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Willow, CNRS/ENS/INRIA, Paris, France
audibert@certis.enpc.fr
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Abstract

We consider the problem of finding the best arm in a stochastic multi-armed bandit game.
The regret of a forecaster is here defined by the gap between the mean reward of the optimal arm
and the mean reward of the ultimately chosen arm. We propose a highly exploring UCB policy
and a new algorithm based on successive rejects. We show that these algorithms are essentially
optimal since their regret decreases exponentially at a rate which is, up to a logarithmic factor,
the best possible. However, while the UCB policy needs the tuning of a parameter depending
on the unobservable hardness of the task, the successive rejects policy benefits from being
parameter-free, and also independent of the scaling of the rewards. As a by-product of our
analysis, we show that identifying the best arm (when it is unique) requires a number of samples
of order (up to a log(K) factor)

P

i 1/∆2
i , where the sum is on the suboptimal arms and ∆i

represents the difference between the mean reward of the best arm and the one of arm i. This
generalizes the well-known fact that one needs of order of 1/∆2 samples to differentiate the
means of two distributions with gap ∆.

1 Introduction

In the multi-armed bandit problem, at each stage, an agent (or forecaster) chooses one action
(or arm), and receives a reward from it. In its stochastic version, the reward is drawn from a fixed
probability distribution given the arm. The usual goal is to maximize the cumulative sum of rewards,
see Robbins [1952], Auer et al. [2002] among many others. Since the forecaster does not know the
distributions, he needs to explore (try) the different actions and yet, exploit (concentrate its draws
on) the seemingly most rewarding arms. In this paper, we adopt a different viewpoint. We assume
that after a given number of pulls, the forecaster is asked to output a recommended arm. He is then
only evaluated by the average payoff of his recommended arm. This is the so-called pure exploration
problem, Bubeck et al. [2009].

The distinguishing feature from the classical multi-armed bandit problem described above is that
the exploration phase and the evaluation phase are separated. Thus, there is no explicit trade-off
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Parameters available to the forecaster: the number of rounds n and the number
of arms K.

Parameters unknown to the forecaster: the reward distributions ν1, . . . , νK of the
arms.

For each round t = 1, 2, . . . , n;

(1) the forecaster chooses It ∈ {1, . . . , K},
(2) the environment draws the reward XIt,TIt

(t) from νIt and independently of
the past given It.

At the end of the n rounds, the forecaster outputs a recommendation Jn ∈
{1, . . . , K}.

Figure 1: The pure exploration problem for multi-armed bandits.

between the exploration and the exploitation while pulling the arms. The target of Hoeffding and
Bernstein races, see Maron and Moore [1993], Mnih et al. [2008] among others, is more similar to
ours. However, instead of trying to extract from a fixed number of rounds the best action, racing
algorithms try to identify the best action at a given confidence level while consuming the minimal
number of pulls. They optimize the budget for a given confidence level, instead of optimizing the
quality of the recommendation for a given budget size.

We now illustrate why this is a natural framework for numerous applications. Historically, the
first occurrence of multi-armed bandit problems was given by medical trials, see Robbins [1952].
In the case of a severe disease, ill patients only are included in the trial and the cost of picking
the wrong treatment is high. It is important to minimize the cumulative regret, since the test and
cure phases coincide. However, for cosmetic products, there exists a test phase separated from
the commercialization phase, and one aims at minimizing the regret of the commercialized product
rather than the cumulative regret in the test phase, which is irrelevant.

Another motivating example concerns channel allocation for mobile phone communications. Dur-
ing a very short time before the communication starts, a cellphone can explore the set of channels to
find the best one to operate. Each evaluation of a channel is noisy and there is a limited number of
evaluations before the communication starts. The connection is then launched on the channel which
is believed to be the best. Opportunistic communication systems rely on the same idea. Again the
cumulative regret during the exploration phase is irrelevant since the user is only interested in the
quality of its communication starting after the exploration phase.

More generally, the pure exploration problem addresses the design of strategies making the best
possible use of available resources in order to optimize the performance of some decision-making
task. That is, it occurs in situations with a preliminary exploration phase in which costs are not
measured in terms of rewards but rather in terms of resources that come in limited budget (the
number of patients in the test phase in the clinical trial setting and the time to connect in the
communication example).

2 Problem setup

A stochastic multi-armed bandit game is parameterized by the number of arms K, the number of
rounds (or budget) n, and K probability distributions ν1, . . . , νK associated respectively with arm
1, . . . , arm K. These distributions are unknown to the forecaster. For t = 1, . . . , n, at round t, the
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forecaster chooses an arm It in the set of arms {1, . . . ,K}, and observes a reward drawn from νIt

independently from the past (actions and observations). At the end of the n rounds, the forecaster
selects an arm, denoted Jn, and is evaluated in terms of the difference between the mean reward of
the optimal arm and the mean reward of Jn. Precisely, let µ1, . . . , µK be the respective means of
ν1, . . . , νK . Let µ∗ = maxk∈{1,...,K} µk. The regret of the forecaster is

rn = µ∗ − µJn
.

For sake of simplicity, we will assume that the rewards are in [0, 1] and that there is a unique optimal
arm. Let i∗ denote this arm (so, µi∗ = µ∗). For i 6= i∗, we introduce the following suboptimality
measure of arm i:

∆i = µ∗ − µi.

For reasons that will be obvious later, we also define ∆i∗ as the minimal gap

∆i∗ = min
i 6=i∗

∆i.

We introduce the notation (i) ∈ {1, . . . ,K} to denote the i–th best arm (with ties break arbitrarily),
hence

∆i∗ = ∆(1) = ∆(2) ≤ ∆(3) ≤ . . . ≤ ∆(K).

Let en denote the probability of error, that is the probability that the recommendation is not the
optimal one:

en = P(Jn 6= i∗).

We have Ern =
∑

i 6=i∗ P(Jn = i)∆i, and consequently

∆i∗en ≤ Ern ≤ en.

As a consequence of this equation, up to a second order term, en and Ern behave similarly, and it
does not harm to focus on the probability en.

For each arm i and all time rounds t ≥ 1, we denote by Ti(t) the number of times arm i
was pulled from rounds 1 to t, and by Xi,1, Xi,2, . . . , Xi,Ti(t) the sequence of associated rewards.
Introduce X̂i,s = 1

s

∑s
t=1 Xi,t the empirical mean of arm i after s pulls. In the following, the symbol

c will denote a positive numerical constant which may differ from line to line.
The goal of this work is to propose allocation strategies with small regret, and possibly as small

as the best allocation strategy which would know beforehand the distributions ν1, . . . , νK up to a
permutation. Before going further, note that the goal is unachievable for all distributions ν1, . . . , νK :
a policy cannot perform as well as the “oracle” allocation strategy in every particular cases. For
instance, when the supports of ν1, . . . , νK are disjoints, the oracle forecaster almost surely identifies
an arm by a single draw of it. As a consequence, it has almost surely zero regret for any n ≥ K.
The generic policy which does not have any knowledge on the K distributions cannot reproduce this
performance for any K-tuple of disjointly supported distributions. In this work, the above goal of
deciding as well as an oracle will be reached for the set of Bernoulli distributions with parameters
in (0, 1), but the algorithms are defined for any distributions supported in [0, 1].

We would like to mention that the case K = 2 is unique and simple since, as we will indirectly
see, it is optimally solved by the uniform allocation strategy consisting in drawing each arm n/2
times (up to rounding problem), and at the end recommending the arm with the highest empirical
mean. Therefore, our main contributions concern more the problem of the budget allocation when
K ≥ 3. The hardness of the task will be characterized by the following quantities

H1 =
K∑

i=1

1
∆2

i

and H2 = max
i∈{1,...,K}

i∆−2
(i) .
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These quantities are equivalent up to a logarithmic factor since we have (see Section A)

H2 ≤ H1 ≤ log(2K)H2. (1)

Intuitively, we will show that these quantities are indeed characteristic of the hardness of the problem,
in the sense that they give the order of magnitude of the number of samples required to find the best
arm with a reasonable probability. This statement will be made precise in the rest of the paper, in
particular through Theorem 2 and Theorem 4.

Outline. In Section 3, we propose a highly exploring policy based on upper confidence bounds,
called UCB-E (Upper Confidence Bound Exploration), in the spirit of UCB1 Auer et al. [2002].
We prove that this algorithm, provided that it is appropriately tuned, has an upper bound on the
probability of error en of order exp

(
− c n

H1

)
. The core problem of this policy is the tuning of

the parameter. The optimal value of the parameter depends on H1, which has no reason to be
known beforehand by the forecaster, and which, to our knowledge, cannot be estimated from past
observations with sufficiently high confidence in order that the resulting algorithm still satisfies a
similar bound on en.

To get round this limitation, in Section 4, we propose a simple new policy called SR (Succes-
sive Rejects) that progressively rejects the arms which seem to be suboptimal. This algorithm
is parameter-free and its probability of error en is at most of order exp

(
− n

log(2K)H2

)
. Since

H2 ≤ H1 ≤ log(2K)H2, up to at most a logarithmic term in K, the algorithm performs as well
as UCB-E while not requiring the knowledge of H1.

In Section 5, we prove that H1 and H2 truly represent the hardness of the problem (up to a
logarithmic factor). Precisely, we consider a forecaster which knows the reward distributions of the
arms up to a permutation. When these distributions are of Bernoulli type with parameter in [p, 1−p]
for some p > 0, there exists a permutation of the distributions for which the probability of error of
the (oracle) forecaster is lower bounded by exp

(
− cn

p(1−p)H2

)
.

Section 6 provides some experiments testing the efficiency of the proposed policies and enlighten-
ing our theoretical results. We also discuss a modification of UCB-E where we perform a non-trivial
online estimation of H1. We conclude in Section 7.

Example. To put in perspective the results we just mentioned, let us consider a specific example
with Bernoulli distributions. Let ν1 = Ber

(
1
2

)
, and νi = Ber

(
1
2 − 1

Ki

)
for i ∈ {2, . . . ,K}. Here,

one can easily check that H2 = 2K2K . Thus, in this case, the probability of missing the best arm
of SR is at most of order exp

(
− n

2 log(2K)K2K

)
. Moreover, in Section 5, we prove that there does

not exist any forecaster (even with the knowledge of the distributions up to a permutation) with
a probability of missing the best arm smaller than exp

(
− 11n

K2K

)
for infinitely many n. Thus, our

analysis finds that, for this particular reward distributions, the number of samples required to find
the best arm is at least (of order of) K2K , and SR actually finds it with (of order of) log(K)K2K

samples.

3 Highly exploring policy based on upper confidence bounds

In this section, we propose and study the algorithm UCB-E described in Figure 2. When a is taken
of order log n, the algorithm essentially corresponds to the UCB1 policy introduced in Auer et al.
[2002], and its cumulative regret is of order log n. Bubeck et al. [2009] have shown that algorithms
having at most logarithmic cumulative regret, has at least a (non-cumulative) regret of order n−γ

for some γ > 0. So taking a of order log n is inappropriate to reach exponentially small probability
of error. For our regret notion, one has to explore much more and typically use a parameter which
is essentially linear in n. Precisely, we have the following result, which proof can be found in Section
B.
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Parameter: exploration parameter a > 0.

For i ∈ {1, . . . , K}, let Bi,s = bXi,s +
p

a
s

for s ≥ 1 and Bi,0 = +∞.

For each round t = 1, 2, . . . , n:
Draw It ∈ argmaxi∈{1,...,K} Bi,Ti(t−1).

Let Jn ∈ argmaxi∈{1,...,K}
bXi,Ti(n).

Figure 2: UCB-E (Upper Confidence Bound Exploration) algorithm.

Theorem 1 If UCB-E is run with parameter 0 < a ≤ 25
36

n−K
H1

, then it satisfies

en ≤ 2nK exp
(
− 2a

25

)
.

In particular for a = 25
36

n−K
H1

, we have en ≤ 2nK exp
(
− n−K

18H1

)
.

The theorem shows that the probability of error of UCB-E is at most of order exp(−ca) for
a ≥ log n. In fact, Theorem 5 in Appendix C shows a corresponding lower bound. In view of this,
as long as a ≤ 25

36
n−K
H1

, we can essentially say: the more we explore (i.e., the larger a is), the smaller
the regret is. Besides, the smallest upper bound on the probability of error is obtained for a of order
n/H1, and is therefore exponentially decreasing with n. The constant H1 depends not only on how
close the mean rewards of the two best arms are, but also on the number of arms and how close
their mean reward is to the optimal mean reward. This constant should be seen as the order of the
minimal number n for which the recommended arm is the optimal one with high probability. In
Section 5, we will show that H1 is indeed a good measure of the hardness of the task by showing
that no forecaster satisfies en ≤ exp

(
− cn

H2

)
for any distributions ν1, . . . , νK , where we recall that

H2 satisfies H2 ≤ H1 ≤ log(2K)H2.
One interesting message to take from the proof of Theorem 1 is that, with probability at least

1−2nK exp
(
− 2a

25

)
, the number of draws of any suboptimal arm i is of order a∆−2

i . This means that
the optimal arm will be played at least n − caH1, showing that for too small a, UCB-E ”exploits”
too much in view of our regret target. Theorem 1 does not specify how the algorithm performs when
a is larger than 25

36
n−K
H1

. Nevertheless, similar arguments than the ones in the proof show that for
large a, with high probability, only low rewarding arms are played of order a∆−2

i times, whereas
the best ones are all drawn the same number of times up to a constant factor. The number of these
similarly drawn arms grows with a. In the limit, when a goes to infinity, UCB-E is exactly the
uniform allocation strategy studied in Bubeck et al. [2009]. In general1, the uniform allocation has a
probability of error which can be lower and upper bounded by a quantity of the form exp

(
−c

n∆2
i∗

K

)
.

It consequently performs much worse than UCB-E for a = 25
36

n−K
H1

, since H1 ≤ K∆−2
i∗ , and poten-

tially H1 ¿ K∆−2
i∗ for very large number of arms with heterogeneous mean rewards.

One straightforward idea to cope with the absence of an oracle telling us the value of H1 would
be to estimate online the parameter H1 and use this estimation in the algorithm. Unfortunately,
we were not able to prove, and do not believe that, this modified algorithm generally attains the
expected rate of convergence. Indeed, overestimating H1 leads to low exploring, and in the event
when the optimal arm has given abnormally low rewards, the arm stops being drawn by the policy, its

1We say “in general” to rule out some trivial cases (like when the reward distributions are all Dirac distributions)
in which the probability of error en would be much smaller.
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Let A1 = {1, . . . , K}, log(K) = 1
2

+
PK

i=2
1
i
, n0 = 0 and for k ∈ {1, . . . , K − 1},

nk =

‰

1

log(K)

n − K

K + 1 − k

ı

.

For each phase k = 1, 2, . . . , K − 1:

(1) For each i ∈ Ak, select arm i during nk − nk−1 rounds.

(2) Let Ak+1 = Ak \ arg mini∈Ak
bXi,nk (we only remove one element from Ak,

if there is a tie, select randomly the arm to dismiss among the worst arms).

Let Jn be the unique element of AK .

Figure 3: SR (Successive Rejects) algorithm.

estimated mean reward is thus not corrected, and the arm is finally not recommended by the policy.
On the contrary, underestimating H1 leads to draw too much the suboptimal arms, precluding a
sufficiently accurate estimation of the mean rewards of the best arms. For this last case, things are in
fact much more subtle than what can be retranscribed in these few lines, and we notice that keeping
track of a lower bound on H1 would lead to the correct rate only under appropriate assumptions
on the decrease of the sequence ∆(k), k ∈ {1, . . . ,K}. In Section 6 we push this idea and propose a
way to estimate online H1, however we solely justify the corresponding algorithm by experiments.
In the next section we propose an algorithm which does not suffer from these limitations.

4 Successive Rejects algorithm

In this section, we describe and analyze a new algorithm, SR (Successive Rejects), see Figure 3 for
its precise description. Informally it proceeds as follows. First the algorithm divides the time (i.e.,
the n rounds) in K − 1 phases. At the end of each phase, the algorithm dismisses the arm with the
lowest empirical mean. During the next phase, it pulls equally often each arm which has not been
dismissed yet. The recommended arm Jn is the last surviving arm. The length of the phases are
carefully chosen to obtain an optimal (up to a logarithmic factor) convergence rate. More precisely,
one arm is pulled n1 =

⌈
1

log(K)
n−K

K

⌉
times, one n2 =

⌈
1

log(K)
n−K
K−1

⌉
times, ..., and two arms are pulled

nK−1 =
⌈

1
log(K)

n−K
2

⌉
times. SR does not exceed the budget of n pulls, since, from the definition

log(K) = 1
2 +

∑K
i=2

1
i , we have

n1 + . . . + nK−1 + nK−1 ≤ K +
n − K

log(K)

(
1
2

+
K−1∑
k=1

1
K + 1 − k

)
= n.

For K = 2, up to rounding effects, SR is just the uniform allocation strategy.

Theorem 2 The probability of error of SR satisfies

en ≤ K(K − 1)
2

exp
(
− n − K

log(K)H2

)
.

Proof We can assume that the sequence of rewards for each arm is drawn before the beginning of the
game. Thus the empirical reward for arm i after s pulls is well defined even if arm i has not been ac-
tually pulled s times. During phase k, at least one of the k worst arms is surviving. So, if the optimal
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arm i∗ is dismissed at the end of phase k, it means that X̂i∗,nk
≤ maxi∈{(K),(K−1),...,(K+1−k)} X̂i,nk

.
By a union bound and Hoeffding’s inequality, the probability of error en = P(AK 6= {i∗}) thus
satisfies

en ≤
K−1∑
k=1

K∑
i=K+1−k

P(X̂i∗,nk
≤ X̂(i),nk

)

≤
K−1∑
k=1

K∑
i=K+1−k

P(X̂i∗,nk
− µ∗ + µ(i) − X̂(i),nk

≥ ∆(i))

≤
K−1∑
k=1

K∑
i=K+1−k

exp
(
−nk∆2

(i)

)
≤

K−1∑
k=1

k exp
(
−nk∆2

(K+1−k)

)
.

We conclude the proof by noting that by definition of nk and H2, we have

nk∆2
(K+1−k) ≥

n − K

log(K)
1

(K + 1 − k)∆−2
(K+1−k)

≥ n − K

log(K)H2

. (2)

The following theorem provides a deeper understanding of how SR works. It lower bounds
the sampling times of the arms and shows that at the end of phase k, we have a high-confidence
estimation of ∆(K+1−k) up to numerical constant factor. This intuition will prove to be useful in
Section 6, see in particular Figure 4.

Theorem 3 With probability at least 1 − K3

2 exp
(
− n−K

4log(K)H2

)
, for any arm j, we have

Tj(n) ≥ n − K

4log(K)H2∆2
j

. (3)

With probability at least 1 − K3 exp
(
− n−K

32log(K)H2

)
, for any k ∈ {1, . . . ,K − 1}, the dismissed arm

`k = Ak+1 \ Ak at the end of phase k satisfies

1
4
∆(K+1−k) ≤

1
2
∆`k

≤ max
m∈Ak

X̂m,nk
− X̂`k,nk

≤ 3
2
∆`k

≤ 3∆(K+1−k). (4)

Proof We consider the event E on which for any k ∈ {1, . . . ,K − 1}, for any arm ` in the worst k
arms, and any arm j such that 2∆j ≤ ∆`, we have

X̂j,nk
− X̂`,nk

> 0.

This event holds with probability at least 1−K3

2 exp
(
− n−K

4log(K)H2

)
, since, from Hoeffding’s inequality,

a union bound and (2), we have

K−1∑
k=1

∑
`∈{(K),(K−1),...,(K+1−k)}

j:2∆j≤∆`

P
(

X̂j,nk
− X̂`,nk

≤ 0
)

≤
K−1∑
k=1

∑
`∈{(K),(K−1),...,(K+1−k)}

j:2∆j≤∆`

exp
(
− nk(∆` − ∆j)2

)

≤
K−1∑
k=1

kK exp
(
− nk

∆2
(K+1−k)

4
)
≤ K3

2
exp

(
− n − K

4log(K)H2

)
.
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During phase k, at least one of the k worst arms is surviving. On the event E , this surviving
arm has an empirical mean at the end of the phase which is smaller than the one of any arm j
satisfying 2∆j ≤ ∆(K+1−k). So, at the end of phase k, any arm j satisfying 2∆j ≤ ∆(K+1−k)

cannot be dismissed. Now, for a given arm j, we consider two cases depending whether there exists
m ∈ {1, . . . ,K} such that ∆(m−1) ≤ 2∆j ≤ ∆(m).

First case. If no such m exists, then we have ∆2
jTj(n) ≥ 1

4∆2
(K)n1 ≥ n−K

4log(K)H2
, so that (3) holds.

Second case. If such m exists, then, from the above argument, the arm j cannot be dismissed before
the end of the phase K + 2 − m (since there exists K + 1 − m arms ` such that ∆` ≥ 2∆j). From
(2), we get

∆2
jTj(n) ≥ ∆2

jnK+2−m ≥
∆2

j

∆2
(m−1)

n − K

log(K)H2

≥ n − K

4log(K)H2

,

which ends the proof of (3). We have seen that at the end of phase k, any arm j satisfying
2∆j ≤ ∆(K+1−k) cannot be dismissed. Consequently, at the end of phase k, the dismissed arm
`k = Ak+1 \ Ak satisfies the left inequality of

1
2
∆(K+1−k) ≤ ∆`k

≤ 2∆(K+1−k). (5)

Let us now prove the right inequality by contradiction. Consider k such that 2∆(K+1−k) < ∆`k
.

Arm `k thus belongs to the k − 1 worst arms. Hence, in the first k − 1 rejects, say at the end
of phase k′, an arm j with ∆j ≤ ∆(K+1−k) is dismissed. From the left inequality of (5), we get
∆(K+1−k′) ≤ 2∆j < ∆`k

. On the event E , we thus have X̂j,nk′ − X̂`k,nk′ > 0 (since `k belongs to
the k′ worst arms by the previous inequality). This contradicts the fact that j is rejected at phase
k′. So (5) holds.

Now let E ′ be the event on which for any arm j, and any k ∈ {1, . . . ,K − 1}
∣∣X̂j,nk

− µj

∣∣ ≤
∆(K+1−k)

8 . Using again Hoeffding’s inequality, a union bound and (2), this event holds with probability
at least 1 − 2K(K − 1) exp

(
− n−K

32log(K)H2

)
. We now work on the event E ∩ E ′, which holds with

probability at least 1 − K3 exp
(
− n−K

32log(K)H2

)
. From (5), the dismissed arm `k at the end of phase

k satisfies ∣∣X̂`k,nk
− µ`k

∣∣ ≤ ∆(K+1−k)

8
≤ ∆`k

4
.

Besides, we also have ∣∣ max
m∈Ak

X̂m,nk
− µ(1)

∣∣ ≤ ∆(K+1−k)

8
≤ ∆`k

4
.

Consequently, at the end of phase k, we have

1
4
∆(K+1−k) ≤

1
2
∆`k

≤ max
m∈Ak

X̂m,nk
− X̂`k,nk

≤ 3
2
∆`k

≤ 3∆(K+1−k).

5 Lower bound

In this section we provide a very general and somewhat surprising lower bound. We prove that,
when the reward distributions are Bernoulli distributions with variances bounded away from 0, then
for any forecaster, one can permute the distributions on the arms (before the game starts) so that
the probability of missing the best arm will be at least of order exp

(
− cn

H2

)
. Note that, in this

formulation, we allow the forecaster to know the reward distributions up to a permutation of the
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indexes! However, as the lower bound expresses it, even in this relatively easier case, the quantity
H2 is a good measure of the hardness of finding the best arm

Theorem 4 (Lower Bound) Let ν1, . . . , νK be Bernoulli distributions with parameters in [p, 1−p],
p ∈ (0, 1/2). For any forecaster, there exists a permutation σ : {1, . . . ,K} → {1, . . . ,K} such that
the probability error of the forecaster on the bandit problem defined by ν̃1 = νσ(1), . . . , ν̃K = νσ(K)

satisfies

en ≥ exp
(
− (5 + o(1))n

p(1 − p)H2

)
,

where the o(1) term depends only on K, p and n and goes to 0 when n goes to infinity (see the end
of the proof).

The proof of this result is quite technical. However, it is simple to explain why we can ex-
pect such a bound to hold. Assume (without loss of generality) that the arms are ordered, i.e.,
µ1 > µ2 ≥ . . . ≥ µK , and that all rewards Xi,t, t ∈ {1, . . . , n}, i ∈ {1, . . . ,K}, are drawn before the
game starts. Let i ∈ {2, . . . ,K}. If X̂1,n/i < X̂i,n/i ≤ X̂j,n/i for all j ∈ {2, . . . , i − 1}, then it seems
reasonable that a good forecaster should not pull arm 1 more than n/i times, and furthermore not
select it as its recommendation. One can see that, the probability of the event we just described is of
order of exp(−c(n/i)∆2

i ). Thus, with probability at least exp(−cn/max2≤i≤K i∆−2
i ), the forecaster

makes an error, which is exactly the lower bound we propose. However, note that this argument
does not yield a reasonable proof strategy, in particular we assumed a ”good” forecaster with a
”reasonable” behavior. For instance, it is obvious that the proof has to permute the arms, since a
forecaster could, despite all, choose arm 1 as its recommendation, which imply a probability error
of 0 as soon as the best arm is in position 1.

The main idea of our proposed proof goes as follows. A bandit problem is defined by a product
distribution ν = ν1 ⊗ · · · ⊗ νK . One can consider that at the beginning of the game, n K-tuples of
rewards is sampled from this product distribution. This defines a table of nK rewards. A forecaster
will explore a subpart of this table. We want to find a permutation σ of {1, . . . ,K} so that the
indices of the best arm for ν and ν̃ = νσ(1) ⊗ · · · ⊗ νσ(K) are different and such that the likelihood
ratio of the explored part of the table of nK rewards under ν and ν̃ is at least of order exp(−cn/H2)
with probability with respect to ν⊗n lower bounded by a positive numerical constant. This would
imply the claimed bound. Remark that, the ”likelihood cost” of moving distribution νi to arm j de-
pends on both the (Kullback-Leibler) distance between the distributions νi and νj , and the number
of times arm j is pulled. Thus, we have to find the right trade-off between moving a distribution to
a ”close” distribution, and the fact that the target arm should not be pulled too much. To do this,
we ”slice” the set of indexes in a non-trivial (and non-intuitive) way. This ”slicing” depends only
on the reward distributions, and not on the considered forecaster. Then, to put it simply, we move
the less drawn arm from one slice to the less drawn arm in the next slice. Note that the preceding
sentence is not well defined, since by doing this we would get a random permutation (which of course
does not make sense to derive a lower bound). However, at the cost of some technical difficulties, it
is possible to circumvent this issue.

To achieve the program outlined above, as already hinted, we use the Kullback-Leibler divergence,
which is defined for two probability distributions ρ, ρ′ on [0, 1] with ρ absolutely continuous with
respect to ρ′ as:

KL(ρ, ρ′) =
∫ 1

0

log
(

dρ

dρ′
(x)

)
dρ(x) = EX∼ρ log

(
dρ

dρ′
(X)

)
.

9



Another quantity of particular interest for our analysis is

K̂Li,t(ρ, ρ′) =
t∑

s=1

log
(

dρ

dρ′
(Xi,s)

)
.

In particular note that, if arm i has distribution ρ, then this quantity represents the (non re-
normalized) empirical estimation of KL(ρ, ρ′) after t pulls of arm i. Let Pν and Eν the probability
and expectation signs when we integrate with respect to the distribution ν⊗n. Another important
property is that for any two product distributions ν, ν′, which differ only on index i, and for any
event A, one has:

Pν(A) = Eν′1A exp
(
−K̂Li,Ti(n)(ν′

i, νi)
)

, (6)

since we have
∏Ti,n

s=1
dνi

dν′
i
(Xi,s) = exp

(
− K̂Li,Ti(n)(ν′

i, νi)
)
.

Proof First step: Notations. Without loss of generality we can assume that ν is ordered in the
sense that µ1 > µ2 ≥ . . . ≥ µK . Moreover let L ∈ {2, . . . ,K} such that H2 = L/∆2

L, that is for all
i ∈ {1, . . . ,K},

i/∆2
i ≤ L/∆2

L. (7)

We define now recursively the following sets. Let k1 = 1,

Σ1 =
{

i : µL ≤ µi ≤ µL +
∆L

L1/2k1

}
,

and for j > 1,

Σj =
{

i : µL +
∆L

L1/2kj−1
< µi ≤ µL +

∆L

L1/2kj

}
,

where kj is the smallest integer (if it exists, otherwise set kj = +∞) such that |Σj | > 2|Σj−1|. Let
` = max{j : kj < +∞}. We define now the random variables Z1, . . . , Z` corresponding to the indices
of the less sampled arms of the respective slices Σ1, . . . , Σ`: for j ∈ {1, . . . , `},

Zj ∈ argmin
i∈Σj

Ti(n).

Finally let Z`+1 ∈ argmini∈{1,...,L}\{Jn} Ti(n).

Second step: Controlling TZj (n), j ∈ {1, . . . , ` + 1}. We first prove that for any j ∈ {1, . . . , `},

3|Σj | ≥ L
1− 1

2
kj+1−1 . (8)

To do so let us note that, by definition of kj+1, we have

2|Σj | ≥
∣∣∣{i : µL + ∆L/L1/2kj

< µi ≤ µL + ∆L/L1/2kj+1−1
}∣∣∣

≥
∣∣∣{i : µi ≤ µL + ∆L/L1/2kj+1−1

}∣∣∣ − (|Σ1| + . . . + |Σj−1|).

Now remark that, by definition again, we have |Σ1|+ . . .+ |Σj−1| ≤ (2−(j−1) + . . .+2−1)|Σj | ≤ |Σj |.
Thus we obtain 3|Σj | ≥

∣∣∣{i : µi ≤ µL + ∆L/L1/2kj+1−1
}∣∣∣. We finish the proof of (8) with the

following calculation, which makes use of (7). For any v ≥ 1,

|{i : µi ≤ µL + ∆L/v}| = |{i : ∆i ≥ ∆L(1 − 1/v)}|

≥

∣∣∣∣∣
{

i :

√
i

L
∆L ≥ ∆L(1 − 1/v)

}∣∣∣∣∣
=

∣∣{i : i ≥ L(1 − 1/v)2
}∣∣ ≥ L

(
1 − (1 − 1/v)2

)
≥ L/v.

10



Now (8) directly entails (since a minimum is smaller than an average), for j ∈ {1, . . . , `},

TZj (n) ≤ 3L
1

2
kj+1−1 −1 ∑

i∈Σj

Ti(n). (9)

Besides, since Z`+1 is the less drawn arm among L − 1 arms, we trivially have

TZ`+1(n) ≤ n

L − 1
. (10)

Third step: A change of measure. Let ν′ = νL⊗ν2⊗· · ·⊗νK be a modified product distribution
where we replaced the best distribution by νL. Now let us consider the event

Cn =
{
∀t ∈{1, . . . , n}, i ∈ {2, . . . , L}, j ∈ {1, . . . , L},

K̂Li,t(νi, νj) ≤ t KL(νi, νj) + on and K̂L1,t(νL, νj) ≤ t KL(νL, νj) + on

}
,

where on = 2 log(p−1)
√

n log(2L). From Hoeffding’s maximal inequality, we have Pν′(Cn) ≥ 1/2 (see
Appendix D). We thus have

∑
1≤z1,...,z`+1≤L Pν′

(
Cn ∩{Z1 = z1, . . . , Z`+1 = z`+1}

)
≥ 1/2. Moreover

note that Z1, . . . , Z` are all distinct. Thus there exists ` + 1 constants z1, . . . , z`+1 such that, for
An = Cn ∩ {Z1 = z1, . . . , Z`+1 = z`+1}, we have

Pν′(An) ≥ 1
2L × L!

. (11)

Since, by definition Z`+1 6= Jn, we have

An ⊂ {Jn 6= z`+1}. (12)

In the following we treat differently the cases z`+1 = 1 and z`+1 6= 1. Let us assume in a first time
that z`+1 = 1. Then, an application of (6) and (12) directly gives, by definition of An,

en(ν) = Pν(Jn 6= 1) = Eν′1Jn 6=1 exp
(
− K̂L1,T1(n)(νL, ν1)

)
≥ Eν′1An exp

(
− K̂L1,T1(n)(νL, ν1)

)
≥ Eν′1An exp

(
− on − TZ`+1(n)KL(νL, ν1)

)
≥ 1

2L × L!
exp

(
− on − n

L − 1
KL(νL, ν1)

)
,

where we used (10) and (11) for the last equation. Now, for any p, q ∈ [0, 1], the KL divergence
between Bernoulli distributions of parameters p and q satisfies

KL(Ber(p), Ber(q)) ≤ (p − q)2

q(1 − q)
. (13)

This can be seen by using log u ≤ u − 1 on the two logarithmic terms in KL(Ber(p), Ber(q)). In
particular, it implies KL(νL, ν1) ≤ ∆2

L

p(1−p) , which concludes the proof in the case z`+1 = 1.
Assume now that z`+1 6= 1. In this case we prove that the lower bound holds for a well defined

permuted product distribution ν̃ of ν. We define it as follows. Let m be the smallest j ∈ {1, . . . , `+1}
such that zm = z`+1. Now we set ν̃ as follows: ν̃zm = ν1, ν̃zm−1 = νzm , . . ., ν̃z1 = νz2 , ν̃1 = νz1 , and
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ν̃j = νj for other values of j in {1, . . . ,K}. Remark that ν̃ is indeed the result of a permutation of
the distributions of ν. Again, an application of (6) and (12) gives, by definition of An,

en(ν̃) = Pν̃(Jn 6= zm)

= Eν′1Jn 6=zm exp
(
− K̂L1,T1(n)(νL, νz1) −

m−1∑
j=1

K̂Lzj ,Tzj
(n)(νzj , νzj+1) − K̂Lzm,Tzm (n)(νzm , νz1)

)

≥ Eν′1An exp
(
− (m + 1)on − T1(n)KL(νL, νZ1) −

m−1∑
j=1

TZj (n)KL(νZj , νZj+1)

− TZm(n)KL(νZm , νZ1)
)

. (14)

From (13), the definition of Σj , and since the parameters of the Bernoulli distributions are in
[p, 1− p], we have KL(νL, νZ1) ≤ 1

p(1−p)
∆2

L

L , KL(νZm , νZ1) ≤
∆2

L

p(1−p) , and for any j ∈ {1, . . . ,m− 1},

KL(νZj
, νZj+1) ≤

1
p(1 − p)

(
∆L

L1/2kj+1

)2

.

Reporting these inequalities, as well as (9), (10) and (11) in (14), we obtain:

en(ν̃) ≥ Eν′1An exp
(
− (m + 1)on − 3

∆2
L

p(1 − p)L

(
T1(n) +

m−1∑
j=1

∑
i∈Σj

Ti(n) +
nL

3(L − 1)

))

≥ 1
2L × L!

exp
(
− L on − 3n

∆2
L

p(1 − p)L

(
1 +

L

3(L − 1)

))

Since L ≤ K and 2K × K! ≤ exp
(
2K log(K)

)
and from the definitions of on and L, we obtain

en(ν̃) ≥ exp
(
−2K log(K) − 2K log(p−1)

√
n log(2K) − 5

n

p(1 − p)H2

)
,

which concludes the proof.

6 Experiments

We propose a few simple experiments to illustrate our theoretical analysis. As a baseline comparison
we use the Hoeffding Race algorithm, see Maron and Moore [1993], and the uniform strategy, which
pulls equally often each arm and recommend the arm with the highest empirical mean, see Bubeck
et al. [2009] for its theoretical analysis. We consider only Bernoulli distributions, and the optimal
arm always has parameter 1/2. Each experiment corresponds to a different situation for the gaps,
they are either clustered in few groups, or distributed according to an arithmetic or geometric
progression. In each experiment we choose the number of samples (almost) equal to H1 (except for
the last experiment where we run it twice, the second time with 2H1 samples). If our understanding
of the meaning of H1 is sound, in each experiment the strategies SR and UCB-E should be able to
find the best arm with a reasonable probability (which should be roughly of the same order in each
experiment). We report our results in Figure 5. The parameters for the experiments are as follows:
– Experiment 1: One group of bad arms, K = 20, µ2:20 = 0.4 (meaning for any j ∈ {2, . . . , 20}, µj =
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Parameter: exploration rate c > 0.

Definitions: For k ∈ {1, . . . , K − 1}, let nk =
˚

1

log(K)

n−K
K+1−k

ˇ

, t0 = 0, t1 = Kn1,

and for k > 1, tk = n1 + . . . nk−1 + (K − k + 1)nk.

For i ∈ {1, . . . , K} and a > 0, let Bi,s(a) = bXi,s +
p

a
s

for s ≥ 1 and Bi,0 = +∞.

Algorithm: For each phase k = 0, 1, . . . , K − 1:
Let bH1,k = K if k = 0, and otherwise

bH1,k = max
K−k+1≤i≤K

ib∆−2
<i>,

where b∆i =
`

max1≤j≤K
bXj,Tj(tk)

´

− bXi,Ti(tk) and < i > is an ordering such that
b∆<1> ≤ . . . ≤ b∆<K>.

For t = tk + 1, . . . , tk+1:
Draw It ∈ argmaxi∈{1,...,K} Bi,Ti(t−1)(cn/ bH1,k).

Recommendation: Let Jn ∈ argmaxi∈{1,...,K}
bXi,Ti(n).

Figure 4: Adaptive UCB-E algorithm. Its intuitive justification goes as follows: The time points
tk correspond to the moments where the Successive Rejects algorithm would dismiss an arm. Intu-
itively, in light of Theorem 3, one can say that at time tk a good algorithm should have reasonable
approximation of the gaps between the best arm and the k worst arms, that is the quantities
∆(K−k+1), . . . , ∆(K). Now with these quantities, one can build a lower estimate of H2 and thus also
of H1. We use this estimate between the time points tk and tk+1 to tune the parameter a of UCB-E.

0.4)
– Experiment 2: Two groups of bad arms, K = 20, µ2:6 = 0.42, µ7:20 = 0.38.
– Experiment 3: Geometric progression, K = 4, µi = 0.5 − (0.37)i, i ∈ {2, 3, 4}.
– Experiment 4: 6 arms divided in three groups, K = 6, µ2 = 0.42, µ3:4 = 0.4, µ5:6 = 0.35.
– Experiment 5: Arithmetic progression, K = 15, µi = 0.5 − 0.025i, i ∈ {2, . . . , 15}.
– Experiment 6: Two good arms and a large group of bad arms, K = 20, µ2 = 0.48, µ3:20 = 0.37.
– Experiment 7: Three groups of bad arms, K = 30, µ2:6 = 0.45, µ7:20 = 0.43, µ21:30 = 0.38.

The different graphics should be read as follows: Each bar represents a different algorithm and
the bar’s height represents the probability of error of this algorithm. The correspondence between
algorithms and bars is the following:
– Bar 1: Uniform sampling strategy.
– Bar 2-4: Hoeffding Race algorithm with parameters δ = 0.01, 0.1, 0.3.
– Bar 5: Successive Rejects strategy.
– Bar 6-9: UCB-E with parameter a = cn/H1 where respectively c = 1, 2, 4, 8.
– Bar 10-14: Adaptive UCB-E (see Figure 4) with parameters c = 1/4, 1/2, 1, 2, 4.

7 Conclusion

This work has investigated strategies for finding the best arm in a multi-armed bandit problem.
It has proposed a simple parameter-free algorithm, SR, that attains optimal guarantees up to a
logarithmic term (Theorem 2 and Theorem 4). A precise understanding of both SR (Theorem 3)
and a UCB policy (Theorem 1) lead us to define a new algorithm, Adaptive UCB-E. It comes without
guarantee of optimal rates (see end of Section 3), but performs better than SR in practice (for c = 1,
Adaptive UCB-E outperformed SR on all the experiments we did, even those done to make it fail).
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Figure 5: These results support our theoretical findings in the following sense: Despite the fact that
the experiments are very different, one can see that since we use a number of samples (almost) equal
to the hardness H1, in all of them we get a probability of error of the same order, and moreover this
probability is small enough to say that we identified the best arm. Note that the Successive Rejects
algorithm represents in all cases a substantial improvement over both the naive uniform strategy and
Hoeffding Race. These results also justify experimentally the algorithm Adaptive UCB-E, indeed
one can see that with the constant c = 1 we obtain better results than SR in all experiments, even
in experiment 6 which was designed to be a difficult instance of Adaptive UCB-E.
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One possible explanation is that SR is too static: it does not implement more data driven arguments
such as: in a phase, a surviving arm performing much worse than the other ones is still drawn until
the end of the phase even if it is clear that it is the next dismissed arm.

Extensions of this work may concentrate on the following problems. (i) What is a good measure
of hardness when one takes into account the (empirical) variances? Do we have a good scaling with
respect to the variance with the current algorithms or do we need to modify them ? (ii) Is it possible
to derive a natural anytime version of Successive Rejects (without using a doubling trick)? (iii)
Is it possible to close the logarithmic gap between the lower and upper bounds? (iv) How should
we modify the algorithm and the analysis if one is interested in recommending the top m actions
instead of a single one?
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A Proof of Inequalities (1)

Let log(K) = 1
2 +

∑K
i=2

1
i . Remark that log(K + 1) − 1/2 ≤ log(K) ≤ log(K) + 1/2 ≤ log(2K).

Precisely, we will prove
H2 ≤ H1 ≤ log(K) H2,

which is tight to the extent that the right inequality is an equality when for some 0 < c ≤ 1/
√

K,
we have ∆(i) =

√
ic for any i 6= i∗, and the left inequality is an equality if all ∆i’s are equal.

Proof: The left inequality follows from: for any i ∈ {1, . . . ,K}, H1 =
∑K

k=1 ∆−2
(k) ≥

∑i
k=1 ∆−2

(i) ≥
i∆−2

(i) . The right inequality directly comes from
∑K

i=1 ∆−2
(i) = ∆−2

(2)+
∑K

i=2
1
i i∆

−2
(i) ≤ log(K)maxi∈{1,...,K} i∆−2

(i) .

B Proof of Theorem 1

First step. Let us consider the event

ξ =
{
∀i ∈ {1, . . . ,K}, s ∈ {1, . . . , n}, |X̂i,s − µi| <

1
5

√
a

s

}
.

From Hoeffding’s inequality and a union bound, we have P(ξ) ≥ 1−2nK exp
(
−2a

25

)
. In the following,

we prove that on the event ξ we have Jn = i∗, which concludes the proof. Since Jn is the empirical
best arm, and given that we are on ξ, it is enough to prove that

1
5

√
a

Ti(n)
≤ ∆i

2
,∀i ∈ {1, . . . ,K},

or equivalently:

Ti(n) ≥ 4
25

a

∆2
i

,∀i ∈ {1, . . . ,K}. (15)

Second step. Firstly we prove by induction that

Ti(t) ≤
36
25

a

∆2
i

+ 1,∀i 6= i∗. (16)

It is obviously true at time t = 1. Now assume that the formula is true at time t − 1. If It 6= i
then Ti(t) = Ti(t − 1) and the formula still holds. On the other hand, if It = i, then in particular
it means that Bi,Ti(t−1) ≥ Bi∗,Ti∗ (t−1). Moreover, since we are on ξ, we have Bi∗,Ti∗ (t−1) ≥ µ∗ and

Bi,Ti(t−1) ≤ µi + 6
5

√
a

Ti(t−1) . Thus, we have 6
5

√
a

Ti(t−1) ≥ ∆i. By using Ti(t) = Ti(t − 1) + 1, we

obtain (16).
Now we prove an other useful formula:

Ti(t) ≥
4
25

min
(

a

∆2
i

,
25
36

(Ti∗(t) − 1)
)

,∀i 6= i∗. (17)

With the same inductive argument as the one to get equation (16), we only need to prove that this
formula holds when It = i∗. By definition of the algorithm, and since we are on ξ, when It = i∗ we
have for all i:

µ∗ +
6
5

√
a

Ti∗(t − 1)
≥ µi +

4
5

√
a

Ti(t − 1)
,

which implies

Ti(t − 1) ≥ 16
25

a(
∆i + 6

5

√
a

Ti∗ (t−1)

)2 .
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We then obtain (17) by using u + v ≤ 2 max(u, v), Ti(t) = Ti(t − 1) and Ti∗(t − 1) = Ti∗(t) − 1.
Third step. Recall that we want to prove equation (15). From (17), we only have to show that

25
36

(Ti∗(n) − 1) ≥ a

∆2
i∗

,

where we recall that ∆i∗ is the minimal gap ∆i∗ = mini 6=i∗ ∆i. Using equation (16) we obtain:

Ti∗(n) − 1 = n − 1 −
∑
i 6=i∗

Ti(n) ≥ n − K − 36
25

a
∑
i 6=i∗

∆−2
i ≥ 36

25
a∆−2

i∗ ,

where the last inequality uses 36
25H1a ≤ n − K. This concludes the proof.

C Lower bound for UCB-E

Theorem 5 If ν2, . . . , νK are Dirac distributions concentrated at 1
2 and if ν1 is the Bernoulli dis-

tribution of parameter 3/4, the UCB-E algorithm satisfies 4Ern = en ≥ 4−(4a+1).

Proof Consider the event E on which the reward obtained from the first m = d4ae draws of arm
1 are equal to zero. On this event of probability 4−m, UCB-E will not draw arm 1 more than m
times. Indeed, if it is drawn m times, it will not be drawn another time since B1,m ≤ 1

2 < B2,s for
any s. On the event E , we have Jn 6= 1.

D Application of Hoeffding’s maximal inequality in the proof
of Theorem 4

Let i ∈ {2, . . . , L} and j ∈ {1, . . . , L}. First note that, by definition of ν′ and since i 6= 1,

Eν′K̂Li,t(νi, νj) = t KL(νi, νj).

Since νi = Ber(µi) and νj = Ber(µj), with µi, µj ∈ [p, 1 − p], we have∣∣∣∣log
(

dνi(Xi,t)
dνj(Xi,t)

)∣∣∣∣ ≤ log(p−1).

From Hoeffding’s maximal inequality, see e.g. [Cesa-Bianchi and Lugosi, 2006, Section A.1.3],
we have to bound almost surely the quantity, with Pν′-probability at least 1 − 1

2L2 , we have for all
t ∈ {1, . . . , n},

K̂Li,t(νi, νj) − t KL(νi, νj) ≤ 2 log(p−1)

√
log(L2)n

2
.

Similarly, with Pν′-probability at least 1 − 1
2L2 , we have for all t ∈ {1, . . . , n},

K̂L1,t(νL, νj) − t KL(νL, νj) ≤ 2 log(p−1)

√
log(L2)n

2
.

A simple union bound argument then gives Pν′(Cn) ≥ 1/2.
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