ||Π̂T̂ v − Π̂v||n. This is a consequence of Lemma 2.2
applied to the vectors Y = T̂ v and Z = v. Since v is the value function at the points {Xt}n

1 , from the
definition of the pathwise Bellman operator, we have that for 1 ≤ t ≤ n − 1,

ξt = yt − vt = r(Xt) + γV (Xt+1) − V (Xt) = γ
[
V (Xt+1) −

∫
P (dy|Xt)V (y)

]
,

and ξn = yn − vn = −γ
∫

P (dy|Xn)V (y). Thus, Equation 3 holds for 1 ≤ t ≤ n − 1. Here we may choose
C = 2γVmax for a bound on ξt, 1 ≤ t ≤ n − 1, and C = γVmax for a bound on ξn. Azuma’s inequality
may only be applied to the sequence of n − 1 terms (the n-th term adds a contribution to the bound), thus
instead of Equation 8, we obtain∣∣∣ n∑

t=1

ξtϕi(Xt)
∣∣∣ ≤ γVmaxL

(
2
√

2n log(2d/δ) + 1
)
,

with probability 1− δ, for all 1 ≤ i ≤ d. Combining with Equation 7, we deduce that with probability 1− δ,
we have

||Π̂T̂ v − Π̂v||n ≤ γVmaxL

√
d

νn

(√
8 log(2d/δ)

n
+

1
n

)
, (12)

where νn is the smallest strictly-positive eigenvalue of 1
nΦ>Φ. The claim follows by combining Equations 12

and 11, and solving the result for ||v̂ − v||n.

2.3 Generalization bound

When the Markov chain is ergodic (say β-mixing) and possesses a stationnary distribution µ, then it is
possible to derive generalization bounds of the form: with probability 1 − δ,

||V̂ − V ||µ ≤ c√
1 − γ2

inf
f∈F

||V − f ||µ + O
(√

d log(d/δ)
nν

)
,

which provides a bound expressed in terms of

• the best possible approximation of V in F measured with µ

• the smallest eigenvalue ν of the Gram matrix
( ∫

φiφjdµ
)
i,j

• β-mixing coefficients of the chain (hidden in O).

(see [Lazaric, Ghavamzadeh, Munos, Finite-sample analysis of LSTD, 2010]).
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3 Other results

Similar results have been obtained for different algorithms:

• Approximate Value iteration [MS08]

• Policy iteration with Bellman residual minimization [MMLG10]

• Policy iteration with modified Bellman residual minimization [ASM08]

• Classification based policy iteration algorithm [LGM10a]

But there remains many open problems...
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