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Abstract

Approximate Value Iteration (AVI) is an method for solving
a Markov Decision Problem by making successive calls to a
supervised learning (SL) algorithm. Sequence of value rep-
resentations Vn are processed iteratively by Vn+1 = AT Vn

where T is the Bellman operator and A an approximation
operator. Bounds on the error between the performance of
the policies induced by the algorithm and the optimal policy
are given as a function of weighted Lp-norms (p ≥ 1) of
the approximation errors. The results extend usual analysis
in L∞-norm, and allow to relate the performance of AVI to
the approximation power (usually expressed in Lp-norm, for
p = 1 or 2) of the SL algorithm. We illustrate the tightness
of these bounds on an optimal replacement problem.

Introduction
We study the resolution of Markov Decision Processes
(MDPs) (Puterman 1994) using approximate value func-
tion representations Vn. The Approximate Value Iteration
(AVI) algorithm is defined by the iteration

Vn+1 = AT Vn, (1)

where T is the Bellman operator and A an approxima-
tion operator or a supervised learning (SL) algorithm. AVI
is very popular and has been successfully implemented
in many different settings in Dynamic Programming (DP)
(Bertsekas & Tsitsiklis 1996) and Reinforcement Learning
(RL) (Sutton & Barto 1998).

A simple version is: at stage n, select a sample of states
(xk)k=1...K from some distribution µ, compute the backed-
up values vk := T Vn(xk), then make a call to a SL algo-
rithm. This returns a function Vn+1 minimizing some aver-
age empirical loss Vn+1 = argminf

1
K

∑

k l(f(xk) − vk).
Most SL algorithms use squared (L2) or absolute (L1)

loss functions (or variants) thus perform a minimization
problem in weighted L1 or L2, in which the weights are de-
fined by µ. It is therefore crucial to estimate the performance
of AVI as a function of the weighted Lp- norms (p ≥ 1) used
by the SL algorithm. The goal of this paper is to extend usual
results in L∞-norm to similar results in weighted Lp-norms.
The performance achieved by such a resolution of the MDP
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may then be directly related to the approximation power of
the SL algorithm.

Alternative results in approximate DP with weighted
norms include Linear Programming (de Farias & Roy 2003)
and Policy Iteration (Munos 2003).

Let X be the state space assumed to be finite with N states
(although the results given in this paper extend easily to con-
tinuous spaces) and A a finite action space. Let p(x, a, y) be
the probability that the next state is y given that the current
state is x and the action is a. Let r(x, a, y) be the reward
received when a transition (x, a) → y occurs.

A policy π is a mapping from X to A. We write
P π the N × N−matrix with elements P π(x, y) :=
p(x, π(x), y) and rπ the vector with components rπ(x) :=
∑

y p(x, π(x), y)r(x, π(x), y).
For a policy π, we define the value function V π which,

in the discounted and infinite horizon setting studied here, is
the expected discounted sum of future rewards

V π(x) := E

[ ∞
∑

t=0

γt r(xt, at, xt+1)|x0 = x, at = π(xt)

]

,

where γ ∈ [0, 1) is a discount factor. V π is the fixed point
of the operator T π : IRN → IRN defined, for any vector
W ∈ IRN , by T πW := rπ + γP πW.

The optimal value function V ∗ := supπ V π is the fixed-
point of the Bellman operator T defined, for any W ∈ IRN ,
by

T W (x) = max
a∈A

∑

y

p(x, a, y)[r(x, a, y) + γW (y)].

We say that a policy π is greedy with respect to W ∈ IRN ,
if for all x ∈ X ,

π(x) ∈ arg max
a∈A

∑

y

p(x, a, y)[r(x, a, y) + γW (y)].

An optimal policy π∗ is a policy greedy w.r.t. V ∗.
An exact resolution method for computing V ∗ is the Value

Iteration algorithm defined by the iteration Vn+1 = T Vn.
Due to the contraction property in L∞−norm of the opera-
tor T , the iterates Vn converge to V ∗ as n → ∞. However,
problems with a large number of states prevent us from us-
ing such exact resolution methods; we need to represent the
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functions with a moderate number of coefficients and per-
form approximate iterations such as (1).

The paper is organized as follows. We first remind some
approximation results in L∞-norm, then give component-
wise bounds and use them to derive error-bounds in Lp-
norms. Finally we detail some practical implementations
and provide a numerical experiment for an optimal replace-
ment problem. The main result of this paper is Theorem 1.
All proofs are detailed in the Appendix.

We recall the definition of the norms: let u ∈ IRN . Its
L∞-norm is ||u||∞ := supx |u(x)|. Let µ be a distribution
on X . The weighted Lp-(semi) norms (denoted by Lp,µ) is
||u||p,µ :=

[
∑

x µ(x)|u(x)|p
]1/p . Let us denote by || · ||p

the unweighted Lp-norms (i.e. when µ is uniform).

Approximation results in L
∞

-norm
Consider the AVI algorithm defined by (1) and write εn =
T Vn−Vn+1 the approximation error at stage n. In general,
this algorithm does not converge, but its asymptotic behavior
may be analyzed. If the approximation errors are uniformly
bounded ||εn||∞ ≤ ε then, a bound on the error between the
asymptotic performance of the policies πn greedy w.r.t. Vn

and the optimal policy is (Bertsekas & Tsitsiklis 1996):

lim sup
n→∞

||V ∗ − V πn ||∞ ≤
2γ

(1 − γ)2
ε. (2)

This L∞-bound requires a uniformly low approximation
error over all states, which is difficult to guarantee in prac-
tice, especially for large-scale problems. Most function ap-
proximation (exceptions include (Gordon 1995; Guestrin,
Koller, & Parr 2001)) such as those described in the next
section perform a minimization problem using weighted L1

and L2 norms.

Approximation operators
A supervised learning algorithm A returns a good fit g
(within given classes of functions F) of the data (xk , vk) ∈
XN×IR, k = 1 . . .K, with the xk being sampled from some
distribution µ and the values vk being unbiased estimates
of some function f(xk), by minimizing an average empiri-
cal loss 1

K

∑K
k=1 l(vk − g(xk)) using mainly L1 or L2 loss

functions (or variants). If the values are not perturbated (i.e.
vk = f(xk)), A may be considered as an approximation
operator that returns a compact representation g ∈ F of a
general function f by minimizing some L1,µ or L2,µ-norm.
Approximation theory studies the approximation error as a
function of the smoothness of f (DeVore 1997).

The projection onto the span of a fixed family of func-
tions (called features) is called linear approximation and in-
clude Splines, Radial Basis, Fourier or Wavelet decomposi-
tion. A better approximation is reached when choosing the
features according to f (i.e. feature selection). This non-
linear approximation is particularly efficient when f has
piecewise regularities (e.g. in adaptive wavelet basis (Mal-
lat 1997) such functions are compactly represented with few
non-zero coefficients). Greedy algorithms for selecting the
best features among a given dictionary of functions include

the Matching Pursuit and variants (Davies, Mallat, & Avel-
laneda 1997).

In Statistical Learning (Hastie, Tibshirani, & Friedman
2001), other SL algorithms include Neural Network, Locally
Weighted Learning and Kernel Regression (Atkeson, Schaal,
& Moore 1997), Support-Vectors and Reproducing Kernels
(Vapnik, Golowich, & Smola 1997).

We call A an ε−approximation operator if A returns an
ε−approximation g of f : ||f − g|| ≤ ε.

Componentwise error bounds
Here we provide componentwise bounds that will be used in
the next section. We consider the AVI algorithm defined by
(1) and write εn = T Vn − Vn+1 the approximation error at
stage n. A componentwise bound on the asymptotic perfor-
mance of the policies πn greedy w.r.t. Vn and the optimal
policy is given now (and proved in the Appendix)
Lemma 1. We have

lim sup
n→∞

V ∗ − V πn ≤ lim sup
n→∞

(I − γP πn)−1
n−1
∑

k=0

γn−k

[

(P π∗

)n−k + P πnP πn−1 . . . P πk+1
]

|εk|, (3)

where |εk| is the vector whose components are the absolute
values of εk.

Approximation results in Lp-norms
We use the componentwise result of the previous section to
extend the error bound (2) in Lp-norm, under one of the two
following assumption.

Let µ be a distribution over X .
Assumption A1 [Smooth transition probabilities].

There exists a constant C > 0 such that, for all states
x, y ∈ X , all policy π,

P π(x, y) ≤ Cµ(y).

Assumption A2 [Smooth future state distribution].
There exits a distribution ρ and coefficients c(m) such that
for all m ≥ 1 policies π1, π2, . . . , πm,

ρP π1P π2 . . . P πm ≤ c(m)µ. (4)

Then we define the smoothness constant C of the discounted
future state distribution

C := (1 − γ)2
∑

m≥1

mγm−1c(m).

Assumption A1 was introduced in (Munos 2003) for de-
riving performance bounds in policy iteration algorithms.
We notice that A1 is stronger than A2 since when A1 holds,
A2 also holds for any distribution ρ (with the same con-
stant C). A1 concerns the immediate transition probabili-
ties (an example for which A1 holds is the optimal replace-
ment problem described below) whereas A2 expresses some
smoothness property of the future state distribution w.r.t. µ
when initial state is drawn from some distribution ρ. Indeed,
in terms of Markov chain, assumption A2 implies that for
any sequence of policies π1, . . . , πm, the discounted future
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state distribution starting from ρ is bounded by a constant C
times µ: for all x0, y in X ,
(1 − γ)2

∑∞
m=1mγm−1Pr

(

xm = y
∣

∣x0 ∼ ρ,

xi ∼ p(xi−1, πi(xi−1), ·), 1 ≤ i ≤ m
)

≤ Cµ(y).

Lp error bounds
At each iteration of the AVI algorithm the new function
Vn+1 is obtained by approximating T Vn via a call to a SL
algorithm A, which solves a minimization problem in Lp,µ-
norm. Our main result relates the performance of AVI as a
function of the approximation errors using the same norm as
that used by the SL algorithm.
Theorem 1. Let µ be a distribution on X . Let A be an
ε−approximation operator in Lp,µ-norm (p ≥ 1) (i.e. for
all n ≥ 0, ||εn||p,µ ≤ ε). Then:

• Given assumption A1, we have

lim sup
n→∞

||V ∗ − V πn ||∞ ≤
2γ

(1 − γ)2
Cε. (5)

• Given assumption A2, we have

lim sup
n→∞

||V ∗ − V πn ||p,ρ ≤
2γ

(1 − γ)2
C1/pε. (6)

Let us give some insight about the constant C for a uni-
form distribution µ = ( 1

N . . . 1
N ). Here assumption A1 may

always be satisfied by choosing C = N (but then, (5) is not
better than (2), since ||εn||∞ ≤ N1/p||εn||p). We are thus
interested in finding a constant C � N . An interesting case
for which this happens is when the state space is continuous
and the transition densities are upper bounded (this will be
illustrated in the numerical experiments below).

Let us give some insight about the constant C in the case
of assumption A2 when ρ and µ are uniform.
• The largest possible value of C is obtained in a MDP

where for a specific policy π all states jump to a given
state -say state 1- with probability 1. Thus ρ(P π)m =
(1 0 . . . 0) ≤ Nµ. Thus for all m, c(m) = N and

C = (1 − γ2)
∑

i≥0

γi
∑

j≥0

γjh(i + j + 1) = N.

This is the worst case. In that case, (5)
may be derived from the L∞ bound (2) since
lim supn→∞ ||V ∗ − V πn ||p,ρ ≤ lim supn→∞ ||V ∗ −

V πn ||∞ ≤ 2γ
(1−γ)2 N1/pε.

• The lowest possible value of C is obtained in a MDP
with uniform transition probabilities P π(x, y) = 1/N (or
more generally if ρ = µ is the steady-state distribution of
P π). Here c(m) = 1 and C = 1.

Thus the smoothness constant expresses how picky the dis-
counted future state distribution is, compared to µ. A low
C means that the mass of the future state distribution start-
ing from ρ does not accumulate on few specific states for
which the distribution µ is low. For that purpose, it is
desirable that µ be somehow uniformly distributed (this
condition was already mentioned in (Koller & Parr 2000;
Kakade & Langford 2002; Munos 2003) to secure Policy
Improvement steps in Approximate Policy Iteration).
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Figure 1: The chain walk MDP.

Illustration on the chain walk MDP
We illustrate the fact that the Lp-norm (for p = 1 and 2)
bounds given in Theorem 1 under assumption A2 may be
much tighter than the L∞−norm (2) on the chain walk MDP
defined in (Lagoudakis & Parr 2003) (see Figure 1).

This is a linear chain with N states with two dead-end
states: states 1 and N . On each of the interior states
2 ≤ x ≤ N − 1 there are two possible actions: right or
left, which changes the state in the intended direction with
probability 0.9, and fails with probability 0.1 changing the
state in the opposite direction. The reward simply depends
on the current state and is 1 at boundary states and 0 else-
where: r = (1 0 . . .0 1)′.

We consider an approximation of the value function of
the form Vn(x) = αn + βnx where x ∈ {1, . . . , N} is the
state number. Assume that the initial approximation is zero:
V0 = (0 . . . 0)′. Then T V0 = (1 0 . . . 0 1)′. The best fit
in L∞-norm is a constant function V1 = ( 1

2 . . . 1
2 )′ which

produces an error ||V1 − T V0||∞ = 1
2 .

Let us choose uniform distributions µ = ( 1
N . . . 1

N ). In
L1-norm we find that the best fit is V1 = (0 . . . 0)′ (for N >
4) and the resulting error is ||V1 −T V0||1 = 2

N . In L2-norm
the best fit is also constant V1 = ( 2

N . . . 2
N )′ and the error is

||V1 − T V0||2 =
√

2N−4
N .

In the three cases, by induction, we observe that the suc-
cessive approximations Vn are constant, thus T Vn = r +
γVn and the approximation errors remain the same as in the
first iteration: ||Vn+1−T Vn||∞ = 1

2 , ||Vn+1−T Vn||1 = 2
N ,

and ||Vn+1 − T Vn||2 =
√

2N−4
N .

Since Vn is constant, any policy πn is greedy w.r.t. Vn.
Hence for πn = π∗ the l.h.s. of (2) and (6) are equal to zero.
Now, in order to compare the r.h.s. of these inequalities, let
us calculate the constant C under Assumptions A1 and A2.
Since state 1 jumps to itself with probability 1, under A1,
we have no better constant than C = N .

Under A2, the worst case in (4) is obtained when the mass
of the future state distribution is mostly concentrated on one
boundary state -say state 1- which corresponds to a policy
πLeft that chooses everywhere action left. We see that for
ρ = µ,

ρ(P πLeft)m(x) ≤ ρ(P πLeft )m(1) ≤ (1 + 0.9m)µ(x),

for all x ≥ 0, thus Assumption A2 is satisfied with
c(m) = 1 + 0.9m. We deduce that the constant C =
(1− γ)2

∑

m≥1 mγm−1(1 + 0.9m) is independent from the
number of states N .

Thus, when the number of states N is large, the L1−norm
bound provides an approximation of order O(N−1), the
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L2−norm bound is of order O(N−1/2), whereas the
L∞−norm bound (2) is only of order O(1).

Notice that here, we used the same norms for the min-
imization problem (function fitting) as those used for the
bounds. If, say, a L2-norm were used for minimization, then
this would provide even worst L∞ error bounds.

Practical algorithms
Model-based AVI
Let µ be a distribution over X . Given ε > 0 and an
ε−approximation operator A in Lp,µ-norm (for p ≥ 1). A
model-based version of AVI would consider, at each itera-
tion, the following steps:

1. Select set of states xk ∈ XN , k = 1 . . .K, sampled from
the distribution µ,

2. Compute the backed-up values vk = T Vn(xk),
3. Make a call to the supervised learning algorithm A with

the data {xk; vk}, which returns an ε−approximation
Vn+1.

Reinforcement Learning
Step 2 in the preceding algorithm requires the knowledge of
a model of the transition probabilities (as well as a way to
compute the expectations in the operator T ). If this is not
the case, one may consider using a Reinforcement Learning
(RL) algorithm (Sutton & Barto 1998). Let us introduce the
Q-values and the operator R defined on XN × A,

RQ(x, a) :=
∑

y∈X

p(x, a, y)
[

r(x, a, y) + γ max
b∈A

Q(y, b)
]

.

The AVI algorithm is equivalent to defining successive ap-
proximations Qn according to

Qn+1 = ARQn,

where A is an approximation operator on X × A. Thus, a
model-free RL algorithm would be defined by the steps:

1. Observe a set of transitions: (xk , ak)
rk→ yk, k = 1 . . .K,

where for current state xk and action ak, yk ∼ p(xk , ak, ·)
is the next observed state and rk the received reward,

2. Compute the values vk = rk + γ maxb Qn(yk, b),
3. Make a call to the supervised learning algorithm

A with the data {(xk, ak); vk}, which returns an
ε−approximation estimate Q̂n+1.

An interesting case is when A is a linear operator in the
values {vk} (which implies that the operators A and E

commute) such as in Least Squares Regression, k-Nearest
Neighbors, Locally Weighted Learning. Then the approx-
imation Q̂n+1 returned by A is an unbiased estimate of
ARQn (since the values {vk} are unbiased estimates of
RQn(xk , ak)). Thus when K is large, such an iteration acts
like a (model-based) AVI iteration, and bounds similar to
those of Theorem 1 may be derived.

Notice that the policy derived from the approximate Q-
values: π′

n(x) ∈ arg maxa Qn(x, a) is different from

the policy πn greedy w.r.t. Vn, defined by Vn(x) :=
maxa Qn(x, a). However, bounds similar to (2), (5), and (6)
on the performance of these policies π′

n may be derived anal-
ogously. For example, one may prove that the L∞ bound is

lim sup
n→∞

||V ∗ − V π′

n ||∞ ≤
2

(1 − γ)2
ε.

(there is an additional error of 2ε/(1− γ) compared to (2)).

Experiment: an optimal replacement problem
This experiment illustrate the respective tightness of the L∞,
L1, and L2 norm bounds on a discretization (for several
resolutions) of a continuous space control problem derived
from (Rust 1996).

A one-dimensional continuous variable xt ∈ IR+ mea-
sures the accumulated utilization (such as the odometer
reading on a car) of a durable. xt = 0 denotes a brand
new durable. At each discrete time t, there are two possi-
ble decisions: either keep (at = K) or replace (at = R), in
which case an additional cost Creplace (of selling the exist-
ing durable and replacing it for a new one) occurs.

The transition density functions are exponential with pa-
rameter β:

p(x, a = K, y) =

{

βe−β(y−x) if y ≥ x
0 if y < x,

(7)

p(x, a = R, y) =

{

βe−βy if y ≥ 0
0 if y < 0.

Moreover, if the next state y is greater than a maximal value
xmax (e.g. the car breaks down because it is too dam-
aged) then a new state is immediately redrawn according
to p(x, a = R, ·) and a penalty Cdead > Creplace occurs.
The current cost (opposite of a reward) c(x) is the sum of a
slowly increasing function (maintenance cost) and a short-
term discontinuous and periodic additional cost (e.g. which
may represent car insurance fees).

The current cost function and the value function (com-
puted by a discretization on a high resolution grid) are shown
on Figure 1a.

We choose the numerical values γ = 0.6, β = 0.6,
Creplace = 50, Cdead = 70, and xmax = 10. Two fi-
nite state space MDPs (with N = 200 or 2000 points)
are generated by discretizing the continuous space prob-
lem over the domain [0, xmax] using uniform grids {xk :=
kxmax/N}0≤k<N with N points.

We consider a linear approximation on the space spanned
by the truncated cosine basis

F :=
{

f(x) =
∑M

m=1αm cos(mπ
x

xmax
)
}

,

with M = 20 coefficients. We start with initial values V0 =
0. At each iteration, the fitted function Vn+1 ∈ F is such as
to minimise the L2 error:

Vn+1 = arg min
f∈F

1

N

∑N
k=1[f(xk) − T Vn(xk)]2.

In Figure 1.b we show the first iteration (for the grid with
200 points): the backed-up values T V0 (indicated with
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Figure 2: Cost and value functions.

crosses), the corresponding approximation V1 (best fit of
T V0 in the cosine approximation space). The approximate
value function computed after 20 iterations (when there are
no more improvement in the approximations) is also plotted.

Here, the highest pick in the future state distribution oc-
curs at x = 0 for a policy that would always chose action
R. By our choice of xmax,

∫ ∞
xmax

p(0, R, y)dy is negligi-
ble. Thus, Assumption A1 is satisfied (as well as A2) with
C = βxmax = 6.

||εn||∞ C||εn||1 C1/2||εn||2
N = 200 12.4 0.367 1.16
N = 2000 12.4 0.0552 0.897

Table 1: Comparison of the L∞, L1 and L2 bounds.

Table 1 compares the right hand side of equations (2), (5),
and (6) (up to the constant 2γ/(1 − γ)2). We notice that
the L1 and L2 bounds are much tighter than the L∞ one,
and decrease when the number of grid points tends to in-
finity (asymptotic behavior similar to the chain walk MDP),
whereas the L∞ bound does not. Indeed, when the number
of states N goes to infinity, the discrete MDP gets closer to
the continuous problem, and since the cost function is dis-
continuous, the L∞ approximation error (using continuous
function approximation such as the cosine basis) will never
be lower than half the value of the largest discontinuity.

Conclusion
Theorem 1 provides a useful tool to relate the performance
of AVI to the approximation power of the SL algorithm. Ex-
pressing the performance of AVI in the same norm as that
used by the supervised learner to minimize the approxima-
tion error guarantees the tightness of this bound.

Extension to other loss functions l, such as ε-insensitive
(used in Support Vectors) or Huber loss function (for robust

0

70

0 10

Accumulated utilization

TV0

V20
V1

Figure 3: T V0 (crosses), V1 and V20.

regression) is straightforward (as long as l is an increasing
and convex function over IR+).

Other possible extensions include Markov games and on-
line reinforcement learning.

Appendix: proof of the results
Proof of Lemma 1
Since T Vk ≥ T π∗

Vk and T V ∗ ≥ T πkV ∗, we have
V ∗ − Vk+1 = T π∗

V ∗ − T π∗

Vk + T π∗

Vk − T Vk + εk

≤ γP π∗

(V ∗ − Vk) + εk

V ∗ − Vk+1 = T V ∗ − T πkV ∗ + T πkV ∗ − T Vk + εk

≥ γP πk(V ∗ − Vk) + εk,

from which we deduce by induction

V ∗ − Vn ≤

n−1
∑

k=0

γn−k−1(P π∗

)n−k−1εk

+γn(P π∗

)n(V ∗ − V0) (8)

V ∗ − Vn ≥

n−1
∑

k=0

γn−k−1(P πn−1P πn . . . P πk+1)εk

+γn(P πnP πn−1 . . . P π1)(V ∗ − V0). (9)

Now, from the definition of πk and since T Vn ≥ T π∗

Vn,
we have:
V ∗ − V πn

= T π∗

V ∗ − T π∗

Vn + T π∗

Vn − T Vn + T Vn − T πnV πn

≤ γP π∗

(V ∗ − Vn) + γP πn(Vn − V ∗ + V ∗ − V πn),

thus (I − γP πn)(V ∗ − V πn) ≤ γ(P π∗

− P πn)(V ∗ −
Vn). Now, since (I − γP πn) is invertible and its inverse
∑

k≥0(γP πn)k has positive elements, we deduce

V ∗ − V πn ≤ γ(I − γP πn)−1(P π∗

− P πn)(V ∗ − Vn).
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This, combined with (8) and (9), and after taking the abso-
lute value, yields
V ∗ − V πn ≤ (I − γP πn)−1

{

n−1
∑

k=0

γn−k
[

(P π∗

)n−k + (P πnP πn−1 . . . P πk+1)
]

|εk| (10)

+γn+1
[

(P π∗

)n+1 + (P πnP πnP πn−1 . . . P π1)
]

|V ∗ − V0|
}

.

We deduce (3) by taking the upper limit. �

Proof of Theorem 1
We have seen that if assumption A1 holds, then A2 also
holds for any distribution ρ. Now, for p = 1, if the bound
(6) holds for any ρ, then (5) also holds. Thus, we only need
to prove (6) in the case of assumption A2.

We may rewrite (10) as

V ∗−V πn ≤
2γ(1− γn+1)

(1 − γ)2

[

n−1
∑

k=0

αkAk|εk|+αnAn|V
∗−V0|

]

,

with the positive coefficients (0 ≤ k < n)

αk :=
(1 − γ)γn−k−1

1− γn+1
and αn :=

(1 − γ)γn

1 − γn+1
,

(defined such that they sum to 1) and the stochastic matrices
Ak := 1−γ

2 (I − γP πn)−1[(P π∗

)n−k + (P πn . . . P πk+1)
]

An := 1−γ
2 (I−γP πn)−1[(P π∗

)n+1 +(P πnP πn . . . P π1)
]

.
We have

||V ∗ − V πn ||pp,ρ ≤
[2γ(1 − γn+1)

(1 − γ)2

]p ∑

x∈X

ρ(x)

[

n−1
∑

k=0

αkAk|εk| + αnAn|V
∗ − V0|

]p

(x)

≤
[2γ(1 − γn+1)

(1 − γ)2

]p ∑

x∈X

ρ(x) (11)

[

n−1
∑

k=0

αkAk|εk|
p + αnAn|V

∗ − V0|
p
]

(x),

by using two times Jensen’s inequality (since the coefficients
{αk}0≤k≤n sum to 1 and the matrix Ak are stochastic) (i.e.
convexity of x → |x|p). The second term in the brackets
will disappear when taking the upper limit. Now, from as-
sumption A2, ρAk ≤ (1 − γ)

∑

m≥0 γmc(m + n − k)µ,

thus the first term
∑

x ρ(x)
∑n−1

k=0 αkAk|εk|
p(x) in (11) is

bounded by
n−1
∑

k=0

αk(1 − γ)
∑

m≥0

γmc(m + n − k)||εk||
p
p,µ

≤
(1 − γ)2

1 − γn+1

∑

m≥0

n−1
∑

k=0

γm+n−k−1c(m + n − k)εp

≤
1

1 − γn+1
Cεp,

where we replaced αk by their values, and used the fact that
||εk||p,µ ≤ ε. By taking the upper limit in (11), we deduce
(6). �
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