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Abstract

We study a sequential variance reduction technique for Monte
Carlo estimation of functionals in Markov Chains. The
method is based on designing sequential control variates us-
ing successive approximations of the function of interest V .
Regular Monte Carlo estimates have a variance of O(1/N),
where N is the number of samples. Here, we obtain a geo-
metric variance reduction O(ρN ) (with ρ < 1) up to a thresh-
old that depends on the approximation error V −AV , where
A is an approximation operator linear in the values. Thus, if
V belongs to the right approximation space (i.e. AV = V ),
the variance decreases geometrically to zero.
An immediate application is value function estimation in
Markov chains, which may be used for policy evaluation in
policy iteration for Markov Decision Processes.
Another important domain, for which variance reduction is
highly needed, is gradient estimation, that is computing the
sensitivity ∂αV of the performance measure V with respect
to some parameter α of the transition probabilities. For ex-
ample, in parametric optimization of the policy, an estimate
of the policy gradient is required to perform a gradient opti-
mization method.
We show that, using two approximations, the value func-
tion and the gradient, a geometric variance reduction is also
achieved, up to a threshold that depends on the approximation
errors of both of those representations.

Introduction
We consider a Markov chain over a finite state space X de-
fined by the transition matrix P . We writeX(x) a trajectory
(xt)t≥0 starting at a state x0 = x. Let Ψ(r,X(x)) be a
functional that depends on some function r : X → IR and
the trajectory X(x), and write V (x) the expectation of the
functional that we wish to evaluate:

V (x) = E[Ψ(r,X(x))]. (1)
Here, the quantity of interest V is expressed in terms of

a Markov representation, as an expectation of a functional
that depends on trajectories. We will consider a functional
Ψ(r, ·) that is linear in r, and such that its expectation V
may be equivalently be expressed in terms of a solution to
a linear system

LV = r, (2)
Copyright c© 2005, American Association for Artificial Intelli-
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with L an invertible linear operator (matrix).
An example of Ψ is the sum of discounted rewards r re-

ceived along the trajectory:

Ψ(r,X(x)) =
∑

t≥0

γtr(xt). (3)

with γ < 1 being a discount factor. In that case, V is
solution to the Bellman equation (2) with L = I − γP .
Indeed, using matrix notations, V equals

∑
t≥0

γtP tr =

(I − γP )−1r.
Other functionals include finite-horizon sum of rewards

Ψ(r,X(x)) =
∑T

t=0
r(xt) or infinite-time average reward

Ψ(r,X(x)) = limT→∞
1

T

∑T−1

t=0
r(xt).

A regular Monte-Carlo (MC) method would esti-
mate V (x) by sampling N independent trajectories
{Xn(x)}1≤n≤N starting from x and calculate the average
1

N

∑N
n=1

Ψ(r,Xn(x)). The variance of such an estimator is
of order 1/N . Variance reduction is crucial since the numer-
ical approximation error of the quantity of interest is directly
related to the variance of its estimate.

Variance reduction techniques include importance sam-
pling, correlated sampling, control variates, antithetic vari-
ates and stratified sampling, see e.g. (Hammersley and
Handscomb, 1964; Halton, 1970). Geometric variance re-
duction rates have been obtained by processing these vari-
ance reduction methods iteratively, the so-called sequential
(or recursive) Monte-Carlo. Examples include adaptive im-
portance sampling (Kollman et al., 1999) and what Halton
called the “Third Sequential Method” (Halton, 1994) based
on sequential correlated sampling and control variates. This
approach has been recently developed in (Maire, 2003) for
numerical integration and, more related to our work, applied
to (continuous time) Markov processes in (Gobet and Maire,
2005).

The idea is to replace the expectation of Ψ(r, ·) by an ex-
pectation of Ψ(r − LW, ·) for some function W close to
V . From the linearity of Ψ and the equivalence between the
representations (1) and (2), for any W , one has

V (x) = W (x) + E[Ψ(r −LW,X(x))].

Thus, if W is a good approximation of V , the residual r −
LW is small, and the variance is low.

In the sequential method described in this paper, we use
successive approximations Vn of V to estimate by Monte
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Carlo a correctionEn using the residual r−LVn in Ψ, which
is used to process a new approximation Vn+1. We consider
an approximation operator A that is linear in the values. We
show that (for enough sampled trajectories at each iteration),
the variance of the estimator has a geometric rate ρN (with
ρ < 1, and N the total number of sampled trajectories) un-
til some threshold is reached, whose value is related to the
approximation error AV − V .

An interesting extension of this method concerns the es-
timation of the gradient ∂αV of V with respect to (w.r.t.)
some parameter α of the transition matrix P . A useful ap-
plication of such sensitivity analysis appears in policy gra-
dient estimation. An optimal control problem may be ap-
proximated by a parametric optimization problem in a given
space of parameterized policies. Thus, the transition ma-
trix P depends on some (possible multidimensional) pol-
icy parameter α. In order to apply gradient methods to
search for a local maximum of the performance in the pa-
rameter space, one wishes to estimate the policy gradient,
i.e. the sensitivity Z = ∂αV of the performance mea-
sure with respect to α. The gradient may be expressed as
an expectation Z(x) = E[Φ(r,X(x))], using the so-called
likelihood ratio or score method (Reiman and Weiss, 1986;
Glynn, 1987; Williams, 1992; Baxter and Bartlett, 2001;
Marbach and Tsitsiklis, 2003). The gradient Z is also the
solution to a linear system

LZ = −∂αLL−1r = −∂αLV. (4)
Indeed, since V solves V = L−1r, we have Z = ∂αV =

−L−1∂αLL−1r. For example, in the discounted case (3),
the functional Φ is defined by

Φ(r,X(x)) =
∑

t≥0

γtr(xt)

t−1∑

s=0

∂αP (xs, xs+1)

P (xs, xs+1)
, (5)

and Z is solution to (4) with L = I − γP and ∂αL =
−γ∂αP .

We show that, using two approximations Vn and Zn of
the value function and the gradient, a geometric variance
reduction is also achieved, up to a threshold that depends on
the approximation errors of both of those representations.

Numerical experiments on a simple Gambler’s ruin prob-
lem illustrate the approach.

Value function estimation
We first describe the approximation operator linear in the
values considered here, then describe the algorithm, and
state the main result on geometric variance reduction.

Approximation operator A
We consider a fixed set of J representative states XJ :=
{xj ∈ X}1≤j≤J and functions {φj : X → IR}1≤j≤J .
The linear approximation operator A maps any function
W : XJ → IR to the function AW : X → IR, according to

AW (x) =

J∑

j=1

W (xj)φj(x). (6)

This kind of function approximation includes:

• Linear regression, for example with Spline, Polynomial,
Radial Basis, Fourier or Wavelet decomposition. This is
the projection of a functionW onto the space spanned by
a set of functions {ψk : X → IR}1≤k≤K , that is which
minimizes some norm (induced by a discrete inner prod-
uct 〈f, g〉 :=

∑J
j=1

µjf(xj)g(xj), for some distribution
µ over XJ ):

min
α∈IRK

∣∣∣
∣∣∣

K∑

k=1

αkψk −W
∣∣∣
∣∣∣
2

.

The solution α solves the linear system Aα = b with
A an K × K-matrix of elements Akl = 〈ψk , ψl〉 and
b a K-vector of components bk = 〈W,ψk〉. Thus
αk =

∑K
l=1

A−1

kl

∑J
j=1

µjψl(xj)W (xj) and the best fit∑K
k=1

αkψk is thus of type (6) with

φj(x) = µj

K∑

k=1

K∑

l=1

A−1

kl ψl(xj)ψk(x). (7)

• k-nearest neighbors (Hastie et al., 2001): here φj(x) = 1

k
if x has xj as one of its k−nearest neighbors, and φj(x) =
0 otherwise.

• Locally weighted learning and Kernel regression (Atke-
son et al., 1997). Functions similar to (7) may be de-
rived, with the matrix A being dependent on x (through
the kernel).

The algorithm
We assume the equivalence between the Markov representa-
tion (1) and its interpretation in terms of the solution to the
linear system (2), i.e. for any function f : X → IR, we have

f(x) = E[Ψ(Lf,X(x))]. (8)
We consider successive approximations Vn ∈ IRJ of V

defined at the states XJ = (xj)1≤j≤J recursively:
• We initialize V0(xj) = 0.
• At stage n, we use the values Vn(xj) to provide a

new estimation of V (xj). Let En(xj) := V (xj) −
AVn(xj) be the approximation error at the states XJ .
From the equivalence property (8), we have: AVn(x) =
E[Ψ(LAVn, X(x))]. Thus, by linearity of Ψ w.r.t. its first
variable,

En(xj) = E[Ψ(r −LAVn, X(xj))].

Now, we use a Monte Carlo technique to estimate En(xj)
with M trajectories (Xn,m(xj))1≤m≤M : we calculate
the average

Ên(xj) :=
1

M

M∑

m=1

Ψ(r −LAVn, X
n,m(xj))

and define the new approximation at the states XJ :
Vn+1(xj) := AVn(xj) + Ên(xj). (9)

Remark 1. Notice that there is a slight difference between
this algorithm and that of (Gobet and Maire, 2005), which
may be written Vn+1(xj) = Vn(xj) + A[ 1

M

∑M
m=1

Ψ(r −
LVn, X

n,m(xj))]. Our formulation enables us to avoid the
assumption of the idempotent property for A (i.e. that A2 =
A), and guarantees that Vn is an unbiased estimate of V ,
for all n, as showed in the next paragraph.

AAAI-05 / 1013



Properties of the estimates Vn

We write the conditional expectations and variances:
E

n[Y ] = E[Y |Xp,m(xj), 0 ≤p<n, 1≤m≤M, 1≤j≤J ]

and Varn[Y ] = E
n[Y 2] − (En[Y ])2. We have the following

properties on the estimates:
Expectation of Vn. From the definition (9),

E
n[Vn+1(xj)] = AVn(xj) +En(xj) = V (xj).

Thus E[Vn(xj)] = V (xj) for all n ≥ 1: the approximation
Vn(xj) is an unbiased estimate of V (xj).

Variance of Vn. Write vn = sup1≤j≤J Var Vn(xj). The
following result expresses that for a large enough value of
M , the variance decreases geometrically.
Theorem 1. We have

vn+1 ≤ ρMvn +
2

M
VΨ(V −AV ) (10)

with ρM = 2

M

(∑J
j=1

√
VΨ(φj)

)2
, using the notation

VΨ(f) := sup
1≤j≤J

Var Ψ(Lf,X(xj)).

Thus, for a large enough value of M , (i.e. whenever ρM <
1), (vn)n decreases geometrically at rate ρM , up to the
threshold

lim sup
n→∞

vn ≤
1

1 − ρM

2

M
VΨ(V −AV ).

If V belongs to the space of functions that are repre-
sentable by A, i.e. AV = V , then the variance geometri-
cally decreases to 0 at rate ρN with ρ := ρ

1/M
M and N the

total number of sampled trajectories per state xj (i.e. N is
the number n of iterations times the number M of trajecto-
ries per iteration and state xj). Further research should con-
sider the best tradeoff between n and M , for a given budget
of a total of N = nM trajectories per state.

Notice that the threshold depends on the variance of Ψ for
the function L(V − AV ) = r − LAV , the residual of the
representation (by A) of V . Notice also that this threshold
depends on V − AV only at states reached by the trajec-
tories {X(xj)}xj∈XJ

: a uniform (over the whole domain)
representation of V is not required.

Of course, once the threshold is reached, a further conver-
gence of O(1/N) can be obtained thereafter, using regular
Monte Carlo.

Example: the discounted case
Let us illustrate the sequential control variates algorithm to
value function estimation in Markov chains. As an example,
we consider the infinite horizon, discounted case (3). The
value function V (x) = E

[∑
t≥0

γtr(xt)
]

solves the Bell-
man equation: V = r + γPV , which may be written as the
linear system (2) with L = I − γP .

In the previous algorithm, at stage n, the approximation
error En(xj) = V (xj) −AVn(xj) is therefore the expecta-
tion
En(xj) = E

[ ∑

t≥0

γt[r(xt) − (I − γP )AVn(xt)]|x0 = xj

]
.

(11)

We notice that the term r − (I − γP )AVn is the Bellman
residual of the approximation AVn. The estimate has thus
zero variance if this approximation happens to be the value
function.

In model-free learning, it may be interesting (in order to
avoid the computation of the expectation in P ) to replace the
term PAVn(xt) by AVn(xt+1) in (11), leaving the expecta-
tion unchanged (because of the linearity of the approxima-
tion operator A):

En(xj)=E

[∑

t≥0

γt[r(xt)−AVn(xt)+γAVn(xt+1)]|x0 = xj

]
,

(12)
at the cost of a slight increase of the variance (here, even
if the approximation AVn is the value function, the vari-
ance is not zero). The approximation error is thus the ex-
pected discounted sum of Temporal Differences (Sutton,
1988) r(xt) −AVn(xt) + γAVn(xt+1).

Following the algorithm, the next approximation Vn+1 is
defined by (9) with Ên(xj) being a Monte Carlo estimate of
(11) or (12).

Numerical experiment
We consider the Gambler’s ruin problem described in (Koll-
man et al., 1999): a gambler with i dollars bets repeatedly
against the house, whose initial capital is L − i. Each bet
is one dollar and the gambler has probability p of winning.
The state space is X = {0, . . . , L} and the transition matrix
P is defined, for i, j ∈ X , by

Pij =

{
p, if j − i = 1 and 0 < i < L,
1 − p, if i− j = 1 and 0 < i < L,
0, otherwise.

Betting continues until either the gambler is ruined (i =
0) or he has “broken the bank” (i = L) (thus 0 and L are
terminal states). We are interested in computing the proba-
bility of the gambler’s eventual ruin V (i) when starting from
initial fortune i. We thus define the function r(0) = 1 and
r(i 6= 0) = 0. The value function V solves the Bellman
equation (I − P )V = r, and its value is

V (i) =
λi − λL

1 − λL
, for i ∈ X , (13)

with λ := 1−p
p when p 6= 0.5, and V (i) = 1 − i/L for

p = 0.5. The representative states are XJ = {1, 7, 13, 19}.
We consider two linear function approximation A1 and A2

that are projection operators (minimizing the L2 norm at
the states XJ ) onto the space spanned by a set of functions
{ψk : X → IR}1≤k≤K . A1 uses K = 2 functions ψ1(i) =
1, ψ2(i) = λi, i ∈ X , whereas A2 uses K = 4 functions
ψ1(i) = 1, ψ2(i) = i, ψ3(i) = i2, ψ4(i) = i3, i ∈ X . No-
tice that V is representable by A1 (i.e. A1V = V ) but not
by A2. We chose p = 0.51.

We ran the algorithm with L = I − P (which is an in-
vertible matrix). At each iteration, we used M = 100 sim-
ulations per state. Figure 1 shows the L∞ approximation
error (maxj∈XJ

|V (j) − Vn(j)|) in logarithmic scale, as a

AAAI-05 / 1014



1 2 3 4 5 6 7 8 9 10
-16

10

-11
10

-6
10

-1
10

A
pp

ro
xi

m
at

io
n 

er
ro

r 
(i

n 
lo

g 
sc

al
e)

Number of iterations

MC with 10^8 trajectories

Approximation 2

Approximation 1

Figure 1: Approximation error for regular MC and sequen-
tial control variate algorithm using two approximations A1

and A2, as a function of the number of iterations.

function of the iteration number 1 ≤ n ≤ 10. This ap-
proximation error (which is the true quantity of interest) is
directly related to the variance of the estimates Vn.

For the approximationA1, we observe the geometric con-
vergence to 0, as predicted in Theorem 1. It takes less than
10 × 100 simulations per state to reach an error of 10−15.
Using A2, the error does not decrease below some threshold
' 2.10−5 due to the approximation error V − A2V . This
threshold is reached using about 5 × 100 simulations per
state. For comparison, usual MC reaches an error of 10−4

with 108 simulations per state.
The variance reduction obtained when using such sequen-

tial control variates is thus considerable.

Gradient estimation
Here, we assume that the transition matrix P depends on
some parameter α, and that we wish to estimate the sensitiv-
ity of V (x) = E[Ψ(r,X(x))] with respect to α, which we
write Z(x) = ∂αV (x).

An example of interest consists in solving approximately
a Markov Decision Problem by searching for a feedback
control law in a given class of parameterized stochastic poli-
cies. The optimal control problem is replaced by a para-
metric optimization problem, which may be solved (at least
in order to find a local optimum) using gradient methods.
Thus we are interested in estimating the gradient of the per-
formance measure w.r.t. the parameter of the policy. In this
example, the transition matrix P would be the transition ma-
trix of the MDP combined with the parameterized policy.

As mentioned in the introduction, the gradient may be
expressed by an expectation Z(x) = E[Φ(r,X(x))] (us-
ing the so-called likelihood ratio or score method (Reiman
and Weiss, 1986; Glynn, 1987; Williams, 1992; Baxter
and Bartlett, 2001; Marbach and Tsitsiklis, 2003)) where
Φ(r,X(x)) is also a functional that depends on the trajec-
tory X(x), and that is linear in its first variable. For exam-

ple, in the discounted case (3), the functional Φ is given by
(5). The variance is usually high, thus variance reduction
techniques are highly needed (Greensmith et al., 2005).

The gradient Z is also the solution to the linear system
(4). Unfortunately, this linear expression is not of the form
(2) since ∂αL is not invertible, which prevents us from using
directly the method of the previous section.

However, the linear equation (4) provides us with another
representation for Z in terms of Markov chains:

Z(x) = −E
[∑

t≥0
γt∂αLV (xt)

]
= −E[Ψ(∂αLV,X(x))].

(14)
We may extend the previous algorithm to the estimation

of Z by using two representations: Vn and Zn. The approx-
imation Vn of V is updated from Monte-Carlo estimation
of the residual r − LVn, and Zn, which approximates Z,
is updated from the gradient residual ∂αLVn − LZn built
from the current Vn. This approach may be related to the
so-called Actor-Critic algorithms (Konda and Borkar, 1999;
Sutton et al., 2000), which use the representation (14) with
an approximation of the value function.

A geometric variance reduction is also achieved, up to a
threshold that depends on the approximation errors of both
of those representations.

The algorithm
From (14) and the equivalence property (8), we obtain the
following representation for Z:
Z(x) = AZn(x) + E

[
Ψ(−∂αLV −LAZn, X(x))

]

= AZn(x) + E
[
Ψ(−∂αL(V −AVn), X(x))

−Ψ(∂αLAVn + LAZn, X(x))
]

= AZn(x) + E
[
Φ(r −LAVn, X(x)) (15)

−Ψ(∂αLAVn + LAZn, X(x))
]
.

from which the algorithm is deduced. We consider succes-
sive approximations Vn ∈ IRJ of V and Zn ∈ IRJ of Z
defined at the states XJ = (xj)1≤j≤J .
• We initialize V0(xj) = 0, Z0(xj) = 0.
• At stage n, we simulate by Monte Carlo M trajectories

(Xn,m(xj))1≤m≤M and define the new approximations
Vn+1 and Zn+1 at the states XJ :

Vn+1(xj)=AVn(xj)+
1

M

M∑

m=1

Ψ(r −LAVn, X
n,m(xj))

Zn+1(xj)=AZn(xj)+
1

M

M∑

m=1

[
Φ(r −LAVn, X

n,m(xj))

−Ψ(∂αLAVn + LAZn, X
n,m(xj))

]
.

Expectation of Vn and Zn. We have already seen that
E[Vn] = V for all n > 0. Now, (15) implies that
E

n[Zn+1] = Z, thus E[Zn] = Z for all n > 0.
Variance of Vn and Zn. We write vn =
sup1≤j≤J Var Vn(xj) and zn = sup1≤j≤J Var Zn(xj).
The next theorem state the geometric variance reduction for
large enough values of M .
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Theorem 2. We have

vn+1 ≤ ρMvn +
2

M
VΨ(V −AV )

zn+1 ≤ ρMzn +
2

M
[c1(V −AV, Z −AZ) + c2vn]

with ρM = 2

M

(∑J
j=1

√
VΨ(φj)

)2
, and the coefficients

c1(f, g) =
(√

VΦ(f) +
√
VΨ(L−1∂αLf) +

√
VΨ(g)

)2

c2 =
[ J∑

j=1

√
VΦ(φj) +

√
VΨ(L−1∂αLφj)

]2

,

using the notations VΨ(f) := sup1≤j≤J Var Ψ(Lf,X(xj))
and VΦ(f) := sup1≤j≤J Var Φ(Lf,X(xj)). Thus, for a
large enough value of M , (i.e. whenever ρM < 1), the con-
vergence of (vn)n and (zn)n is geometric at rate ρM , up to
the thresholds

lim sup
n→∞

vn ≤
1

1 − ρM

2

M
VΨ(V −AV )

lim sup
n→∞

zn ≤
1

1 − ρM

2

M

[
c1(V −AV, Z −AZ)

+c2
1

1 − ρV

2

M
VΨ(V −AV )

]
.

Here also, if V and Z are representable by A, then the
variance converges geometrically to 0.

Numerical experiment
Again we consider the Gambler’s ruin problem described
previously. The transition matrix is parameterized by α = p,
the probability of winning. The gradient Z(i) = ∂αV (i)
may be derived from (13):

Z(i) =
L(1− λi)λL−1 − i(1 − λL)λi−1

(1 − λL)2α2
for i ∈ X ,

(for α 6= 0.5), and Z(i) = 0 for α = 0.5. Again we use
the representative states XJ = {1, 7, 13, 19}. Here, we con-
sider two approximators A1 and A2 for the value function
representations Vn, and two approximators A2 and A3 for
the gradient representations Zn, where A3 is a projection
that uses K = 3 functions ψ1(i) = 1, ψ2(i) = λi, ψ3(i) =
iλi, i ∈ X . Notice that Z is representable by A3 but not by
A2. We chose p = 0.51 and M = 1000.

Figure 2 shows the L∞ approximation error of Z
(maxj∈XJ

|Z(j)−Zn(j)|) in logarithmic scale, for the dif-
ferent possible approximations of V and Z.

When both V and Z may be perfectly approximated (i.e.
A1 for V and A3 for Z) we observe the geometric conver-
gence to 0, as predicted in Theorem 2. The error is about
10−14 using a total of 104 simulations. When either the
value function or the gradient is not representable in the ap-
proximation spaces, the error does not decrease below some
threshold (' 3.10−3 whenZ is not representable) reached in
2.103 simulations. The threshold is lower (' 2.10−4) when
Z is representable. For comparison, usual MC reaches an
error (for Z) of 3.10−3 with 108 simulations per state.

The variance reduction of this sequential method com-
pared to regular MC is thus also considerable.
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Figure 2: Approximation error of the gradient Z = ∂αV
using approximators A1 and A2 for the value function, and
A2 and A3 for the gradient.

Conclusion
We described a sequential control variates method for esti-
mating an expectation of functionals in Markov chains, us-
ing linear approximation (in the values). We illustrate the
method on value function and policy estimates. We proved
geometric variance reduction up to a threshold that depends
on the approximation error of the functions of interest.

Future work would consider sampling initial states from
some distribution over X instead of using representative
states XJ .

Proof of Theorem 1
From the decomposition

V −AVn = V −AV +
∑J

i=1
(V − Vn)(xi)φi, (16)

we have

Vn+1(xj) =AVn(xj)+
1

M

M∑

m=1

[
Ψ(L(V −AV ), Xn,m(xj))

+
∑J

i=1
(V − Vn)(xi)Ψ(Lφi, X

n,m(xj))
]
.

Thus

VarnVn+1(xj) =
1

M
Varn

[
Ψ(L(V −AV ), X(xj))

+
∑J

i=1
(V − Vn)(xi)Ψ(Lφi, X(xj))

]
.

We use the general bound

Var
[∑

iαiYi

]
≤

[∑

i

|αi|
√

Var [Yi]
]2
, (17)

for any real numbers (αi)i and square integrable real random
variables (Yi)i, to deduce that

VarnVn+1(xj) ≤
1

M

[√
VΨ(V −AV ) (18)

+
∑J

i=1
|V − Vn|(xi)

√
VΨ(φi)

]2

,
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with VΨ(f) := sup1≤j≤J Var Ψ(Lf,X(xj)). Now, we use
the variance decomposition

Var Vn+1(xj) = Var [En[Vn(xj)]] + E[Varn[Vn(xj)]]

= E[Varn[Vn(xj)]],

and the general bound

E
[
(α0+

J∑

i=1

αiYi)
2
]
≤ 2α2

0+2
( J∑

i=1

|αi|
√

E[Y 2
i ]

)2

, (19)

to deduce from (18) that

vn+1 ≤
2

M

[
VΨ(V −AV ) +

( J∑

i=1

√
VΨ(φi)

)2
vn

]
,

which gives (10). Now, if M is such that ρM :=
2

M

( ∑J
i=1

√
VΨ(φi)

)2
< 1, then taking the upper limit fin-

ishes the proof of Theorem 1.

Proof of Theorem 2
Using (4) and (6), we have the decomposition

−∂αLAVn −LAZn

= −∂αLA(Vn − V ) − ∂αL(AV − V )

+L(Z −AZ) + LA(Z − Zn)

=
∑J

i=1
(V − Vn)(xi)∂αLφi − ∂αL(AV − V )

+L(Z −AZ) +
∑J

i=1
(Z − Zn)(xi)Lφi.

Now, using (16), VarnZn+1(xj) equals
1

M
Varn

h

Φ(L(V −AV ), X(xj))

+
J

X

i=1

(V − Vn)(xi)Φ(Lφi, X(xj)) − Ψ(∂αL(AV − V ), X(xj))

+

J
X

i=1

(V − Vn)(xi)Ψ(∂αLφi, X(xj)) + Ψ(L(Z −AZ), X(xj))

+

J
X

i=1

(Z − Zn)(xi)Ψ(Lφi, X(xj))
i

.

We use (17) to deduce that VarnZn+1(xj) is bounded by
1

M

[√
VΦ(V −AV ) +

√
VΨ(L−1∂αL(AV − V ))

+
∑J

i=1
|V − Vn|(xi)

(√
VΦ(φi) +

√
VΨ(L−1∂αLφi)

)

+
√
VΨ(Z −AZ) +

∑J
i=1

|Z − Zn|(xi)
√

VΨ(φi)
]2

,

Now, we use (19) to deduce that

zn+1≤
2

M

{(√
VΦ(V −AV ) +

√
VΨ(L−1∂αL(AV − V ))

+
[∑J

i=1

√
VΦ(φi) +

√
VΨ(L−1∂αLφi)

]2

vn

+
√
VΨ(Z −AZ) +

[∑J
i=1

√
VΨ(φi)

]2

zn

}
,

and Theorem 2 follows.
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